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Abstract

Analytical formulations and solutions to the static analysis of simply supported anti-symmetric angle-ply composite and
sandwich plates hitherto not reported in the literature based on a higher-order refined theory already reported in the literature are
presented. The theoretical model presented herein incorporates laminate deformations, which account for the effect of transverse
shear deformation and a non-linear variation of in-plane displacements with respect to the thickness coordinate. The transverse
displacement is assumed to be constant throughout the thickness. The equations of equilibrium are obtained using principle of
minimum potential energy. Solutions are obtained in closed form using Navier’s technique by solving the boundary value problem.
Accuracy of the theoretical formulations and the solution method is first ascertained by comparing the results with that already
reported in the literature. After establishing the accuracy of the solutions, numerical results with real properties are presented for the

multilayer antisymmetric angle-ply composite and sandwich plates, which will serve as a benchmark for future investigations.
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1. Introduction

Structural elements made up of fibre reinforced
composite material are being increasingly used in the
aeronautical and aerospace industries as well as in other
fields of modern technology, primarily due to their high
strength-to-weight and stiffness-to-weight ratios and also
due to their anisotropic material properties that can be
tailored through variation of the fibre orientation and
stacking sequence. During the last few decades, numer-
ous investigators have used a variety of methods for the
analysis of laminated composite and sandwich plates.
These include analytical and numerical methods. Review
of literature with many citations up to the year 1989 can
be found in the articles by Soni and Pagano [1], Hera-
kovich [2] and Pagano [3]. A complete review of various
shear deformation theories for the analysis of multilayer
composite plates and shells is available in the review
articles by Noor and Burton [4,5] and Noor et al. [6]. A
selective review of the various analytical and numerical
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methods used for the stress analysis of laminated com-
posite and sandwich plates was presented by Kant and
Swaminathan [7]. Analytical formulations, solutions and
comparison of numerical results for the buckling, free
vibration, stress analyses of cross ply composite and
sandwich plates based on the higher-order refined theo-
ries already reported in the literature by Kant [§], Pandya
and Kant [9-13] and Kant and Manjunatha [14] were
presented recently by Kant and Swaminathan [15-18]. In
this paper, analytical formulations developed and solu-
tions obtained for the first time is presented for the static
analysis of antisymmetric angle-ply laminated composite
and sandwich plates using a higher-order refined theory
already reported in the literature. Correctness of the
solutions is first established and then benchmark results
with real properties are presented for the antisymmetric
angle-ply composite and sandwich plates.

2. Theoretical formulation
2.1. Displacement model

In order to approximate the three-dimensional elas-
ticity problem to a two-dimensional plate problem, the
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displacement components u(x,y,z), v(x,y,z) and
w(x,y,z) at any point in the plate space are expanded in
Taylor’s series in terms of the thickness coordinate. The
elasticity solution indicates that the transverse shear
stresses vary parabolically through the plate thickness.
This requires the use of a displacement field in which the
in-plane displacements are expanded as cubic functions
of the thickness coordinate. The variation of transverse
displacement component w(x,y,z) is assumed constant
through the plate thickness and thus setting &, = 0, then
the displacement field may be expressed as [13]

u(x,y,z) = uo(x7y) + ng(x>y) + ZzuS(x>y) + 239;()(?,)/)
U(x,y,z) = U()(x,y) + Zey(xvy) + ZzUS(an/) + 230;()(?,)/)
w(x,y,z) = WO(x7y)

(1)
The parameters uy, vy are the in-plane displacements and
wy 1s the transverse displacement of a point (x,y) on the
middle plane. The functions 0,, 0, are rotations of the
normal to the middle plane about y- and x-axes re-
spectively. ug, v;, 0, 0] are the higher-order terms in the
Taylor’s series expansion and they represent higher-
order transverse cross sectional deformation modes.

In this paper the analytical formulations and solution
method followed using the higher-order refined theory
given by Eq. (1) is presented in detail. The geometry of a
two-dimensional laminated composite and sandwich
plates with positive set of coordinate axes and the physi-
cal middle plane displacement terms are shown in Figs. 1
and 2 respectively. By substitution of the displacement
relations given by Eq. (1) into the strain-displacement
equations of the classical theory of elasticity, the fol-
lowing relations are obtained:

& = &y + ZKy +zzs;‘0 +Z3K;‘

& = &0 + 2K, + 228;0 + ZSK?;

yxy = €x0 + ZHxy + ZzS;yO + Z3K)ty (2)
Ve = ¢y + 2Ky + Zz(b;

Yz = d)x + ZKy; +Zz¢;

where

auo 61}0 auo alio
(3x07 €0, gxyO) =

B
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_ (90, 30, 30, 20,
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00 90, 20: 69;‘)

(rexz, 1ey2) = (2u, 205)
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Fig. 1. Laminate geometry with positive set of lamina/laminate ref-
erence axes, displacement components and fibre orientation.

2.2. Constitutive equations

Each lamina in the laminate is assumed to be in a
three-dimensional stress state so that the constitutive
relation neglecting the normal stress o3, normal strain &3
and retaining a 6x 6 matrix for a typical lamina L with
reference to the fibre-matrix coordinate axes (1-2-3) can
be written as

g1 L C11 C12 0 0 0 0 L &1 L
() C12 sz 0 0 0 0 &
0 10 0 0 0 0 0 0
T12 0 0 0 C44 0 0 Y12
T23 0 0 0 0 C55 0 V23
T13 0 0 0 0 0 C66 Y13
(4)

where (o1, 62, T12, T23, T13) are the stresses and (g, &, 715,
V23> Y13) are the linear strain components referred to the
lamina coordinates (1-2-3) and the Cj;s are the elastic
constants or the elements of stiffness matrix of the Lth
lamina with reference to the fibre axes (1-2-3). In the
laminate coordinates (x,y,z) the stress—strain relations
for the Lth lamina can be written as



K. Swaminathan, D. Ragounadin | Composite Structures 64 (2004) 405-417 407

TYPICAL LAMINA
IN FACE SHEET

/—

z,3
LAMINATE
MID-PLANE
/7
//
/ //
A w, V4
S
/ /

ZLH_I_ZLI 7 % CORE
L) N
L=2J T_ L=1

a

]

1
(x,y,z) - LAMINATE REFERENCE AXES

Fig. 2. Geometry of a sandwich plate with positive set of lamina/
laminate reference axes, displacement components and fibre orienta-
tion.

o) O Qn 00w 0 071 (&))"
gy Q22 0 Q24 0 0 &y
0 _ 0O 0 0 O 0
Txy Q44 0 0 '))xy
Ty symmetric Oss Ose Vs
Tys Oss Yz

where (o, 0,, Ty, 7,2, T,2) are the stresses and (e, &, 7,
7)2» 7x:) are the strains with respect to the laminate axes.
O;;s are the transformed elastic constants or stiffness
matrix with respect to the laminate axes x, y, z. The el-
ements of matrices [C] and [Q] are defined in Appendices
A and B.

2.3. Governing equations of equilibrium

The equations of equilibrium for the stress analysis
are obtained using the principle of minimum potential
energy (PMPE). In analytical form it can be written as
follows [19]:

SU+V)=0 (6)

where U is the total strain energy due to deformations,
V' is the potential of the external loads, and U + V = II
is the total potential energy and & denotes the varia-
tional symbol. Substituting the appropriate energy ex-
pression in the above equation, the final expression can
thus be written as

%
l/ /(ax de; + 0,88, + 14,07, + 1,287,

h
5 JA

—I—TXZByxz)dAdz—/ijw*dA =0 (7)
A

where w' = wy is the transverse displacement of any
point on the top surface of the plate and p is the
transverse load applied at the top surface of the plate.
Using Egs. (1)-(3) in Eq. (7) and integrating the re-
sulting expression by parts, and collecting the coeffi-
cients of duo, dvy, dwo, 80, 80,, duy, dvy, 80;, 60 the
following equations of equilibrium are obtained:

aNx a]vxy _
8140 N ax + ay = 0
_ON,  ON,
81,70 : 5 —+ ax = 0
dwy an+%+p+ =0
Ox oy :
oM, OM,,
60, : a ¥ _0.=0
ox + oy ©
. OM, oM, _
duy ax%—ay —-25,=0
Su GN; 6N;y 5s 0
% dy * o T
oM: OM:;
80" . —= 2 _30"=0
¥ Ox + dy o
L)Y ox 0=

and the boundary conditions are of the form.
On the edge x = constant

Uy = Uy or Nx = Nx; vy = Uy Or ny = va,

— 2 * —% * NES
WOZWOOI‘QXZQX, MOZMOOI‘]VX:NX,

vy =1, or N, = N;}, 0, =0, or M, = M,,

0, =0, or My, = M,,, 0. =0 or M =M,

0, =0, or M; =M 9)

*

<
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On the edge y = constant
Uy = ug or chy = ny, vy = Uy Or Ny = Ny,
wo =W or O, = 0,, uy =iy or N, =N;,
vy =Ty or Ny =N, 0.

0, =0, or M,, = MX:V,
0, =0, or M, =M,, 0;=0;or M; =M,

0, =0, or M; = M; (10)
where the stress resultants are defined by
[ M, M NL pzi | Ox

M, M :Z/ o, Sz 2dz (1)
| M, M, = Ju Ty

- Qx Q* :| NL /ZH] { Txy } 5

T = 1 dz 12
& 9 ; 7L Tz 7 (12)
N N: NL Zp+ Ox
N, N | = / o, M1 2]dz (13)

LY

S-S [ e e ”

the resultants in Eqgs. (11)—(14) can be related to the total
strains in Eq. (2) by the following equations:

Tyy

Qug Qug
Oox %
N, oug o
N oy Ox
’ g %
N: ox %
y _ ay ! ox
Oox %
M, o6y a0,
dy o
X
M; o o,
M* Ox %
g o0y o0
oy ox
Qug Qug
ox ay
dy ox
]ny ox oy
Cb =B o B (15)
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xy ox oy
M a0, 20,
i o 3
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0, 0,
O ow il
¢ _ ox / y
Qx - [D ] * +[ ] * )
0. Oy
A\ " Y
ug vy
Hx 9}’
O owy oy
* _ ! ox oy
0t =EN & o +IER 5 (16)
Sy x v
* *
U Vo

where the matrices [4], [4'], [B], [B'], [D], [D'], [E], [E'] are
the matrices of plate stiffnesses whose elements are
defined in Appendix C.

3. Analytical solutions

Here the exact solutions of Egs. (8)-(16) for anti-
symmetric angle-ply plates are considered. Assuming
that the plate is simply supported with SS-2 boundary
conditions [22] in such a manner that tangential dis-
placement is admissible, but the normal displacement is
not, the following boundary conditions are appropriate:

At edges x =0 and x = a:

up=0, wy=0, 0,=0, M, =0, u;=0, 9;‘ =0,

M;=0, N,=0, N;,=0 (17)
At edges y=0and y = b:

vp=0, w=0, 0,=0 M=0 v;=0 10 =0,

M;=0, N,=0, N, =0 (18)

following Navier’s solution procedure [20-22], the so-
lution to the displacement variables satisfying the above
boundary conditions can be expressed in the following
forms:

NgE
NgE

uy = ug, sin ax cos fy

'mn

3
I
3

i
NgE
NgE

g, COS o sin fy

mn

3
Il
3

;
NgE
NgE

Wy, Sin ocx sin fy

i
=

0

Xmn

il
NgE
NgE

cos ox sin fiy

3
Il

3

_

S
NgE
NgE

0,,,, sin ox cos fiy

3
I
3
Il

OT*
NgE
NgE

U, sinox cos fy

m=1 n=1
oo o0
* * :
vy = E E vy, COs ox sin fy
m=1 n=1
o0 oo
* * .
0. = E E HXM cos ox sin Sy
m=1 n=1
o0 oo
0, = E E 0}, sin ax cos fy

1 1

m

1

and the loading term is expanded as

o0

P =Y p.,sinoxcos fy (19)

m=1 n=1

where o =22 and ff =2
a b
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Substituting Egs. (17)—(19) into Eq. (8) and collecting
the coefficients one obtains

[X]9><9

N
OOOOOO-:G+OO

y 9x1

for any fixed values of m and n. The elements of coeffi-
cient matrix [X] are given in Appendix D.

4. Numerical results and discussion

In this section, various numerical examples solved are
described and discussed for establishing the accuracy of
the theory for the stress analysis of antisymmetric angle-
ply laminated composite and sandwich plates. For all
the problems a simply supported plate with SS-2
boundary conditions is considered for the analysis. The
transverse loading considered is sinusoidal. Results are
obtained in closed-form using Navier’s solution tech-
nique for the above geometry and loading and the ac-
curacy of the solution is established by comparing the
results with the solutions wherever available in the lit-
erature.

The following sets of data are used in obtaining nu-
merical results:

Material 1 [23]
E; =40 x 10° psi (276 GPa),
E;=E; =1 x 10° psi (6.895 GPa),
G, = Gi3 = 0.5 x 10° psi (3.45 GPa),
Gy = 0.6 x 10° psi (4.12 GPa),
V12 = a3 = V13 = 0.25

Material 2

Glass epoxy
E; = 5.6 x 10° psi (38.61 GPa),
E, = 1.2 x 10° psi (8.27 GPa),
E; = 1.3 x 10° psi (8.96 GPa),
G = 0.60 x 10° psi (4.14 GPa),
Gi3 = 0.60 x 10° psi (4.14 GPa),

Gss = 0.50 x 10° psi (3.45 GPa),
Uip = 026, D13 = 026, Uy3 = 0.34

Material 3
Face sheets (graphite epoxy T300/934)

Ey =19 x 10° psi (131 GPa),

E, =1.5x10° psi (10.34 GPa), E, = Ej,
G =1 x 10° psi (6.895 GPa),

G5 = 0.90 x 10° psi (6.205 GPa),

Gy =1 x 10° psi (6.895 GPa), v, =0.22,

vi3 =022, vy, =0.49

Core (isotropic)
E| = E, = E; = 2G = 1000 psi (6.90 x 10~ GPa),
Gi, = Gi3 = Gy3 = 500 psi (3.45 x 107 GPa),

Vi =013 =03 =0

Results reported in tables and plots are using the
following nondimensional form:

_ 100A°E, _ 100/°E,

u=1u , L=V s
P0a4 P0a4

_ 1004°E, _ W

w=w ) Ox =0x| 55 |
P0a4 P()CZ2

_ h? _ h?
0y = 0Oy P2 )’ Txy = Tay Pod’

Unless otherwise specified within the table(s) the lo-
cations (i.e. x-, y-, and z-coordinates) for maximum
values of displacements and stresses for the present
evaluations are as follows:

In-plane displacement (u) : (0,5/2, £h/2)
In-plane displacement (v) : (a/2,0,+h/2)
Transverse displacement (w) : (a/2,b/2,0)
In-plane normal stress (o) : (a/2,b/2,+h/2)
In-plane normal stress (o) : (a/2,b/2,+h/2)
In-plane shear stress (t,) : (0,0, £h/2)

Example 1. A simply supported two and four layered
square and two layered rectangular antisymmetric
angle-ply (0/—0/...) composite plates under sinusoidal
transverse load is considered. The layers are of equal
thickness. Material set 1 is used. The numerical values of
maximum transverse deflection w for the square and
rectangular plates are given in Tables 1 and 2. The re-
sults are compared with the values reported by Ren [23].
For all the values of a/k ratio and the fibre orientation,
the values of transverse deflection predicted by the
higher-order theory considered in the present investi-
gation is slightly lower. In the case of a square plate, the
difference between the results computed using the pres-
ent theory and the results reported by Ren is very less in
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Table 1 Table 2
Non-dimensionalized deflection in a simply supported anti-symmetric Non-dimensionalized deflection in a simply supported two layered
(0/—01...) square laminate under sinusoidal transverse load anti-symmetric (6/—6) rectangular (b = 3a) laminate under sinusoidal
0 afh Theory > transverse load
nt=2 =4 0 a/h Theory w
15° 4 Present 1.4596 1.2869 15° 4 Present 2.1245
Ren® 1.4989 13050 Ren 2.1922
10 Present 0.6374 0.4446 10 Present 1.0146
Ren® 0.6476 0.4505 Ren 1.0272
100 Present 0.4679 0.2667 100 Present 0.8019
Ren® 0.4680 0.2668 Ren 0.8020
30° 4 Present 1.3775 1.0605 30° 4 Present 2.6980
Ren 1.4865 1.0943 Ren 2.8881
10 Present 0.6432 0.3454 10 Present 1.5388
Ren® 0.6731 0.3543 Ren 1.5787
100 Present 0.4972 0.2048 100 Present 1.3158
Ren® 0.4975 0.2049 Ren 13163
45° 4 Present 1.3175 0.9814 45° 4 Present 3.6716
Ren® 1.4471 1.0160 Ren 3.9653
10 Present 0.6084 03114 10 Present 2.3323
Ren® 0.6427 0.3201 Ren 2.3953
100 Present 0.4682 0.1820 100 Present 2.0679
Ren 0.4685 0.1821 Ren 2.0686
3 Number of layers. 60° 4 Present 5.3528
®See [23]. Ren® 5.6283
10 Present 3.8013
Ren? 3.8621
100 Present 3.4864
the case of four 1aye;red plate as compared to two lay- Ren® 3 4868
ered plate. For a thick rectangular plate (a/h = 4), the
. . . . . . 75° 4 Present 7.8743
difference in values increases with the increase in fibre Ren® 80042
orientation up to 0 = 45° and decreases with 0 great@r 10 Present 6.4668
than 45°. Both for the square and rectangular thin Ren? 6.4962
laminates (a/h = 100), for all the values of a/h ratio and 100 Present 6.1831
fibre orientation 6 considered, the present results are Ren® 6.1836
in good agreement with that reported by Ren. The *See [23].
Table 3

Non-dimensionalized in-plane stresses in a simply supported two (n = 2) and four (» = 4) layered anti-symmetric (0/—0...) square laminate under
sinusoidal transverse load

0 a/h Gy Gy Tyy
n=2 n=4 n=2 n=4 n=2 n=4
15° 4 0.8274 0.7261 0.1122 0.1181 —-0.0835 —-0.0858
10 0.6420 0.4730 0.0782 0.0584 -0.0753 -0.0663
100 0.6002 0.4173 0.0682 0.0448 -0.0727 —-0.0588
30° 4 0.7727 0.5806 0.2978 0.2340 -0.1726 -0.1615
10 0.4979 0.3009 0.1885 0.1141 -0.1897 —-0.1266
100 0.4395 0.2439 0.1652 0.0893 —-0.1962 -0.1179
45° 4 0.5351 0.4046 0.5351 0.4046 —-0.2310 -0.1911
10 0.3123 0.1885 0.3123 0.1885 —0.2465 —0.1488
100 0.2652 0.1443 0.2652 0.1443 -0.2531 —-0.1395
60° 4 0.3246 0.2340 0.7997 0.5807 -0.1726 -0.1615
10 0.1935 0.1141 0.5029 0.3009 —-0.1897 -0.1266
100 0.1652 0.0894 0.4395 0.2439 -0.1962 -0.1179
75° 4 0.1378 0.1181 0.8435 0.7261 —-0.0835 —-0.0858
10 0.0811 0.0584 0.6448 0.4730 —-0.0753 -0.0663

100 0.0682 0.0448 —-0.6002 0.4173 -0.0727 —-0.0588
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Table 4

Non-dimensionalized in-plane stresses in a simply supported two
layered antisymmetric (6/—6) rectangular (b = 3a) laminate under
sinusoidal transverse load

Table 5

Non-dimensionalized transverse deflection and in-plane stresses in a
simply supported four layered anti-symmetric (6/—60/6/—0) square
laminate under sinusoidal transverse load

0 a/h Gy G, Ty 0 a/h W &y a, Ty

15° 4 1.1110 0.0934 —0.0443 15° 4 2.2963 0.3399 0.1253 -0.1017
10 0.9002 0.0725 —0.0443 10 1.5462 0.3205 0.1077 -0.0922
100 0.8542 0.0681 —0.0448 100 1.4018 0.3170 0.1040 -0.0902

30° 4 1.1889 0.3872 -0.1271 30° 4 2.1180 0.2615 0.1510 -0.1321
10 0.9193 0.2966 —-0.1676 10 1.3793 0.2333 0.1308 -0.1214
100 0.8641 0.2782 —0.1803 100 1.2381 0.2278 0.1267 -0.1193

45° 4 0.9998 0.8794 —0.2816 45° 4 2.0392 0.1945 0.1945 -0.1468
10 0.7437 0.6476 —0.3563 10 1.3040 0.1681 0.1681 —-0.1348
100 0.6904 0.5998 -0.3765 100 1.1638 0.1628 0.1628 -0.1325

60° 4 0.6559 1.2389 -0.4419 60° 4 2.1180 0.1510 0.2615 -0.1321
10 0.4987 0.9451 —0.5130 10 1.3793 0.1308 0.2333 -0.1214
100 0.4649 0.8830 —0.5304 100 1.2381 0.1267 0.2278 -0.1193

75° 4 0.4665 1.2976 —0.3093 75° 4 2.2963 0.1253 0.3399 -0.1017
10 04114 1.2487 —0.3339 10 1.5462 0.1077 0.3205 -0.0922
100 0.3994 1.2399 —0.3399 100 1.4018 0.1040 0.3170 —-0.0902

numerical values of nondimensionalized in-plane stres-
ses ., 6, and 7, computed using the present theory for
two and four layered square and for two layered rect-

W
0.80 —
. —A— n~4
0.60 —
0.40 —
0.20 —
W77 T 1 T ]
0.00 20.00 40.00 60.00 80.00 100.00

0

Fig. 3. Variation of transverse displacement (w) for various angle of
orientation (6) in a two and four layered simply supported anti-sym-
metric angle-ply plate subjected to transverse sinusoidal load for a/h
ratio 10.

angular plate for various a/h ratios and fibre orienta-
tions are given in Tables 3 and 4. The variation of
maximum nondimensionalized transverse displacement
w of a two and four layered plate with a/h ratio equal to
10 for varying fibre orientation is given in Fig. 3.

Example 2. A simply supported four layered anti-sym-
metric angle-ply (0/—0/0/—0) square composite plate
with layers of equal thickness and with real material
properties under sinusoidal transverse load is consid-
ered. Material set 2 is used. The nondimensionalized
maximum values of transverse displacement w, in-plane
stresses o, 6, and T,, for various values of side-to-
thickness ratio and angle of orientation are given in
Table 5. For a plate with a/h ratio equal to 10, the
through the thickness variation of the nondimensional-
ized in-plane stresses o, G, Ty, and the nondimension-
alized in-plane displacements # and v are given in Figs.
4-8.

Example 3. In order to study the flexural behaviour of
laminated sandwich plate, a five layered plate (6/—6/
core/0/—0) with isotropic core and antisymmetric an-
gle-ply face sheets is considered. Material set 3 is used.
The ratio of the thickness of core to thickness of the
face sheet t./t considered equal to 10. The nondi-
mensionalized maximum values of transverse dis-
placement w, in-plane stresses &., 6, and 7, for
various values of side-to-thickness ratio and angle of
orientation are given in Table 6. The through the
thickness variation of the nondimensionalized in-plane
stresses &, Gy, T, and the nondimensionalized in-plane
displacements # and © are shown in Figs. 9-13. The
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z/h
0.80 —

0.40 —

-0.20

-0.80 —

0.10 0.20

x

Fig. 4. Variation of non-dimensionalized in-plane normal stress (a,)
through the thickness (z/h) of a four layered (45°/-45°/45°/-45°)
simply supported anti-symmetric angle-ply composite plate under

sinusoidal transverse load.

a/h =10

z/h
0.80 —

0.40 —

-0.80 —

Fig. 5. Variation of non-dimensionalized in-plane normal stress (&,)
through the thickness (z/h) of a four layered (45°/-45°/45°/-45°)
simply supported anti-symmetric angle-ply composite plate under

sinusoidal transverse load.

z/h
0.80 —
a/h =10
0.40 —
| ' | o0 | ' |
-0.20 -0.10 0.p0 0.10 0.20
-0.40 —
-0.80 —

Fig. 6. Variation of non-dimensionalized in-plane shear stress (7,,)
through the thickness (z/4) of a four layered (45°/—45°/45°/-45°)
simply supported anti-symmetric angle-ply composite plate under

sinusoidal transverse load.

z/h
0.80 —
a’h =10
0.40 —
I ' | 6003 T T 1
-0.20 -0.10 0 0.10 0.20
u
0.40 —
-0.80 —

Fig. 7. Variation of non-dimensionalized in-plane displacement (i)
through the thickness (z/4) of a four layered (45°/-45°/45°/-45°)
simply supported anti-symmetric angle-ply composite plate under

sinusoidal transverse load.
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Fig. 8. Variation of non-dimensionalized in-plane displacement (7)
through the thickness (z/h) of a four layered (45°/-45°/45°/-45°)
simply supported anti-symmetric angle-ply composite plate under
sinusoidal transverse load.

Table 6

Non-dimensionalized transverse deflection and in-plane stresses in a
simply supported five layered anti-symmetric (0/—0/core/0/—0) square
sandwich plate under sinusoidal transverse load

0 a/h W 7. a, Ty

15° 4 97.9539  4.6390  1.0314  -1.1546
10 19.6701 12712 04183  —0.4158
100 17176 0.8814  0.1547  —0.2001

30° 4 98.1091 3.2410  1.5440  —1.8205
10 18.5049  0.8971  0.5039  —0.6308
100 13658 0.5677 02403  —0.3049

45° 4 97.5559  2.2653 22665  —2.1437
10 18.0605  0.6972  0.6978  —0.6577
100 12404 03653 0.3653  —0.3419

60° 4 98.1077 1.5433 32427  -18196
10 18.5050  0.5036  0.8979  —0.6304
100 13658  0.2403  0.5677  —0.3049

75° 4 97.9538  1.0310  4.6390  —1.1541
10 19.6700 04181 12712 —0.4856
100 17276  0.1547 08814  —0.2001

through-the-thickness variation of in-plane stresses
implies that the contribution of core in resisting the in-
plane stresses is almost negligible and the through-the-
thickness variation of in-plane displacements plotted in

z/h
0.80 —

a/h =10
t./t, =10

0.40 —<>9'% % g

-0.80 -0.40 0.00 0.40 0.80

-0.80 —

Fig. 9. Variation of non-dimensionalized in-plane normal stress (a,)
through the thickness (z/4) of a five layered (45°/—45°/core/45°/-45°)
simply supported anti-symmetric angle-ply sandwich plate under
sinusoidal transverse load.

a/h =10

t./t, =10

I3

3
N
N

-0.80 —

Fig. 10. Variation of non-dimensionalized in-plane normal stress (&,)
through the thickness (z/4) of a five layered (45°/—45°/core/45°/-45°)
simply supported anti-symmetric angle-ply sandwich plate under
sinusoidal transverse load.
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Fig. 11. Variation of non-dimensionalized in-plane shear stress (7,,)
through the thickness (z/4) of a five layered (45°/—45°/core/45°/—45°)
simply supported anti-symmetric angle-ply sandwich plate under
sinusoidal transverse load.

z/h
0.80
a/h =10
i t./t, =10
W
a-00—4
[ T I T o=y T I T T T ]
-0.60 -0.40 - 0.p0 0.20 0.40 0.60

-0.80 —

Fig. 12. Variation of non-dimensionalized in-plane displacement (i)
through the thickness (z/4) of a five layered (45°/—45°/core/45°/-45°)
simply supported anti-symmetric angle-ply sandwich plate under
sinusoidal transverse load.
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Fig. 13. Variation of non-dimensionalized in-plane displacement (7)
through the thickness (z/4) of a five layered (45°/—45°/core/45°/-45°)
simply supported anti-symmetric angle-ply sandwich plate under
sinusoidal transverse load.

Figs. 12 and 13 clearly indicates that the variation is
cubic nature.

5. Conclusions

Analytical formulations and solutions to the static
analysis of simply supported angle-ply composite and
sandwich plates hitherto not reported in the literature
based on a higher-order refined theory already reported
in the literature are presented. The accuracy of the
theoretical formulations and the solution method is es-
tablished by comparing the results generated in the
present investigation using the higher-order refined
theory with the solutions already available in the liter-
ature. After ascertaining the accuracy, new results for
multilayered sandwich plates with antisymmetric angle-
ply face sheets are presented which will serve as a
benchmark for future investigations.

Appendix A. Coefficients of |C] matrix

E, v Ey
C T ——— C T ——
t (1 — l)121)21)’ 12 (1 — D]zl)z])7
E
Cp=-—————, Cu=Gpn, Css=Gy, Cs=Gp
(1 - U12021)
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and
c g () () 01
61 = = — Va1 =+ & = — Ui+
E, E,’ E, E,
T12 23 T13

"o == V== 3T 5
G G Gis
b2 by U3 V13 U2 U3

E\ E, Es E E E

[ O H,
OnH,
OnH;
O12H;
OnH,
OnH,
O H,

| O,

[ OuH,

OuH;

OuH,

| OuH,y

[ OwuH,
0Or4H,
Ot
Ot
Ot
OrH,y
O14H,

| OrH,y

[ O1uH,
Ot
Ot
| Q1

Appendix B. Coefficients of [Q] matrix

011 = Ciic* 4+ 2(Chy + 2Cyy)s°c* + Cos?

Op = Clz(c4 + S4) +(Ciu+Cyp— 4C44>SZC2

O = (Cll —Cpp — 2C44)SC3 + (C12 —Cyn+ 2(744)CS3
05 = Ciis* + Cnc* + (2C, + 4C44)S26’2

05 = (Cy1 — C1y — 2Cy)s’c + (Cz — Cx + 2Cyy)C’s
Ou = (C11 — 2C12 + Cpp — 2Cu)*s” + Caa(c* + %)
Oss = Cssc® + Cee8”

Oss = (Co6 — Css)cs

Qg6 = Csss” + CeC”

and

Qij = jS7 L,j= 1-6

where

c=cosoe and s=sina
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Appendix C. Elements of [4], B], [4], |B'], |D], [D'], |El,

[E’] matrices

OnH, QuH;s QnH;
OnH; QnHs OnHs
OnH; QuHs QnHs
OnH; QpHs OxnHs
OunH, QuHs QnH,
OnH, QpHy QOnH,
OnH, QuHs QnnHg
OnHy OnHs OnHg

OuH,  OuHs QuH;
OuHs  QOuHs  QuHs
OuH, QuHy QuH,
OuHy  QuHs  QuHg

OuH, QuHs Qui;
OwuHy  OuHs QM
OuHs QuHs  QuHs
OwuHs  OywHs  QOxnHs
OuH, QuHy Qu4Hy
Oty  OnHy  OrHy
OuHy QuHs Q14Hs
OwuHy  OwHs  QOxHg

OwuHy QuHs QM
OwuHs  QuuHs  QOxHs
OuHy, QuuHy (OrHy
OuHy QuHs  OrHs

v | Qe

[D] = Z Qe
=1 Ot

v [ Osel

D] =" | OssHs
=1L OseH

n [ OssHi

[E] = Z OssH;
=1L OssHy

1 [ Osefh

[E] = Z Ose !
=1 OseHa

OssH,i
OesH3
OcsH>

OssH|
OssH3
OssH>

OssH,
OssH;
OssH,

OseH,
OseH3
OssH>

OuH, OnH,
OnHy OnH,
OuHs QnH,
OnHy OnHy
OuHs QnH;
OnHs  OnH;
OuHs QnHs
OnHs OnHs

OuH,  OuH,
OuHy  QOuHy
OuHs  QOuHs
OuHs  QuHs

O, QiH,
OnuHy, OyH,
Oty QOiuHy
OnuHy  OyH,
OuHs  QuH;
OuH;  OnH;
OuHs  Q4Hs
OwHs  OyHs

Oty OyH,
Oty OnuHy
OuHs  OuH;
OuHs  OyHs

O H,
OnH,
O Hg
O12Hs
O11Hs
O12Hs
Ot
OnH;

OuH,
OuHs
QusHs
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O14H,
0Or4Hy
O14Hs
0O Hs
O14H5
On4Hs
Ot
OrH;

O14H,
O14Hs
O14H;
O14Hy

30663  20¢6H,
30665 2Q066H;
3066Hs  20¢6Hs

30s¢H;  20s56H,
30s6Hs 2Q0s6H,4
30s6Hs  20s6Hs

30ssHy  20ss5H,
30ssHs  2Qs5H,
30ssHy  2Q0s5H3

30s6H3  20s56H,
30s¢Hs 20s56H,
30s¢Hs  20s6H3

OnH, |
OnH,
O Hg
OnHs
O12Hs
OnHs
OnH;
OnHj |

OuHy |
OuHs
QuaHs
OuH; |

0141, ]
0Or4Hy
O14Hs
0O Hs
O14H;
Oy Hs
Ot
OHjy |

O0xH, |
0O Hs
O Hs
Ot |
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Appendix D. Coefficients of matrix [X]

Xy =Aig+ BBy, Xip=of(Aix+Biy)

Xi3=0, Xig=af(d\s+B,5), Xis=d4\ e +Bp
X6 = A 307 +Blﬁ3ﬁ27 Xi7=0f(414+ Bi4)
Xig=0ap(d);+B,;), Xig=4) +Bf’

Xo1 = ofi(421 + B1)
Xop = Ao + By 2o,
Xos = of(dye + Bg),
Xo7 = 1‘12,4/32 + By 407,
KXo = Ofﬁ(Alzﬁs + BII,S)
Xs1 =0, Xs5=0, Xs3=D,0%+Ef
Xsa=Dyja, Xzs=E1f, Xz6= E/1,4ﬁ

X7 =Dl ,0, Xsg=Disn, Xsg=E:f

Xy = “ﬁ(Als,l +B,3,1)7 Xap :‘4,5,20‘2 —|—B'372[32

Xy3=Dis0, Xyq=Ass0>+Bsysp>+ Dy,
Xos=of(Asg+Bss), Xag=ap(ds;+B;)

Xa7 = A/574052 + B/3‘4ﬁ2 + D/1,47 Xyg = As 707 + Bs,7ﬂ2 + D13
Xio = 0ff(Ass + Bsg)

Xs1 = Ale,lﬁz "'3,3.10‘27 Xso = af(4g, + B ,)

Xs3 =Eof, Xsa=of(des + Bss)

Xss = Aesf” + Bss?® + Enp, Xsg = A/6A3/32 + Bl3¢3052 +E,
Xs7 = ap(ds, +Bsy), Xss=of(ds7+ Bs)

Xso = Ao’ + Byso® + Ey 3

X1 =A3,0° + By B, Xor= af(As3p+Ban)

Xo3=2D5,B, Xea=0p(4;5+B)5)

Xo.s5 =A§,6°CZ +B/2,6/32 +2D5 1, Xes =A330° + B3 +2Ds4
Xo7=A340B+Braoff, Xeg=0op(45,+B))

X9 =A% 302 +B) o f°+2D) 4

X1 =0B(As1+B21)

Xop=Aa 2 +Bono®, Xy3=2E} 00, Xy 4=A} s +B) o’ +2E,
Xos= (A, +Byg), Xrg=af(das+Bas)

Xr7=AsaB +Brad’ +2Es4, Xy =4}, +By,07 +2E}

Xr9= aﬂ(Ait‘s +B,2,8)

Xy = “ﬁ(A/m +B:l,1)7 Xs 2 :A/mo‘z +B£t,2ﬁz

X3=0, Xoy= A§A5ﬂ2 +Bl175°‘2
Xog = afi(dr3+ Bi3)
Xz)g = A,277ﬁ2 + B,1'7OCZ

Xga=3D},0, Xgq=A759 +Bysp +3Ds,
Xgs=0f(Ar6+Bas), Xse=0p(A7;+B,;)

Xy =45 07 +Bﬁ;r4ﬁ2 +3D,,, Xsg =A770% 4+ By7 >+ 3Dy 5
Xsg=0op(A75+Bag)

Xoy=Ay,f°+B, 0%, Xor=uf(dy,+B,,), Xo3=3E;,p
Xos=0f(Ass+Bss), Xos = Az’ +By0* +3E
Xo6 :Aégﬁz +B:t.3°‘2 + 3E/2A4v X9,7 = O‘ﬁ(AE;A +B:L4)
Xog=af(Ay;+B,,), Xog ZAs,sﬁz +Byg0? +2E> ;3
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