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Abstract We present a local convergence analysis of an inverse free Jarratt-type method
in order to approximate a locally unique solution of an equation in a Banach space setting.
Earlier studies have used hypotheses up to the third Fréchet-derivative of the operator involved
to show convergence although only the first derivative is used in the method. We show
convergence using only the first Fréchet derivative under Hölder conditions. This way we
expand the applicability of the method. Numerical examples are also provided in this study.

Keywords Jarratt method · Banach space · Fréchet derivative · Local convergence ·
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Introduction

In this study, we are concerned with the problem of approximating a locally unique solution
x∗ of the nonlinear equation

F(x) = 0, (1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach space
X with values in a Banach space Y . Denote by L(X, Y ) the space of bounded linear operators
from X into Y .

A lot of problems from Computational Sciences and other disciplines can be brought in
the form of equation (1) using Mathematical Modeling [1,2]. The solution of these equations
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can rarely be found in closed form. That is why the solution methods for these equations
are iterative. In particular, the practice of numerical analysis for finding such solutions is
essentially connected to variants of Newton’s method.

The study about convergence matter of iterative procedures is usually based on two types:
semi-local and local convergence analysis. The semi-local convergence matter is, based on
the information around an initial point, to give conditions ensuring the convergence of the
iterative procedure; while the local one is, based on the information around a solution, to
find estimates of the radii of convergence balls. There exist many studies which deal with the
local and semi-local convergence analysis of Newton-like methods such as [3,4]. In order
to obtain a higher order of convergence, Newton-like methods have been studied such as
Potra–Ptak [5], Chebyshev and Cauchy Halley method [6,7].

We study the local convergence analysis of the inverse-free Jarratt-type method defined
for each n = 0, 1, 2... by

yn = xn − F ′(xn)−1F(xn)

Hn = 3

2
F ′(xn)−1

(
F ′

(
xn + 2

3
(yn − xn)

)
− F ′(xn)

)

xn+1 = yn − 1

2
Hn(I − Hn)(yn − xn), (2)

where x0 is an initial point. Method (2) has been studied in [8,9] under Lipschitz or Hölder-
type hypotheses reaching up to the fourth Fréchet-derivative of F although only the first
Fréchet-derivative appears in method (2). These hypotheses limit the applicability of method

(2). As a motivational example, let us define function F on D = [− 1
2 ,

5
2 ] by

F(x) =
{

x3 ln x2 + x5 − x4, x �= 0
0, x = 0

Choose x∗ = 1. We have that

F ′(x) = 3x2 ln x2 + 5x4 − 4x3 + 2x2, F ′(1) = 3,

F ′′(x) = 6x ln x2 + 20x3 − 12x2 + 10x

F ′′′(x) = 6 ln x2 + 60x2 − 24x + 22.

Then, obviously function F does not have bounded third derivative in X . The results in
earlier studies (see for example [8,9]) show that if the initial point x0 is sufficiently close to
the solution x∗, then the sequence {xn} converges to x∗. But how close to the solution x∗
the initial guess x0 should be? These local results give no information on the radius of the
convergence ball for the corresponding method. We address this question for method (2) in
section “Local Convergence Analysis”. The same technique can be used to other methods.

The paper is organized as follows. In section “Local Convergence Analysis” we present
the local convergence analysis. We also provide a radius of convergence, computable error
bounds and uniqueness result not given in the earlier studies using Taylor expansions. Special
cases andnumerical examples are presented in the concluding section “NumericalExamples”.

Local Convergence Analysis

We present the local convergence analysis of the method (2) in this section. Let L0 > 0, L >

0, M ≥ 1 and p ∈ (0, 1] be given parameters. It is convenient for the local convergence
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analysis of method (2) that follows to define some scalar functions and parameters. Define

functions g1, h1, g2 and h2 on the interval [0, ( 1
L0

)
1
p ) by

g1(t) = Lt p

(1 + p)(1 − L0t p)
,

h1(t) = g1(t) − 1,

g2(t) = 1

(1 + p)(1 − L0t p)

[
L +

(
1 + p

2

) (
1 + L M pt

(1 − L0t p)1+p

)
L M1+p

(1 − L0t p)1+p

]
t p,

h2(t) = g2(t) − 1

and parameters r1 by

r1 =
(

1 + p

(1 + p)L0 + L

) 1
p

.

We have that h2(0) = −1 < 0 and h2(r1) = 1
2 [1 + ( L M pr1

(1−L0r p
1 )1+p )

L M1+pr p
1

(1−L0r p
1 )2+p ] > 0. It then,

follows from the intermediate value theorem that function h2 has zeros in the interval (0, r1).
Denote by r the smallest such zero. Then, we have that

0 < r ≤ r1 (3)

and for each t ∈ [0, r)

0 ≤ g1(t) < 1 (4)

and
0 ≤ g2(t) < 1. (5)

Let U (γ, ρ), Ū (γ, ρ), stand respectively for the open and closed balls in X with center
γ ∈ X and radius ρ > 0. Next, we present the local convergence analysis of the method (2),
using the preceding notation.

Theorem 2.1 Let F : D ⊂ X → Y be a Fréchet-differentiable operator. Suppose that there
exist x∗ ∈ D, L0 > 0, L > 0, M ≥ 1 and p ∈ (0, 1] such that for each x, y ∈ D

F(x∗) = 0, F ′(x∗)−1 ∈ L(Y, X) (6)

‖F ′(x∗)−1(F ′(x) − F ′(x∗))‖ ≤ L0‖x − x∗‖p, (7)

‖F ′(x∗)−1(F ′(x) − F ′(y))‖ ≤ L‖x − x∗‖p, (8)

‖F ′(x∗)−1F ′(x)‖ ≤ M (9)

and
Ū (x∗, r) ⊆ D, (10)

hold, where the radius r is defined previously. Then, the sequence {xn} generated for
x0 ∈ U (x∗, r) − {x∗} by method (2) is well defined, remains in U (x∗, r) for each
n = 0, 1, 2..... and converges to x∗. Moreover, the following estimates hold

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (11)

and
‖xn+1 − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ (12)

where the “g” functions are defined previously. Furthermore, if there exist T ∈ [r, ( 1+p
L0

)
1
p ),

the limit point x∗ is the only solution of the equation F(x) = 0 in Ū (x∗, T ) ∩ D.
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Proof We shall show estimates (11) and (12) using mathematical induction. By hypothesis
x0 ∈ U (x∗, r) − {x∗} and (7), we get that

‖F ′(x∗)−1(F ′(x0) − F ′(x∗))‖ ≤ L0‖x0 − x∗‖p < L0r p < 1. (13)

It follows from (13) and Banach Lemma on invertible operators [1,10] that F ′(x0)−1 ∈
L(Y, X) and

‖F ′(x0)
−1F ′(x∗)‖ ≤ 1

1 − L0‖x0 − x∗‖p
. (14)

Hence, y0 is well defined by the first sub-step of method (2) for n = 0. Using (2), (4), (8)
and (14), we obtain in turn that

‖y0 − x∗‖ ≤ ‖x0 − x∗ − F ′(x0)
−1F ′(x∗)‖

≤ ‖F ′(x0)
−1F ′(x∗)‖

∥∥∥∥
∫ 1

0
F ′(x∗)−1(F ′(x∗ + θ(x0 − x∗))

−F ′(x0))(x0 − x∗)dθ
∥∥

≤ L‖x0 − x∗‖1+p

(1 + p)(1 − L0‖x0 − x∗‖p)

= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r, (15)

which shows (11) for n = 0 and y0 ∈ U (x∗, r). Then, we have that

‖x0 − x∗ + 2

3
(y0 − x0)‖ ≤ 2

3
‖y0 − x∗‖ + 1

3
‖x0 − x∗‖

<
2

3
r + 1

3
r = r

and

‖x∗ + θ(x0 − x∗) − x∗‖ = θ‖x0 − x∗‖ < r,

which shows x0 + 2
3 (y0 − x0), x∗ + θ(x0 − x∗) ∈ U (x∗, r). We can write by (6) that

F(x0) = F(x0) − F(x∗) =
∫ 1

0
F ′(x∗ + θ(x0 − x∗))(x0 − x∗)dθ. (16)

Then, using (9) and (16), we have that

‖F ′(x∗)−1F(x0)‖ ≤ M‖x0 − x∗‖. (17)

Next, we need an estimate on ‖H0‖. Using (8), (14), (15) and (17), we get in turn that

‖H0‖ ≤ 3

2
‖F ′(x0)

−1F ′(x∗)‖
∥∥∥∥F ′(x∗)−1

(
F ′

(
x0 + 2

3
(y0 − x0)

)
− F ′(x0)

)∥∥∥∥
≤ L‖y0 − x0‖p

1 − L0‖x0 − x∗‖p

≤ L M p‖x0 − x∗‖p

(1 − L0‖x0 − x∗‖p)1+p
. (18)
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Then, in view of (2), (5), (14), (15), (17) and (18), we get that

‖x1 − x∗‖ ≤ ‖y0 − x∗‖ + 1

2
‖H0‖(1 + ‖H0‖)‖F ′(x0)

−1F ′(x∗)‖‖F ′(x∗)−1F(x0)‖

≤ L‖x0 − x∗‖1+p

(1 + p)(1 − L0‖x0 − x∗‖p)
+ L M p‖x0 − x∗‖p

2(1 − L0‖x0 − x∗‖p)1+p

×
(
1 + L M p‖x0 − x∗‖p

2(1 − L0‖x0 − x∗‖p)1+p

)
M‖x0 − x∗‖

1 − L0‖x0 − x∗‖p

= g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r, (19)

which shows (12) for n = 0 and x1 ∈ U (x∗, r). By simply replacing x0, y0, x1 by xk, yk, xk+1

in the preceding estimates we arrive at estimates (11) and (12). Then, from the estimate
‖xk+1 − x∗‖ < ‖xk − x∗‖ < r , we deduce that limk→∞ xk = x∗ and xk+1 ∈ U (x∗, r).
Finally, to show the uniqueness part, let Q = ∫ 1

0 F ′(y∗ + θ(x∗ − y∗)dθ . Then, using (7), we
have that

‖F ′(x∗)−1(Q − F ′(x∗))‖ ≤ L0

1 + p
‖x∗ − y∗‖p

≤ L0

1 + p
T p < 1. (20)

It follows from (20) that Q is invertible. Then, using the identity 0 = F(x∗) − F(y∗) =
Q(x∗ − y∗), we conclude that x∗ = y∗. ��

Remark 2.2 1. In view of (7) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x) − F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x) − F ′(x∗))‖ ≤ 1 + L0‖x − x∗‖p

condition (9) can be dropped and be replaced by

M(t) = 1 + L0t p,

or

M = M(t) = 2,

since t ∈ [0, ( 1
L0

)1/p).
2. The results obtained here can be used for operators F satisfying autonomous differential

equations [1] of the form

F ′(x) = G(F(x))

where T is a continuous operator. Then, since F ′(x∗) = G(F(x∗)) = G(0), we can
apply the results without actually knowing x∗. For example, let F(x) = ex − 1. Then,
we can choose: G(x) = x + 1.

3. The local results obtained here can be used for projection methods such as the Arnoldi’s
method, the generalized minimum residual method (GMRES), the generalized conjugate
method(GCR) for combined Newton/finite projection methods and in connection to the
mesh independence principle can be used to develop the cheapest andmost efficient mesh
refinement strategies [1,2].
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4. The parameter r1 was shown by us to be the convergence radius of Newton’s method
[1,2]

xn+1 = xn − F ′(xn)−1F(xn) for each n = 0, 1, 2, · · · (21)

under the conditions (6)–(8). It follows from the definitions of radii r that the convergence
radius r of the preceding method cannot be larger than the convergence radius r1 of the
second order Newton’s method (21). As already noted in [1,2] r1 is at least as large as
the convergence ball given by Rheinboldt [10] (for p = 1)

rR = 2

3L
.

In particular, for L0 < L we have that

rR < r1

and

rR

r1
→ 1

3
as

L0

L
→ 0.

That is our convergence ball r1 is at most three times larger than Rheinboldt’s. The same
value for rR was given by Traub [11].

5. It is worth noticing that the studied method is not changing when we use the conditions
of the preceding Theorem instead of the stronger conditions used in [8,9,11]. Moreover,
the preceding Theorem we can compute the computational order of convergence (COC)
defined by

ξ = ln

(‖xn+1 − x∗‖
‖xn − x∗‖

) /
ln

( ‖xn − x∗‖
‖xn−1 − x∗‖

)

or the approximate computational order of convergence

ξ1 = ln

(‖xn+1 − xn‖
‖xn − xn−1‖

) /
ln

( ‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence.

Numerical Examples

The numerical examples are presented in this section. In the first four examples, we take
p = 1.

Example 3.1 Let D = (−∞,+∞). Define function f of D by

f (x) = sin(x). (22)

Then we have for x∗ = 0 that L0 = L = M = 1. Then for p = 1 the parameters are

r1 = 0.6667, r2 = 0.2006 = r.

Example 3.2 Let X = Y = R
3, D = Ū (0, 1), x∗ = (0, 0, 0)T . Define function F on D for

w = (x, y, z)T by

F(w) =
(

ex − 1,
e − 1

2
y2 + y, z

)T

.
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Then, the Fréchet-derivative is given by

F ′(v) =
⎡
⎣ ex 0 0

0 (e − 1)y + 1 0
0 0 1

⎤
⎦ .

Notice that using (7)– (9) conditions, we get L0 = e − 1, L = e, M = 2. Then for p = 1
the parameters are

r1 = 0.3249, r2 = 0.0672 = r.

Example 3.3 Let X = Y = C[0, 1], the space of continuous functions defined on [0, 1] and
be equipped with the max norm. Let D = U (0, 1). Define function F on D by

F(ϕ)(x) = ϕ(x) − 5
∫ 1

0
xθϕ(θ)3dθ. (23)

We have that

F ′(ϕ(ξ))(x) = ξ(x) − 15
∫ 1

0
xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, L0 = 7.5, L = 15, M = 2. Then for p = 1 the parameters are

r1 = 0.0667, r2 = 0.0132 = r.

Example 3.4 Returning back to the motivational example at the introduction of this study,
we have L0 = L = 146.6629073, M = 2. Then for p = 1 the parameters are

r1 = 0.0045, r2 = 0.0010 = r.

Example 3.5 Let X = Y = R and D = [1, 3]. Define function F on D by

F(x) = 2

3
x3/2 − x .

Then, we have x∗ = 9
4 , L0 = 1, L = M = 2. Then for p = 1/2 the parameters are

r1 = 0.5, r2 = 0.0229 = r.
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