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Abstract

Linear thermal buckling and free vibration analysis are presented for functionally graded cylindrical
shells with clamped–clamped boundary condition based on temperature-dependent material properties.
The material properties of functionally graded materials (FGM) shell are assumed to vary smoothly and
continuously across the thickness. With high-temperature specified on the inner surface of the FGM shell
and outer surface at ambient temperature, 1D heat conduction equation along the thickness of the shell is
applied to determine the temperature distribution; thereby, the material properties based on temperature
distribution are made available for thermal buckling and free vibration analysis. First-order shear
deformation theory along with Fourier series expansion of the displacement variables in the circumferential
direction are used to model the FGM shell. Numerical studies involved the understanding of the influence
of the power-law index, r/h and l/r ratios on the critical buckling temperature. Free vibration studies of
FGM shells under elevated temperature show that the fall in natural frequency is very drastic for the mode
corresponding to the lowest natural frequency when compared to the lowest buckling temperature mode.
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1. Introduction

The concept of functionally graded materials (FGMs) was first introduced by a group of Japanese
materials scientists in the area of Sendai. Many familiar FGMs are compositionally graded from a
refractory ceramic to a metal so that it can incorporate incompatible functions such as the heat, wear
and oxidation resistance of ceramics and the high toughness, high strength, machinability and
bonding capability of metals without severe internal thermal stress. An in-depth discussion on
various issues related to FGMs on modeling aspects to determine the magnitude of thermal stresses
that develop due to large thermal loading, the optimal composition of the constituents or the
composition profile that helps to decrease the magnitude of thermal stress, formation of cracks and
eventually failure of the structural member by fracture and many other topics can be found in the
article by Noda [1]. Fuchiyama and Noda [2] have developed a computer program to analyze the
transient heat transfer and the transient thermal stresses in FGM components by the finite element
method. Obata and Noda [3] have attempted studies to design an optimum functionally graded
hollow cylinder and hollow sphere in terms of reducing the thermal stresses due to uniform
temperature rise and given the temperature difference between the inside and the outside. Reddy and
Chin [4] have developed a coupled as well as an uncoupled thermoelastic finite element formulation
to analyze the thermomechanical behavior of functionally graded cylinders and plates subjected to
abrupt thermal loading. Jabbari et al. [5] derived Navier’s equation for an FGM hollow cylinder
taking into account the 1D steady-state heat conduction. Awaji and Sivakumar [6] numerically
analyzed the steady-state and transient temperature distributions and related thermal stress
distribution in the FGM cylinder composed of mullite-molybdenum system. Takezono et al. [7]
carried out numerical studies on the functionally graded cylindrical shells containing hot fluid. Ye et
al. [8] discussed a 2D axisymmetric thermoelastic problem of a functionally graded transversely
isotropic cylindrical shell. Liew et al. [9] detailed the derivation of an analytical model to carry out
studies on functionally graded hollow cylinders subjected to an arbitrary steady-state and transient
temperature field. Cho and Ha [10] and Ootao et al. [11] have carried out studies on volume fraction
optimization for minimizing thermal stresses in FGMs.
Studies were reported on the application of piezoelectric actuator and sensor for FGM beams,

plates and shells for the active shape control and active vibration suppression operating under
ambient temperature as well as subjected to temperature gradient by He et al. [12], Ng et al. [13],
Liew et al. [14–16]. Formulation and theoretical analysis on topics like postbuckling of FGM plates
bonded with piezoelectric materials under combined thermal, electric and mechanical load,
nonlinear vibration, large amplitude vibration of initially stressed and parametric resonance of
FGM-laminated plates were presented by Liew et al. [17], Kitipornchai et al. [18], Yang et al. [19,20].
Shahsiah and Eslami [21] used Sanders nonlinear strain–displacement relation and first-order

shell theory to derive the equilibrium and stability equations for a functionally graded cylindrical
shell. Nonlinear postbuckling analysis of functionally graded cylindrical shells was presented by
Shen [22] based on the classical shell theory with von-Karman–Donnell type of kinematic
nonlinearity. Similarly, based on the classical shell theory including the von Karman–Donnell-
type kinematic nonlinearity, Shen [23] considers the study on postbuckling of pressure-loaded
FGM cylindrical shells under constant thermal load.
Loy et al. [24] and Pradhan et al. [25] have investigated the vibration behavior of functionally

graded cylindrical shells based on Love’s theory and the Rayleigh–Ritz method. Their studies
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revealed that the frequency characteristics of functionally graded cylindrical shells are similar to
those of isotropic shells.
In the case of FGMs the material properties at any point in the component are decided by the

volume fraction of the metal or ceramic as well as the characteristics variation chosen for the
volume fraction. FGM components are called upon to operate where severe temperature
fluctuations exist. These two aspects on FGM necessitates taking into account temperature-
dependent material properties. The results obtained from the computation of thermal stresses,
thermal transient response and thermal buckling analysis based on temperature-dependent
material properties can be entirely different from that obtained based on temperature-independent
material properties. Thermal buckling studies of FGM cylindrical shells, which take into account
temperature-dependent material properties, are very less in number in the literature. Further, note
that elaborate studies, which consider temperature distribution based on the temperature-
dependent material property, given the temperature boundary conditions, and subsequently
considering the thermal loading to compute initial stresses and hence solving the linear thermal
stability problem using semi-analytical finite element method are not reported in the literature. The
iterative procedure described by Chen and Chen [26] for computing material properties dependent
on temperature distribution for the evaluation of thermal buckling temperature is followed. With
this in view the objectives of the present work are as follows: (i) Based on the availability of
material properties for metal and ceramic, a combination of ceramic and metal is proposed for
FGM shells and the critical buckling temperatures (or bifurcation buckling temperature) are
evaluated. Influences of the material combination, variation of the power-law index, length-to-
radius ratio and radius-to-thickness ratio on the critical thermal buckling temperature are
examined. These studies will provide information for a better combination of metal and ceramic
for FGM shell and also the magnitude of power-law index required for better thermal buckling
characteristics. (ii) Effect of temperature on the free vibration natural frequencies of FGM
cylindrical shells with a temperature gradient across the FGM shell wall.
2. Theoretical formulation

2.1. Material properties definition for functionally graded shells

The present study considers functionally graded material composed of metal and ceramic. The
grading is taken into account across the thickness of the shell (i.e. in the radial direction). The
literature reveals two approaches to evaluate the material properties of FGM. One approach
considers the smooth and continuous variation of the volume fraction of either ceramic or metal
based on the power-law index and this approach is widely used by many researchers. The other
approach uses the pore distribution as well as volume fraction to evaluate the material properties
(Refs. [1–3]). The present work assumes no pores and to start with, a simple power-law-type
definition for the volume fraction of the metal, Vf , across the radial direction of the shell is
assumed. This is defined as

Vf ¼
rz � ri

ro � ri

� �n

, (1)
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where rz represents radius at any point along the radial direction of the shell, ri is the inner radius,
ro the outer radius of the shell and n the power-law index. Based on the above definition it follows
that the inner surface of the cylindrical shell will be ceramic rich. The above definition and other
definitions to follow are available in many of the published literature (Ref. [4]). The sum total
volume of the constituent materials, ceramic (c) and metal (f ), should be

Vc þ Vf ¼ 1. (2)

Composite materials models can be suitably used to predict thermomechanical properties of FGM
for a given data of constituent phases (ceramic and metal). There are five basic composite models
viz., law of mixtures, shear lag, laminated plate, Eshelby’s and variational principle models.
Among these, the simplest is the law of mixtures originally proposed by Voigt (Ref. [27]). This
simple model provides a reasonably accurate prediction of the mechanical as well as thermal
properties of inhomogeneous materials. Based on the volume fraction definition (Eq. (1)) and law
of mixtures (Eq. (2)), the effective material property definition follows:

MPð Þeff ¼ MPð ÞotVf þ MPð ÞinVc, (3)

where ‘MP’ is the notation for the material property in general. ðMPÞot and ðMPÞin represent
material properties at outer and inner surfaces of the shell. Making use of Eqs. (1)–(3) the
definitions of effective mechanical properties (viz. Young’s Modulus Eeff , Poisson’s ratio neff and
density reff ) and thermal properties (thermal conductivity keff and coefficient of thermal
expansion aeff ) can be written as

Eeff ¼ Eot � Einð Þ
rz � ri

ro � ri

� �n

þ Ein, (4a)

neff ¼ not � ninð Þ
rz � ri

ro � ri

� �n

þ nin, (4b)

reff ¼ ðrot � rinÞ
rz � ri

ro � ri

� �n

þ rin, (4c)

keff ¼ kot � kinð Þ
rz � ri

ro � ri

� �n

þ kin, (4d)

aeff ¼ aot � ainð Þ
rz � ri

ro � ri

� �n

þ ain. (4e)

In the above equations (4a–4e), the subscript ‘ot’ stands for the outer surface and ‘in’ stands for
the inner surface of the cylindrical shell. In addition to the variation of material properties in the
radial direction based on the power-law index, it is also possible to consider the above definitions
of material properties as a function of temperature. Based on the temperature coefficients the
temperature-dependent material properties are evaluated as follows:

MP ¼ PoðP�1T̂
�1
þ 1þ P1T̂ þ P2T̂

2
þ P3T̂

3
Þ. (5)
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The above equation is a cubic fit for the material property (MP) as a function of temperature and

P�1; P1; P2 and P3 are coefficients of temperature T̂
�1
; T̂ ; T̂

2
and T̂

3
, respectively, obtained

after factoring out Po from the cubic curve fit of the property (Ref. [36]). Po; P�1; P1; P2 and P3

are unique to a particular material. T̂ represents the absolute temperature in Kelvin. Thus, the
effective material properties of Eq. (3) can truly be represented as a function of thickness as well as
temperature:

MPeff ðT̂ ; zÞ ¼MPf ðT̂ÞVf ðzÞ þMPcðT̂ÞVcðzÞ. (6)

The temperature coefficients for various metals: stainless-steel SUS304, nickel, Ti-6Al–4V,
and ceramics: zirconia ðZrO2Þ, alumina ðAl2O3Þ, and silicon nitride ðSi3N4Þ, are obtained from
Reddy and Chin [4]. Due to lack of space the material data will not be mentioned in this
article.

2.2. Semianalytical finite element formulation for functionally graded shells

The stress–strain relation for a generally isotropic material including the temperature effects
based on first-order shear deformation is given by

sss

syy
tsy

tsz

tyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
¼

Q11 Q12 0 0 0

Q12 Q22 0 0 0

0 0 Q66 0 0

0 0 0 Q44 0

0 0 0 0 Q55

2
6666664

3
7777775

�ss

�yy

gsy

gsz

gyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
�

assDT

ayyDT

0

0

0

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

0
BBBBBB@

1
CCCCCCA
, (7)

where sss and syy are the normal stresses, in-plane shear stress is tsy, tsz and tyz the thickness shear
stresses, �ss and �yy the normal strains, gsy the in-plane shear strain and gsz and gyz the thickness
shear strains. The coefficient of thermal expansion in the two principle directions s; yð Þ are ass and
ayy. DT is the temperature change from a stress-free state. The suffixes used are based on the
coordinate system, s; y; zð Þ, for the shell mid-surface. The stiffness coefficients are defined
according to

Q11 ¼ Q22 ¼
Eeff

1� n2eff
; Q12 ¼

neffEeff

1� n2eff
; Q44 ¼ Q55 ¼ Q66 ¼

Eeff

2 1þ neffð Þ
. (8)

For a given power-law index, the effective Young’s modulus Eeff , Eq. (4a), and effective Poisson’s
ratio neff , Eq. (4b), need to be evaluated in order to obtain the elastic coefficients Qij. Banks-Sills
et al. [28] discussed the advantages and disadvantages of five functionally graded architectures for
dynamic analysis. It was concluded that either the layered model or continuous model is a good
approach to study FGM. Similarly, Tanigawa [29] indicated that it is reasonable to consider an
FGM shell to be composed of many layers. Each layer can be conceived as a homogeneous layer
and follows the definition of the effective material properties as described in Eqs. (4a)–(4e). The
semianalytical finite element formulation for the stiffness matrix, mass matrix, evaluation of the
thermal load vector, initial stress resultants and moment resultants and finally the initial stiffness
matrix is similar to the one discussed in Ganesan and Kadoli [30]. The methodology for the
computation of the reduced stiffness coefficients is incorporated into the semianalytical finite
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element formulation to compute the stiffness matrix. Rewriting Eq. (7) by neglecting the
temperature effects and, the stress–strain relation for a general shell of revolution based on the
first-order shear deformation theory is as follows:

sss

syy
tsy

tsz

tyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ilay

¼ Q½ �ilay

1

A1
�o

ss

1

A2
�oyy

1

A1A2
�osy

1

A1
go

sz

1

A2
go

sy

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

þ z

1

A1
ko

ss

1

A2
ko
yy

1

A1A2
ko

sy

0

0

8>>>>>>>>>>><
>>>>>>>>>>>:

9>>>>>>>>>>>=
>>>>>>>>>>>;

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

, (9)

where

1

A1
¼

1

1þ z=Rf
and

1

A2
¼

1

1þ z=Ry
.

Rf and Ry are the principle radii of curvature and z is the thickness variable of the shell along the
z-coordinate. �o

ss; �
o
yy; g

o
sy and ko

ss; k
o
yy; k

o
sy are the mid-surface strains and curvatures. Following

the definition of total in-plane force resultants ðNss;Nyy;NsyÞ, resultant shear forces ðQ̄ss; Q̄yyÞ and
total moment resultants ðMss;Myy;MsyÞ, we have

Nss

Nyy

Nsy

8><
>:

9>=
>; ¼

Xnlay
ilay¼1

½Q�ilay

Z hilay

hilay�1

1

A1
�oss

1

A2
�oyy

1

A1A2
go

sy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

dzþ z

1

A1
ko

ss

1

A2
ko
yy

1

A1A2
ko

sy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

dz

0
BBBBBBB@

1
CCCCCCCA
, (10)

Mss

Myy

Msy

8><
>:

9>=
>; ¼

Xnlay
ilay¼1

½Q�ilay

Z hilay

hilay�1

z

1

A1
�oss

1

A2
�o
yy

1

A1A2
go

sy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

dzþ z2

1

A1
ko

ss

1

A2
ko
yy

1

A1A2
ko

sy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

dz

0
BBBBBBB@

1
CCCCCCCA
. (11)

Since the mid-surface strains ð�oss; �
o
yy; g

o
syÞ and curvatures ðko

ss;k
o
yy;k

o
syÞ are independent of the

z-axis, the integrals in Eqs. (10) and (11) become simple integrals of ð1; z; z2Þ. Thus, the loads and
moments are related to the strains and curvature through the following relation.

(12)
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In Eq. (12), the extensional terms Ā, bending–extensional coupling terms B̄ and bending terms D̄
are evaluated as follows

Ā ¼
Xnlay

ilay¼1

Qijðzilayþ1 � zilayÞ, (13a)

B̄ ¼
1

2

Xnlay
ilay¼1

Qijðz
2
ilayþ1 � z2ilayÞ. (13b)

D̄ ¼
1

3

Xnlay
ilay¼1

Qijðz
3
ilayþ1 � z3ilayÞ, (13c)

where i; j ¼ 1; 2; 6. The stress–strain relationship for shear in the ilayth layer is expressed as

tsz

tyz

( )
ilay

¼
Q44 0

0 Q55

" #
ilay

gsz

gyz

( )
ilay

. (14)

The resultant shear forces Q̄ss and Q̄yy are defined as follows:

Q̄ss

Q̄yy

( )
¼
Xnlay

ilay¼1

Z hilay

hilay�1

Q44 0

0 Q55

" #
ilay

1

A1
gsz

1

A2
gyz

8>><
>>:

9>>=
>>;

ilay

dz. (15)

A shear correction factor of 5=6 is used during the evaluation of A44 and A55:

Q̄ss

Q̄yy

( )
¼

Ā44 0

0 Ā55

" #
ilay

gsz

gyz

( )
ilay

, (16)

where

Āij ¼
5

6

Xnlay
ilay¼1

Qij

Z hilay

hilay�1

1 dz. (17)

This completes the detailed description on the evaluation of the constitutive matrix for
a functionally graded cylindrical shell. The stiffness matrix is obtained from the strain
energy and the element stiffness matrix corresponding to the mth harmonic is computed
as follows

ke ¼

Z
A

B�
T ¯̄DB�rdsdy, (18)

where B� is the strain–displacement matrix, ¯̄D is the reduced stiffness coefficient obtained based
on the description following Eqs. (13a–c) and (17) and r represents the mid-surface radius of shell.
The element stiffness matrix is assembled using the standard assembly procedure in finite element
analysis to obtain the global stiffness matrix, Kuu ¼

P
ke. The mass matrix is obtained from the
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kinetic energy:

KE ¼
r
2

Z
V

ð _u2 þ _v2 þ _w2ÞdV ¼
r
2

Z
V

uTudV ¼
1

2
dTmed, (19)

where u ¼ N̄d. N̄ is the shape function matrix for a three-node quadratic line element expressed in
terms of the isoparametric coordinate, b, as follows:

N̄1 ¼
ðb2 � bÞ

2
; N̄2 ¼ ð1� b2Þ and N̄3 ¼

ðb2 þ bÞ
2

in which b ¼ �1; 0 and þ1 at node 1, 2 and 3. d is a vector of nodal displacement,

dT ¼ fuo1; vo1;wo1;cos1;coy1; uo2; vo2;wo2;cos2;coy2; uo3; vo3;wo3;cos3;coy3g,

where uo, vo, and wo are displacements of the mid-surface along the s; y and z directions
and cos and coy are the bending rotations of the normal to the mid-surface along s and y
directions, respectively. Suffixes 1, 2 and 3 denote the node number. me is the element mass matrix
given by

me ¼ r̄eff

Z
A

N̄
T
N̄dA, (20)

where

r̄eff ¼
Xnlay

ilay¼1

Z hilayþ1

hilay

reff dz.

The computation of the mass matrix involves the use of effective density of the FGM shell as
described in Eq. (4c).
Linear thermal buckling analysis of FGM cylindrical shell is required to be framed. A

discussion on the classical initial stability problems may be found in Zienkiewicz and Taylor [31].
The initial stiffness matrix (or geometric stiffness matrix) due to thermal loading is evaluated as
follows:

kse ¼

Z
A

BiTN�thBi dA, (21)

where Bi is the strain–displacement matrix based on strains due to large deformation, Ross [32],
and N�th is a matrix of initial stress resultants due to temperature rise. Assembling the element
geometric stiffness matrix yields the global geometric stiffness matrix, Kuu

s ¼
P

kse. The thermal
stresses in the ilayth layer of the FGM shell are

sss

syy
ssy

8><
>:

9>=
>;

th

ilay

¼ Q½ �ilay

ass

ayy
0

8><
>:

9>=
>;DT . (22)
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The thermal loads and moments are defined as follows:

Nth ¼

N th
ss

N th
yy

N th
sy

8><
>:

9>=
>; ¼

Z h=2

�h=2

sss

syy
tsy

8><
>:

9>=
>;

th

ilay

dz ¼
Xnlay

ilay¼1

Q½ �ilay

ass

ayy
0

8><
>:

9>=
>;

ilay

DTh, (23a)

Mth ¼

M th
ss

M th
yy

M th
sy

8><
>:

9>=
>; ¼

Z h=2

�h=2
z

sss

syy
tsy

8><
>:

9>=
>;

th

ilay

dz ¼
Xnlay

ilay¼1

Q½ �ilay

ass

ayy
0

8><
>:

9>=
>;DTðhilay � hilay�1Þ

ðhilay þ hilay�1Þ

2
.

(23b)

In the above Eqs. (23a) and (23b), the coefficient of thermal expansion ass ¼ ayy. ass and ayy are
obtained using Eq. (4e). After computing the thermal load, the total stress resultants and moment
resultants are determined (Ref. [33]) as follows

N̄
th
¼ ¯̄Deo �

Nth

Mth

( )
, (24)

where eo is the strain vector due to mechanical deflection arising from thermal loading. The initial
stress resultants and moment resultants vector, N̄

th
, will be used to compose the initial stress

resultants matrix N�th as follows and will be used in Eq. (21):

N̄
th
ss N̄

th
sy M̄

th
ss M̄

th
sy

N̄
th
sy N̄

th
yy M̄

th
sy M̄

th
yy

M̄
th
ss M̄

th
sy Q̄

th

ss Q̄
th

sy

M̄
th
sy M̄

th
yy Q̄

th

sy Q̄
th

yy

2
666664

3
777775.

2.3. 1D heat conduction analysis for FGM cylindrical shells

A steady-state 1D heat conduction analysis is considered to evaluate the temperature
distribution across the thickness of the FGM shell based on the temperature specified boundary
condition. Fig. 1 describes the problem considered for the steady-state heat conduction analysis.
The finite element equation for this situation is as follows: KconT̂ ¼ 0, where Kcon is the heat

conduction matrix and T̂ is a vector of nodal temperature (Ref. [34]). Subsequent to this, the
structural analysis is carried out.
The computer code has been extended to compute the temperature distribution across the wall

of the FGM shell by taking into account the material properties as a function of temperature. An
iterative procedure is followed in order to obtain a converged temperature distribution in the
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Fig. 1. Schematic illustration of the steady-state heat conduction through the wall of a hollow cylinder.
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subsequent studies. The description of the procedure is well understood through the flow chart
(Fig. 2).
3. Results and discussions

3.1. Linear thermal buckling analysis of functionally graded cylindrical shells

The evaluation of critical buckling temperature (or bifurcation buckling temperature) is based
on the classical stability equation involving the structural stiffness matrix, Kuu, and initial stiffness
matrix, Kuu

s . The buckling eigenvalues and buckling mode shapes are computed using the
simultaneous iteration technique. A typical configuration of the functionally graded cylindrical
shell is assumed to be ceramic rich on the inner surface and metal rich on the outer surface.
Following are the functionally graded cylindrical shells considered for study
(i)
 functionally graded cylindrical shell composed of SUS304=Si3N4,

(ii)
 functionally graded cylindrical shell composed of SUS304=Al2O3,

(iii)
 functionally graded cylindrical shell composed of SUS304=ZrO2,

(iv)
 functionally graded cylindrical shell composed of Ti–6Al–4V/Si3N4,

(v)
 functionally graded cylindrical shell composed of Ti–6Al–4V/Al2O3,

(vi)
 functionally graded cylindrical shell composed of Ti–6Al–4V/ZrO2.
The material properties are taken from the literature of Reddy and Chin [4]. The geometric details
of the FGM cylindrical shell are listed in Table 1. The numerical studies are limited to the
clamped–clamped boundary condition.
A rigorous analysis to compute the bifurcation buckling temperature for functionally graded

cylindrical shells based on uncoupled thermomechanical formulation follows. The analysis
considers a case of FGM cylindrical shell with temperature varying across the wall thickness. The
temperature gradient along the length of the shell is negligible. Given the temperature boundary
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Start

Specified: Temp. on inner surface Ti and on 
outer surface To.  
Assume k independent of temperature. 

Assume no convection, radiation heat transfer, no internal 

heat storage and internal heat generation. Solve KconT = 0 ˆ 

Compute new thermal conductivity for each

Convergence

conductivity used is temperature dependent  

Stop 

YES 

NO 

T (nodal temperature) temperatureˆ

distribution across shell wall. Call Told
ˆ

layer based on temperature distribution Told
ˆ

Call Tnew
ˆ

Converged temperature distribution Tnew when thermal ˆ

Solve for new temperature distribution Kcon T = 0 ; ˆ

Set Told = Tnew
ˆ ˆ

Tnew - Told <= 0.0001ˆ ˆ

Fig. 2. Flow chart for computation of temperature distribution across the thickness of the shell based on temperature-

dependent material properties.
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conditions, i.e. temperature specified on the inner and the outer surfaces of the cylindrical shell, a
simple steady-state heat conduction analysis yields the temperature distribution across the shell
wall. The temperature distribution evaluated is based on the temperature-dependent material
property (i.e. thermal conductivity). Thus, it is required to iterate until a converged temperature
distribution is obtained. This temperature distribution now represents the thermal loading on the
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Table 1

Geometry details of FGM cylindrical shells

Sl. no. Radius, r Length, l Thickness, h l=r r=h

(m) (m) (m)

1 0.876 0.9144 0.00876 1.0438 100

2 0.876 4.572 0.00438 5.219 200
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FGM shell, which results in thermal stresses. Based on converged temperature distribution the
mechanical properties and thermal property are evaluated. Initial stresses are computed to carry
out the bifurcation thermal buckling analysis. The thermal buckling temperature thus obtained
will be based on not only the converged temperature distribution across the wall thickness but
also on the converged thermal stresses, which means to say that the arbitrary high temperature
specified on the shell wall will change until a converged buckling temperature is obtained. Thus, a
two-stage iterative procedure is adopted, which brings about convergence of not only the
temperature distribution but also the thermal stresses. The total effective stresses due to thermal
loading are used to evaluate the geometric stiffness matrix. Thus, linear thermal buckling analysis
is carried out to obtain the buckling eigenvalues and buckling eigenvectors. The overall procedure
followed for the determination of the thermal buckling temperature is best understood from the
flow chart presented in Fig. 3. The error between the critical buckling temperature obtained
between the previous step and the new step is chosen to be less than or equal to 0.5. The loop for
checking the convergence of the buckling temperature is initiated by setting a large error. The first
critical buckling temperature obtained is set as the old buckling temperature. This temperature is
now set as specified temperature on the inner surface of the cylinder and the outer surface of the
cylindrical shell is always set at ambient temperature 27 �C. This leads to the computation of the
new buckling temperature, which starts from the step involving the determination of temperature
distribution across the shell wall and so on (Fig. 3). Now a real check on the buckling temperature
is made between the old buckling temperature and the new buckling temperature, which yields an
error. This error should be less than or equal to 0.5 to obtain the converged buckling temperature.

3.2. Convergence studies

A convergence study is taken up in order to determine a suitable number of homogeneous
layers as well as the number of finite elements required for the evaluation of the constitutive
matrix and hence the buckling temperature. Independent convergence studies are required
depending on the length-to-radius ratio of the shells (Table 1). The convergence study involves
determining the buckling temperature based on the iterative procedure discussed previously.
Consider the convergence study for an FGM cylindrical shell with length-to-radius ratio
ðl=rÞ ¼ 5:21, radius-to-thickness ratio ðr=hÞ ¼ 200 and mean radius r equal to 0.876 meter. The
FGM shell is composed of SUS304/Si3N4. The number of finite elements for the cylindrical shell
geometry varied from 30 elements to 80 elements. For each of the finite element mesh, the
thickness of the shell was divided into (i) five layers, (ii) ten layers, (ii) 20 layers and (iii) 40 layers.
Thermal buckling temperatures were evaluated for the four models for various values of the
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power-law index. It was found that for a given finite element mesh, the buckling temperature
converged for FGM shell with 20 and 40 layers. Typical convergence results are presented in
Table 2 for a finite element mesh having 60 elements. The percentage difference in the buckling
temperature predicted by the 20-layered model and the 40-layered model is less when compared to
the 10-layered model and the 20-layered model. With this observation it is reasonable to use the
20-layered model to represent the shell thickness for the evaluation of the mechanical and thermal
properties. As far as the number of finite elements was concerned, the buckling temperature
converged for the finite element mesh beyond 70 (refer to Table 3). Similar studies for the FGM
cylindrical shell with l=r ¼ 1:0438 were carried out and it was found that a finite element mesh
with 30 elements and 20 layers was sufficient.
Table 2

Convergence study for the choice of number of layers for FGM shell thickness FE model with 60 elements

Power-law index n Critical thermal buckling temperature T cri (1C) for

5 layers 10 layers 20 layers 40 layers

0.0 (metal rich) 358.86 358.45 358.21 358.22

0.05 371.47 371.85 372.23 372.39

0.10 383.85 385.39 386.21 386.62

0.50 480.81 487.26 489.76 490.84

1.00 573.04 577.83 579.15 579.50

5.00 692.17 691.13 690.82 690.74

10.0 694.38 693.31 692.60 692.33

15.0 693.39 692.70 692.00 691.72

100.0 689.63 689.91 690.40 690.43

b100:0 (ceramic rich) 689.57 690.03 690.04 690.14

Table 3

Convergence study for the choice of number of finite elements for FGM shell with l=r ¼ 5:21

Power-law index n Critical thermal buckling temperature T cri (1C) for

50 elements 60 elements 70 elements 80 elements

0.0 (metal rich) 357.54 358.21 358.18 358.05

0.05 371.55 372.23 372.16 372.00

0.10 385.56 386.21 386.18 386.02

0.50 488.95 489.76 489.70 489.54

1.00 578.03 579.15 579.04 578.88

5.00 689.29 690.82 690.77 690.56

10.0 691.14 692.60 692.50 692.24

15.0 690.58 692.00 691.90 691.62

100.0 689.31 690.40 690.36 690.00

b100:0 (ceramic rich) 688.97 690.04 689.91 689.56

FGM shell is assumed to be 20 layers thick.
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Table 4

Comparison of thermal buckling temperature of composite shells as obtained using the formulation for FGM shells

r=h Critical buckling temperature, DT cri (1C)

Semi-loof finite element method, Results from the

Thangaratnam et al. (1989) present study

200 1304.298 (11,1) 1258.4 (11,1)

300 912.434 (13,1) 851.3 (13,1)

400 659.610 (18,1) 637.8 (18,1)

500 514.745 (19,1) 507 (19,1)
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3.3. Validation of the thermal buckling temperature of cylindrical shells

The semianalytical finite element formulation for the analysis of thermal buckling temperature
for FGM shells of revolution has been validated by evaluating the critical buckling temperature of
composite cylindrical shells as reported by Thangaratnam et al. [35]. Using semiloof finite
element, Thangaratnam et al. carried out finite element analysis of buckling of composite
cylindrical shells under the influence of mechanical and thermal loads. Table 4 lists the
comparison of results on buckling temperature of the composite cylindrical shell under uniform
temperature rise with a simply supported boundary condition. This is resorted to primarily
because of the lack of literature on the evaluation of buckling temperature of FGM shells using
the finite element method.

3.4. Validation of transient thermal response for functionally graded hollow cylinder conveying hot
gases

Praveen et al. [36] carried out transient response studies on a functionally graded hollow
cylinder conveying hot gases. A transient study is presented demonstrating the temperature rise
and temperature distribution across the wall of the cylinder with the passage of time resulting
from the high-temperature gases rushing into the cylinder. The results reported consider material
properties dependent on temperature. The boundary conditions are (i) the outer surface of the
hollow cylinder is well insulated and (ii) the inner surface is subjected to a convection condition
due to flow of hot gases, Fig. 4 (a). With the objective to reproduce the temperature distribution
across the cylinder wall due to the flow of hot gases into the functionally graded hollow cylinder as
a function of time, an axisymmetric heat transfer finite element is formulated. The formulation is
based on the functional for heat transfer problem as discussed by Rao [37], and the functional is
simplified to the current problem definition. The finite element form of the unsteady state heat
transfer problem for the boundary conditions as stated in the beginning is represented by the
following equation:

Kcap
_̂
Tþ Kcond þ Kconvð ÞT̂ ¼ PH. (25)

In Eq. (25) Kcond and Kconv represent the heat conduction and convective matrices of the system,
respectively. The matrix Kcap arises due to a change in the internal energy of the system and this
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Fig. 4. Flow of hot gases through a functionally graded hollow cylinder and the associated boundary conditions (a) and

finite element idealization using a two-node isoparametric element in the radial direction for the analysis (b).
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term in Eq. (25) governs the transient behavior of the system. These equations must be solved for
the variation of T̂ in space and time; T̂ ¼ fT̂1T̂2T̂3T̂4 . . . T̂nnodtg

T is the vector of nodal
temperature for the system.
A methodology discussed based on finite difference approximation in the time domain

is applied to generate a numerical solution for Eq. (25) may be found in Segerlind [38].
The material properties are evaluated at the stated temperature during the transient res-
ponse evaluation. Data for the problem: The functionally graded hollow cylinder is composed
of Zirconia and Titanuim alloy (Ti6AlV). The material properties are listed in Praveen et al. [36].
The hollow cylinder has the following dimensions: inner radius ¼ 0:0127m and outer
radius ¼ 0:0254m. Initially, the hollow cylinder is at room temperature of 25:15 �C. The
temperature of the hot gases flowing within the hollow cylinder was assumed to be 1827 �C
and the heat transfer coefficient was assumed to be 750W/m2K. The time step chosen was
5:0� 10�5 s. Numerical computation was undertaken to produce results on the tempera-
ture distribution across the wall of the hollow cylinder for time periods of 0.2, 0.4, 0.6, 0.8
and 1.0 s. The material properties were updated based on the temperature distribution
obtained at the end of the each iteration. Initial rise in temperature on the inner surface of
the shell wall for various time intervals as obtained by Praveen et al. and from the present
procedure is listed in Table 5. It is observed that the results tally well with a small percentage
difference.
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Table 6

Comparison of critical buckling temperature without iteration Case (a) and with iteration Case (b). FGM cylindrical

shell: l=r ¼ 1:0438, r=h ¼ 200, Ti–6Al–4V/ZrO2

Power-law index Case (a) Case (b)

0.0 (metal rich) 539.37 (13,1) 355.75 (13,1)

0.05 520.16 (13,1) 337.65 (13,1)

0.1 504.29 (13,1) 324.84 (13,1)

0.5 444.84 (13,1) 292.73 (13,1)

1.0 421.38 (13,1) 292.79 (13,1)

5.0 364.23 (13,1) 256.89 (13,1)

10.0 349.22 (13,1) 242.76 (13,1)

15.0 343.85 (13,1) 237.58 (13,1)

100.0 334.89 (13,1) 228.27 (13,1)

b100:00 (ceramic rich) 333.01 (13,1) 226.56 (13,1)

Table 5

Comparison of initial temperature rise on the inner surface of FGM shell wall

Time in seconds Initial temperature rise 1C on the inner shell wall % difference

Praveen et al. [36] Present

0.2 260 240 7.6

0.4 340 310 8.8

0.6 390 355 8.9

0.8 425 400 5.8

1.0 455 430 5.5
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Thus, the foregoing validations have strengthened the computational aspects that are essential
for the present work on the computation of thermal buckling behavior of functionally graded
cylindrical shells which consider temperature-dependent material properties.

3.5. Case study to illustrate the significance of considering temperature-dependent material
properties in FGM

An exercise is taken up to illustrate the necessity of considering temperature-dependent material
properties. For the sake of illustration two exercises are executed:
Case (a) critical (or bifurcation) buckling temperature for FGM shell is obtained by computing

the temperature distribution across the thickness of the shell with specified arbitrary high
temperature on the inner surface and ambient temperature on the outer surface. The temperature
distribution obtained is based on the thermal properties assumed at room temperature. The
temperature distribution thus obtained becomes the thermal load on the shell. Thermal buckling
temperature is computed and the material properties used are as per room temperature. Case (b)
critical buckling temperatures are computed based on the procedure illustrated in Fig. 3. The
results are presented in Table 6 for FGM shell viz., Ti–6Al–4V–ZrO2. The buckling temperature
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estimated according to the procedure of Case (a) is higher when compared to the buckling
temperature computed using the procedure of Case (b).
3.6. Critical thermal buckling temperature of FGM shells—parametric study

Following the procedure outlined in the flow chart, Fig. 3, computation of thermal buckling
temperature for FGM cylindrical shells is taken up. Shells with two ratios of r=h are considered
and for each r=h ratio, two l=r ratios are considered for the study. The power-law indexes for the
study are chosen as n ¼ 0:0; 0:05; 0:1; 0:5; 1:0; 5:0; 10:0; 15:0; 100:0;b100:0. The lowest or critical
buckling temperature and the associated mode number are listed in Tables 7–12, for a
combination of metal and ceramic FGMs. For values of n ¼ 0:0, the FGM cylindrical shell
Table 7

Critical buckling temperature T cri in 1C for FGM of SUS304 and Si3N4

Power-law index n r=h ¼ 100 r=h ¼ 200

l=r ¼ 1:0438 l=r ¼ 5:21 l=r ¼ 1:0438 l=r ¼ 5:21

0.0 (metal rich) 598.98 (9,1) 625.12 (9,1) 346.33 (13,1) 358.18 (13,1)

0.05 622.28 (9,1) 648.97 (9,1) 359.98 (13,1) 372.16 (13,1)

0.1 645.81 (9,1) 673.20 (9,1) 373.55 (13,1) 386.18 (13,1)

0.5 826.33 (9,1) 858.90 (9,1) 474.58 (13,1) 489.70 (13,1)

1.0 984.05 (9,1) 1019.52 (9,1) 561.94 (13,1) 579.04 (13,1)

5.0 1151.96 (9,1) 1184.82 (9,1) 673.24 (13,1) 690.77 (13,1)

10.0 1147.37 (9,1) 1178.57 (9,1) 675.50 (13,1) 692.50 (13,1)

15.0 1144.26 (9,1) 1175.03 (9,1) 675.02 (13,1) 691.90 (13,1)

100.0 1139.17 (9,1) 1168.76 (9,1) 673.78 (13,1) 690.36 (13,1)

b100:00 (ceramic rich) 1138.35 (9,1) 1168.30 (9,1) 673.40 (13,1) 689.91 (13,1)

Table 8

Critical buckling temperature T cri in 1C for FGM shell of SUS304 and aluminum oxide

Power-law index n r=h ¼ 100 r=h ¼ 200

l=r ¼ 1:0438 l=r ¼ 5:21 l=r ¼ 1:0438 l=r ¼ 5:21

0.0 (metal rich) 598.98 (9,1) 625.12 (9,1) 346.33 (13,1) 358.18 (13,1)

0.05 581.98 (9,1) 607.40 (9,1) 336.91 (13,1) 348.39 (13,1)

0.1 579.91 (9,1) 604.76 (9,1) 335.57 (13,1) 346.91 (13,1)

0.5 637.58 (9,1) 663.77 (9,1) 367.05 (13,1) 378.79 (13,1)

1.0 714.62 (9,1) 742.39 (9,1) 409.70 (13,1) 422.23 (13,1)

5.0 994.02 (9,1) 1027.84 (9,1) 564.61 (13,1) 580.52 (13,1)

10.0 1106.30 (9,1) 1143.62 (9,1) 626.97 (13,1) 644.44 (13,1)

15.0 1158.08 (9,1) 1196.85 (9,1) 655.77 (13,1) 673.99 (13,1)

100.0 1265.14 (9,1) 1307.57 (9,1) 715.91 (13,1) 735.68 (13,1)

b100:00 (ceramic rich) 1271.07 (9,1) 1313.59 (9,1) 719.16 (13,1) 739.10 (13,1)
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Table 9

Critical buckling temperature T cri in 1C for FGM shell of SUS304 and zirconia

Power-law index n r=h ¼ 100 r=h ¼ 200

l=r ¼ 1:0438 l=r ¼ 5:21 l=r ¼ 1:0438 l=r ¼ 5:21

0.0 (metal rich) 598.98 (9,1) 625.12 (9,1) 346.33 (13,1) 358.18 (13,1)

0.05 545.67 (9,1) 565.39 (9,1) 330.48 (13,1) 340.92 (13,1)

0.1 516.24 (9,1) 534.26 (9,1) 321.04 (13,1) 330.84 (13,1)

0.5 478.91 (9,1) 492.69 (9,1) 314.80 (13,1) 323.03 (13,1)

1.0 497.44 (9,1) 511.09 (9,1) 330.96 (13,1) 339.15 (13,1)

5.0 425.00 (9,1) 436.73 (9,1) 284.25 (13,1) 291.48 (13,1)

10.0 390.15 (9,1) 400.56 (9,1) 259.28 (13,1) 265.80 (13,1)

15.0 375.68 (9,1) 386.42 (9,1) 249.46 (13,1) 255.64 (13,1)

100.0 347.61 (9,1) 357.30 (9,1) 229.31 (13,1) 235.01 (13,1)

b100:00 (ceramic rich) 343.30 (9,1) 353.31 (9,1) 226.54 (13,1) 232.19 (13,1)

Table 10

Critical buckling temperature T cri in 1C for FGM shell of Ti–6Al–4V and Si3N4

Power-law index n r=h ¼ 100 r=h ¼ 200

l=r ¼ 1:0438 l=r ¼ 5:21 l=r ¼ 1:0438 l=r ¼ 5:21

0.0 (metal rich) 540.69 (9,1) 556.33 (9,1) 354.47 (13,1) 363.48 (13,1)

0.05 547.85 (9,1) 563.67 (9,1) 359.10 (13,1) 368.05 (13,1)

0.1 557.66 (9,1) 574.00 (9,1) 365.09 (13,1) 374.08 (13,1)

0.5 676.69 (9,1) 695.28 (9,1) 428.65 (13,1) 439.31 (13,1)

1.0 815.61 (9,1) 838.40 (9,1) 496.18 (13,1) 508.55 (13,1)

5.0 1067.12 (9,1) 1096.46 (9,1) 620.67 (13,1) 636.08 (13,1)

10.0 1095.24 (9,1) 1124.30 (9,1) 641.29 (13,1) 656.98 (13,1)

15.0 1106.34 (9,1) 1135.81 (9,1) 650.10 (13,1) 665.97 (13,1)

100.0 1136.17 (9,1) 1166.14 (9,1) 671.88 (13,1) 688.48 (13,1)

b100:00 (ceramic rich) 1138.35 (9,1) 1168.19 (9,1) 673.40 (13,1) 689.91 (13,1)
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corresponds to an isotropic shell with properties corresponding to that of metal and nb100:0
corresponds to a cylindrical shell purely of ceramic material. The power-law indexes other than
the two extreme values govern the distribution profiles of metal in the FGM shell.
The critical buckling temperatures for FGM shells made from a combination of SUS304 and

three ceramics are considered here. Certain important observations apparent from Tables 7–9 are
as follows: (i) For SUS304/Si3N4 FGM shells the critical thermal buckling temperatures are high
and decrease marginally for n ranging between 5.0 and 100.0 and for large values of the power-law
index (i.e. rich in ceramics). For n ranging from 0.0 to 5.0 the critical buckling temperatures
increase as n increases. (ii) For SUS304–Al2O3 FGM shells the critical buckling temperatures are
high for ceramic composition, i.e. n ¼ 100 and nb100:0. The critical buckling temperatures
decrease as the power-law index increases from n ¼ 0:0 to 0.1, and for n40:5 the buckling
temperatures increase with increase in the power-law index.
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Table 11

Critical buckling temperature in 1C for FGM shell of Ti–6Al–4V and aluminum oxide

Power-law index n r=h ¼ 100 r=h ¼ 200

l=r ¼ 1:0438 l=r ¼ 5:21 l=r ¼ 1:0438 l=r ¼ 5:21

0.0 (metal rich) 541.00 (9,1) 551.15 (9,1) 354.64 (13,1) 360.34 (13,1)

0.05 518.75 (9,1) 528.54 (9,1) 339.49 (13,1) 345.17 (13,1)

0.1 511.67 (9,1) 520.98 (9,1) 333.80 (13,1) 339.45 (13,1)

0.5 544.18 (9,1) 553.86 (9,1) 347.92 (13,1) 353.55 (13,1)

1.0 609.47 (9,1) 620.20 (9,1) 381.46 (13,1) 387.47 (13,1)

5.0 917.80 (9,1) 935.44 (9,1) 532.47 (13,1) 541.42 (13,1)

10.0 1058.46 (9,1) 1080.29 (9,1) 602.43 (13,1) 612.92 (13,1)

15.0 1122.87 (9,1) 1146.28 (9,1) 636.34 (13,1) 647.54 (13,1)

100.0 1262.21 (9,1) 1289.67 (9,1) 714.33 (13,1) 727.28 (13,1)

b100:00 (ceramic rich) 1271.07 (9,1) 1298.46 (9,1) 719.16 (13,1) 732.28 (13,1)

Table 12

Critical buckling temperature T cri in 1C for FGM shell of Ti–6Al–4V and zirconia

Power-law index n r=h ¼ 100 r=h ¼ 200

l=r ¼ 1:0438 l=r ¼ 5:21 l=r ¼ 1:0438 l=r ¼ 5:21

0.0 (metal rich) 542.29 (9,1) 558.23 (9,1) 355.75 (13,1) 364.49 (13,1)

0.05 510.29 (9,1) 524.71 (9,1) 337.65 (13,1) 346.08 (131)

0.1 487.82 (9,1) 501.36 (9,1) 324.84 (13,1) 332.61 (13,1)

0.5 436.08 (9,1) 447.77 (9,1) 292.73 (13,1) 299.75 (13,1)

1.0 439.09 (9,1) 451.32 (9,1) 292.79 (13,1) 299.97 (13,1)

5.0 387.90 (9,1) 398.75 (9,1) 256.89 (13,1) 263.10 (13,1)

10.0 367.42 (9,1) 377.20 (9,1) 242.76 (13,1) 248.66 (13,1)

15.0 359.50 (9,1) 369.75 (9,1) 237.58 (13,1) 243.38 (13,1)

100.0 346.15 (9,1) 355.55 (9,1) 228.27 (13,1) 233.93 (13,1)

b100:00 (ceramic rich) 343.60 (9,1) 352.96 (9,1) 226.56 (13,1) 232.19 (13,1)
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For the FGM shell of SUS304-Si3N4 and SUS304-Al2O3 the critical buckling temperatures are
low when the FGM has only metallic material n ¼ 0:0; this does not hold true for the FGM of
SUS304–ZrO2. Here it is noticed that for the FGM shell with n ¼ 100 and nb100:0, the buckling
temperatures are lower when compared to the case of n ¼ 0:0, i.e. metal rich. The change in the
characteristics is mainly attributed to the coefficient of thermal expansion. The coefficient of
thermal expansion is very high for both stainless steel (SUS304) and ZrO2 when compared to
Al2O3 and Si3N4. Further, the coefficient of thermal expansion for Zirconia (ZrO2) is greater than
that of stainless steel. Larger the coefficient of thermal expansion, lower the buckling temperature.
For materials with a high coefficient of thermal expansion, considering uniform temperature rise,
the strains due to temperature rise dominate the mechanical strains. Hence, the stresses due to
temperature effects are larger when compared to the stresses from mechanical deflections. This
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will lead to high initial compressive stresses in the FGM shell, which is likely to cause the shell to
buckle at low thermal loading. In the latter case, the coefficient of thermal expansion a for
alumina and silicon nitride are low when compared to SUS304 steel.
Other important observations from Tables 7–9 are the following: (i) When the thickness of the

shell reduces the buckling temperature decreases as expected. (ii) With increase in l/r the buckling
temperature increases for shells with r/h ¼ 100 and 200. The ceramic materials, Si3N4 and Al2O3,
in combination with SUS304 possess high buckling temperature when compared with FGM shell
of SUS304–ZrO2. For FGM shell with composition SUS304–ZrO2, it is interesting to note that
the buckling temperature decreases with increase in n, with the exception of n ¼ 1:0, which breaks
the continuity in decreasing trend. When considering the ceramics like Si3N4 and Al2O3, in
combination with SUS304, the FGM shells are best suited for higher operating temperature since
these exhibit high buckling temperature.
Results of similar studies are presented for FGMs composed of Ti–6Al–4V in combination with

Si3N4, ZrO2 and Al2O3 in Tables 10–12. Interesting observations on the buckling temperature are
listed as follows: (i) from the viewpoint of constituent material composition, it is seen that for
FGM shells with titanium alloy and silicon nitride and alumina, the buckling temperatures are
low when the FGM is purely metallic and buckling temperature is very high when the FGM is
composed of only ceramic. This observation is not true for the FGM of titanium alloy and
zirconia. (ii) For FGMs of titanium alloy with alumina and silicon nitride the buckling
temperature increases with an increase in the power-law index, whereas for FGMs of titanium
alloy and zirconia, the buckling temperatures decrease with an increase in the power-law index.
(iii) Certain exception on the influence of the power-law index on the buckling temperature may
be noted in the case of FGMs of Ti–6Al–4V and Al2O3; when n ¼ 0:05 and 0.1 the buckling
temperatures are low compared to FGMs with n ¼ 0:0 and 0.5 to b100:0. (iv) From the
viewpoint of geometry of the shell, for a given r=h (either 100 or 200), the buckling temperature
increases with increase in l=r. For the shell with r=h ¼ 200, the buckling temperatures are lower
when compared to the shell with r=h ¼ 100. These observations are similar to those described for
FGM shell of stainless steel with ceramics. The circumferential mode number associated with
critical buckling temperatures changes when r=h varies. But the mode number does not change
with an increase in l=r for a given r=h.

3.7. Critical thermal buckling temperature based on average coefficient of thermal expansion

The objective of this section is to look for an alternate procedure for the determination of
critical buckling temperature for FGM shells manufactured with various power-law indexes n. In
general, it is easy to obtain the critical buckling temperature of the homogeneous isotropic
ceramic or metallic FGM shell. Following the assumptions that (i) geometrical parameters of the
FGM shell and isotropic shell are the same, (ii) for a given geometry, thermal strains at the critical
buckling temperature remain the same for the FGM shell and the isotropic shell and (iii) knowing
the critical buckling temperature of the isotropic shell referred to as reference temperature, a
method is proposed to evaluate the bifurcation buckling temperature of an FGM shell for a given
n. Since an FGM shell is assumed to consist of many homogeneous isotropic lamina, the
coefficient of the thermal expansion of the FGM shell for a given power-law index is assumed to
be equivalent to the average of the effective coefficient of thermal expansion of all layers and
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Table 13

Comparison of the buckling temperature based on average coefficient of thermal expansion and iterative computational

procedure for SUS304/Al2O3 FGM shell with r/h ¼ 100 and l/r ¼ 1.0438. DT ref is of ceramic

n Based on actual Based on average %age difference

computational coefficient of thermal

procedure expansion

0.0 598.98 479.83 19.89

0.05 581.98 484.55 16.74

0.10 579.91 493.85 14.84

0.50 637.58 583.51 8.48

1.00 714.62 679.79 4.87

5.00 994.02 1015.86 �2.19

10.0 1106.30 1131.04 �2.23

15.0 1158.08 1177.36 �1.66

100.0 1265.14 1265.36 �0.017

b100:0 1271.07 1271.06 �0.00079
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coefficient of thermal expansion of each layer computed based on Eq. (4e). Then

�th
��
nb100:0

¼ �th
��
0:0p np100:0

or ðarefDT ref Þnb100:0 ¼ ðaavgDT criÞ0:0p np100:0.

With the above relation the evaluation of the critical buckling temperature for a given value of the
power-law index n is investigated. The left-hand side of the above equation represents the critical
thermal strain of a homogeneous isotropic material, ceramic or metallic, which is equivalent to an
FGM shell with nb100:0 or n ¼ 0:0; aref is the coefficient of thermal expansion of the isotropic shell
and DT ref refers to the reference temperature, which is equal to the critical buckling temperature for
the isotropic shell. Given the critical buckling temperature for a homogeneous isotropic shell, and
evaluating the average coefficient of thermal expansion aavg for a given power-law index say, n ¼
0:05 or 0.1 and so on, the above relation will yield the critical buckling temperature for the FGM
shell corresponding to the choice of n. The above procedure is implemented for the case of FGM
shells composed of SUS304–Al2O3, l/r ¼ 1.0438 and r/h ¼ 100. Typical results for SUS304–Al2O3

FGM shells are listed in Tables 13 and 14 along with the percentage difference in the estimation of
the critical buckling temperature by the alternate procedure.
It is to be noted that the buckling temperatures evaluated by this procedure depend on the

reference temperature chosen as well as n. This procedure can be used for the estimation of the
critical buckling temperature during the preliminary design stage of an FGM shell. Thus, initially
this helps in making a proper choice of the power-law index for the FGM shell, and subsequently
the iterative procedure can be used to determine the actual buckling temperature.
4. Free vibration studies on FGM cylindrical shells

Free vibration natural frequency characteristics are presented for clamped–clamped FGM
shells with various values of the power-law index. Apart from the free vibration studies, the effect
of temperature on the free vibration natural frequencies of FGM shells is also investigated.
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Table 15

Comparison of first axial mode natural frequencies (Hz) of stainless steel and zirconia FGM shell for simply supported

boundary condition

Circumferential mode m n ¼ 10 n ¼ 1:0

Ref. [25] Present % difference Ref. [25] Present % difference

1 14.21 13.8 2.89 13.7 14.5 �5.84

2 5.076 4.7 7.41 4.97 4.9 1.41

3 4.67 4.3 7.92 4.264 4.6 �7.88

4 7.91 7.3 7.71 7.1 7.8 �9.86

5 12.18 11.7 3.94 11.67 12.4 �6.26

6 18.17 17.1 5.89 16.24 18.2 �12.07

7 24.16 23.6 2.32 22.84 25 �9.46

8 32.49 31 4.59 30.45 32.9 �8.05

9 40.61 39.4 2.98 37.9 41.8 �10.29

10 50.76 48.8 3.86 47.71 51.8 �8.57

Table 14

Comparison of buckling temperature based on average coefficient of thermal expansion and iterative computational

procedure for SUS304/Al2O3 FGM shell with r/h ¼ 100 and l/r ¼ 1.0438. DT ref is of metal

n Based on actual Based on average %age difference

computational coefficient of thermal

procedure expansion

0.0 598.98 598.97 0.0016

0.05 581.98 610.57 �4.912

0.10 579.91 624.06 �7.613

0.50 637.58 730.66 �14.59

1.00 714.62 835.77 �16.95

5.00 994.02 1170.55 �17.75

10.0 1106.30 1279.70 �15.67

15.0 1158.08 1324.16 �14.34

100.0 1265.14 1414.02 �11.76

b100:0 1271.07 1420.33 �11.74
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4.1. Validation of natural frequencies for functionally graded cylindrical shells

The strain–displacement relations from Love’s shell theory were used by Pradhan et al. [25] to
study free vibration natural frequencies of FGM shells. The present work attempts to simulate
few results based on the first-order shear deformation theory applicable for moderately thick
shells. The cylindrical shell geometry considered for the study is as follows: l=r ¼ 20:0,
h=r ¼ 0:002. The FGM cylindrical shell is composed of stainless steel and zirconia. Various values
of the power-law index n were used in the study, n ¼ 0:0 (metal rich, i.e. stainless steel), 0.1, 0.5,
1.0, 5.0, 10.0 and greater than 10.0 (FGM shell rich in zirconia). Table 15 gives a comparison of
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Table 16

Comparison of natural frequencies (Hz) of stainless steel and zirconia FGM shell for clamped–clamped boundary

condition

Circumferential mode m n ¼ 10 n ¼ 1:0

Ref. [25] Present % difference Ref. [25] Present % difference

1 30.45 28.6 6.08 29.44 29.6 �0.54

2 10.66 10.1 5.25 10.15 10.5 �3.45

3 6.1 6.2 �1.64 6.09 6.4 �5.09

4 7.92 7.8 1.52 7.41 8.2 �10.66

5 12.2 12 1.64 11.67 12.5 �7.11

6 17.77 17.4 2.08 16.75 18.2 �8.66

7 24.36 23.9 1.89 23.04 25 �8.51

8 32.5 31.4 3.38 30.45 32.9 �8.05

9 40.6 40 1.48 39 41.8 �7.18

10 50.77 49.5 2.5 48.73 51.8 �6.3
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the natural frequencies for simply supported FGM cylindrical shells for the power-law indexes 10
and 0.1. Likewise, Table 16 lists the natural frequencies for the clamped–clamped FGM
cylindrical shell. In general, it is observed that the frequency characteristics determined from
Love’s Theory of Shells and first-order shear deformation theory for the general shell of
revolution, fairly agree with each other.

4.2. Natural frequency of FGM cylindrical shells without temperature effects

FGM shells composed of SUS304 stainless steel in combination with silicon nitride and
titanium alloy with aluminium oxide have been chosen for the free vibration studies. The first
axial mode frequencies associated with first 20 circumferential modes for a clamped–clamped
boundary condition are presented in Figs. 5(a) and (b) and Figs. 6(a) and (b). The shell geometry
is typically a long shell, l=r ¼ 5:21, and the thickness of the shell follows from the following
radius to thickness ratios: r=h ¼ 100 and 200. The frequency characteristic is typical of
homogeneous isotropic or orthotropic shells, depicting a bathtub curve. The frequency
characteristics do not change irrespective of the power-law index. The influence of the power-
law index is mainly to change the magnitude of the first axial mode frequencies. As the power-law
index increases, the frequencies increase. The frequencies are low for power-law index n ¼ 0:0
and high for n4 ¼ 100. This is expected because Young’s modulus of ceramics, Si3N4 and
Al2O3, are much higher compared to their metal counterpart. The power-law index does not
have great influence in shifting the associated circumferential mode number for the lowest of the
first axial mode frequencies. But, however, the change in the thickness of the FGM shell does
alter the mode number of the lowest natural frequency. Thus, for FGM shell of SUS304/Si3N4,
r=h ¼ 100 the mode number of the lowest natural frequency is (4,1) and for r=h ¼ 200 the
mode number of the lowest natural frequency is (5,1). This holds true for the FGM shell of
Ti–6Al–4V/Al2O3.
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Fig. 6. Free vibration natural frequency characteristics of Ti–6Al–4V/Al2O3 FGM cylindrical shell. l=r ¼ 5:21 and

clamped–clamped boundary condition. (a) r=h ¼ 100; lowest natural frequency is associated with (4,1). (b) r=h ¼ 200;

lowest natural frequency is associated with (5,1).
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Fig. 5. Free vibration frequency of SUS304/Si3N4 FGM cylindrical shell. l=r ¼ 5:21, and clamped–clamped boundary

condition. (a) r=h ¼ 100; lowest natural frequency mode (4,1). (b) r=h ¼ 200; lowest natural frequency mode number

(5,1).
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4.3. Effect of temperature on the free vibration frequency of FGM cylindrical shells

To understand the behavior of the natural frequency variation with respect to temperature,
studies have been carried out on SUS304–Si3N4 and Ti–6Al–4V–Al2O3 FGM cylindrical shells.
The FGM shells are ceramic rich on the inner surface. This configuration is best suited for shells
conveying fluids at high temperature. The evaluation of the natural frequencies is conducted based
on the specified temperature on the inner surface and the outer surface is always at ambient
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temperature. The temperature on the inner surface is varied in steps of suitable increments and the
highest temperature for the study is limited to the critical buckling temperature for the shell
geometry and FGM composition (or power-law index n). The lowest buckling temperature for
SUS304–Si3N4 FGM shell with a geometry of l=r ¼ 5:21 and r=h ¼ 100 and 200 for various
power-law indexes is listed in Table 7 and for the FGM shell of Ti–6Al–4V–Al2O3 in Table 11.
Now, given the temperature boundary condition on the inner surface and ambient temperature on
the outer surface, the converged temperature distribution is obtained. Based on the converged
temperature distribution, the thermal load vector, total initial stresses and hence the geometric
stiffness matrix are computed. This initial stiffness matrix is added to the stiffness matrix of the
FGM shell and along with the mass matrix, a system of second-order linear differential equations
is solved for free vibration frequencies for various circumferential modes. Numerical results have
been obtained for various modes (m,n) like (1,1), (4,1), (9,1), (10,1), (15,1) and (20,1) for
SUS304–Si3N4 FGM shell with l=r ¼ 5:21 and r=h ¼ 100 and 200. Power-law indexes like n ¼ 0:0,
0.1, 1.0, 10.0 and b100:0, which define the composition profiles, were used. Typical results are
illustrated in Figs. 7(a)–(f) for SUS304–Si3N4 FGM shell with l=r ¼ 5:21 and r=h ¼ 100.
It is clear from Fig. 7 that the natural frequencies decrease with increase in temperature. From

the free vibration studies it was noted that the natural frequencies are higher for higher values of
the power-law index. Further, higher the power-law index, higher the buckling temperatures. Of
course this depends on the constituent materials used for FGM. Further, the characteristic
variation of the natural frequency with respect to temperature depends on the mode numbers.
Referring to Figs. 7(a) and (f), for mode (1,1) and (20,1), respectively, it is seen that the fall in the
natural frequency is not appreciable with increase in temperature. This is probably due to the
membrane effects dominating the meridional stress resultants due to temperature rise for lower
mode (1,1) (refer Fig. 5(a)). For higher mode (20,1) the bending strain energy dominates the
meridional stress resultants. Similarly, for higher modes like (10,1) and (15,1) the negligible fall in
frequency for the initial increase in temperature is to be noted (Figs. 7(d) and (e)). This can be
attributed to the dominating influence of the bending strain energy and the effect of temperature
rise is less. However, the sudden and gradual decrease in the natural frequencies for higher
temperature may be noted where probably the meridional stress resultants overtake the effect of
bending strain energy. For the mode like (4,1) (Fig. 7(b)), which corresponds to the lowest natural
frequency of the shell (refer Fig. 5(a)), the membrane effect as well as the bending strain energy is
minimal. Hence, the fall in frequency is smooth and gradual as the temperature increases and for
temperature close to the buckling temperature, the frequencies take on very low values. Now
consider mode (9,1) in Fig. 7(c). It is the mode corresponding to the lowest thermal buckling
temperature. Hence, the meridional stress resultants are large and compressive in nature for a
given rise in temperature. Also mode (9,1) is associated with reasonably high bending strain
energy (refer Fig. 5(a)). But the high meridional stress resultants dominate the bending strain
energy and cause the fall in natural frequencies gradually and continuously as the temperature
increases (Fig. 7(c)), similar to that observed in the case of mode (4,1). However, the magnitudes
of the frequency are slightly higher compared to mode (4,1). Thus, it is clear that the effect of
temperature is felt more for the modes corresponding to the lowest natural frequency and lowest
thermal buckling temperature and more so for the lowest natural frequency mode.
Similar results were obtained for FGM shells of Ti–6Al–4V/Al2O3, l=r ¼ 5:21 and r=h ¼ 100

and 200. Typical results for the variation of natural frequencies for Ti–6Al–4V/Al2O3, l=r ¼ 5:21
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. Effect of temperature on the free vibration frequencies of SUS304/Si3N4 FGM cylindrical shell. l=r ¼ 5:21,
r=h ¼ 100 and clamped–clamped boundary condition.
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and r=h ¼ 200 are illustrated in Figs. 8(a)–(f) and are now considered for discussion. Here, results
are presented for modes (4,1) and (5,1), which correspond to the lowest natural frequency of the
shell. The smooth, gradual and continuous fall in the natural frequencies may be noted (Figs. 8(b)
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Effect of temperature on FGM cylindrical shell Ti–6Al–4V/Al2O3. l=r ¼ 5:21, r=h ¼ 200 and clamped–clamped

boundary condition.
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and (c)) as the temperature increases. The lowest buckling temperature mode is (13,1) and also
another mode close to this is (12,1). For these modes, the variation of the natural frequencies with
respect to temperatures is presented in Figs. 8(d) and (e). For modes (13,1) and (12,1), the
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meridional stress resultants are high. Referring to Fig. 6(b), the modes (12,1) and (13,1) are on the
higher circumferential mode side where the bending strain energy dominates. Hence, for initial
rise in temperature the bending strain energy probably dominates the meridional stress resultants
due to temperature rise. However, for higher temperatures and temperatures close to the buckling
temperature, the magnitude of the meridional stress resultants overtake bending strain energy and
cause the frequencies to fall drastically (Figs. 8(d) and (e)).
5. Conclusions

A theoretical analysis on thermal buckling and free vibration of functionally graded cylindrical
shells using semianalytical finite element based on first-order shear deformation theory was
presented. Important conclusions from the numerical analysis are summarized as follows. The
magnitude of the lowest buckling temperature greatly depends on the composition of the
metal–ceramic constituents. FGM shell of SUS304–Si3N4, Ti–6Al–4V–Si3N4, SUS304–Al2O3 and
Ti–6Al–4V–Al2O3 have high buckling temperature when compared to FGM shells of
SUS304–zirconia and Ti–6Al–4V–zirconia constituents. The power-law index is shown to
influence the buckling temperature. For FGMs containing ceramics like Si3N4 and Al2O3 in
combination with metal, the buckling temperature increases with increase in the power-law index
(i.e. FGM rich in ceramic when compared to metal). However, for FGMs with metal and zirconia
as ceramic, the buckling temperature decreases with increase in the power-law index. In other
words, the thermal buckling temperature mainly depends on the coefficient of thermal expansion
of the constituent materials. Materials with lower coefficient of thermal expansion will have high
thermal buckling temperature. The lowest buckling temperature mode does not change for a shell
of given geometry as the power-law index changes. For FGM shells with r=h ¼ 100 and 200, the
buckling temperature increases with increase in l/r. Free vibration natural frequency
characteristics of FGM shells are similar to those of the isotropic shells. The lowest natural
frequency mode does not change as the power-law index changes for a clamped–clamped
cylindrical shell. When temperature gradient exists along the shell wall, the fall in natural
frequency is more apparent for the lowest natural frequency mode when compared to the mode
with the lowest buckling temperature.
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