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Random Early Detection (RED) is a widely deployed active queue management algorithm that improves

the overall performance of the network in terms of throughput and delay. The effectiveness of RED

algorithm, however, highly depends on appropriate setting of its parameters. Moreover, the perfor-

mance of RED is quite sensitive to abrupt changes in the traffic load. In this paper, we propose a

Cautious Adaptive Random Early Detection (CARED) algorithm that dynamically varies maximum drop

probability based on the level of traffic load to improve the overall performance of the network. Based on

extensive simulations conducted using Network Simulator-2 (ns-2), we show that CARED algorithm

reduces the packet drop rate and achieves high throughput as compared to RED, Adaptive RED and

Refined Adaptive RED. Unlike other RED based algorithms, CARED algorithm does not introduce new

parameters to achieve performance gain and hence can be deployed without any additional complexity.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Tremendous growth in the number of internet users and a high
demand for continuous network connectivity have led to an
exponential increase in the internet traffic, making it complicated
to handle network congestion. TCP congestion control mechan-
isms are widely deployed in well known operating systems and
are extensively used by a variety of internet applications such as
electronic mail, file transfer, etc. Since most of these mechanisms
consider network as a black box, they are limited to packet drops as
the only indication of congestion. The major limitation of such
mechanisms is that they are not well suited for applications such as
telnet, web browsing, etc. which are sensitive to packet drops.
Moreover, traditional drop-tail gateways do not provide an early
congestion notification. This leads to global synchronization, a
phenomenon in which all senders sharing the bottleneck gateway
reduce their sending rate at the same time, thereby under-utilizing
the network resources.

Recently, another drawback of drop-tail gateways known as
Bufferbloat (Gettys, 2011) has drawn attention of several research-
ers. Since memory costs have reduced in the recent past, modern
routers are designed with extremely large buffers. TCP variants
implemented in present operating systems do not reduce the
sending rate unless a packet drop is encountered. These reactive
mechanisms fill buffers of any capacity before reducing to achieve
their fair share of bandwidth. Since the packet drop occurs only
when these large buffers overflow, queuing delay experienced by
ll rights reserved.
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each packet increases drastically, thereby degrading the Quality
of Service for delay sensitive applications such as DNS queries,
Voice over IP (VoIP) and other multimedia applications.

Congestion avoidance mechanisms differ from congestion control
mechanisms, since former are proactive while latter are reactive.
Active Queue Management (AQM) mechanisms at gateways have
been extensively studied in the recent past to avoid congestion.
Moreover, AQM mechanisms also seem to be promising solution to
avoid Bufferbloat problem as well. Random Early Detection (RED)
gateways (Floyd and Jacobson, 1993) overcome the drawbacks of
drop-tail gateways by avoiding global synchronization and offer
fairness among several competing end hosts. However, it has been
shown that the effectiveness of RED largely depends on appropriately
setting atleast four parameters, namely: minimum threshold (minth),
maximum threshold (maxth), queue weight factor (wq) for exponential
weighted moving average and maximum drop probability (maxp)
(Feng et al., 1999, 2001; Floyd et al., 2001; Kunniyur and Srikant,
2001; Lakshman et al., 1999). Optimal values for these parameters
differ for different scenarios and are dependent on several other
factors such as number of flows passing through same bottleneck
gateway (Feng et al., 1999, 2001), packet size (Misra et al., 2000), etc.
Table 1 presents the values of above mentioned parameters used in
Cisco 12000 Series routers that implement a modified RED called
Weighted RED (WRED) (Weighted Random Early Detection, 2009). C

is the capacity of the link in packets where mean packet size is
1500 bytes.

Adaptive RED (ARED) algorithm (Floyd et al., 2001) addresses the
parameter sensitivity of RED by dynamically varying maxp and
automatically setting minth, maxth and wq parameters. ARED requires
setting of only one parameter—target queuing delay, defined as the
maximum amount of time a packet is delayed in the queue. In this
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Table 1
WRED parameter setting in Cisco 12 000 Series Router [Weighted Random Early

Detection (2009)].

Link speed C minth maxth wq maxp

DS3 3666 110 367 9 1

OC3 12 917 388 1292 10 1

OC12 51 666 1550 5167 12 1
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paper we demonstrate that ARED adapts maxp conservatively which
leads to degradation of throughput whereas Refined Adaptive RED
(Re-ARED) (Kim and Lee, 2006) adapts maxp aggressively which
leads to more packet drops.

Unlike ARED and Re-ARED that adapt maxp conservatively and
aggressively respectively, we propose a Cautious Adaptive Ran-
dom Early Detection (CARED) algorithm that adapts maxp either
aggressively or conservatively depending on the level of traffic

load. Simulations carried out on ns-2 (UCN/LBL/VINT, 2011)
demonstrate that by varying maxp with respect to the level of

traffic load, CARED algorithm improves the overall performance of
the network by reducing packet drop rate and achieving high
throughput as compared to RED, ARED and Re-ARED.

The remainder of the paper is organized as follows: Section 2
describes the related work that aims to address the parameter
sensitivity of RED. Section 3 presents a comparative study of ARED
and Re-ARED. Section 4 provides details on the proposed modifica-
tions of Re-ARED and the design of CARED algorithm. Section 5
demonstrates the results and Section 6 concludes the paper.
2. Literature review and related work

The parameter sensitivity of RED has been addressed by
several researchers and as a result, RED has been extended and
enhanced by adopting many different approaches. The basic
mechanism of RED, however, still remains same.

On arrival of each packet, RED gateways calculate average
queue size (avg) using Exponential Weighted Moving Average
(EWMA). If avg is less than minth, the packet is enqueued. If avg is
more than maxth, the packet is dropped. However, if avg is
between minth and maxth, the packet is dropped randomly with
a certain probability. The following equations show avg and
packet drop probability (pd) calculation of RED respectively:

avg ¼ ðð1�wqÞ � oldavgÞþðwq � cur_qÞ ð1Þ

where oldavg is the average queue size during previous packet
arrival; cur_q is the current queue size

pd ¼

0 avgominth

avg�minth

maxth�minth
�maxp minthravgomaxth

1 avgZmaxth

8>>><
>>>:

ð2Þ

The probability with which a packet is dropped is a linear
function of avg. Hence when avg varies from minth to maxth, the
drop probability varies from 0 to maximum drop probability maxp. If
avg increases above maxth, drop probability becomes 1 i.e. all
incoming packets are dropped. It is observed that sharply increasing
the drop probability to 1 when avg crosses maxth results in high
number of packet drops. Hence, a modified RED known as Gentle
RED (GRED) is proposed by Floyd that varies drop probability from
maxp to 1 when avg varies from maxth to twice maxth so as to reduce
the number of packet drops.

In Feng et al. (1999) authors show that the effectiveness of RED
mechanism largely depends on appropriately setting the four
parameters. A Self Configuring RED is proposed that varies maxp
parameter based on the queue length dynamics. Moreover, the maxp

parameter is varied so as to keep the avg between minth and maxth.
As an extension to Self Configuring RED, an Adaptive RED

(ARED) is proposed in Floyd et al. (2001). ARED aims to keep the
avg in target range between minth and maxth and hence varies
maxp accordingly. Since ARED follows Additive Increase Multi-
plicative Decrease (AIMD) policy to vary maxp, it reacts conserva-
tively to abrupt changes in the traffic load.

Several other variants of ARED have also been proposed: a RED
based algorithm that adaptively varies wq along with maxp is
proposed in Verma et al. (2002). Similar mechanisms, Stabilized
ARED (SARED) (Javam and Analoui, 2006) and Self Tuning RED (Chen
et al., in press) focus on assigning different queue weights wq to
ARED instead of one fixed queue weight. The major limitation of
these approaches is that they introduce several new parameters to
achieve performance gain. Setting these additional parameters adds
to the complexity.

Refined Adaptive RED (Re-ARED) proposed in Kim and Lee
(2006) aims to bring avg within its target range more quickly by
varying maxp aggressively. A modified ARED algorithm based on
Multiplicative Increase Multiplicative Decrease (MIMD) policy to
adapt maxp is proposed in Marquez et al. (2007). However,
authors conclude that MIMD policy to adapt maxp yields similar
results as AIMD policy.

Another category of RED based AQM mechanisms not only takes
average queue size into consideration but also considers the instan-

taneous queue size at the gateway to reduce the packet drop rate and
improve the overall throughput. Examples of such mechanisms
include Modified RED (MRED) (Feng et al., 2004) and Effective RED
(ERED) (Abbasov and Korukoglu, 2009). However, appropriately
setting thresholds for instantaneous queue size is a challenging issue
in these mechanisms. Zhou et al. (2006) propose a Nonlinear RED
(NLRED) that replaces the linear packet dropping function of RED by
a nonlinear quadratic function to improve the effectiveness of RED
mechanism. Since these mechanisms are completely based on the
basic RED algorithm, the parameter sensitivity of these mechanisms
remains same as that of the basic RED.

Several other AQM mechanisms based on RED have been pro-
posed: Double Slope RED (DS-RED) (Zheng and Atiquzzaman, 2000),
Dynamic RED (DRED) (Aweya et al., 2001), RED with Preferential
Dropping (RED-PD) (Mahajan and Floyd, 2001), Exponential RED (Liu
et al., 2005), Loss-ratio based RED (LRED) (Wang et al., 2007), AQM
mechanism based on Neural Networks (NN-RED) (Hariri and Sadati,
2007), etc. There are some concerns on the suitability of approaches
followed by all these mechanisms since they do not eliminate the
parameter sensitivity of RED. Moreover these mechanisms are more
complicated to deploy than the basic RED algorithm.
3. Cautious Adaptive Random Early Detection (CARED)

3.1. Motivation

ARED’s fixed and conservative approach of adapting maxp

leads to degradation of throughput when level of congestion
changes abruptly, especially in light and moderate traffic load
scenarios. We call the time period during which level of conges-
tion changes abruptly as ‘‘critical time period’’. Since ARED adapts
maxp conservatively (Floyd et al., 2001), it does not drop sufficient
packets so as to keep avg within target range during critical time

period. As a result, the overall throughput degrades because avg

goes out of target range for a small amount of time till maxp

increases/decreases to the desired value to bring avg back within
the target range.

Re-ARED addresses the drawback of ARED and adapts maxp

based on the ratio of the change in the average queue size that
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infers changes in the traffic load. This mechanism improves the
throughput of the network in light as well as moderate traffic load
scenarios. However, when traffic load is high, it does not elim-
inate the drawbacks of ARED algorithm.

3.2. Comparative study of ARED and Re-ARED

Re-ARED algorithm as proposed in Kim and Lee (2006) is shown
in Algorithm 1. A comparative study of ARED and Re-ARED is carried
out using ns-2. We simulate different scenarios by varying the
number of connections and type of traffic in a dumbbell topology as
shown in Fig. 1. Bottleneck bandwidth is fixed to 10 Mbps and RTT
propagation delay is set to 80 ms. A burst of packets is sent at the
bottleneck router in the beginning of the simulation. This results in
sharp increase in the average queue length.

We observe the average queue length dynamics while ARED
and Re-ARED attempt to bring average queue size back within
target range. Fig. 2 shows average queue length dynamics of ARED
and Re-ARED for one such scenario.

Algorithm 1. Re-ARED algorithm.
every interval seconds:
if avgotarget and maxpZ0:01 then

decrease maxp

b¼ 1� 0:17�
target�avg

target�minth

� �

maxp ¼maxp � b
end
else if avg4target and maxpr0:5 then

increase maxp

a¼ 0:25�maxp �
avg�target

target
maxp ¼maxpþa

end
Fig. 1. Dumbbell topology.
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Fig. 2. Average queue length dynamics of ARED and Re-ARED.
Variables:
avg: average queue size;
b : decrease parameter;
a : increase parameter;
Fixed parameters:
interval¼0.5 s;
target¼target for average queue size:
[minth þ 0.48� (maxth �minth), minth þ 0.52� (maxth�minth)].

Based on simulations results we observe that Re-ARED indeed
overcomes the drawback of ARED when the traffic load at gate-
way is light or moderate. From Fig. 2 it can be observed that ARED
algorithm takes longer time to bring avg back within the target

range whereas Re-ARED algorithm takes very short time for the
same. Table 2 presents simulation results of the study.

Under light traffic load scenarios, Re-ARED achieves far better
throughput than ARED at almost same packet drop rate. Under
moderate traffic load scenarios Re-ARED achieves similar
throughput as ARED but at the cost of increased packet drop rate.
However, the major observation of this study is that under heavy
traffic load scenarios, ARED is more robust and hence achieves
better throughput than Re-ARED.

Thus, a proper combination of ARED and Re-ARED can improve
the overall performance of the network under light, moderate as
well as heavy traffic load scenarios. As a result, we propose a
Cautious Adaptive RED (CARED) algorithm that adapts maxp

conservatively like ARED or aggressively like Re-ARED based on
the level of traffic load so as to reduce packet drop rate and
maximize the throughput.
4. Design of CARED algorithm

Before dwelling into the details of Cautious Adaptive RED
(CARED), we attempt to improve the performance of Re-ARED
algorithm, especially in moderate and heavy traffic load scenarios
by making minor modifications to the basic Re-ARED algorithm.

4.1. Modifications to Re-ARED algorithm

While adapting maxp it should be ensured that a single
modification of maxp does not exceed average queue size from
below target to above target or vice versa. This can be achieved by
appropriately selecting values for a and b. As a result, based on
the target range, authors of ARED suggest the following upper
bound and lower bound for a and b respectively:

ao0:25�maxp ð3Þ

b40:83 ð4Þ

These bounds ensure that single modification of maxp would
not exceed average queue length from below target to above target

or vice versa. Note that the bounds are dependent on target range.
Table 2
Packet drop rate and throughput of ARED and Re-ARED.

FTP
connections

ARED Re-ARED

Packet drop
rate (%)

Throughput
(kbps)

Packet drop
rate (%)

Throughput
(kbps)

5 0.22 9145 0.23 9199

50 10.41 9178 10.54 9178

100 17.84 9108 17.80 9097



Table 3
Packet drop rate of Re-ARED, Re-ARED-M1 and Re-ARED-M2.

FTP connections Re-ARED (%) Re-ARED-M1 (%) Re-ARED-M2 (%)

5 0.23 0.23 0.22

50 10.54 10.32 10.34

100 17.80 17.87 17.82

Table 4
Throughput (kbps) of Re-ARED, Re-ARED-M1 and Re-ARED-M2.

FTP connections Re-ARED Re-ARED-M1 Re-ARED-M2
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As shown in Re-ARED algorithm, bounds on a and b are
retained, but target range is modified to [minth þ 0.48� (maxth

�minth), minth þ 0.52� (maxth �minth)] instead of [minth þ

0.4� (maxth �minth), minth þ 0.6� (maxth �minth)] as in ARED
algorithm. Since bounds on a and b are based on target range, if
target range changes, even bounds must change. By retaining a
and b bounds of ARED, but modifying the target range, Re-ARED
does not ensure that a single modification of maxp would not
exceed average queue length from below target to above target or
vice versa.

Hence we make two modifications to original Re-ARED algo-
rithm and compare the performance of resulting algorithms with
the original Re-ARED algorithm.
5 9199 9187 9162

50 9178 9184 9187

100 9097 9111 9107

4.1.1. Re-ARED-M1: with modified target range

In this modification we retain the bounds on a and b but
modify the target range of original Re-ARED from [minth þ

0.48� (maxth �minth), minth þ 0.52� (maxth �minth)] to [minth

þ 0.4� (maxth �minth), minth þ 0.6� (maxth �minth)]. This
ensures that the bounds do not allow average queue length to
exceed below target to above target or vice versa. Rest of the
algorithm remains same as original Re-ARED.
4.1.2. Re-ARED-M2: with modified a and b bounds

In this modification we retain the target range as specified in
Re-ARED algorithm but derive new upper bound and lower bound
for a and b respectively to ensure that average queue length does
not exceed below target to above target and vice versa. New bound
for a is derived as follows:

From Eq. (2) we have

p¼maxp �
avg�minth

maxth�minth

� �
ð5Þ

Before adapting maxp

avg1 ¼minthþ
p

maxp
� ðmaxth�minthÞ ð6Þ

and after adapting maxp

avg2 ¼minthþ
p

maxpþa
� ðmaxth�minthÞ ð7Þ

Subtracting (7) from (6)

avg1�avg2 ¼
a

maxpþa
�

p

maxp
� ðmaxth�minthÞ ð8Þ

Hence to ensure avg does not exceed above target to
below target

a
maxpþa

o0:04 ð9Þ

) ao0:0412�maxp ð10Þ

Similarly, new bound for b can be obtained as follows:
Before adapting maxp

avg1 ¼minthþ
p

maxp
� ðmaxth�minthÞ ð11Þ

and after adapting maxp

avg2 ¼minthþ
p

maxp � b
� ðmaxth�minthÞ ð12Þ

Subtracting (12) from (11)

avg1�avg2 ¼
1�b
b
�

p

maxp
� ðmaxth�minthÞ ð13Þ
Hence to ensure avg does not exceed below target to above

target

1�b
b

o0:04 ð14Þ

) b40:9615 ð15Þ

Tables 3 and 4 show simulation results of Re-ARED-M1 and
Re-ARED-M2 as compared to Re-ARED for packet drop rate and
throughput respectively. Results demonstrate that modified algo-
rithms achieve higher performance gain as compared to the
original Re-ARED algorithm. We observe that though Re-ARED-
M2 gives promising results when traffic load is moderate, it gives
almost similar results to that of Re-ARED when traffic load is
heavy. Moreover, Re-ARED-M2 results in drastic decrease in
throughput when traffic load is light. However, Re-ARED-M1
gives slightly better performance than Re-ARED when traffic load
is heavy while retaining Re-ARED’s performance for light as well
as moderate traffic load scenarios. Hence, while designing CARED
algorithm, instead of merging ARED and original Re-ARED, we
merge ARED and Re-ARED-M1 based on the level of traffic load.

4.2. CARED algorithm

CARED algorithm is designed to adapt maxp either conserva-
tively or aggressively based on the level of traffic load. We classify
the level of traffic load into: up and down. If current average queue
length (newavg) is greater than previous average queue length
(oldavg), the level of traffic load is considered as up since the
average queue length is increasing. Similarly if current average
queue length (newavg) is less than previous average queue length
(oldavg), the level of traffic load is considered as down since the
average queue length is decreasing. Based on this notion of level of

traffic load, the proposed CARED algorithm is as shown in
Algorithm 2. Setting other parameters such as minth, maxth, wq

and target queuing delay in CARED is similar to that of ARED.
Design considerations of CARED algorithm are as follows:
�
 If newavg is below targetlow and the level of traffic load is up, maxp

is decreased conservatively as per ARED. Aggressively decreasing
maxp as per Re-ARED-M1 would result in further increase in
sending rate which may take newavg above targetup.

�
 If newavg is below targetlow and the level of traffic load is down,

maxp is decreased aggressively as per Re-ARED-M1. Conserva-
tively decreasing maxp as per ARED in this scenario would lead
to under-utilization of queue.

�
 If newavg is above targetup and the level of traffic load is down,

maxp is increased conservatively as per ARED. Aggressively



Fig. 3. Flowchart of Cautious Adaptive RED.
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increasing maxp as per Re-ARED-M1 in this scenario would
drop more packets than required. Since newavg is already
decreasing and moving towards target range, packet drops
must be conservative rather than aggressive.

�
 If newavg is above targetup and the level of traffic load is up,

maxp is increased aggressively as per Re-ARED-M1 to avoid
newavg from crossing maxth. Conservatively increasing maxp as
per ARED in this scenario would take more time to bring
newavg back within the target range and hence may affect the
throughput and also increase queuing delay.

Note that like ARED and Re-ARED, CARED also varies maxp

within a range of 1–50%. Fig. 3 demonstrates the design of CARED
algorithm:

Variables used in CARED algorithm:
newavg: current average queue size;
oldavg: average queue size during previous interval;
b : decrease parameter;
a : increase parameter;
Fixed parameters in CARED algorithm:
interval¼0.5 s;
b¼ 0:9 for ARED;
targetlow¼ lower bound for target¼minth þ 0.4 � (maxth �minth);
targetup¼upper bound for target¼minth þ 0.6 � (maxth �minth).

Algorithm 2. CARED algorithm.
every interval seconds:
if newavgo targetlow and maxpZ0:01 then

if newavg4oldavg then
decrease maxp as per ARED mechanism

maxp ¼maxp � b
end
else if newavgooldavg then

decrease maxp as per Re-ARED-M1 mechanism

b¼ 1� 0:17�
targetlow�newavg

targetlow�minth

� �

maxp ¼maxp � b
end
end
else if newavg4targetup and maxpr0:5 then

if newavg4oldavg then
increase maxp as per Re-ARED-M1 mechanism

a¼ 0:25�maxp �
newavg�targetup

targetup

maxp ¼maxpþa
end
else if newavgooldavg then

increase maxp as per ARED mechanism

a¼min½0:01,0:25�maxp]

maxp ¼maxpþa
end

end
The design of CARED algorithm gives robust performance in a
wide range of environments because it combines the advantages of
both ARED and Re-ARED-M1 in appropriate scenarios. The robust-
ness of CARED algorithm comes by efficiently controlling packet
drop rate during critical time period to maximize the overall
throughput of the network. Moreover, CARED algorithm is designed
to operate either like ARED or like Re-ARED-M1 depending of level of

traffic load and hence in the worst possible scenario, performance of
CARED will resort to that of ARED or Re-ARED-M1.

Unlike other RED based algorithms, CARED algorithm does not
introduce new parameters to achieve performance gain. Based on
newavg and oldavg values, CARED algorithm infers the level of

traffic load and varies maxp accordingly. It must be noted that the
decision to vary maxp either conservatively or aggressively in
CARED, depends only on newavg and oldavg (calculated as shown
in (1)) and not on maxp. Since there are only algorithmic changes
and no new parameter settings in CARED, it can be easily
deployed in routers without any additional complexity.
5. Results

In this section we examine two major aspects of CARED
algorithm as compared to RED, ARED and Re-ARED: (i) average
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queue length dynamics during critical time period and (ii) packet
drop rate and throughput.

5.1. Average queue length dynamics during critical time period

To analyze the average queue length dynamics of CARED
algorithm during critical time period, we simulate a dumbbell
topology analogous to the one designed in Floyd et al. (2001). This
topology illustrates the effect of sharp change in the congestion
level on the avg of RED, ARED, Re-ARED and CARED algorithms.
The simulation parameters are shown in Table 5.

Fig. 4(a) through (d) demonstrates average queue length
dynamics of RED, ARED, Re-ARED and CARED respectively. When
a sharp increase in the congestion level occurs at time 25 s,
average queue length (avg) increases quickly. To avoid perfor-
mance degradation of the network during this critical time period,
maxp must be rapidly increased to bring avg within desired
thresholds. Since RED does not vary maxp, as shown in Fig. 4(a),
average queue length does not come back within the desired
thresholds. ARED increases maxp and hence, as shown in Fig. 4(b),
brings avg within the target range. Note that it takes 10 s for ARED
Table 5
Simulation parameters.

Parameters Value

Bottleneck bandwidth 1.5 Mbps

Bottleneck capacity in packets 35

Mean packet size 1500 bytes

minth for RED 5

maxth for RED 15

wq for RED 0.0027
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Fig. 4. avg with sharp increase in congestion level. (a) RED with increase in congestio

congestion level, (d) CARED with increase in congestion level.
to bring avg within the target range because it increases maxp

conservatively. Unlike ARED, Re-ARED increases maxp aggres-
sively and thus, as shown in Fig. 4(c), takes only 8 s to control
avg. CARED increases maxp either conservatively or aggressively
based on the level of traffic load and hence, as shown in Fig. 4(d),
performs slightly better than Re-ARED.

Fig. 5(a) through (d) demonstrates average queue length
dynamics of RED, ARED, Re-ARED and CARED respectively. When
a sharp decrease in congestion level occurs at time 25 s, avg

decreases quickly. To avoid under utilization of network resources
during this critical time period, maxp must be rapidly decreased to
bring avg within desired thresholds. Lack of variation in maxp

leads to severe degradation in the performance of RED. As shown
in Fig. 5(a), avg of RED does not come within the desired range
throughout the simulation. ARED multiplicatively decreases maxp

to bring avg within the desired target range. Since ARED uses a
fixed value of b to decrease maxp, it takes 18 s to control avg (see
Fig. 5(b)). Re-ARED adapts maxp based on the ratio of the change
in the average queue size and hence takes only 15 s to control avg

(see Fig. 5(c)). CARED takes only 9–10 s to bring avg back to target

range because it efficiently adapts maxp based on the level of traffic

load.
5.2. Packet drop rate and throughput of CARED

We demonstrate the performance gain achieved by CARED
algorithm in terms of packet drop rate and throughput by simulat-
ing dumbbell topology as shown in Fig. 1 and retaining the
simulation parameters as described in Section 3. Tables 6 and 7
demonstrate the packet drop rate and throughput obtained for
CARED algorithm as compared to that of RED, ARED and Re-ARED
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Fig. 5. avg with sharp decrease in congestion level. (a) RED with decrease in congestion level, (b) ARED with decrease in congestion level, (c) Re-ARED with decrease in

congestion level, (d) CARED with decrease in congestion level.

Table 6
Packet drop rate of RED, ARED, Re-ARED and CARED.

FTP
connections

RED
(%)

ARED
(%)

Re-ARED
(%)

CARED
(%)

Imp1
(%)

Imp2
(%)

5 0.22 0.22 0.23 0.22 0.00 0.01

10 0.25 0.23 0.22 0.23 0.00 �0.01

20 0.25 0.27 0.27 0.26 0.01 0.01

30 2.08 3.50 3.31 2.99 0.51 0.32

40 5.67 8.21 8.25 8.13 0.08 0.12

50 8.60 10.41 10.54 10.35 0.06 0.19

60 11.97 12.49 12.77 12.34 0.15 0.43

70 13.69 13.94 14.02 14.01 �0.07 0.01

80 15.47 15.67 15.29 15.46 0.21 �0.17

90 16.48 17.00 16.75 16.95 0.05 �0.20

100 17.99 17.84 17.80 17.66 0.18 0.14

Table 7
Throughput (kbps) of RED, ARED, Re-ARED and CARED.

FTP connections RED ARED Re-ARED CARED Imp1 (%) Imp2 (%)

5 8510 9145 9199 9181 0.39 �0.20

10 9105 9177 9189 9189 0.13 0.00

20 9181 9171 9182 9200 0.32 0.20

30 9188 9175 9186 9195 0.22 0.10

40 9133 9186 9185 9195 0.10 0.11

50 9087 9178 9178 9190 0.13 0.13

60 9083 9166 9171 9178 0.13 0.08

70 9074 9162 9160 9164 0.02 0.04

80 9069 9144 9153 9159 0.16 0.07

90 9077 9145 9139 9145 0.00 0.07

100 9056 9108 9097 9110 0.02 0.14
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respectively. Imp1 and Imp2 columns represent the improvement in
CARED algorithm as compared to ARED and Re-ARED respectively.

Results shown in Tables 6 and 7 confirm that the performance
of RED is highly sensitive to appropriate setting of maxp. The
major reason for performance degradation of ARED and Re-ARED
in light and heavy traffic load scenarios respectively is, conserva-
tive adaptation of maxp by ARED and aggressive adaptation of
maxp by Re-ARED during the critical time period.

We observe that since CARED algorithm takes into considera-
tion the level of traffic load to switch from ARED to Re-ARED and
vice versa, it efficiently controls the packet drop rate and max-
imizes the throughput of the network. It is observed that CARED
reduces the packet drop rate upto 0.51% and 0.43% as compared to
ARED and Re-ARED respectively. The improvement in throughput
achieved by CARED algorithm is upto 0.39% and 0.2% as compared
to ARED and Re-ARED respectively.

The effectiveness of CARED algorithm comes by cautiously
adapting maxp during critical time period (see Section 5.1). As a
result, the performance of CARED is robust in a wide variety of
environments. Though CARED algorithm does not achieve least
packet drop rate and/or maximum throughput in some scenarios,
its performance in such scenarios is always between ARED and
Re-ARED. This is because CARED is designed to operate either like
ARED or like Re-ARED-M1 depending on the level of traffic load.
6. Conclusions

In this paper we show that ARED is conservative in adapting
maxp and hence leads to degradation of throughput when level of
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congestion varies abruptly. Though Re-ARED addresses the draw-
back of ARED and varies maxp aggressively, it does not provide
robust performance when the traffic load is heavy. Hence we have
proposed two modifications to Re-ARED algorithm to make it
more robust especially when traffic load is heavy. Moreover, we
have designed CARED algorithm that combines ARED and our
modified Re-ARED based on the level of traffic load. Simulation
results show that CARED algorithm efficiently controls the packet
drop rate and improves the overall throughput of the network.
CARED algorithm combines the advantages of both ARED as well
as Re-ARED and hence provides robust performance in a wide
range of environments. Since CARED algorithm does not introduce
new parameters to achieve performance gain, it can be deployed
without any additional complexity and its performance can be
further evaluated on a real time testbed.

Recent work has focused on leveraging the benefits of AQMs to
improve the performance of wireless networks. Apart from con-
gestion, interference is also an important factor that leads to
queue build up in wireless networks. The performance of CARED
can be further analyzed in wireless networks by studying the
benefits of considering level of traffic load as a parameter to vary
maximum drop probability.
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