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Abstract Prediction of power generation of a wind
turbine is crucial, which calls for accurate and reliable
models. In this work, six different models have been
developed based on wind power equation, concept of
power curve, response surface methodology (RSM) and
artificial neural network (ANN), and the results have been
compared. To develop the models based on the concept of
power curve, the manufacturer’s power curve, and to
develop RSM as well as ANN models, the data collected
from supervisory control and data acquisition (SCADA) of
a 1.5 MW turbine have been used. In addition to wind
speed, the air density, blade pitch angle, rotor speed and
wind direction have been considered as input variables for
RSM and ANN models. Proper selection of input variables
and capability of ANN to map input-output relationships
have resulted in an accurate model for wind power
prediction in comparison to other methods.

Keywords power curve, method of least squares, cubic
spline interpolation, response surface methodology, artifi-
cial neural network (ANN)

1 Introduction

Demand for energy is observing a constant and steady
growth worldwide due to increased industrial and
agricultural activities. This indeed is increasing the
environmental pollution and its ill effects. Thus it is a
matter of concern for every developing country to focus
more on renewable energy sources. Wind energy, a fastest

growing source in electricity generation, can significantly
contribute to relieving problems of global environmental
pollution [1]. India, being one of the fastest growing
economies, has a huge potential for renewable energy
sources. The government of India is making efforts to
promote renewable energy by issuing wind energy policies
which are investor friendly [2]. Integration, penetration,
and large-scale deployment of wind energy definitely can
result in social and environmental impacts and hence it has
gathered a greater momentum in the last decade [3,4]. The
major issue which restricts the pace of development of
wind power industry is the stochastic nature of wind and
the uncertainty involved in the power produced because of
this reason. Hence, it causes serious problems in wind
power penetration, energy management systems, and
reliability of the power grid [5–7]. This calls for accurate
and reliable models that assist in operational management,
performance monitoring, and prediction and forecasting in
wind industry [8–11].
The manufacturer’s power curve of a particular turbine

provides the relationship between the wind speed and the
power. But the manufacturer’s power curve is usually
derived under standard conditions [12]. Hence, it is not
advisable to blindly apply the manufacturer’s power curve
as the actual working condition of a turbine is quite
different. Thus, a strong need for developing site specific
power prediction models has gained greater significance.
Researchers have applied a variety of approaches in
developing models for predicting the power output of wind
turbines. These models can be broadly classified as models
based on fundamental equations of power available in
wind and models based on the concept of power curve of
wind turbine [13]. The later can be further classified into
parametric and nonparametric techniques [14]. The para-
metric techniques are based on mathematical models such
as the linearized segmented model, the polynomial power
curve, the maximum principle method, the dynamic power
curve, the probabilistic model, the ideal power curve, the
4-parameter logistic function, and the 5-parameter logistic
function etc. Nonparametric techniques, unlike parametric
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techniques, do not impose any pre-specified model. The
estimation of the power curve in this case is as close as
possible to the available data subject to the smoothness of
the fit. Nonparametric models include the cupola power
curve, the cubic spline interpolation, the neural networks,
the fuzzy methods, the response surface methodology, and
the data mining algorithms (random forest, k-nearest
neighbor), etc [14–18].
Thapar et al. [13] presented a comparative study of

various methods for mathematical modeling of wind
turbines. It was found that modeling methods which used
actual power curve for developing characteristic equations,
by utilizing curve fitting techniques such as method of least
squares and cubic spline interpolation gave accurate
results. Shokrzadeh et al. [14] analyzed polynomial
regression, locally weighted polynomial regression, spline
regression and the penalized spline regression methods for
estimating the power curve of a wind turbine. It was found
that penalized spline regression presents a better perfor-
mance over the other analyzed methods. Marvuglia and
Messineo [16] developed three different machine learning
models, self-supervised neural network called generalized
mapping regressor (GMR), a feed-forward multi-layer
perceptron (MLP), and a general regression neural network
(GRNN) to estimate the relationship between the wind
speed and the power generated in a wind farm. It was
observed that, if suitable pre-processing of the input data
was accomplished, the non-parametric approach provided
a fair performance. Kusiak et al. [18] integrated data
mining and evolutionary computation for building models
for prediction and monitoring of wind farm power output
and concluded that k-nearest model combined with the
principal component analysis performed well. Lydia et al.
[19] developed parametric and nonparametric models.
Application of the differential evolution algorithm to a
five-parameter logistic function and neural network model
gave the best parametric and nonparametric models of a
wind turbine power curve respectively. Lydia et al. [15] in
another study presented the review of parametric and non-
parametric modeling techniques for modeling of the wind
turbine power curve. Carrillo et al. [20] presented a review
of the equations commonly used to represent the power
curves of variable speed wind turbine generators. It was
reported that, higher R2 values and a lower error in energy
estimation was observed for exponential and cubic
approximations and the worst results were observed for
the polynomial power curve, due to its sensitivity to the
data given by the manufacturer. Gill et al. [21] proposed
the application of empirical copulas to estimate bivariate
probability distribution functions representing the power
curve of turbines. Ouyang et al. [22] proposed an approach
based on centers of data partitions and data mining to
develop a model of a power curve and it was demonstrated
that the model reflected the dynamic properties of a power
curve. Goudarzi et al. [23] carried out a comparative
analysis of various parametric and non-parametric techni-

ques for modeling wind turbine power curves. It was found
that the multilayer perceptron neural network model
outperformed all other models.
Although the relationship between wind speed and

power output of a wind turbine is modeled by using the
best available technique, the power curve thus obtained is
only a function of wind speed which certainly is a key
factor, but completely ignores several other parameters that
influence power production.
Hence, it is evident that, to bridge the gap between

estimation of power by the power curve and actual power
output of a turbine, the other parameters also have to be
considered. Such a model will help in considering the
dynamic behavior of the wind which otherwise is
overlooked by the power curve.
Many researchers have worked in this direction. Tu et al.

[24] presented a study on the suitable number of input
neurons for the ANN model to estimate the energy outputs
of a wind farm having short record of measured data. It was
found that, among the input parameters used, current wind
speed and previous power outputs are the most important.
Li et al. [25] compared regression and ANN models for
estimation of wind turbine power output by using the wind
speed and wind direction data from two meteorological
towers as inputs. It was reported that neural network
possessed better performance than the regression model.
Liu et al. [26] built a complex valued recurrent neural
network model by using historical data of wind speed and
direction to predict wind power, and the model proposed
showed high accuracy. Schlechtingen et al. [27] built and
compared cluster center fuzzy logic, neural network, and k-
nearest neighbor models by using wind speed, ambient
temperature and wind direction as input parameters to
predict the power of a wind turbine. It was proved that
ambient temperature and the wind direction were impor-
tant parameters, when setting up data-mining models for
wind turbine power curve monitoring. Lapira et al. [28]
evaluated three different models by considering eight input
parameters to predict the turbine power output. Mabel and
Fernandez [29,30] considered three input variables—
wind speed, relative humidity, and generation hours to
predict the energy output of a wind farm by using
MATLAB toolbox. A good agreement between simulated
results and actual measured values were observed. Reddy
et al. [31] used ANN and the weighted least square (WLS)
technique to forecast the day-ahead electricity price and
proved that the methods are effective. Han et al. [6]
selected wind power, wind speed, and wind direction as
inputs for wind power prediction by using back propaga-
tion (BP) and radial basis function (RBF) neural network
and proved that RBF is superior to BP.
Based on the literature review, it is evident that there

have been efforts in the use of different modeling methods
for wind power prediction. There have been lesser efforts
in attempting a critical comparison of different modeling
techniques based on wind power equation, power curve,
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and use of ANN etc. to suggest the most suitable approach
to wind power modeling. In this context, the present work
compares various modeling methods to predict the power
output of a wind turbine. The models developed include
those based on the fundamental equations of power
available in wind and those based on the concept of
power curve of wind turbine. Further, models have also
been developed using RSM and ANN by considering other
input parameters along with wind speed that influence the
power generation of a wind turbine, which is a major
contribution of this work. Thus a comparison between
statistical and non-statistical methods is attempted. Finally,
different modeling methods have been studied to get a
proper understanding of the effect of considering relevant
input parameters in modeling wind power prediction,
which is a novelty of this work. The methodology adopted
in the present work is shown in Fig. 1.

2 Basics of wind power generation

In wind turbine, the kinetic energy in the wind is converted
to mechanical and then to electrical energy. The power
production in this prime mover is due to the interaction of
wind with the rotor.
Theoretically, the power captured P by the rotor of a

wind turbine in kW is given by Eq. (1)

P ¼ 0:5�πR2Cpðl, βÞv3, (1)

where r is air density in kg/m3, R is the radius of the rotor
determining the swept area in m, Cp is power coefficient, b
is blade pitch angle in degree, l is tip speed ratio, and v is
wind speed in m/s.
The tip speed ratio is defined as the ratio of the tangential

velocity of the blade tip to the effective wind speed. l can

Fig. 1 Methodology adopted in this paper
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be determined from Eq. (2) [32,33].

l ¼ RΩr

ve
, (2)

where R is rotor radius in meters, Wr is rotor speed in rad/s,
and ve is effective wind speed perpendicular to the rotor
plane in m/s. From this it is noticeable that rotor speed, in
turn, is an influencing parameter on wind power produc-
tion.
The wind is generally assumed to be blowing ortho-

gonally to the rotor, and hence, its direction is not
considered in the power equation, but it is not true in
operation. Hence, wind direction also is one among the
important parameters affecting wind turbine power.
Thus, it can be observed that along with wind speed, air

density, blade pitch angle, rotor speed, and wind direction
are the other parameters influencing the wind power
production, which when considered in modeling can result
in more accurate modeling and prediction than only
considering wind speed. Hence, in this study the above
discussed parameters have been considered as inputs while
developing RSM and ANN models.
To develop models based on the concept of power curve,

the data from manufacturer’s power curve of a 1.5 MW
horizontal axis, pitch regulated, 3 bladed, upwind, wind
turbine has been used. This has a cut-in, rated and cut-off

wind speed of 4, 13 and 20 m/s respectively. Further, the
data collected from the SCADA of this turbine over a
period of six months (June–November 2013) has been
used to develop ANN and RSM models. The manufac-
turer’s power curve of the turbine considered for the
present study has been shown in Fig. 2. A power curve is a
graph showing the steady power delivered by the turbine as
a function of wind speed between cut-in and cut-out. The
values of power corresponding to various wind speeds
from manufacturer’s power curve are listed in Table 1. It
can be observed from Fig. 2 that the power production
starts only after cut-in speed and increases till rated wind
speed, thereafter is maintained constant at the rated power
till the cut-out wind speed. The sample data set collected
from SCADA has been shown in Table 2. The raw data
collected from SCADA contains errors due to the sensor
and data collection system. After the data are averaged to
1 h interval, the missing and erroneous data have been
removed. Out of the total data of 2966, 85%, i.e., 2522 data
have been used for training and the rest 15% for testing the
developed RSM and ANN models. The data has been
normalized between 0 and 1 using suitable normalization
method.

3 Modeling methods used for wind power
prediction

Several efforts have been made in the literature regarding
use of different models for predicting the power generated
by a wind turbine. These can be broadly classified as
(1) Models based on wind power equation.
(2) Models based on the concept of power curve of wind

turbine.
Models based on the concept of power curve that

provides the relationship between the turbine power and
wind speed are further classified as:
i) Models based on a presumed shape of power curve.
ii) Models based on actual power curves supplied by the

manufacturer.
Under this class, two curve fitting techniques, namely

the method of least squares and cubic spline interpolation
have been investigated.
The non-parametric methods can be made use of, if more

input parameters are to be considered. Hence, in the
present work two such methods have been used, namely,

Table 1 Power values for various wind speeds from manufacturer’s

power curve

Sl. No Wind speed/(m$s–1) Power/kW

1 5 250

2 6 250

3 7 480

4 8 730

5 9 980

6 10 1200

7 11 1400

8 12 1450

9 13 1500

10 14 1500

11 15 1500

12 16 1500

Table 2 Sample data set collected from the SCADA

Local time Outdoor temp/ºCWind direction degree Wind speed/(m$s–1) Nacelle temp/ºC Blade pitch angle/(° ) Rotor speed/(r$m–1) Active power/kW

8/1/2013 0:10 22 – 0.1 11.8 26 4.9 16.3 1347.7

8/1/2013 0:20 22 – 0.8 13 26 9.7 16.5 1491.1

8/1/2013 0:30 22 – 0.5 12.8 26 7.7 16.4 1448.7

8/1/2013 0:40 22 – 0.4 12.4 26.1 7.2 16.4 1482.4

8/1/2013 0:50 22 – 0.5 12.5 26 8 16.5 1481.3
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(3) Response surface methodology.
(4) ANN.
The details of the models developed in the present study

have been given in Table 3. A comparison of the results
obtained from parametric and non-parametric models is
presented.

3.1 Model-1

Many authors have developed equations for the power
available from the wind [13]. Habib et al. [34] proposed
that maximum possible power generation from a wind
turbine assuming a mechanical to electrical conversion
efficiency of 100% is given by Eq. (3).

Pe ¼ 0:593
1

2
�Av3

� �
: (3)

The model takes the value of Cp as 0.593, which is the
maximum possible theoretical value. Practically, 100%
efficiency in mechanical to electrical conversion is
impossible to be achieved, thus both of the above factors
lead to inaccurate results.

3.2 Models based on the concept of power curve of wind
turbine

3.2.1 Model-2

The power curve of a wind turbine is presumed to follow
a typical shape in this concept. Hence, for different ranges
of wind speed between cut-in and cut-out, a set of
characteristic equations for power prediction are
developed. One such model presented by Abouzaher and
Ramakumar [35,36] and later used by Yang et al. [37–39]
is very simple in predicting the performance of a wind
turbine. In this model, it is assumed that, for a typical wind
turbine, the power generation starts at cut-in wind speed vc,
the power output increases linearly for wind speed between
cut-in and rated wind speed vr and then, a constant rated
power is produced between rated wind speeds vr to cut-out
wind speed vf . The set of characteristic equations proposed
are given in Eq. (4).

Pe ¼ 0            ðfor v < vcÞ
Pe ¼ Per

v – vc
vr – vc

ðfor vc£v < vrÞ
Pe ¼ Per ðfor vr£v£vf Þ
Pe ¼ 0 ðfor v > vf Þ

 9>>>>>>=>>>>>>;, (4)

These models are not very accurate, since the characte-
ristic equations evolved are more general and not specific
to any turbine, hence does not replicate the performance of
a specific turbine very clearly.

3.2.2 Models based on actual power curves supplied by the
manufacturer

Due to the drawback of the models based on presumed
shape of power curve, many researchers have put forward
methods that use the actual power curve of the individual
wind turbine to develop the characteristic equations by
using a variety of curve fitting techniques. In the present
work, two curve fitting techniques, namely the method of
least squares and cubic spline interpolation have been
investigated.

3.2.2.1 Model-3

It is the mathematical procedure of fitting a best curve for
the given set of data points in such a way that the sum of
the squares of the offset of the points from the curve is
minimum. The major advantage of this method is its
simplicity. Three quadratic expressions are preferred for
better fitting accuracy [13,40]. It has been proposed in
Ref. [39] to use Eq. (5) to predict the power output of a
wind turbine.

Fig. 2 Manufacturer’s power curve of the turbine considered for
this paper

Table 3 Details of the models developed

Model Description

Model-1 Model based on wind power equation

Model-2 Model based on presumed shape of power curve

Model-3 Model based on method of least squares

Model-4 Model based on cubic spline interpolation

Model-5 Model based on response surface methodology

Model-6 Model based on ANN

Rashmi P. SHETTY et al. Modeling methods for wind power prediction 5



Pe ¼ 0            ðfor v < vcÞ
Pe ¼ a1v

2 þ b1vþ c1 ðfor vc£v < v1Þ
Pe ¼ a2v

2 þ b2vþ c2 ðfor  v1£v < vrÞ
Pe ¼ a3v

2 þ b3vþ c3 ðfor   vr£v£vf Þ
Pe ¼ 0            ðfor v > vf Þ

 9>>>>>>>>>=>>>>>>>>>;, (5)

where a1,b1,c1,a2,b2,c2,a3,b3 and c3 are the coefficients.
The equations developed based on this approach for the

turbine under study are given in Eq. (6).

Pe ¼ 0            ðfor v < 4Þ
Pe ¼ 35v2 – 231vþ 380 ðfor 4£v < 7Þ
Pe ¼ – 30v2 þ 786v – 3648 ðfor 7£v < 13Þ
Pe ¼ 0v2 þ 0vþ 1500 ðfor 13£v£20Þ
Pe ¼ 0            ðfor v > 20Þ

 9>>>>>>>>>=>>>>>>>>>;, (6)

3.2.2.2 Model-4

A cubic spline is a spline constructed of piecewise third-

order polynomials which pass through a set of m control
points. Efforts are found in the literature in using this
technique to fit a power curve of a wind turbine [41,42].
The characteristic equations in their general form can be
expressed as Eq. (7).

Pe ¼ 0                                   ðfor v£vcÞ
Pe ¼ a1v

3 þ b1v
2 þ c1vþ d1     ðfor vc£v < v1Þ

Pe ¼ a2v
3 þ b2v

2 þ c2vþ d2     ðfor v1£v < v2Þ
M
Pe ¼ anv

3 þ bnv
2 þ cnvþ dn        ðfor 6£v < 7Þ

Pe ¼ Pr                                   ðfor vr£v£vf Þ
Pe ¼ 0                                   ðfor v > vf Þ

 9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;,

(7)

where a1, b1, c1,d1, a2, b2, c2,d2,…, an, bn, cn, and dn are the
polynomial coefficients of cubic spline interpolation
functions, n is the number of cubic spline interpolation
functions corresponding to n+ 1 values of data points. The
set of equations developed for the turbine under study
using the above technique are given in Eq. (8).

Pe ¼ 0                                                  ðfor v < 4Þ
Pe ¼ 11:33x3 – 101:97x2 þ 314:58x – 331:92 ðfor 4£v < 5Þ
Pe ¼ 3:27x3 – 5:25x2 – 72:287xþ 183:865      ðfor 5£v < 6Þ
Pe ¼ 5:34x3 – 36:12x2 – 88:61xþ 928:54      ðfor 6£v < 7Þ
Pe ¼ – 20x3 þ 420x2 – 2690xþ 5590                  ðfor 7£v < 8Þ
Pe ¼ 2x3 – 42x2 þ 542x – 1942                          ðfor 8£v < 9Þ
Pe ¼ – 10x3 þ 246x2 – 1762xþ 4202               ðfor 9£v < 10Þ

 9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;: (8)

A finite set of parameters are assumed in parametric
models, hence, these are not very flexible and are restricted
in their nature. But non-parametric models can be defined
in terms of many parameters and they do not impose any
pre-specified model, and hence, are more flexible.
Two such popular non-parametric models are response

surface methodology and ANN which are investigated in
this study.

3.3 Model-5

The response surface methodology (RSM) is a collection
of mathematical and statistical techniques introduced by
Box and Wilson in 1951 that explored the relationship
between a response of interest and a number of input

variables. The objective of optimizing the response which
is influenced by several parameters in RSM is achieved
with less effort for both linear and nonlinear problems.
The mathematical relationship between independent

input variables and the dependent output variable have
been obtained in terms of a second order model of the
form

y ¼ ax2 þ bxþ c,

where y is predicted response and x is the input variable
that influences the response variable.
The regression model development has been carried out

using Statistica 12.0 (StatSoft) software1). 99% of
confidence level has been set and backward elimination
method has been used in this work.

1) StatSoft, Inc, 2013. STATISTICA (data analysis software system) v. 12.0
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3.4 Model-6

ANNs are the class of intelligent learning techniques that
are inspired by biological neurons. ANN finds numerous
applications in vast fields due to its ability to automatically
approximate any nonlinear complex relationship between
variables [43–45]. ANN, being a massively parallel
distributed processor made up of simple processing units,
stores the knowledge acquired through learning in the form
of synaptic weights and biases [46]. There are two types of
widely used feed forward networks, namely multilayer
perceptron (MLP) and radial basis function neural net-
works (RBFNN). The feed forward network has the links
that extend only in one direction. Except during training,
there are no backward links in a feed forward network; all
links proceed from input nodes toward output nodes. In
MLP, non-linear elements (neurons) are arranged in
successive layers and the information flow from the input
layer to the output layer through hidden layers.
Each neuron in the network includes a nonlinear

activation function. A commonly used form of nonlinearity
is the sigmoidal nonlinearity defined by the logistic

function: yj ¼
1

½1þ e – vj � where vj is the net internal

activity of neuron j and yj is the output of the neuron.
The synaptic weights and bias of the network are

updated during the process of learning in ANN. A popular
BP algorithm is used in the present work. The algorithm
works as follows:
The error signal is computed according to Eq. (9).

ekðnÞ ¼ okðnÞ – ykðnÞ: (9)

The modification in the weights are calculated according
to Eqs. (10) and (11).

δkðnÞ ¼ ðokðnÞ – ykðnÞÞokðnÞð1 – okðnÞÞ, (10)

ΔwkjðnÞ ¼ δkðnÞvjðnÞα, (11)

where α is momentum parameter, η is learning rate, vj is
hidden layer output, yk is target output, and ΔwkjðnÞ is the
adjustment applied to the synaptic weights.
The synaptic weights are then updated in Eq. (12)

wkjðnþ 1Þ ¼ wkjðnÞ þ ΔwkjðnÞ: (12)

In the present work the MLP neural network model
using gradient descent learning algorithm has been
developed using customized codes written in MATLAB
R2014a1). The stopping criteria of minimum error of 1 �
10–3 or maximum 1000 epochs have been fixed. Various
simulation parameters, learning and momentum coefficient
ƞ and α have been fixed on trial and error basis during
training based on maximum prediction accuracy.

4 Results and discussion

Models have been developed to predict wind turbine
power based on the wind power equation and the concept
of power curve of the wind turbine, using RSM and ANN.
Wind speed, air density, blade pitch angle, rotor speed, and
wind direction have been used as the input parameters in
developing Model-5 and Model-6, in contrast to use of
only wind speed in other models. The results have been
discussed in this section with the help of randomly picked
set of values as tabulated in Table 4, that cover cut-in to
cut-out wind speed interval in the data collected from the
SCADA of the wind turbine and that lies in the test set used
in RSM and ANN modeling techniques. The direct
comparison of predicted power with the actual power
generated by the turbine helps in checking the relevance of
different models.

The root mean square error (RMSE) which is defined as
the square root of the mean of the squared difference
between the actual and the predicted power values is used
as the performance metric to evaluate the performance of
the six models. The RMSE is expressed in Eq. (13)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðPeðiÞ –Pa ið ÞÞ2

r
, (13)

where Pe and Pa are the estimated and the actual power in
kW respectively, and n is the total number of data.

4.1 Model-1

The model uses Eq. (3) and it results in wind power that is
too far from the actual value. For example, for a wind
speed of 5.667 m/s, the equation results in a wind power of
313924.6278 kW in contrast to 250.85 kW of the actual

1) MATLAB R2014a @R, www.matheorks.com

Table 4 Data selected for comparison of performances of the models

Sl. No Wind speed/(m$s–1) Actual power/kW

1 5.667 250.85

2 6.017 289.383

3 7 447.433

4 8.033 637.133

5 9 820.9

6 10 981.15

7 11.017 1201.067

8 12 1392.217

9 13 1473.733

10 14 1500.183

11 15.233 1487.85

12 16.117 1475.533

Rashmi P. SHETTY et al. Modeling methods for wind power prediction 7



power produced by the turbine. This huge difference is
caused by the assumption of 100%mechanical to electrical
conversion efficiency by the turbine and the theoretical
highest value of Cp of 0.593 used in this model. Both of the
assumptions lead to inaccurate results as these assumptions
depict the ideal condition and are impossible to be attained
in practice. Some of the other models based on wind power
equation take into consideration the efficiencies (mechan-
ical transmission and generator) and the power factor
which is a function of the blade pitch angle, the rotational
speed of the turbine as well as the angle of attack. The
interdependency of the above mentioned parameters and
their variations based on the wind speed and other climatic
conditions make these models complex and inaccurate
[13].

4.2 Models based on the concept of power curve of wind
turbine

Power curve can be one of the tools to predict the power
generation of a wind turbine if accurately modeled. These
models relate the power generated with the wind speed.
The results of two categories under this concept have been
discussed. These models have been derived by making use
of the data from manufacturer’s power curve.

4.2.1 Model-2

A model based on linear power curve proposed by
Abouzaher and Ramakumar [35,36] has been used. The
resulting power output values are comparable with the
actual values as shown in Table 5.

4.2.2 Models based on actual power curves supplied by the
manufacturer

The wind turbine power curves are made available by the

manufacturer under standard conditions. Various curve
fitting techniques can be made use of in order to model
these power curves. The results of two models based on
this concept have been discussed below.
The predicted values of power by Model-3 and Model-4

have been presented in Table 5. Although the techniques
are efficient in fitting the curve as is evident from the
predicted power and values of the power provided by
manufacturer’s power curve in Tables 1 and 5. The RMSE
values for both the techniques are quite high with respect to
the actual power values. One of the primary reasons for this
is a difference between the power values provided in
manufacturer’s power curve and the actual power
produced by the turbine. It can be observed from Tables
1 and 4, that for a wind speed of 10 m/s, the value of power
in manufacturer’s power curve is 1200 kW and the actual
power produced is 981.15 kW. In addition to this, there
could be errors due to the curve fitting method adopted in
the models.

4.3 Model-5

The analysis of response variable, namely wind turbine
power, can be explained through the surface plots obtained
from the RSM study. The typical three-dimensional (3D)
surface plots for wind turbine power in terms of the process
variables are shown in Figs. 3–6. Figure 3 illustrates the
surface plot for power by varying two variables using wind
speed and pitch angle. It is clearly observed from Fig. 3
that the power increases with the increase in both wind
speed and pitch angle. It can be established from Figs. 4
and 5 that air density and wind direction have not much
effect on power. It is clearly seen from Fig. 6 that the power
of a wind turbine increases with the rotor speed. The R2

value obtained is 0.9954.
The resulting RSM equation considering second order

model is given by Eq. (14)

Table 5 Comparison of power predicted by different modeling methods

Sl. No Wind speed
/(m$s–1)

Actual
power/kW

Model-2 Model-3 Model-4 Model-5 Model-6

Power/kW RMSE Power/kW RMSE Power/kW Power/kW Power/kW RMSE Power/kW RMSE

1 5.667 250.85 250.05 0.565 200.61 35.52 200.73 35.43 222.28 20.19 269.01 12.84

2 6.017 289.38 302.55 9.31 263.24 18.48 253.24 25.55 280.07 6.57 282.42 4.92

3 7 447.43 450 1.81 485 26.56 480 23.02 425.91 15.21 432.50 10.55

4 8.033 637.13 604.95 22.75 730.06 65.71 716.20 55.91 625.30 8.36 635.84 0.91

5 9 820.9 750 50.13 996 123.81 992 120.98 786.48 24.33 793.43 19.42

6 10 981.15 900 57.38 1212 163.23 1278 209.90 960.39 14.67 963.64 12.37

7 11.017 1201.06 1052.55 105.01 1370.13 119.54 1401.78 141.92 1171.69 20.76 1182.68 12.99

8 12 1392.21 1200 135.91 1464 50.75 1450 40.85 1346.63 32.23 1359.93 22.82

9 13 1473.73 1350 87.49 1500 18.57 1500 18.57 1437.08 25.91 1440.81 23.27

10 14 1500.18 1500 0.129 1500 0.12 1500 0.129 1476.85 16.49 1491.60 6.06

11 15.233 1487.85 1500 8.59 1500 8.59 1500 8.59 1478.45 6.64 1487.69 0.11

12 16.117 1475.53 1500 17.30 1500 17.30 1500 17.30 1468.35 5.07 1470.87 3.29
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Y ¼ 3356þ 310:8X1 þ 126:2X2 þ 1:34X3 þ 738:4X4

– 866X5 – 0:8122X
2
3 þ 35:02X 2

5 – 7:7526X1X2

– 0:882X1X3 – 8:99X1X5 – 2:434X2X5, (14)

where X1, X2, X3, X4, and X5 are wind speed, blade pitch
angle, wind direction, density, and rotor speed respectively,
and Y is the wind power output. From Table 5, it can be
noted that the values of the power predicted by the RSM

model are much closer to those of the actual power. Since
2522 and 444 data collected from SCADA have been used
for training and testing the RSM and ANN models, the
mean RMSE for training and test data are 14.07 and 15.29
respectively for Model-5.

4.4 Model-6

The MLP neural network model using gradient descent
learning algorithm has been developed. The variation of

Fig. 3 Surface plot for power by varying two variables: wind
speed and pitch angle

Fig. 4 Surface plot for power by varying two variables: wind
speed and wind direction

Fig. 5 Surface plot for power by varying two variables: wind
speed and density

Fig. 6 Surface plot for power by varying two variables: wind
speed and rotor speed

Rashmi P. SHETTY et al. Modeling methods for wind power prediction 9



MSE with the number of hidden neurons is presented in
Fig. 7. It can be observed that there is a steady decrease in
MSE till 25 hidden neurons, and there onwards it
increases. The MLP neural network model with 25 hidden
neurons, with η and α values of 0.019 and 0.002
respectively produces the best results. Thus the configura-
tion of the developed model is 5-25-1.

The simulated values of power presented in Table 5 are
satisfactorily close to the actual power values with a
relatively small RMSE, proving the superiority of the
model. The mean RMSE for training and test data are
13.63 and 14.33 respectively for Model- 6.

5 Comparison of modeling methods

Comparison of different modeling methods for wind power
prediction is the main focus of the present study. Six
different parametric and non-parametric models have been
studied. Model-1 which is based on the concept of wind
power equation results in nonrealistic values of power due
to the theoretical assumptions with respect to Cp and
mechanical to electric conversion efficiencies. The results
of five different models other than the first one along with
the actual power values have been presented in Table 5.
The RMSE values of the models have been plotted in Fig.
8. It can be observed from Fig. 8 that Model-3 andModel-4
have resulted in a higher RMSE, Model-5 has resulted in a
moderate, and Model-6 has resulted in the lowest values of
RMSE. It can be observed from the power curve in Fig. 2
that between the wind speed of 6 m/s to 12 m/s, the power
increases linearly, and for wind speeds above and below
this range, the variation in power is negligible. By
comparing the values of power from manufacturer’s
power curve and the actual power, it is clearly observed

that the power of a wind turbine under actual working
conditions is quite different from that of standard
conditions and there are various other parameters affecting
power generation other than wind speed. This is one of the
reasons for the higher error for Model-2, Model-3, and
Model-4 which are based on the concept of power curve.
It is worth noting form Tables 1 and 4 that the difference

between the power from manufacturer’s power curve and
the actual power is large for data number 4–9 (correspon-
ding to a wind speed of 8–13 m/s), thus resulting in higher
errors in power prediction by the models as shown in
Fig. 8. Further, the curve fitting methods are based on
certain assumptions [47]. The limitations of these models
have been overcome in Model-5 and Model-6 by
considering several other variables along with wind
speed. Model-6 give superior results in comparison with
Model-5 and has resulted in lower values of RMSE. The
reason behind this is that ANN has a universal approxima-
tion capability to approximate all kinds of nonlinear
functions and it does not require any prior specification of
suitable fitting functions, whereas RSM is restricted only
for quadratic approximations [48].

6 Conclusions

An efficient model to predict the power output of a wind
turbine is of great importance to the wind industry. Various
parametric and nonparametric models, based on wind
power equation, based on concept of power curve, such as
RSM and ANN have been developed and the results have
been compared in this study. To develop and analyze the
models, the power curve and SCADA data collected from a
1.5 MW commercially available wind turbine has been
used.
The following conclusions can be drawn.
(1) Modeling methods based on fundamental equation

of the wind power are complex to use and are based on

Fig. 7 Variation of MSE with number of neurons in the hidden
layer for MLP model

Fig. 8 Comparison of RMSE of different modeling methods
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certain theoretical assumptions which make them inaccu-
rate.
(2) The actual power derived from the turbine differs

from that based on the manufacturer’s power curve, due to
the difference in conditions in which it operates. This leads
to the error in the models derived from manufacturer’s
power curve.
(3) Curve fitting techniques are restricted in nature due

to the finite number of parameters and thus are not flexible.
(4) A careful consideration of selected variables

affecting the power output of a wind turbine along with
wind speed has a definite impact in wind power modeling.
(5) Model-5 and Model-6 have shown good agreement

between simulated and measured values of power.
(6) Model-6, which is based on ANN, has outperformed

Model-5 as well as all the other models due to its capability
to approximate any nonlinear function.

Notations
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