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Abstract-The imporved move limit method of sequential linear programming is briefly explained. Comparison of 
computing efficiencies is made between the improved method and the conventional move limit method with six test 
problems. The usefulness of the method in the context of structural optimization is shown with the help of four 
examples. 

INTRODUCTION 

Sequential linear programming is one of the powerful 
methods for solving nonlinear programming problems. 
This method is more suitable for shape optimization of 
the continua[l2] in which time taken for analysis is quite 
high. The move limit method of sequential linear pro- 
gramming, suggested by Stewart and Griffith[3] has been 
presented in the form suitable for structural problems by 
Pope [4,5]. In an earlier paper the authors [6] have sug- 
gested improvements in the move limit method and 
presented preliminary results in context of a few 
mathematical problems. In this paper, a brief resume of 
the improvement suggested and the results for six test 
problems are presented. The comparison study between 
the improved method and conventional method[4,5] is 
presented in the context of four structural optimization 
problems. The structural problems considered are opti- 
mum shape design of four mechanical components which 
need finite element method for stress analysis. 

IMPROVED MOVE LIMIT METHOD 

A general nonlinear programming 
defined as 

min 2 = F(x) 

subject to 

problem may be 

(1) 

G,(x)sO, j = 1, 2, . . ., m (2) 

where x is a design vector of n dimensions, F(x) is the 
objective function and 4’s are constraints. In the 
neighbourhood of the design vector xk using Taylor’s 
series expansion and retaining only upto linear terms, the 
objective function and constraints are approximated as 

F(i+‘) = F($) +VFT(x*)(xL+’ -x’) (3) 

tLecturer in Civil Engineering. 
SAssistant Professor. 

Gi(x*+‘) - G(x') t VG’(x*)(x“+’ -x’) (4) 

with these approximations, the problem reduces to a 
linear programming problem. This linear programming 
problem is solved with the following additional con- 
straints on the movement of design variables 

1(x:+’ -x,“)] s Mik (9 

where xi’+‘, xii’ and Mik are the ith components of x*+‘, 
x* and Mk. The vector Mk prescribes the move limits on 
the design variables. 

If x*+’ is a feasible point, the objective function is 
checked for improvement [F($“) < F(x’)]. The 
sequence of linear programming is continued from x**’ if 
improvement is found in objective function. Otherwise, 
the new design point is selected by quadratic inter- 
polation between the design points xk and x*+‘. In Fig. 1, 
A represents the design point xk and B represents the 
design point x’+‘. Assuming the objective function to 
vary quadratically along AB, the objective function at 
any point P, along AB, can be written as 

F(x) = F(xk + as) = F(cy) = a + bcr + my2 (6) 

where 

a = AP/AB (7) 

and 

S = xk+’ - xk. (8) 

Hence 

F(0) = F(xk) = a 

F(1) = F($+‘) = (I + b + c 

and F’(0) = VFT(xk+‘) = b. 

The point x+ corresponding to the minimum F(a) along 
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Fig. 1. Quadratic interpolation along a line. 

the line is obtained by dF/da = 0. The corresponding 
value of a is 

PFT(ti)S --=-- 
F(x’+‘) - F(#) -VFT(xk)S I . 

(9) 

Hence the new design point is given by 

x+=x*ta+(xk+‘-x’). 

The move limit is also reduced as 

(10) 

M’ = a+M’. (11) 

If a linear programming solution enters infeasible 
region, it is steered to feasible by moving in the gradient 
direction of most violated constraint. At any point, dis- 
tance /3 from xk+’ along the gradient direction, the most 
violated constraint (say jth) can be linearized as 

G,(ti+’ t fWG,($+‘)) = G,(xk+l) t /WG,‘(x*+‘)VG,(xk+‘) 
(12) 

since a point which just satisfies the constraint is 
sufficient, equating eqn (12) to zero, the value of /3 is 
obtained as 

G,(x’+‘) 
’ = - VG,T(xk+‘)VG,(xk+‘) (13) 

and such a point is given by 

x* = $+’ t /3VG,(#+‘) (14) 

since the evaluation of constraint derivatives at a point is 
very expensive in the optimum shape design of continua, 
it is preferable to use the gradient direction of previous 
point. Thus the eqns (13) and (14) can be modified as 

(15) 

and 

x* = f” t /3VG,(xk). (16) 

In some problems the above technique of steering to 
feasible region is to be used repeatedly to reach feasible 
region. If number of repetitions required are large, 
recalculation of constraint derivatives is done after a 
predefined repetitions. 

After steering the design vector to feasible region, if 
no improvement is found in the objective function, the 
usability of the direction S* =x*-x’ is checked. The 
quadratic interpolation is resorted only if the direction is 
usable. Otherwise quadratic interpolation leads to x” as 
optimum erroneously. In such cases quadratic inter- 
polation is to be done between x* and xk” (Fig. 2) and 
then optimization is continued. 

The above method has the following three improve- 
ments over the one used by Pope[4,51: 

1. Instead of interval halving, quadratic interpolation 
is used. 

2. For steering the infeasible design vector to feasible 
region, gradient direction (at previous) is used instead of 
the direction jointing the origin and the design vector. 

3. Checking the usability of the direction S* = x* - x” 
before going for quadratic interpolation is included. 

COMPARISON STULW WITH THE TEST 
PROBLEMS 

Six test problems have been studied by the improved 
method and conventional method[6]. Table 1 shows the 
numerical examples considered. Table 2 shows the 
comparison between the two methods. First four exam- 
ples are constructed by the authors and last two prob- 
lems are from Himmalblaui’l]. The last two problems are 
five variable problems which have been used in com- 
parison studies already published[S, 91. 

In the first example, where optimum lies at the corner 
of the constraints, both methods are equally efficient. In 
the second example, effectiveness of quadratic inter- 
polation is observed. In the third example, in which 
almost every linear programming solution enters in- 
feasible region, the effectiveness of the method of steer- 
ing to feasible region is found. The need for checking the 
usability is found in the fourth example. Fifth and sixth 
examples indicate in general the efficiency of suggested 
improvements in large variable problems. 



Improved move limit method of sequential linear programming 

Sl- DIRECTtIN USED BY POPE 

S2- AppRDX. GRADIENT DIRECTI~ 

S3- EXACT GRADIENT DIRECTUJN 

0 I I I I 

0 1.0 2.0 3 .o 4.0 5.0 6.0 70 6.0 d.0 10YJX 

ok. 2. Steering de@ Vector to feasible domain and need for checking the usability of new direction. 
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Table 1. Table 2. Comparison study with test problems 

Example 
No. Problem 

1 MinZ=X,2+X2* 
Subject to g,(X) = 16 - ~1x2 4 0 

g2(1?)=(10-x,)x2-14~0 
2 MmZ=x~+x~*-llxl-9x~ 

Subject to g,(X)= 16-x,x2~0 
g*(X) = (10-x,)x2-25 so 

3 h4inz=x,*tx22 
Subject to g,(f)= 16-x,x2-44~0 

g~~)=(lO-x~x2-44~0 

4 MinZ=X12tX*2 
Subject to gl= 16-x,x2~0 

g2= (lo-x,)x2-25GO 

No. of No. of 
Example NO. of function derivative 

No. Method iteration evaluation evaluation 

1 (a) Conventional 3 4 3 
(b) Improved 3 4 3 

2 (a) Conventional 9 20 9 
(b) Improved 5 5 

3 (a) Conventional 11 :; 11 
(b) Improved 9 22 9 

4 (a) Conventional Does not reach exact optimum 
(b) Improved 6 13 6 

5 (a) Conventional 6 12 6 
0~) Improved 5 7 5 

6 (a) Conventional 3 18 3 
(b) Improved 3 IS 3 

5 Prob. No. IO, page 404, Ref. 171 

6 Prob. No. 11, page 406, Ref. [71. 

SI’RUCTURAL PROBLEMS 

Optimum shape design of four mechanical components 
has been carried out. For stress analysis of the com- 
ponents finite element method is used. Quadratic iso- 
parametric elements are used. The integrations encoun- 
tered are carried out by using 2 x 2 Gaussion numerical 
integration. Stresses are calculated accurately at Gaus- 
sian points of the elements in critical zone and the 
stresses in the boundary sampling points are obtained by 
extrapolation. The derivatives of the stresses with res- 
pect to design variables are evaluated by the efficient 
method as used by Francavilla, Ramakrishnan and 
Zienkkwicz[lO]. Details of the investigations about 
optimum shape design of the mechanical components are 
published elsewhere[ll, 141. Here comparison studies of 
the two methods are carried out. The problems selected 
are briefly explained below. 

completely determined from end conditions and from 
design variables. The four design variables selected are 
the ordinates at equal intervals along the fillet length. 
Minimization of volume is taken as objective function. 
Constraints are imposed on stress concentration factor at 
sampling points. 

2. Optirirum shape design of rotating disks 
The problems situation is shown in Fig. 5. The shape 

of the cross section of a rotating disk is defined by a 
polynomial. The variables selected are semi thicknesses 
at four predefined radii. The objective function selected 
is minimization of weighted function in which equal 
weightage is given for volume minimization and stress 
levelling. No behavior constraints are imposed. Side 
constraints imposed are about the minimum value Df the 
thickness. 

3. Optimum shape design of flanged and flued expansion 
joint 

1. Optfmum shape design of fillets in tension bars 
F@e 3 shows the problem situation. The tillet shape 

is defined by sixth order polynomial (Fig. 4), which is 

Figure 6 shows the geometry of a typical flanged and 
tlued expansion joint. The design variables XI, x2, x3 and 
x4 selected are 

x1 = rot x2 = 11 = r2, xp = h, x4= t 

CA6 Vol. II, No. 3-D 
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Fig. 3. Problem situation in tillet shape optimization. 
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Fig. 4. Geometric description of fillet. 
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Fig. 5. A typical rotating disk. 
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Fii. 6. A typical Ranged and flued expansion joint. 

4. Optimum shape design of pressure vessels and nozzle 
junctions 

The junction between a spherical pressure vessel and a 
cylindrical nozzle is defined by four curves of third 
degree polynomial which are completely determined by 
end conditions and four design variables as shown in Fig. 
7. The objective function is minimixation of maximum 
stress concentration factor. Only side constraints are 

where r,,, rl, rzr h and t are as detined in Fig. 6. The 
multiple loadings considered are: (i) Internal pressure 
only; and (ii) Internal pressure + expansion. Minimixation 
of reaction transferred to tube sheets is taken as objec- 
tive function. The constraints imposed are the design 
criteria of Wolf and Mains[lS] on stresses at critical 
points in curved portions. 

The nature of these four problems in context of sug- 
gested improvements is shown in TabIe 3. A sample case 
is selected in each problem and with the same initial 
point and initial move limits optimization is carried out 
by both methods. No attempts have been made to solve 
more number of cases in each problem since the nature 
of the problem and progress of optimization was not 
affected as a result of oarametric variations. 

imposed. 
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Computational time required in ICL 1909 is also tabu- 
lated for each case. 

In the fillet shape optimization problem, the con- 
ventional method and the improved method have yielded 
the same optimum. In both the methods the constraint 
violation has taken only once during optimization. 
However in the case of improved method the feasible 
point obtained, after steering infeasible point, is better 
and hence optimum has been reached with fewer itera- 
tions. 

In the optimum design of rotating disk, quadratic in- 
terpolation takes place frequently before optimum is 
reached. The conventional method has reached optimum 
after 21 function evaluations and 7 derivative evaluations 
whereas improved method has taken only 17 functions 
evaluations and 7 derivative evaluations. The reduction 
in number of function evaluations in improved method is 
due to the capability of the method in selecting a better 
point in one step whereas conventional method needs a 
number of interval halvings. 

Fig. 7. A typical spherical pressure vessel and nozzle junction. 

Table 3. Nature of problems in context of suggested improve- 
ments in the method 

Quadratic Steering 
S. inter- to feasible 

No. Problem polation region 

1 Fillet Not useful Very useful 
2 Rotating disk Very useful Not useful 
3 Expansion joint Useful Useful 
4 Pressure vessel 

nozzle junction Very useful Useful 

Checking 
the 

usability 

Not useful 
Not useful 
Useful 

Not useful 

In the optimum design of expansion joint, the number 
of behavior constraints is very large. During optimization 
the design point frequently violates constraints. In this 
problem the constraints are highly nonlinear and hence 
for steering design vector to feasible domain the im- 
proved method requires fresh calculation of design 
derivatives just after every two cycles. The method has 
been found to be powerful enough to steer the design 
point to feasible region. The conventional method failed 
to steer the infeasible point to feasible region. Similar 
breakdown in the progress of optimization is observed 
with another test example also. In the optimum design of 
expansion joint, the need for checking the usability of 
new direction has been felt. The improved method has 
worked very satisfactorily in such a situation. 

In case of pressure vessel and nozzle junction prob- 
lem, quadiatic interpolation occurs frequently just before 
optimum is reached. The nature of this problem is such 
that quadratic interpolation gives values very close to 
interval halving values. Hence here no difference is 
found in the progress of optimization by the two 
methods. 

COMPARISON !TlWDY WITB STRUCTURAL 
PROBLEMS CONCLUSIONS 

Table 4 shows the number of function and derivative In all the four structural problems considered, the 
evaluations required in optimization by the two methods. optimization has progressed very smoothly. The sug- 

Table 4. Comparison between improved method and conventional method in the context of structural 
problems 

s. 
No. Problem 

No. of 
iteration 

No. of No. of Computing 
function derivative time in 

evaluation evaluation ICL 1909 

Fillet 
(a) Conventional method 
(b) Improved method 

Rotating disk 
(a) Conventional method 
(b) Improved method 

Expansion joint 
A. (a) Conventional method 

(b) Improved method 
B. (a) Conventional method 

(b) Improved method 
Pressure vessel-nozzle junction 

(a) Conventional method 
(b) Improved method 

9 4 33 min 
7 3 36 min 

21 72 min 
17 : 64 min 

Fails to obtain feasible design point 
20 8 112 min 

Fails to obtain feasible design point 
32 I2 149 min 

I8 8 59 min 
18 8 59 min 
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gested improvements have made the method more 
efficient and reliable. 
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