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Abstract In this study Tikhonov Gradient type-method is considered for nonlinear ill-posed
operator equations. In our convergence analysis, we use hypotheses only on the first Frechet
derivative of F in contrast to the higher order Frechet derivatives used in the earlier studies. We
obtained ‘optimal’ order error estimate by choosing the regularization parameter according to
the adaptive method proposed by Pereverzev and Schock (SIAM J Numer Anal 43(5):2060—
2076, 2005).
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Introduction

Inverse problems are wide in range, are important in applied mathematics and other sciences
which have been witnessed a rapid growth over past few decades. Inverse problems have wide
variety of applications in sciences and engineering. A well known and prominently accepted
real world medical application includes tomography, cell detection in various cancer diseases,
which helps to calculate the defective cell densities in human body.
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Let X and Y be Hilbert spaces. Consider the ill-posed operator equation
Fx)=y (1

where F is a nonlinear operator from a convex domain D(F) in X to Y. In general (1) is ill
posed in the sense that its solution need not depend continuously on the data.

The inner product and corresponding norms in X and Y are respectively, denoted by (., .)
and ||.||. B(x, r) and B(x, r) stand, respectively for open and closed balls in X with center
x € X and radius r > 0.

Let £ be such that F(£) = y and let y? be the available data with

ly —y°Il < 6. )

Regularization methods [1,2,4, 10] are used to solve non-linear ill-posed equations. Tikhonov
regularization is widely used to approximate x, in which the minimizer of

Jo(x) = min_[[F(x) — y*I? + allx — xol? )
xeD(F)

is used as an approximation for x. Here &« > 0 is a small regularization parameter. It is known
[9] that J, (x) has a unique solution xg if F is weakly (sequentially) closed, continuous, and
Fréchet differentiable with convex domain D (F).

In [8], Ramlau considered iterative method

)CSJFI =X, + ﬁn (F/ (xrlz)* (y5 - F ()Cg)) +an ('xlf - )C())) (4)

where 8, is a scaling parameter and «;, is the regularization parameter to obtain approximation
for x. The following assumptions (A) are used in [8].

(A1) F istwice differentiable in the sense of Frechet with continuous second derivative.
(Ay) F! satisfies the Lipschitz continuous:

IF'(x1) = F'(x2)|| < Lllx1 — x2.

(A3) £ —x0 = (F'(®)*F'(x)) forsome w € Y.
(Ag) |lw|| < g and Lg < 0.241.

And also assumed that Lipschitz constant L is given. Note that §, in (4) is depending on the
Lipschitz constant L and satisfying (see (4.15) in [8])

yo dya (Ja (Xn) = Pmin,n) }
| v Ja)?" 4K? + 4o + 12qaL +4KL + L? || v Jo(xp) ||

Bn < min{

Here ¢pin,y = min{Jy(x,) +1 v Jo(xy) @ 1 € R+}, K = maX{Lll)"S — Fxo)ll +
1F (xo)ll, \% + (ﬁ + DI F'(x0) I} (see (3.14) in [8]) and y is such that y + 3L ||w| <
y +3Lg < 1 (see (3.20) in [8]).

The purpose of this paper is to consider the local convergence of the modified form of the
iterative procedure (4), but with a fixed B (a generic constant) and « instead of S, and «;,.
Here B is depending only on « and || F’(-)||. Precisely we consider the iteration defined for

n=0,1,2,3...by
x2+1,a = xﬁ,a - B (F/ (xt(z,a)* (F(x;sl) - yé) ta (x;z,a - XO)) : (&)

The iterative procedure in (4) is a bit cuambersome than (5). Our approach in this paper is two
fold: (i) using hypothesis (A;) we prove the convergence of {xﬁ’a} in (5) to xg (i) instead of
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(A3), using two additional Assumptions (2.5 and 2.6) we prove the convergence of {x,‘z’a} in
S)to xg. We also obtained an error estimate for ||x3’a — X || using source condition on X — xq
involving the operator F'(X) (see Assumptions 3.1). Furthermore, our analysis is simpler
than the analysis in [8]. One of the main differences of our approach to that of [8] is, that we
fix the scaling and regularization parameters during the iteration.

The rest of the paper is structured as follows: In “Method and Convergence Analysis”
section the convergence analysis of (5) is given. In “Error Estimates” section we provide
error bounds. Finally the paper ends with a conclusion in “Conclusion” section.

Method and Convergence Analysis

We present local convergence analysis of method (5) in this section. Let 9 > 0, ap >

0, ro > 0 and r > 0 be some constants with Ly < ag, ||xo — x| < ro with rg < @ — %
and
2(ro+1) <r. (6)
Let M > 0 be such that
| F'(x)|| <M, Vx e B(xo,r), )
8 € (0,80] and & € [min{L8, 82}, ap]. Let
p= L ®)
M? + ag
and ML
P 5 r. )

Hereafter for simplicity we use the notation x,, := x «- The following Lemmas are used
to prove our main results.

Lemma 2.1 [11, Proposition 2.1] Let xg be the minimizer of (3). Then,
I = xoll = —= + llxo — I
X5 — X — xo — X||.
o ol = ﬁ 0
Lemma 2.2 [6, Lemma 2.3] Let a,, be the sequence satisfying 0 < a, < a and lima, < a.
Moreover, we assume that y, be the sequence satisfying
0< Vnt+1 < ay + byn + C)/nQ (]O)
with n € N and yy > 0 that holds for some b,c > 0. Let y' and y be defined as y' =
. 2a 1— b-h/(l b)2—dac
= L 24/
17b+«/(17b)274ac and y = fb+2ac

< landifyy) <y, then

¥Yn < max{yo, y'}.

Theorem 2.3 Let x,, be as in (5) and let r < %W. Then for each § € (0, §ol,
o € [min{L34, 82}, aol, the sequence {x,} is in B(xg,r) and lim x, = xg. Further
n—0o0

besr = x50 < g lxo — x2l (11)

where qq g is as in (9).
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Proof Clearly, xg € B(xo,r). Let A, := [} F'(x3 + 1(x, — x2))dt. By Lemma 2.1, we

have xg € B(xo,r), hence Ag is well defined and ||Ag|| < M. Assume that for some

n > 0,x, € B(xg,r) and A, is well defined. Then, since xg satisfies the Euler equation
F () (F (x2) =) o (s — %) =0 12)
of the Tikhonov’s functional J, (x), we have,
Xt — x5 = x —x8 = B[F () (Fx) — F (x0)) +a (xa — x3)]
+B[F (x)" = Flen| (F (x)) =)
= x5 —x} = B[F (x0)*An + oI (x4 — x3)
+B[F (x)" = F'* | (F (+3) = »°)
= xn = xg — B [F'Can)" (An = F'(e)) ] (0 — x3)
—B[F () F'(x) + I (xy — x0)
+B[F (38)" = o] (F () - )
=[1—B(F' ) F'(x) + )] (xp — x5
= BF ) (An — F'(xn))] (xn — )
+B[F (38)" = F'oa)] (F (53) = »7). (13)
Now since I — B(F’(x,)* F'(x;) + o) is a positive self-adjoint operator,

11— BOF' ()™ F' () +aD)|| = sup (I = B (F'(xn)"F'(xn) +al)) x, x)|

llxl=

= sup [(1 = Ba)(x, x) — B(F ()" F'(xp)x, x)|

lxll=1
<1-—ap. (14)
The last step follows from relation
1
BICF () F' (ra)x, x)| < BIF Ga)lI? < pM? < MP=1- 2 <1-fa

M? +« M? +«
Using (Az), we have

H[BF o)™ (An — F'Ga))] (0 — 32)
<ﬂF(x)/ (<2 41 (0 = 22)) = F'(en)) dt (50— 22) |

52
I

ML
< ﬂT”xn — Xy

and

[8[F (x)" = o] (F (22) )
(xa) =’
=B F () = F'an)| | F (x3) =»°|
< BL | =23 | | F (x2) =5
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Now using (3), we have
|F (x3) =¥ < 8+ Varo. (15)
Hence,

BML
2

vt — 2] = (1 = + BLG + aro) s — s3] + 225 |, — 22

The above expression is of the form (10), where a, = 0,b = 1 —af + BL(S +/ary), yu =
lxn — xg || and ¢ = % We have by the condition on rg, b + 2./ac = b < 1 and

1->
c

i

vo = [xo—xg <

Hence by Lemma 2.2, we have

ML
ens = 5] = (1= + BLG + V@) [xn — 23 + 225 v — 2] o x|
< (1= ap + LG +v@r0) [ — x| + 22 r [ — 28]
< e o — 2] (16)

2(a—L(S++/arg))
ML

Thus, since r < , we have g4 g < 1 and

Jtnsr 2] < o —xd] <7
and
[0t — xoll <2 [x0 — x5 <2(ro+ 1) <r
i.e., Xp41 € B(xo,r). Also, for0 <1 < 1,
x5+t (tnr = x3) — xo0|| = x5 —x0 + tCrag1 — x| <200+ 1) <.

Hence, x3 + t(x,+1 — x3) € B(xp,r) and A, is well defined with ||A, 1| < M. Thus,

by induction x,, is well defined and remains in B(xg, r) foreachn = 0, 1, 2, ... By letting

n — oo in (5), we obtain the convergence of x;, to xg. The estimate (11) now follows from

(16). O
Je s

Remark 2.4 Note that the condition ro < - — Ja is too restrictive. We can avoid this

restriction by imposing some additional assumptions (see Assumptions 2.5 and 2.6 below).
We also prove the convergence of (5) using the assumptions below.

Assumption 2.5 Suppose there exists a constant K| > 0 such that for all u, v € B(xg, r)
D(F) and w € X, there exists element ¢ (u, v, w) € X such that [F'(u) — F'(v)]w
F'(0o1(u, v, w), || p1(u, v, w) S Ki [l wlllu—vl.

1N

Assumption 2.6 [9] There exists K> such that forevery x, y € B(xg,r) € D(F)andh € X,
there exists element ¢ (x, y, h) € X such that [F'(x)* — F'(y)*]h = ¢o(x, y, F'(y)*h) with
l2Cx, v, F'0)*W|l < Kallx — yII1F'(2)*R]|.

Next, we shall give an example satisfying Assumptions 2.5 and 2.6.
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Example 2.7 [3,9]. Consider the nonlinear Hammerstein operator

1
(FX)(t)Z/ k(z,t)g (t, x(1))dr,
0

with k continuous and g sufficiently smooth so that F : H 1((0, 1)) = L%((0, 1)) is Frechet
differentiable with respect to x and

1
F'(x)h(1) = / k(r, T)gx (T, x(7)) h(T)dT.
0
Then F satisfies Assumptions 2.5 and 2.6 (see [9, Lemma 2.8]).

Let8; > 0, bg > 0 and 7 > 0 be some constants with 812 < by and

2(rp+ 1) <r. a7
Let 8 € (0,81] and a € [62, by]. Let
B= : (18)
T M2+ b
and
_ _ BMPK, _
qa,p = 1 —af +aBKyr + r. (19)
Theorem 2.8 Let x,, be as in (5) and let ¥ < Mlﬁi#m Then for each 6 € (0, d1],

o € [82, byl the sequence {x,} is in B(xg,r) and lim x, = xg. Further
n—0o0

e =25 = oy xo = xal (20)

where qq g is as in (19).

Proof Clearly, xo € B(xo,7). Let A, := fol F’(xg + t(x, — xg))dt. By Lemma 2.1, we
have xg € B(xg,7), hence Ag is well defined and ||Ag|| < M. Assume that for some
n >0, x, € B(xg, ) and A, is well defined. Using (13), Assumptions 2.5 and 2.6 we have

Xt —xg = [ = B (F () F'(x) + @I ] (v — x5)
_B [F’(xn)* /01 F'()r (x84 (xn — x3) s xny X0 — xg)] dt
~a (0. xl F' (x2)" (F (x2) = 7))
=[1 = B(F' ) F'(x) + )] (x5 — x3)
—B [F’(xn)*F’(xn) /01 b1 (x5 + 1 (X0 — x3) , X0, X0 — xi)} di

—Bdo (xn, xi, —a (xg — xo)) .
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Hence, using (14) we have

1
[onrt — 2] < (1 = aB) | xn — x| + BMPK xn = x3|° | (1 =1yt
0

+BK xn = x| G = xo
BM?K,
2

< (1= ap + epKa [t — o) o — 23] + 2L KL o, P
BM?K,
2
Note that (21) is of the form (10), where a, = 0,b = 1 — a8 + aBKa2r, yp = ||xn — xg||

and ¢ = ﬂM;K‘.Soby 17,b+2/ac =b < 1 and
1-b
c

< (1 — aB + aBKai) || x, — <3| + e — 22 @1

v =[x —xo] < =7.
Hence by Lemma 2.2, we have
BM?K,

o = 531 s =21

M?K
5(1—0[,3—!—05;31(2?4—'8 5 1;)”xn—x5§”

Janir =5t = (1= ap +apka o = 23] +

< Gup 50 =321 2
Thus, since gq.p < 1, we have
Jtner = 2ol < Jxo—xg] <7
and
1 = %ol < 2|0 —xg|| <200+ 1 <7
i.e., x,4+1 € B(xg, 7). Also, for0 <r <1,
|xg + 1 (xng1 —x3) — x| = |58 —x0+ 1 (xar1 —x0)| <200+ 1) <F.

Hence, x5 + 1 (x,+1 — x2) € B(xo,7) and A, is well defined with ||A,11]| < M. Thus,
Xy is well defined and remains in B(xq, 7) foreachn = 0, 1, 2, ... by induction. By letting
n — oo in (5), we obtain the convergence of x,, to xg. The estimate (20) now follows from
(22). O

Error Estimates

For the convenience of the convergence analysis that follows, we use the following well
known Assumption [10].

Assumption 3.1 There exists a continuous, strictly monotonically increasing function ¢ :
(0,a] — (0, 00) witha > ||[F'(%)]? satisfying

@ lim; ¢ (1) = 0.

(ii) supy=o 2% < ¢ (@), VA € (0. al.
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(iii) There exists v € X such that
X0 — X = p(F' X)*F'(®)v.

Theorem 3.2 Let xg be the minimizer of (3) and let

_ . 2a 2(1 + K1 + K>)
rF < min , .
20K + MK, 2K + K>
Then
|6 — 2| < L [i + ||v||¢(ot)i|.
* T 1+ K+ K- 52K + K LV

Proof Let M = [} F'(& +1(x} — #))dr and A = F'(x?). Then from (12) we have

(AW2+a0(@—f)ZAWﬁ-ﬂ0+a@0—@

and
X —F = (A*A+aD)TTAYA - M) (x) — &) + (A*A+aD)TTAY(G — y)
HAA + o) a(xy — £). (23)
Therefore
I8 — 21 < IT4l + = 4+ T2 (24)
o —_ \/&

where T'j = (A*A4al) ' A*(A — M)(x} — %) and Ty = (A*A 4+ al)~'a(xg — £). Using
definition of M and Assumption 2.6, we have in turn

1
r= aan [ 2) = [ G- i) a2 - )
0
1
= (A*A+al) A* U F'(x3) = F (R +1(5 —3) dt] (x3 — %)
0
1

—(A*Atar) "t AF / Agp (% +1 (x — %), x5, x5 — %) dr. (25)
0

Now, by using triangle inequality, Lemma 2.1 and the definition of 7, we have

(Tl

IA
|
|

(26)

IA
=
|
=
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Let A := F'(%). Then using Assumptions 2.5, 2.6 and 3.1, we have in turn
T2l = H [(A*A fal)l = (A"A 4+ al)*l] a(xo — %)

+(A*A + o) a(xg — %)

< H [(A*A FaD)U(A*A — ATA)(A*A + a1)*1] a(xo — x)”
+ H (A*A + o) a(xo — x)H
< ” [(4*a+an™ (A" = 494 - a4 - DA A+ D™ ato - 5 H
+ H (A*A + o) a(xo — x)H 27)
< H (A*A +al) (A" — AHAGRA + D) a(xo — 3) H
n H (A*A +al) " A*(A — A)A*A + D) a(xo — x)H
+ H (A*A + o) alxo — x)H
< [ a+an|[e (x3. 5 AAA* A +aD ato - )

+ | (A*A+al) ' A*A|

o1 (xg, 2 (A* A + o) a(x — )2)) H
+ H (A*A + ol a(xy — x)”
< Ko < — £ o — 11 + Ky lx2 — £ll1x0 — &1l + ¢ (@)
< (K1 + K)rollxg — &1 + ¢ (@)lv]
= (Ki+Kp) (5= 1) I = £l + 9@ 8)

The result now follows from (24), (26) and (28). This completes the proof of the theorem. O

Remark 3.3 If we use (A), instead of Assumptions 2.5 and 2.6, then by (25) we have

1Tyl < 23’&||xg — X|| and by (27) we have ||T'z|| < 25? ||x2 — x|+ ¢ () |lv]l. Hence in this

case we have

. 1
e = £l =~z d @Il
ot

provided 4Lrg + Lr < 2/a.
Using Theorems 2.8 and 3.2 we have the following theorem.

Remark 3.4 Similar result, as in Theorem 3.2 can be obtained, if we use Theorem 2.3 instead
of Theorem 2.8 in the above theorem.

Theorem 3.5 Let x,, be as in (5) and let the assumptions in Theorems 2.8 and 3.2 be satisfied.
Then we have

A

||x2+l,ot - X

1 )
<q"HF+ - (— + ||v||¢(a>) I
P4 K+ Ko — LK+ Ko) \ Ve
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Let
. —n 8
ns = min n:qa’ﬂ_ﬁ . (30)
Theorem 3.6 Let x,, be as in (5) and let the assumptions in Theorem 3.5 be satisfied. Let n
be as in (30). Then

—X

- )
}§C<ﬁ +¢<a>) 31)

~ = 1 ol
where C = max{r + - s - .
{ 1+K14+K2—5(2K1+K2) 1+K1+K2—%(2K1+K2)}

A Priori Choice of the Parameter

Let ¥ (A) := Ao~ 1(1),0 < A < |[F/(®)||%. Then for as = ¢~ (v ~1(8)) we have JL@ =
o(as), i.e., ag is the optimal choice for «. Hence we have the following.
Theorem 3.7 Let /(1) := A/~ ' (1) for 0 < A < ||F'(®)|12, and let the assumptions in

Theorem 3.6 holds. For § € (0, 8], let == as = ¢~ (W ~1(8)) and let ns be as in (30).
Then

=0y '¥).
Balancing Principle
Observe that the a priori choice of the parameter could be achieved only in the ideal situa-

tion when the function v is known. To overcome this difficulty Pereverzev and Schock [7]
considered the adaptive method in which the parameter @ = «; is chosen from the finite set

D:={0:0<ay <o <--<ay <1},

and corresponding elements xg’ s i=1,2,..., N are studied. Let

. n 8
ni =Mmingn: gy g <

Jai
and let xgi = xﬁi’ai. Then from Theorem 3.6, we have
N - 8 )
v — %[ < C(ﬁi +¢(ai)), Vi=1.2...N.

In this study the regularization parameter « from the set Dy defined by
DN = {()[l :/j,l(xo < l,l = 1,2,...N},

where g = 82 (see [10]) and u > 1.
Now we state the main result of this section, proof of which is similar to the proof of
Theorem 4.4 in [5].

8

Theorem 3.8 Suppose there existsi € {0, 1, ... N} such that ¢ (o;) < N Let assumptions
of Theorem 3.5 be satisfied and let
8
[ :=max {i: ) < N,
X{l ¢(o) < ﬁ} <
. . |8 B ~ 0
ki=max{i:Vj=12,...,i;|xy, —xg. | <4C—
i J \/(T/
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where C is as in Theorem 3.6. Thenl < k and

Ix, — &1 < 6Cuy ')

The choice of the regularization parameter in Theorem 3.8 involves the following steps:

e Choose o = 82
e Choose o := u¥ag, i =0,1,2,..., N with u > 1.

Algorithm

1. Seti =0.

2. Choose nj := min {n : Jaig" < §}.

3. Solve xf = xﬁ,-,a,- by using the iteration (5).

4. If ||xf — xj.|| > 46%,;‘ < i, then take k = i — 1 and return to x.
5. Elseseti =i+ 1 and go to 2.

Conclusion

In this study, presented convergence analysis of a modified Tikhonov gradient [8] type-method
for approximately solving the nonlinear ill-posed equations F(x) = y. The assumptions
used for the convergence analysis in Theorem 2.3 (we used only (A,) with an additional
assumption on the initial guess) is weaker than that of assumptions in [8].
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