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Short Papers

Automated Multi-Agent Search Using Centroidal Voronoi
Configuration

K. R. Guruprasad and Debasish Ghose

Abstract—This paper addresses the problem of automated multiagent
search in an unknown environment. Autonomous agents equipped with sen-
sors carry out a search operation in a search space, where the uncertainty,
or lack of information about the environment, is known a priori as an uncer-
tainty density distribution function. The agents are deployed in the search
space to maximize single step search effectiveness. The centroidal Voronoi
configuration, which achieves a locally optimal deployment, forms the basis
for the proposed sequential deploy and search strategy. It is shown that
with the proposed control law the agent trajectories converge in a globally
asymptotic manner to the centroidal Voronoi configuration. Simulation ex-
periments are provided to validate the strategy.

Note to Practitioners—In this paper, searching an unknown region to
gather information about it is modeled as a problem of using search as
a means of reducing information uncertainty about the region. Moreover,
multiple automated searchers or agents are used to carry out this operation
optimally. This problem has many applications in search and surveillance
operations using several autonomous UAVs or mobile robots. The concept
of agents converging to the centroid of their Voronoi cells, weighted with the
uncertainty density, is used to design a search strategy named as sequen-
tial deploy and search. Finally, the performance of the strategy is validated
using simulations.

Index Terms—Autonomous agents, cooperative systems, distributed con-
trol, multiagent search, Voronoi partitions.

I. INTRODUCTION

T HE PROBLEM of searching for targets in unknown environ-
ments has been addressed in the literature in the past. Various

search strategies available in the literature have been surveyed in [1].
These fundamental works were mostly theoretical in nature and were
applicable to a single agent searching for single or multiple, static
or moving, targets. Cooperative search by multiple agents has been
studied by various researchers [2]–[10] using concepts such as prede-
fined lanes or patterns, space filling curves, dynamic programming,
distributed learning, game and team theory. Some researchers have
associated the search space with an uncertainty density distribution
which is reduced when an agent performs search (e.g., [11]). Another
related concept is proposed by Cortes et al. [12], who use Voronoi
partitions to solve a spatially distributed optimal deployment problem
for multiagent systems. Centroidal Voronoi configuration is shown to
be a locally optimal deployment of sensors.

In this paper, a Voronoi partition approach is used to design a multia-
gent search strategy. Each agent acts within its Voronoi cell where it is
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most effective. The agents are deployed so as to maximize their search
effectiveness in each step when the search is performed. During search
operation, the uncertainty density, which represents the lack of infor-
mation, is reduced. Some preliminary results were earlier presented in
[13].

II. SEQUENTIAL DEPLOY AND SEARCH (SDS) STRATEGY

There are � agents performing search operation in an unknown en-
vironment. The search space � � � is a convex polytope in �-di-
mensional Euclidean space. The lack of information is modeled as an
uncertainty density distribution � � � �� ��� ��. The configuration of
agents at any given time � is � ��� � ������� ������ 	 	 	 � ������ � �� ,
with �� �� �� , whenever 	 �� 
, where ����� is the position of the 	th
agent at time �. Each sensor’s effectiveness is assumed to be a strictly
decreasing function of ��� � ��, which is the Euclidean distance be-
tween the sensor location �� and a point of interest � � �. The problem
addressed in this paper is that of deploying � agents in � to collect in-
formation, thereby reducing the uncertainty density distribution over
�.

After agents are deployed, they perform search to acquire informa-
tion about the search space and update the uncertainty density distri-
bution �. The entire procedure of deploy and search continues until
the density distribution at every point in the search space is below a
threshold limit.

After deployment, the sensors gather information about �, reducing
the uncertainty density according to

������� � �����
��
�
������ � ���	 (1)

where ����� is the uncertainty density at the 
th deploy and search
step; � � �� ��� �� is a strictly increasing function of the Euclidean
distance from the agent, and acts as a factor of reduction in uncertainty
by the sensors. At a given � � �, only the agent with the smallest
����� � ���, that is, the agent which can reduce the uncertainty by
the largest amount performs search. If all the agents search within their
Voronoi cells, then evaluating 
��������� � ���	 in (1) is equivalent
to evaluating ���������, with �� � ��, the Voronoi cell corresponding
to the 	th agent. Note that 
 represents the number of deploy and search
instances, and not time. Here, �� � ����� is the position of the 	th agent
at the time instance � at the end of the 
th deployment step.

A. Objective Function

The deployment of the agents in � should maximize the reduction
in uncertainty � in any given iteration. Thus, the following objective
function is maximized:


� �
�


��������
�

������� �������

�

�

� �

�������� ����� � ������� (2)

The gradient of the objective function
� with respect to �� is given
by (using generalized Leibniz Theorem [14])

�
�

���
�

�

�����
�

���
��� �������� (3)

where �� � ��� � ��. Note that the gradient given by (3) is spatially
distributed over the Delaunay graph �� , where two agents 	 and 
 are
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Fig. 1. (a) Agent trajectories during the first deployment step and the final Voronoi partition. (b) Agent trajectories for a complete search operation. (c) Trajectory
of Agent 2 is shown to follow the centroid. (d) The reduction in average uncertainty density with time steps.

considered neighbors if and only if �� � �� �� �. In the following, we
use � instead of �� for simplicity. The gradient (3) can be rewritten as

���

���
��

�

����
��

����
��

��� � ���	

� �
�

�������� � ���	 � � �
� ��� � ��� � (4)

where ���� � �� ���� and ����� � ��������
����
��, which can be

interpreted as the density modified or perceived by the sensor. Here,
the chain rule ��
��� � ��
����� � � ���

�

� �
��� has been used, and
����� �
��� � ���� � ��. Now, � being a strictly decreasing function,
����� is always non-negative. Hence, �
� and ��� can be interpreted as
the mass and centroid of the cell �� with �� as density. Thus, the critical
points are �� � ��� , and such a configuration � of agents is called a
centroidal Voronoi configuration. Note that ��� depends on � , and so
�� � ��� �� �� ��, is a fixed point.

The objective function (2) is similar to that used in [12], which uses
Voronoi partitions to formulate a multi-center objective function to
maximize the coverage by multiple mobile sensors. A density function
� represents the probability of occurrence of an event of interest and a
function � of the Euclidean distance provides a quantitative assessment

of the sensing performance. Motivated by their approach, a multiagent
search problem using Voronoi partitions is formulated in this paper
where the objective is to maximize the search effectiveness. Though
the form of the objective function remains the same, there are a few im-
portant differences in the formulation. The interpretation of � and � are
not the same as in [12]. The lack of information is modeled as an uncer-
tainty density � and � represents the sensor effectiveness. A centroidal
Voronoi configuration is obtained as a local optimal configuration in
each step of deploy and search operation, for any � which is strictly
decreasing and continuously differentiable (unlike ���� � ����� ���

in [12]), with a density modified/perceived by the sensor given by �����
(unlike with density � in [12]). Finally, as mentioned earlier, this paper
addresses a problem of multiagent deploy and search operation and
subsequent information uncertainty reduction rather than a problem of
optimal sensor coverage.

B. The Control Law

Consider the agent dynamics and control law as

������ ������ (5)

����� � � ������������ ��� ����� (6)
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The control law (6) makes the agents move toward ��� for positive
control gain �����.

Theorem 1: The trajectories of the agents governed by the control
law (6), starting from any initial condition � ��� � �� , will asymp-
totically converge to the critical points of ��.

Proof: LaSalle’s invariance principle [15] is used here. Consider
� �� � � ���

�� �� � � �
���

��
� �

�

�

���

�	�
�	�

� � �����

�

�

�
� ��	� � ��� ��
�
� (7)

Suppose the �th agent is located on ��, the boundary of �, at some
time �. Let
 � ����� be a part of the bounding hyperplane common
to �� and ��, containing 	�. Let �� be unit outward normal to 
. From
(5) and (6), we have

�	� � � ������	����� ��� ����

�
�����


� �

�������� 	����� (8)

The inner product of �	� with �� is given by

�� � �	� � �����
�

������� � �� � 	����

�
�������

� (9)

The quantity �� � �� � 	�� � �� �� � �� (equality holds only for
� � 
), and hence, �� � �	� � �. That is, �	� points toward �	
���, the
interior of �, or is tangential to ��. Further, suppose hyperplanes 
� ,
� � 	�� � � � �

 form an edge or a corner, and 	� � �	���
� . Then,
�	 � ��� � �� �� � 	�� � � � �

, where ��� is the outward normal to

� . Thus, � is invariant under (8) (see [16, Th. 3.1]). The result also
follows as ��� � ��. For another alternative proof, see [17, Lemma
2.8], which can be modified to suit the situation.

Observe that � 
 � �� is continuously differentiable in � as
the Voronoi partition 	��
 depends at least continuously on � (note
that 	� 
� 	� , whenever � 
� �); � is a compact invariant set; �� is
negative definite in �; � � �� ����� � 	� � ��� �� � � 	�� ��
, which
itself is the largest invariant subset by the control law (6). Thus, by
LaSalle’s invariance principle, the trajectories of the agents governed
by control law (6), starting from any initial configuration � ��� � �� ,
will asymptotically converge to the set�, the critical points of��, that
is, the centroidal Voronoi configuration with respect to the density as
perceived by the sensors.

Note that unlike Lyapunov stability principle, in LaSalle’s invariance
principle, the function � need not be positive definite (see the remark
on Theorem 3.8 in [15, pp. 90–91]).

The control law (6) and the SDS strategy are spatially distributed
over the Delaunay graph �
 .

The centroid is computed based on the density information. The
Voronoi partition is updated and the centroids are recomputed as the
agents move. At the end of a deployment step, the control law (6) en-
sures that each agent is at (or sufficiently close to) the centroid of the
corresponding Voronoi cell.

C. Some Practical Considerations

To implement the control law, the centroid of each Voronoi cell needs
to be computed. The computational overhead of obtaining the centroid
can be reduced at the cost of slower convergence using methods such
as random sampling and stochastic approximation [18], [19]. In this
work, the search space is discretized into grids while implementing the
strategy. This simplifies the computation of centroids of the Voronoi

cells. However, issues such as computational complexity are beyond
the scope of this paper.

No constraints on the agent speed and limit on sensor range in the
problem formulation have been considered. However, the control law
can be modified to account for constant speed or maximum speed limit.
In the case of limited sensor range, the entire space � may not be
accessible to the agents, and each agent can perform search within
�� � ���	����, where ���	���� is the closed ball of radius �, rep-
resenting the sensor range, centered at 	�. The objective function can
be modified to account for the limited sensor range. However, it would
not be possible to ensure that SDS strategy successfully reduces the
average uncertainty density to any arbitrary value in finite time. The
details of the analysis under these constraints are not given here due
to lack of space. However, in the simulation experiments carried out to
validate the proposed search strategy, saturation on the agent speed has
been considered.

Synchronization and spatial distribution are important issues in de-
centralized schemes such as the search strategy presented in this paper.
It is assumed that initial uncertainty density is known a priori to all
the agents. It can be seen that SDS strategy is spatially distributed
over the Delaunay graph �� . This implies that the agents do computa-
tions based only on information about positions of neighbors. Also, the
agents should have access to the updated uncertainty map within their
Voronoi cells. This can be achieved in several ways. One such way
is that all the agents should communicate with a central information
provider. However, it is not necessary to have this global information.
Each agent � can communicate with its neighbors in the Delaunay graph
�� ������� and obtain the updated uncertainty information in a region
�� �����. As the Voronoi partition 	��
 depends at least continuously
on � in an evolving Delaunay graph, communication between neigh-
bors is sufficient for each agent to obtain the uncertainty value within
its Voronoi cell. Issues related to communication of uncertainty infor-
mation are not addressed in the paper except to assume that uncertainty
information is available to the agents.

Theoretically, all the agents reach the respective centroid at infinite
time. However, in a practical implementation, the agents are required to
be sufficiently close (where closeness is suitably defined) to the respec-
tive centroids before starting search operation. Agents need to come to
a consensus as to when to end deployment and perform search. In a
practical situation, synchronization can be attained by agents commu-
nicating a flag bit indicating if an agent has reached its centroid or not.
When all the agents have reached their respective centroids within a
tolerance distance, search is performed. It is also assumed that sensing
and communication are instantaneous. In simulation tests, given in the
next section, it is assumed that such communication links exist. Since
the objective of this work is to evaluate the effectiveness of the search
strategy, assumptions are made that simplify implementation without
affecting search effectiveness. The strategy is implemented in a single
centralized program using MATLAB. Further, in [12], the authors pro-
vide an asynchronous implementation for coverage control which can
also be modified for SDS.

It can be shown that the SDS strategy can reduce the average un-
certainty to any arbitrarily small value in finite time. This result does
not depend on the control law, but depends only on the choice of the
updating function (1), along with the fact that there is no sensor range
limitation, and that the search space � is bounded. In addition, it does
not address the issue of optimality of agent trajectories which, in fact,
depends on the control law which decides the motion of the agents. We
do not provide bounds on the time required for reduction of average
uncertainty density below a specified value. However, the reduction in
uncertainty in each step in SDS is given by

��� �
� �

�������� ��� � ������� (10)
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III. SIMULATION RESULTS AND DISCUSSIONS

The results of some of the simulation tests carried out to illustrate
and validate the SDS strategy are presented here. A single step of de-
ployment and search operation is referred to as one step or iteration.
The parameters used are the following: � is a 10� 10 (distance units)
square area in �. Initial uncertainty density is a constant distribution of
0.75 over �. A maximum speed for agents was fixed at 1 (speed unit).
The controller gain ����� � ���. An exponential function ���� �

�� ����� , with � � ��� and � � ��� was used. The iterations were
terminated when the maximum density over � goes below 0.05. A dis-
crete implementation of the control law (6) is used with time period of
1 (time unit).

Fig. 1(a) shows trajectories of 5 agents during a single deployment
step of the proposed SDS strategy. The agents are deployed to the op-
timal configuration without executing search, and hence there is no
change in the uncertainty density. The Voronoi partition changes as
the agents move. The initial positions of the agents are shown by “�”,
the intermediate positions by dots, and the final positions by “o”s. The
Voronoi partition for the agent configuration at the end of the deploy-
ment step is also shown, with “*” indicating the centroids. It can be
observed that the final position of each agent is sufficiently close to the
corresponding centroid.

In another example, five agents performing search using SDS
strategy is considered. Fig. 1(b) shows the trajectories of agents until
the maximum uncertainty density is reduced to a value below 0.05.
The initial location of the agents are indicated by “�”, and the points
at which search is performed by “o”. It can be observed that in this
case eight deployment steps were required to reduce the uncertainty
below the desired value. Points marked �

�

� along the trajectory refer
to location of the centroid of the Voronoi cell corresponding to Agent
1 in the 	th step. These are the points where search was performed
by Agent 1. Although there are eight “deploy and search” steps in
SDS, only five “o”s are visible along each agent’s trajectory. This
is because multiple searches have been performed at the second and
third “o” since the centroids in successive steps were closer than a
preset tolerance limit, and there was no movement of the agents in
those deployment steps.

Fig. 1(c) shows the trajectory of Agent 2 moving toward the centroid
corresponding to its Voronoi cell. Positions of Agent 2 are marked with
“�”, while “o” marks the centroids at successive time instances. Posi-
tions of Agent 2 in the first two time steps are marked as 1 and 2, while
the centroids are marked as 1’ and 2’. The agent tracks the changing
centroid. Deployment stops and search is performed when the agent is
sufficiently close to the corresponding centroid. One of the search in-
stances is also marked, where, after search, in order to track the next
centroid, Agent 2 takes an abrupt turn. This leads to non-smooth tra-
jectories.

Fig. 1(d) illustrates the reduction in uncertainty density with the
number of time steps. The uncertainty density remains constant during
the process of deployment, between two consecutive searches. When-
ever search is performed, the uncertainty density is reduced.

It is interesting that although the Voronoi partition-based strategy
proposed in this paper is computationally complex, it results in col-
lision free trajectories in a natural way, whereas non-Voronoi-based
search strategies need additional collision avoidance schemes and re-
quire additional computations.

IV. CONCLUSION

The problem of multiagent search in an unknown environment is
addressed in this paper. The lack of information in the search space
was modeled as an uncertainty density distribution and a multiagent
search strategy, namely, sequential deploy and search was proposed. It

was shown that the centroidal Voronoi configuration with respect to the
density as perceived by the sensors is a locally optimal configuration
of the agents maximizing single step search effectiveness. A control
law was proposed, which makes the agents move toward the respec-
tive centroids and the corresponding agent trajectories were shown to
globally asymptotically converge to the centroidal Voronoi deployment
configuration. The simulation results show the performance of the SDS
strategy.
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