
1 23

Information Systems Frontiers
A Journal of Research and Innovation

ISSN 1387-3326
Volume 21
Number 1

Inf Syst Front (2019) 21:175-189
DOI 10.1007/s10796-017-9738-2

Discovering composable web services
using functional semantics and service
dependencies based on natural language
requests

Sowmya Kamath S & Ananthanarayana
V. S.

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

DOI 10.1007/s10796-017-9738-2

Discovering composable web services using functional
semantics and service dependencies based on natural
language requests

Sowmya Kamath S1 ·Ananthanarayana V. S.1

© Springer Science+Business Media New York 2017

Abstract The processes of service discovery, selection and
composition are crucial tasks in web service based applica-
tion development. Most web service-driven applications are
complex and are composed of more than one service, so, it
becomes important for application designers to identify the
best service to perform the next task in the intended applica-
tion’s workflow. In this paper, a framework for discovering
composable service sets as per user’s complex requirements
is proposed. The proposed approach uses natural language
processing and semantics based techniques to extract the
functional semantics of the service dataset and also to under-
stand user context. In case of simple queries, basic services
may be enough to satisfy the user request, however, in
case of complex queries, several basic services may have
to be identified to serve all the requirements, in the correct
sequence. For this, the service dependencies of all the ser-
vices are used for constructing a service interface graph for
finding suitable composable services. Experiments showed
that the proposed approach was effective towards finding
relevant services for simple & complex queries and achieved
an average accuracy rate of 75.09 % in finding correct
composable service templates.

Keywords Web service discovery · Service composition ·
Natural language processing · Semantics

� Sowmya Kamath S
sowmyakamath@nitk.ac.in

Ananthanarayana V. S.
anvs@nitk.ac.in

1 Department of Information Technology, National Institute
of Technology Karnataka, Surathkal, Mangalore, 575025, India

1 Introduction

Service orientation has played a very important role in the
development and deployment of distributed systems over
the Web. Web service technologies have fueled the devel-
opment of efficient web-based applications by facilitating
the integration and interoperability of heterogeneous sys-
tems owned by different organizations. As a result, mono-
lithic business application development has now yielded
way to loosely coupled, reusable large-scale enterprise sys-
tem development methodologies, based on the web service
paradigm (Truong and Dustdar 2009). This has further pro-
moted novel application development and reuse through the
use of existing services in various scenarios as per business
needs, thus minimizing cost and effort.

Given the tremendous potential that full service orien-
tation brings to businesses, there has been a proliferation
of published services on the Web. Due to this, there is a
need for automated approaches for improving tasks like
service discovery and selection for supporting novel appli-
cation development. Web Service discovery and selection
often becomes a bottleneck and considerable research effort
is currently concentrated on the problem of adding intelli-
gence and machine understanding to web service capabili-
ties to support automated on-the-fly discovery, matchmak-
ing and composition (Klusch et al. 2006).

Most existing works in the area of web service discovery
deal with the problem of identifying relevant basic services
for a given user requirement. Researchers have used various
approaches – keyword based search (Song et al. 2007; Wu
and Chang 2008), service broker based approaches (Almasri
and Mahmoud 2009; D’Mello et al. 2008), service tagging
(Fang et al. 2012; Li et al. 2014; Lin and Cheung 2014),
service classification (Yang and Zhou 2014; Varguez-Moo
et al. 2013) , semantics based search (Chan et al. 2011; Wu

Published online: 10 February 201

(2019) 21:175–1

7

Inf Syst Front 89

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-017-9738-2&domain=pdf
http://orcid.org/0000-0002-0888-7238
mailto:sowmyakamath@nitk.ac.in
mailto:anvs@nitk.ac.in

et al. 2008), domain ontology based matching (Benatallah
et al. 2005; Nayak and Lee 2007) etc, and have reported
good results. However, the fact remains that most web ser-
vice based applications are actually workflows that depend
on multiple, loosely coupled web services that are com-
posed in a predetermined sequence to provide the intended
functionality. For example, the ordering task on an e-
commerce site is actually a complex business process that
requires multiple tasks to be performed by different web
services in a well designed workflow (login service to
be invoked to ensure that user is logged in before order-
ing, inventory service to run in the background to check
if item is actually available before it can be added to the
shopping cart etc.), to ensure utmost consistency in auto-
mated order processing. Hence, any web service discovery
mechanism intended for application developers will be of
limited use, unless certain techniques to automatically or
semi-automatically recommend services that are suitable for
composition as per their complex requirements are incorpo-
rated. Due to large volume of published web services, the
demand for automated techniques to identify suitable com-
posable services for fast application development has also
increased.

The proposed methodology aims to discover relevant
web services for a given task, be it basic services or a set of
basic services (called a composable service set or compos-
ite service template) as per the user requirement. It is based
on effectively capturing the functional semantics and ser-
vice interface information of each service. This is used to
improve the accuracy in finding basic services if they sat-
isfy the query or possible compositions of available services
that may together meet the requirements if a basic service
alone is not satisfactory. Semantics based user query pro-
cessing is also applied to capture the service requirements
correctly and recommend relevant services for both simple
and complex queries. In summary, the main contributions
are -

– Designing an efficient semantics based service depen-
dency capturing mechanism, to identify the constituent
services of a valid composite service template.

– Demonstrating that the proposed mechanism correctly
determines the invocation sequence of constituent ser-
vices to satisfy given complex task requirements.

– Demonstrating that the proposed approach achieved
good accuracy while discovering composite service
templates, and the result generation time was satisfactory.

The paper is organized as follows. In Section 2, we
present a discussion on existing work in the domain of
basic and composite web service discovery. The pro-
posed methodology and processes are presented in detail
in Section 3 and the process of finding a composable

service set for serving complex user queries is described
in Section 4. Experimental results validating the approach
used and theoretical performance analysis of the proposed
technique are presented in Section 5, followed by con-
cluding remarks & potential directions for future work and
references.

2 Related work

Different approaches have been proposed for dealing with
the web service discovery problem to overcome the limi-
tations of keyword based matching and inefficient classi-
fication in UDDI registries. The public UDDI (Universal
Description, Discovery and Integration) Business Registries
were a major source of service advertisements, but were
shut down in 2006. Several approaches based on using con-
ventional search engines for discovering services on the
open Web were proposed by Song et al. (2007) and Wu
and Chang (2008). Extracting the functional information
available in a WSDL (Web Service Description Language)
document for use in various tasks like matchmaking and
compositions are also available in previously published lit-
erature (Steinmetz et al. 2009; Fang et al. 2012). Specialized
web service search engines like Woogle (Dong et al. 2004),
Seekda (Pedrinaci et al. 2010) and Service-finder (Della-
Valle et al. 2008) were developed, but none of these are
currently accessible.

Many researchers have focused on the problem of lack of
semantics in service descriptions and using inherent mean-
ing in the natural language terms in a service description
by applying natural language processing (NLP) techniques.
Some approaches used the concepts of vector space model
based indexing for extracting feature vectors from each ser-
vice (Chan et al. 2011; Hao et al. 2010; Elgazzar and et
al. 2010). Semantic techniques like Latent Semantic Index-
ing (LSI) and Probabilistic LSI were applied on WSDL
documents in order to extract the inherent semantics in a
service description for clustering and fast retrieval (Wu et
al. 2008; Ma et al. 2008). Sangers et al. (2013) applied NLP
techniques like lemmatization andWord Sense Disambigua-
tion (WSD) to enhance the syntactic service description for
optimizing the search process.

Peng and Wu (2010) proposed an improved semantic
web service discovery method, that treats the service dis-
covery problem as an assignment problem with functional
constraints. They used a three-step matchmaking process
– service library matchmaking, service matchmaking and
operation matchmaking (interface and concept) for this pur-
pose. Platzer and Dustdar (2005) developed a Vector Space
Search Engine to index descriptions of already composed
services. Each document is represented as a vector within a

176 (2019) 21:175–1Inf Syst Front 89

Author's personal copy

‘term space’ where each dimension is a keyword. The posi-
tion of this vector relative to others within the same vector
space gives their pair-wise similarity.

Very few researchers have addressed the problem of com-
posite service discovery. Brogi et al. (2005) proposed an
algorithm called Service Aggregation Matchmaking (SAM)
that indexes OWL-S (Web Ontology Language for Services)
process models of services in the repository as a tree struc-
ture. The authors claimed that, for a given query, it can
perform a fine-grained matching at the level of simple pro-
cesses, however, no experimental results were presented
for verifying the validity of their approach. Kuang et al.
(2007) proposed a method for indexing outputs of all UDDI
registered services, based on which a composition-oriented
service discovery algorithm helps in filtering out irrelevant
atomic services for a particular composition. Cuzzocrea and
Fisichella (2011) described a method for using graph-based
representation of composite OWL-S processes by consid-
ering both internal structure and component services. They
also proposed an algorithm that matches over such represen-
tations and computes their degree of matching based on the
similarity of the control flow.

Fethallah and Chikh (2013a) proposed an approach that
exploits the service interfaces and the domain ontology, in
order to index web services conceptually to determine rele-
vance to a particular query. Liang and Su (2005) proposed
an Graph Search Algorithm for discovering web services for
composition. They presented a formalization of web service
composition as a search problem by representing service
nodes as AND nodes and data nodes as OR nodes in a
graph. A graph traversal algorithm was used for searching
the graph to match most relevant service and data nodes.
Shiaa et al. (2008) proposed an incremental graph-based
approach to automatic service composition. Filtering and
reasoning is accomplished by validating the composition
candidates using goal-based expressions and the search is
based on breadth-first search algorithm, due to which the
algorithm is exponential in complexity.

Li et al. (2013) developed the MTNet Project, which
can be employed to assist developers’ analysis and for
the construction of the semantic models for Web services
as per previously described definitions. They first rede-
fined the corresponding state transitions by decomposing
them further into sub-transactions and semantic transactions
and are used to determine possible re-implementation of
specific Web services to develop new composite services.
Bianchini et al. (2015) applied data mining techniques to
service descriptions to infer patterns representing the ser-
vice’s functionalities. These are used for knowledge-based
querying and recommendation via a system call W-DREAM
(Web services DiscoveRy via intEnsionAl knowledge
Mining).

Feng et al. (2013) proposed a multi-granularity service
composition technique that considers QoS that can recom-
mend alternate and better component Web services when a
new composition plan is generated. They used a behavioral
signature model to capture the interface details of services,
and proposed that two service composition plans are chore-
ography equivalent if they conform to the same behavioral
signature model. Rong et al. (2015) considered the fact
that a service composition pattern can be significant hint
for service selection, and used a service profiling mech-
anism to improve ranking and recommendation. Earlier
service composition patterns are inferred via collaborative
filtering based on similar set of users, using which a ser-
vice re-ranking mechanism is employed for personalized
recommendation.

In our proposed approach, we focus on using the inherent
functional semantics of real-world web services for finding
relevant services for a given query during service retrieval.
The extracted information is enhanced using semantics
based approaches and NLP techniques to generate addi-
tional metadata for each service in the form of weighted
feature vectors. User requirements are obtained through a
natural language querying interface and query analysis tech-
niques are used to detect any subqueries in user request,
that cannot be served by basic services only. During search,
basic services are recommended if they satisfy the query,
if not, possible compositions of available services that may
together meet the requirements are retrieved, if found.

3 Proposed system

In this section, the proposed approach for automatic service
discovery and the major processes in the proposed method-
ology are is discussed in detail. Figure 1 depicts the phases
in the proposed framework. The major components are -
Service processing module, Query processing module and
the Service discovey engine.

3.1 Service processing module

To capture the service’s functional semantics and also the
input/output service dependencies correctly, the OWL-S
description of a service is used in the proposed framework.
OWL-S semantically describes the syntactic descriptions
of the services using ontologies. Each OWL-S file con-
sists of three sub-ontologies, profile, process and grounding,
of which the profile model provides information on the
capabilities of a service (service name, input/output names,
natural language description, service provider details etc).
Hence, the OWL-S profile model is helpful in capturing
essential data about a web service while recommending

(2019) 21:175–1Inf Syst Front 89 177

Author's personal copy

Fig. 1 Proposed methodology

relevant ones to satisfy user queries and so, such details
are extracted from the OWL-S profile and used for the
conceptual indexation of dataset services.

The dataset used for the experiments is the OWL-S
TC 4 collection.1 It contains 1076 real world web ser-
vice descriptions (WSDLs) from different domains like
communication, education, economy, medical, travel etc.,
and their corresponding OWL-S files. The OWL-S profile
model has a set of elements named <profile:hasInput>,
<profile:hasOutput> and <profile:textDescription>. A
sample OWL-S profile model defining the interfaces of its
corresponding web services has been shown in Fig. 2.

OWL-S parsing The profile model of each service in the
dataset is first captured while parsing the OWL-S file. These
elements are extracted and are processed further to extract
information that will be used to index the web services
conceptually. To extract the information, we developed an
OWL-S Document Parser that parses each file and extracts
the required elements.

Element extraction and term generation The ele-
ments <profile:hasInput>, <profile:hasOutput> and

1OWL-S Service Retrieval Test Collection version 4, Available online
http://projects.semwebcentral.org/projects/owls-tc/

<profile:textDescription> extracted from the profile con-
tain natural language phrases (as seen in Fig. 2). These
phrases are extracted and further processed for obtaining the
functional semantics and context of the service. For each of
the phrases extracted, the natural language names are first
split into tokens. These element names are mostly a combi-
nation of natural language words, as most service designers
follow standard programming conventions and good naming
practices like camel-casing, pascal-casing & underscores to
ensure maintainability while naming such service elements.
For example, the <profile:hasInput> element of the sample
OWL-S shown in Fig. 2 is ‘# PUBLICATION-NUMBER’,
which after splitting (using underscore and dash) and spe-
cial character removal (#, , % signs), results in a term list of
‘publication’, ‘number’. Similarly, terms are extracted from
the <profile:hasOutput> & <profile:textDescription> and
are added to the term list. Table 1 summarizes the rules
followed for obtaining terms from natural language element
names and phrases for generating the feature vector.

After all the term tokens are extracted, any stop words
(like ‘get’, ‘the’, ‘or’, ‘is’ etc., that do not contribute to the
semantics of a service) are filtered out. In addition to this,
words used commonly in web services domain, referred
to as function words (for e.g. ‘service’, ‘input’, ‘output’,
‘request’, ‘response’, ‘process’ etc) are also filtered as they
contribute very little to the context of a service with respect

(2019) 21:175–1Inf Syst Front 89178

Author's personal copy

http://projects.semwebcentral.org/projects/owls-tc/

Fig. 2 Profile model of a
sample OWL-S document

to a query. Finally, the remaining terms are stemmed to their
root form and are added to the OWL-S document’s feature
list. The process is repeated for all OWL-S documents in the
dataset.

Term weighting The terms obtained for each OWL-S file
may range from 30 - 50 terms, all of which cannot be part
of that service’s feature vector. Since all the features in the
generated vector cannot have equal importance for a partic-
ular service, a term weighting scheme or a suitable feature
selection technique should be applied. To rank the term can-
didates and choose the top few as the feature vector for a
service, an integrated approach was used to generate a rank-
ing for the terms, using a term weighting method called
Tf-idf (term frequency-inverse document frequency), which
is used to compute the importance of a particular term in a
given service when compared to other services in a corpus.
Tf-idf is given by -

Tf − idf = (0.5 + tf

tfmax

) · log(0.5 + D

df
) (1)

where tf is the frequency of term t in the given OWL-S
document d; tfmax is the highest frequency of any term in
the OWL-S document d, df is the frequency of occurrence
of the term t in other OWL-S documents and D is the total
number of OWL-S documents in the dataset. Using Eq. 1, a
sorted list of Tf-idf values for each OWL-S term is built and
the top 5 terms are added to its feature vector. This feature
vector effectively represents the relative importance of each
term word in the service document, with respect to all the
other documents in the dataset.

Adding synsets and word senses Next, each of the terms
is searched in WordNet using Python NLTK packages to
extract the related upper concepts like hyponym/hypernyms.

These concepts are utilized to determine the category of the
web services to be searched. NLTK provides several path
similarity computation algorithms like Leacock-Chodorow
Similarity, Wu-Palmer Similarity etc, that use WordNet path
hierarchy concepts to extract the root concepts of the con-
cept hierarchy that have the terms as its leaf nodes. Once
obtained, the WordNet synsets (synonyms) of each of the
terms are extracted.

Now, the problem is that each of these terms may
have multiple word senses, based on possible English lan-
guage usage. Also, the overall functionality of a web ser-
vice is typically described in natural language within the
<profile:textDescription> element in the profile model.
This is intended for the use of human readers to understand
the capabilities of the service. However, the terms used
by the service designer in the service’s natural language
description may sometimes be ambiguous, for example, a
term ‘book’may be meant as a verb or a noun, thus affecting
the accuracy if the user expectation was different.

To capture context correctly, a simple word sense disam-
biguation algorithm called JCN Similarity algorithm (Jiang
and Conrath 1997) was applied to choose the right mean-
ings of each of the words obtained from the profile model.
JCN Algorithm captures the semantic relatedness between
word senses in a phrase as per the Jiang-Conrath Similar-
ity metric. It returns a score denoting how similar two word
senses are, based on the Information Content (IC) of the
Least Common Subsumer (most specific ancestor node) and
that of the two input Synsets. The score is used to choose the
most relevant word sense for each subquery term, in context
with the rest of the POS tagged query, and is calculated as
per below.

Score = 1

(IC(s1) + IC(s2) − 2 ∗ IC(lcs))
(2)

Table 1 Term vector
generation process - Examples Element name Splitting Rule(s) Initial terms Final terms

filmAction pascal-casing film, action film, action

BookAuthor camel-casing book, author book, author

latitude1 suffix number elimination latitude, 1 latitude

ISBN number underscore operator isbn, number isbn, number

SMStoIndiaRequest Contiguous capital letters;
Pascal casing

sms, to, india, request sms, india

getFamily-roomPrice Pascal-casing; Dash operator get, family, room, price family, room, price

(2019) 21:175–1Inf Syst Front 89 179

Author's personal copy

where, IC(s1) and IC(s2) are the information content of
the two word senses, and IC(lcs) is the information content
of their Least Common Subsumer. This score is recursively
calculated for all the word senses obtained from WordNet
for each SR term. The sense with the highest score is cho-
sen as the most relevant word sense for each subquery term,
in context with the rest of the subquery. This is the query
expansion phase, giving the final SR, as below.

Feature vector generation Finally, a service feature vec-
tor sk is created to represent each OWL-S in vector space.
Vector sk contains the final terms obtained from the profile
model elements considered, after all semantic processed are
complete. This procedure is repeated for all OWL-S files
in the dataset, at the end of which, an indexed dataset that
contains the vector representation of every OWL-S docu-
ment is obtained. Each OWL-S document is indexed by its
corresponding set of top 5 terms and identified senses of
each.

3.2 Query processing module

To understand user’s context and display relevant results,
it is necessary to analyze the meaning and structure of
the query text entered by the user. It is also necessary to
determine if any subqueries are present that may require a
composite service set to serve the query. The query analysis
process is composed of several preprocessing tasks as below

Subquery identification Once the user query is submitted,
it has to be analyzed to ‘understand’ the desired output and
to determine if any subqueries are present. Firstly, the query
is part-of-speech (POS) tagged using the Stanford POS tag-
ger. In the POS tagged query, terms tagged as /CC are
basically the Coordinating conjunctions in the text. Coordi-
nating conjunctions connect words, phrases & clauses and
are made up of seven different words – ‘and’, ‘or’, ‘but’,
‘for’, ‘nor’, ‘yet’ and ‘so’. At present, only two coordinat-
ing conjunctions, ‘and’ & ‘or’, have been considered in the
input query to determine if any subqueries exist.

AND/OR condition processing In the proposed approach,
if the ‘and’/‘or’ coordinating conjunctions are found, then
the query is treated as a complex query. Whenever an
‘and’/‘or’ is found, each part is processed as an independent
query, which helps in determining each individual set of ser-
vices that form a part of the composite candidate set that can
serve the complex user request. For example, if the submit-
ted query is “book hotel or resort and hire taxi”, then, the
tagged query is as shown below:

book/NN hotel/NN or/CC
resort/VB and/CC
hire/VB taxi/NN

Determining set of subqueries In the discussed example,
the input query is composed of three subqueries, where the
user wants services that find hotel or resort in London, and
then to hire a car. After AND/OR condition processing,
the user request is split into three subqueries “book hotel”;
“book resort” and “hire taxi”. This request is treated as
a complex request and each query is run independently at
first and then the results are put together as per its logical
representation of ((SQ1 ∨ SQ2) ∧ SQ3). In case of the
‘or’ condition, the service which has the highest similarity
value with the subquery vector is chosen, then the top most
service(s) are added to the service(s) found for the ‘and’
condition, and displayed as the best composable service set
(illustrated in Fig. 3). This process is described in detail in
section IV.

Stopword removal & stemming In this phase, stop words,
excluding the coordinating conjunctions, if any, are filtered
out from each subquery. Next, stemming is performed for
each term in each subquery to take care of the different
forms of a natural language word so they can be analyzed as
a single item. Examples are term occurrences like ‘books’,
‘booking’, ‘booked’ etc which are different forms of ‘book’.

Query expansion Each subquery will be processed inde-
pendently and parallely. The WordNet synsets of each final
subquery term are retrieved to capture the synonyms and
added to the subquery feature vector. To capture user context
correctly, the JCN Similarity algorithm (Jiang and Conrath
1997) is again used to choose the right meanings of each
of the words in the subquery, which returns a score denot-
ing how similar the word senses of the two input synsets
are, similar to how the process was carried out for service
descriptions. The score is used to choose the most relevant
word sense for each subquery term.

Query feature vector generation For each subquery, the
terms, their synsets and the identified senses together form
its feature vector Vsqt This represents each subquery in the
vector space similar to the OWL-S documents, which allows
vector operations like dot product and cosine similarity to be
performed to determine level of similarity between service
and query components.

3.3 Similarity computation

The proposed system is a web service discovery frame-
work for both basic and composite web services as per
query requirements. As both the services and the query
are represented in vector space, vector operations like dot
product can be performed to determine the angle between
each vector, based on which a similarity value can be com-
puted. To compute similarity between potentially relevant

(2019) 21:175–1Inf Syst Front 89180

Author's personal copy

Fig. 3 Equivalent abstract
workflow for a sample complex
query

services and the query during the web service search pro-
cess, the Cosine Similarity Measure is used. After the query
vector generation, the Cosine Similarity as given by the
Eq. 3 is computed between each subquery vector and ser-
vice input/output vector, in order to determine potentially
relevant services that serve the user’s requirements.

cos θ(VoutSi
,VinSk

) = VoutSi
· VinSk

‖VoutSi
‖‖VinSk

‖

=
∑n

j=1(wj,i .wj,k)
√∑n

j=1 w2
j,i .

√∑n
j=1 w2

j,k

(3)

where,
wj,i represents the relative weight of the output vector

terms of service Si ,
wj,k represents the relative weight of the input vector

terms of another service Sk .

3.4 Service matchmaking and ranking

Using the Eq. 3, the level of matching between the query
and services in the dataset is to be calculated next. In case
of a simple query, the cosine value between the query vector
and the service dataset is found and thereafter, the similar-
ity values are sorted from the greatest to the least and all
matching services that have a similarity value greater than a
given threshold are returned as a ranked list. The threshold
value is currently set at 0.75 (range 0 to 1). In the case of a
complex query, the service request has to be first processed
(as described in Section 3, subsection B), to determine the
constituent sub-queries and their respective feature vectors.
After this, the service matching process takes place using a
technique called the Service Interface Graph (SIG) which

aims to capture each service’s input/output dependencies.
The process is described in detail in section IV.

4 Finding a composable service set

Very often, a single service may not be able to satisfy user’s
query completely, especially in a case of a complex query. In
such cases, several different services that can work together
in a given sequence, to provide the intended functional-
ity may be need to be discovered. Based on this discovery,
the user would be able to develop applications that make
use of several basic services. Such a service set is called
a composite service template or a composable service set.
Discovering composite service templates is a process that
has certain requirements like -

– searching for suitable web services that can together
satisfy the user requirements.

– determining the sequence in which these different web
services are to be placed to yield the desired output.

– capturing the service dependencies and data formats of
each service such that, the output of the preceding ser-
vice in the sequence matches the input format expected
by the next service in the sequence.

Several solutions to capturing service dependencies for
service composition problem have been proposed that are
based on techniques like petrinets (Hamadi and Benatal-
lah 2003), graph theory (Oh et al. 2005; Hashemian and
Mavaddat 2005) and BPEL4WS (Business Process Execu-
tion Language for Web Services) (Wohed et al. 2003). We
propose a methodology based on automatic construction of
a Service Interface Graph to extract the service dependen-
cies and data formats of each service, while searching for

(2019) 21:175–1Inf Syst Front 89 181

Author's personal copy

multiple web services that can be composed together to
serve to user’s needs.

4.1 Constructing the service interface graph

The proposed technique, the SIG, is a directed acyclic graph
(DAG) that is constructed to model services and the relation

between their interfaces. Each node in this graph repre-
sents a web service. A node can have several incoming and
outgoing edges. An edge from node ‘Ni’ to node ‘Nj ’ sig-
nifies that the output of a service ‘Ni’ is similar to the input
accepted by service ‘Nj ’ i.e., service ‘Ni’ and ‘Nj ’ can be
chained together in order. Algorithm 1 depicts the process
of constructing the service interface graph.

To construct the graph, the input and output vectors of all
the OWL-S services in the dataset are used. Then, match-
making is performed between the output of each service to
the input of every other service i.e., the cosine similarity
between the output vector of first service and input vector of
second service is determined. If the similarity is found to be
greater than a pre-determined cutoff, then the two services
are connected via a directed edge from the first service to
the second.

After the addition of each edge, the graph is checked for
cycles. If any cycles are found to exist in the graph, then
the recently added edge is discarded. The main objective
is to model services such that composite service discovery
problem can be treated as a simple graph traversal problem.
Thus, it is essential to have an acyclic graph. The similar-
ity cutoff for adding edges is currently fixed at 0.75. A high
value is chosen to ensure that there is an almost perfect
match between the interfaces. Once constructed, the DAG
of services and their interface dependency is stored in the
memory using its adjacency list representation. Graph con-
struction takes place only once when the server is started for
the first time. Once the graph is constructed, it has to be tra-
versed for each complex query. The graph resides in main
memory and the same graph is used for each query. Within
the graph, each node contains -

– Service Name or Service Identifier.
– Vector representation of service interfaces - input and

output.

– A list of nodes to which the current node has an
outgoing edge.

4.2 Serving complex queries

Whenever a user submits a request to the system, the first
step is to process the query to determine if it is a sim-
ple or a complex query. For a simple query, there are no
‘and’/‘or’ keywords, so the cosine similarity value between
query feature vector and output vectors of all services is
recursively computed, then services are sorted by their
cos–sim values and all services with similarity above a
threshold of 0.75 are displayed to the user. In the case of
a complex query, the DAG has to be traversed based on
the subquery components. Three different types of queries
were identified based on the occurrence of ‘and’ & ‘or’ -
sequence (only ‘and’ in the complex query), choice (only
‘or’ in the complex query) and mixed (both ‘and’ and
or can occur). Algorithm 2 depicts the process of execut-
ing complex queries using the constructed service interface
graph.

Firstly, it is assumed that the user specifies what is
wanted (i.e. the output). Therefore, the terms obtained for
each subquery are considered as part of its output vec-
tor. For a complex query, each subquery is processed and
their feature vectors are generated. For the first subquery,
cosine similarity is computed between subquery vector and
the output vectors of all services and the top-10 services

(2019) 21:175–1Inf Syst Front 89182

Author's personal copy

with best similarity scores are identified. This gives the
top-10 start-points for finding all potential composable ser-
vice sets, for the rest of the subqueries. This is considered
as the first level of services that satisfy a part of the user
request.

For the next subquery, each of the first level services’ out-
puts are considered as inputs. So, for each of these inputs,
the graph is traversed using the well known Depth First
Search (DFS) Algorithm starting from the input service
as source. For every node visited, the similarity between
the node’s output vector and corresponding subquery vec-
tor is determined and the node with best output vector is
selected. This process is continued for all the subqueries in
the user request. Finally, the path between the correspond-
ing source node and the node with best output yields the
composite service template for the corresponding source
service. After all iterations, all possible composite service
templates are obtained. These are ranked by their aggre-
gated path cos-sim values, and the ranked list of generated
composite service templates is returned to the user. To opti-
mize the result generation time when a complex query is
received, the graph is traversed a predefined number of
times (currently set to 10), for each possible source node, in
parallel.

5 Experimental results and analysis

In this section, a discussion on the theoretical and experi-
mental evaluation of the proposed approaches for discover-
ing composable service set using functional semantics and
service dependencies is presented. The proposed framework
is primarily a web service search system where users can

submit natural language queries and get recommendations
on relevant basic services that satisfy the request or get
more information on a set of basic services that may
together be able to accomplish the goal. Hence, the per-
formance of the system for various query classes using
appropriate metrics is summarized in Section 5.1. The accu-
racy of the composition service templates generated by
the system is presented in Section 5.2 and the theoreti-
cal analysis of the system’s performance is discussed in
Section 5.3.

5.1 Web service retrieval

To evaluate the web service retrieval performance of the pro-
posed method, several experiments using different classes
of queries were performed by varying the number of OWL-
S documents taken from the OWL-S TC 4 dataset which
provides a collection of 1076 web service descriptions from
different domains like - Communication (58), Economy
(359), Education (285), Food (34), Geography (60), Medical
(73), Simulation (16), Travel (165) and Weapon (40). The
experiments were carried out on a Intel� Core i7TM Quad-
Core Workstation with 16GB DDR3 SDRAM and 1TB hard
drive.

To evaluate the service discovery process, experiments
were conducted using various types of queries as listed in
Table 2. Since the quality of returned results as well as
the time taken for generating the results may vary with
the size of the dataset, each experiment is conducted for
different number of OWL-S documents. For each test,
simple queries basically can be satisfied by finding rele-
vant basic services, while the complex queries (sequence,
choice and heterogeneous) can be satisfied only by a set

(2019) 21:175–1Inf Syst Front 89 183

Author's personal copy

Table 2 Experimental setup and sample queries used for different testcases

Case No. of Service Complex A Sample Query

No. services Domains Query Type

1 100 Medical(60) sequence treatment and hospital room availability

Geography(40) choice clinic or hospital address

mixed clinic or hospital in city and distance from address

2 300 Education(300) sequence degree and research funding offers

choice research funding or job opportunity in city

mixed scholarship or research funding and parttime job in city

3 500 Travel(165) sequence hotel in city and car hire

Geography(60) choice sports or adventure activity near address

Economy(275) mixed sports events and weather in city or country

4 1076 All domains sequence weather and sunrise time in city

choice address of bank or ATMs in city

mixed price and genre of book for given title or isbn

of basic services, composed in the right order as per their
input/output dependencies. The number of OWL-S docu-
ments considered for the various testcases were 100, 300,
500 and 1076. For each testcase, both simple and all com-
plex queries were submitted to the system to evaluate the
performance for varied dataset sizes.

Since the proposed system is modeled as per IR prin-
ciples, the most appropriate metrics to evaluate the perfor-
mance are precision and recall. In this context, precision
can be defined as the fraction of retrieved services that are
relevant for the given query. Recall is the fraction of all rel-
evant services to those that were successfully retrieved for a

Table 3 Experimental results for Web service discovery for various
testcases

Case No. of Complex Precision Recall F-Measure Time taken

No. services Query Type (%) (%) (%) (in mins)

1 100 sequence 95.94 43.03 59.41 00:26

choice 94.3 39.39 55.57 00:33

mixed 91.53 52.12 66.42 00:49

2 300 sequence 82.67 18.33 29.77 01:34

choice 79.12 40.00 52.89 01:42

mixed 78.04 53.33 62.39 02:02

3 500 sequence 78.33 16.60 26.36 02:24

choice 75.14 14.40 24.15 02:34

mixed 63.9 21.18 33.17 02:55

4 1076 sequence 74.8 11.50 19.37 04:17

choice 76.4 9.65 17.13 04:25

mixed 61.21 12.89 21.30 04:38

given query. Table 3 summarizes the observed experimental
results for the various cases considered.

Precision = |relevantservices| ∩ |retrievedservices|
|retrievedservices|

(4)

Recall = |relevantservices| ∩ |retrievedservices|
|relevantservices| (5)

F − Score = 2 ∗ Precision ∗ Recall

P recision + Recall
(6)

For each test, a set of 20 different queries for each query
type were run on the system and the average value of preci-
sion, recall, and result generation time were noted. The best
values for precision were observed during testcase 1 using
100 services at 95.94 % while the lowest precision value
of 61.21 % was obtained for testcase 4, where 1076 ser-
vices were considered. Figure 4 shows the precision-recall
performance and the balanced F-measure values obtained
during Web service discovery. It can be observed that the
balanced F-measure values indicate good precision-recall
performance initially, which deteriorate as the number of
services considered for the experiment increases. The aver-
age value of observed precision for all the testcases was
79.28 % and average recall was 33.15 %. Figure 5 shows the
time taken to generate the results in each testcase for differ-
ent complex query types. The average result generation time
was about 2.22 minutes.

(2019) 21:175–1Inf Syst Front 89184

Author's personal copy

Fig. 4 Precision-recall and balanced f-measure values obtained during Web Service Discovery, for various testcases

5.2 Composition template generation accuracy

To evaluate the quality of composite service templates
generated, some additional statistics were collected. These
include -

1. Number of correct templates generated (CTcorrect).
Composite service templates that completely satisfy the
requirements of the complex query.

2. Any partial templates generated (CTpartial). Templates
that satisfy at least 75% of the complex query require-
ments.

3. Any incorrect templates generated (CTincorrect). Tem-
plates with wrongly identified constituent services or
incorrect invocation sequence.

Table 4 depicts the results of the composite service dis-
covery process. The retrieved templates in each case were
subjected to a human evaluation and categorized as correct,
partial and incorrect templates. Templates that satisfy at
least 75% of the complex query requirements were consid-
ered successful results, as they still provide significant help

to application designers. As per this criteria, the accuracy of
composite service template generation using the proposed
methodology is calculated as per Eq. 7.

%Accuracy = (CTcorrect + CTpartial − CTincorrect)

CTtotal

∗100
(7)

As seen from Table 4, the average composite service tem-
plate accuracy observed for all the testcases considered was
75.09 %. It was observed that the accuracy can deteriorate
due to I/O datatype mismatches in some of the identified
templates. However, the number of incorrect templates gen-
erated was quite low, while partial templates that matched
more than 75 % of the complex query requirements were
also obtained. Hence, it can be concluded that the compos-
ite service template generation accuracy using the proposed
methodology was satisfactory.

We noticed an additional issue, that of I/O datatype con-
flicts in some correct/partial composite templates generated.
Templates with I/O datatype conflicts (CTconf lict) are cases
where the templates may be correct at the semantic level of

Fig. 5 Result generation time for the various testcases

(2019) 21:175–1Inf Syst Front 89 185

Author's personal copy

Table 4 Composition template generation accuracy

No. of Composite Service Templates

generated per type

Testcase No. of Complex Correct Partial Incorrect Accuracy

No. services query type (%)

1 100 sequence 2 1 0 100

choice 2 0 0 100

mixed 1 1 0 100

2 300 sequence 3 2 0 100

choice 3 1 1 60

mixed 2 1 1 50

3 500 sequence 4 3 1 87.5

choice 3 3 1 71.4

mixed 2 3 1 66.67

4 1076 sequence 4 4 2 60

choice 4 2 2 50

mixed 3 4 2 55.56

75.09

I/O matching, but the datatypes of the output parameter of
first service and the input parameter of second service do not
match. For example, consider a service HotelRoomBooking,
which takes the booking number as input (xsd:int) and gives
the allotted room details (xsd:string) as output. When this
service is recommended in a composite service template,
and the next service in the chaining requires a xsd:string
booking number, then an I/O datatype conflict will arise.
In this case, even if the correct constituent services and
invocation order has been identified, the template may be
useless to application designers. Currently, cases with I/O
datatype conflicts have not been explicitly handled. In future
work, we intend to address this case, to further improve
the accuracy of the proposed method. Table 5 provides the
statistics on I/O datatype conflict templates obtained during
the experiments for each of the testcases.

5.3 Theoretical analysis

Generating composition templates that satisfy a given
user request is a very complex problem. In general, time

Table 5 Templates with I/O datatype conflicts obtained during
experiments

Testcase No. No. of services Total templates with I/O

Conflicts per testcase

1 100 0

2 300 1

3 500 3

4 1076 6

complexity is a crucial criterion for discovering composite
service templates as every possible combination of avail-
able services must be considered to determine input-output
dependencies. In this section, we analyse the performance
of the developed approach, by considering each of its major
critical processes and the time complexity with reference to
them.

Indexing OWL-S services Indexing a single OWL-S doc-
ument after extracting its functional semantics and semantic
vector generation takes constant time and is of O(C) time
complexity. Then, the process of indexing a dataset of N

services takes O(N) time.

Query analysis This task involves semantically analysing
the request to identify any subqueries and the query vector
generation for each individual query. It is dependent on the
number of subqueries in the request, which if present, may
have a few words at the most, which can be processed in
constant time. Hence, this task takes O(C) time.

Constructing the service interface graph While con-
structing the Service Interface Graph, the semantic input
vector of each service has to be matched with the semantic
output vector of every other service. Thus, the time com-
plexity of graph construction is O(N2), where N is the
number of services in the dataset. The process of checking
for cycle formation takes constant time O(C) and thus it
doesn’t add anything to the complexity.

Adding new services to the service interface graph The
SIG is constructed only once when the server is started and

(2019) 21:175–1Inf Syst Front 89186

Author's personal copy

need not be constructed repeatedly as it is stored in the
memory. Whenever a new service is added to the database,
a new node representing the service data will have to be
appended to the graph. Hence, its input/output vectors have
to be matched with that of every other service already in
the graph, therefore, adding a new node is also of O(N2)

complexity.

Traversing the service interface graph The task of SIG
traversal to find composite service templates is to be car-
ried when a query is submitted to the system. To search
for matching services, the expected output is extracted from
the user query. This process involves finding the cosine
similarity between every reachable OWL-S document from
source node, which is of time complexityO(N). As the SIG
traversal is based on finding the topological order, i.e., the
algorithm process all nodes first and then for every level 1
node, the same process is run on all adjacent nodes. Since
total adjacent nodes or vertices in a graph is given byO(E),
the overall time complexity of this process is O(V + E).
Even if the entire SIG has to be traversed and a match is still
not found, the process is of at most O(V + E) complexity.
In the SIG, services are nodes/vertices, hence V = N . Thus,
the time taken for this task is O(N) . O(N + E).

Therefore, the overall complexity of the system can be
presented as - O(N) + O(N2) + O(C) + O(N2) + O(C)

+ O(N) + O(N) . O(N + E) = O(N2). Hence, it can
be concluded that the system is quite efficient and can sup-
port scalability. If deployed in a computing environment that
supports large graph storage and processing, the proposed
methodology would be able to handle a large number of web
services and still return results in a reasonable amount of
time.

5.4 Comparing proposed approach with existing
techniques

Earlier approaches for composition-oriented service discov-
ery can be categorized into indexing based (Brogi et al.
2005; Xie et al. 2006; Kuang et al. 2007), graph based
(Liang and Su 2005; Cuzzocrea and Fisichella 2011; Shiaa
et al. 2008), semantics based (Li et al. 2013; Fethallah and
Chikh 2013b) and non-functional parameter based (Feng
et al. 2013; Rong et al. 2015) approaches. Indexing based
methods focus on using the service inputs and outputs for
manual index creation, so that matching services can be
retrieved based on user query. However, these natural lan-
guage terms can have synonyms and hypernyms, or may be
used in two different senses in two different services, so
these two services cannot be considered similar. This dis-
tinction has not been considered in any approach discussed
under indexing based methods. Semantics and ontology
based methods alleviate the disambiguation problem to a

certain extent, but the process of searching for the desired
output for a given input can be exhaustive. To overcome
this, computationally intensive techniques like AI planning
(Akkiraju et al. 2006) and logic based reasoning (Li et al.
2013) have been proposed.

Graph based techniques have been found to be the most
advantageous as these focus on representing the available
services by their dependencies. With the inclusion of seman-
tics based processing and intelligent indexing, graph based
algorithms can be made very efficient, hence we adopted
this approach in our work. Some problems faced by exist-
ing graph based approaches while searching for possible
compositions, like cycle detection and avoidance, graph
maintenance and optimized traversal techniques affect their
accuracy (as low as 40% accuracy), and these were incorpo-
rated in our work. The SIG based technique incorporates all
the best features of indexing based, graph based and seman-
tics based approaches. Incorporating QoS and usage based
parameters will be considered as an extension to the work
presented in this paper.

6 Conclusion and future work

In this paper, a framework for discovering both simple
services and composable service set as per user require-
ments is proposed, which uses natural language processing
and semantics based techniques to extract the functional
semantics of the service dataset and also to understand user
context. In case of simple queries, basic services may be
enough to satisfy the user request, however, in case of com-
plex queries, several basic services may have to be identified
to serve all the requirements. For this, the system uses the
service dependencies of all the services for constructing a
service interface graph, which is then traversed to determine
suitable services based on the required output. To evaluate
performance of web service discovery, we conducted sev-
eral experiments in terms of retrieval precision and recall,
f-score and time taken for result generation. In addition,
the number of templates generated, number of correct tem-
plates, partial templates and incorrect templates generated
were also observed, in the case of complex queries. The
overall accuracy of composable service set generation of the
system was found to be 75.09 %. The experimental results
show that our method generates composable service tem-
plates with a good level of accuracy and also is scalable to
handle larger datasets efficiently.

During composable service template generation, some
generated templates exhibited I/O data type conflicts,
i.e., a service that can be chained with another service
in a given order was found to be incompatible due to
datatype mismatch. This is because, currently we have
considered only the OWL-S profile’s <profile:hasInput>,

(2019) 21:175–1Inf Syst Front 89 187

Author's personal copy

<profile:hasOutput> and <profile:textDescription>. As
part of future work, this problem will be addressed so that
datatype mismatch problem can be solved and the accuracy
can be further improved through SIG optimization. Cur-
rently, optimized data structures like hash tables were used
to store the adjacency list of the SIG in memory. Incorpo-
rating NOSQL databases like neo4j, mongodb, orientdb etc
can make this more efficient and support higher scalability.
Also, the user query processing and composition-oriented
discovery can be further enhanced by allowing users to
specify preconditions and effects implicitly, instead of just
outputs. Other factors like Quality of Service (QoS) & user
specified constraints can be incorporated.

References

Akkiraju, R., Srivastava, B., Ivan, A., Goodwin, R., & Syeda-
Mahmood, T. (2006). Semantic matching to achieve web service
discovery and composition., E-Commerce Technology, 2006. The
8th IEEE International Conference on and Enterprise Computing,
E-Commerce, and E-Services (pp. 70–70).

Almasri, E., & Mahmoud, Q.H. (2009). A broker for universal access
to web services., Communication Networks and Services Research
Conference, 2009. CNSR’09. Seventh Annual (pp. 118–125).

Benatallah, B., Hacid, M.S., Leger, A., Rey, C., & Toumani, F. (2005).
On automating web services discovery. VLDB J., 14(1), 84–
96.

Bianchini, D., Garza, P., & Quintarelli, E. (2015). Characterization and
search of web services through intensional knowledge. Journal of
Intelligent Information Systems pp 1–27.

Brogi, A., Corfini, S., & Popescu, R. (2005). Composition-oriented
service discovery., Software Composition (pp. 15–30): Springer.

Chan, N.N., Gaaloul, W., & Tata, S. (2011). A web service rec-
ommender system using vector space model and latent semantic
indexing. In 2011 IEEE International Conference on Advanced
Information Networking and Applications (AINA) (pp. 602–
609).

Cuzzocrea, A., & Fisichella, M. (2011). Discovering semantic web
services via advanced graph-based matching. In IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC) 2011
(pp. 608–615).

Della-Valle, E., Cerizza, D., Celino, I., Turati, A., Lausen, H., Stein-
metz, N., Erdmann, M., & Funk, A. (2008). Realizing service-
finder: Web service discovery at web scale. In European Semantic
Technology Conference (ESTC), Vienna.

D’Mello, D., Ananthanarayana, V., & Santhi, T. (2008). A qos broker
based architecture for dynamic web service selection. In Model-
ing & Simulation, 2008. AICMS 08. Second Asia International
Conference on (pp. 101–106).

Dong, X., Halevy, A., Madhavan, J., Nemes, E., & Zhang, J. (2004).
Similarity search for web services. In Proceedings of the Thirti-
eth international conference on Very large data bases-Volume 30,
VLDB Endowment (pp. 372–383).

Elgazzar, K., et al. (2010). Clustering WSDL documents to bootstrap
the discovery of web services. In IEEE Intl Conf on Web Services
(ICWS), IEEE.

Fang, L., Wang, L., Li, M., Zhao, J., Zou, Y., & Shao, L. (2012).
Towards automatic tagging for web services. In 2012 IEEE 19th
International Conference on Web Services (ICWS) (pp. 528–
535).

Feng, Z., Peng, R., Wong, R.K., He, K., Wang, J., Hu, S., & Li,
B. (2013). Qos-aware and multi-granularity service composition.
Infor. Syst. Front., 15(4), 553–567.

Fethallah, H., & Chikh, A. (2013a). Automated retrieval of seman-
tic web services: a matching based on conceptual indexation. Int.
Arab. J. Inf. Technol., 10(1), 61–66.

Fethallah, H., & Chikh, A. (2013b). Automated retrieval of seman-
tic web services: a matching based on conceptual indexation. Int.
Arab. J. Inf. Technol., 10(1), 61–66.

Hamadi, R., & Benatallah, B. (2003). A petri net-based model for
web service composition. In Proceedings of the 14th Australasian
database conference-Volume, (Vol 17 pp. 191–200): Australian
Computer Society, Inc.

Hao, Y., Zhang, Y., & Cao, J. (2010). Web services discovery and rank:
An information retrieval approach. Futur. Gener. Comput. Syst.,
26(8), 1053–1062.

Hashemian, S., & Mavaddat, F. (2005). A graph-based approach to
web services composition. In The 2005 Symposium on Appli-
cations and the Internet, 2005. Proceedings. (pp. 183–189).
doi:http://dx.doi.org/10.1109/SAINT.2005.4.

Jiang, J.J., & Conrath, D.W. (1997). Semantic similarity based on
corpus statistics and lexical taxonomy. arXiv:9709008.

Klusch, M., Fries, B., & Sycara, K. (2006). Automated semantic web
service discovery with owls-mx. In Proceedings of the fifth inter-
national joint conference on Autonomous agents and multiagent
systems (pp. 915–922).

Kuang, L., Li, Y., Deng, S., & Wu, Z. (2007). Inverted indexing
for composition-oriented service discovery. In IEEE Interna-
tional Conference on Web Services, 2007. ICWS 2007. (pp. 257–
264).

Li, S., Huang, S.M., Yen, D.C., & Sun, J.C. (2013). Semantic-based
transaction model for web service. Inf. Syst. Front., 15(2), 249–
268.

Li, Y., Xiong, J., Liu, X., Zhang, H., & Zhang, P. (2014). Folksonomy-
based in-depth annotation of web services. In 2014 IEEE 8th
International Symposium on Service Oriented System Engineering
(SOSE) (pp. 243–249).

Liang, Q.A., & Su, S.Y. (2005). AND/OR graph and search algo-
rithm for discovering composite web services. Int. J. Web. Ser. Res.
(IJWSR), 2(4), 48–67.

Lin, M., & Cheung, D.W. (2014). Automatic tagging web services
using machine learning techniques. In Proceedings of the 2014
IEEE/WIC/ACM International Joint Conferences on Web Intelli-
gence (WI) and Intelligent Agent Technologies (IAT)-Volume 02
(pp. 258–265).

Ma, J., Zhang, Y., & He, J. (2008). Web services discovery based on
latent semantic approach. In IEEE International Conference on
Web Services, 2008. ICWS08. (pp. 740–747).

Nayak, R., & Lee, B. (2007). Web service discovery with additional
semantics and clustering.

Oh, S.C., On, B.W., Larson, E., & Lee, D. (2005). Bf*: Web ser-
vices discovery and composition as graph search problem. In
The 2005 IEEE International Conference on e-Technology, e-
Commerce and e-Service, 2005. EEE 05. Proceedings (pp. 784–
786). doi:10.1109/EEE.2005.41.

Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., &
Domingue, J. (2010). iserve: a linked services publishing platform.
In CEUR workshop proceedings, Vol. 596.

Peng, Y., & Wu, C. (2010). Automatic semantic web service dis-
covery based on assignment algorithm. In 2010 2nd Interna-
tional Conference on Computer Engineering and Technology,
Vol. 6.

Platzer, C., & Dustdar, S. (2005). A vector space search engine for
web services. Third European Conference on Web Services DOI
0-7695-2484-2/05.

(2019) 21:175–1Inf Syst Front 89188

Author's personal copy

http://dx.doi.org/http://dx.doi.org/10.1109/SAINT.2005.4
http://arxiv.org/abs/cmp-lg/9709008
http://dx.doi.org/10.1109/EEE.2005.41

Rong, W., Peng, B., Ouyang, Y., Liu, K., & Xiong, Z. (2015).
Collaborative personal profiling for web service ranking and
recommendation. Inf. Syst. Front., 17(6), 1265–1282.

Sangers, J., Frasincar, F., Hogenboom, F., & Chepegin, V. (2013).
Semantic web service discovery using natural language processing
techniques. Expert Syst. Appl., 40(11), 4660–4671.

Shiaa, M.M., Fladmark, J.O., & Thiell, B. (2008). An incremental
graph-based approach to automatic service composition. In IEEE
International Conference on Services Computing, 2008. SCC08.
(Vol. 1 pp. 397–404).

Song, H., Cheng, D., Messer, A., & Kalasapur, S. (2007). Web service
discovery using general-purpose search engines. In IEEE Inter-
national Conference on Web Services, 2007. ICWS 2007. (pp.
265–271).

Steinmetz, N., Lausen, H., & Brunner, M. (2009). Web service search
on large scale. In Service-Oriented Computing (pp. 437–444):
Springer.

Truong, H.L., & Dustdar, S. (2009). A survey on context aware
web service systems. Int. J. Web Infor. Syst., 5(1), 5–31.
doi:10.1108/17440080910947295.

Varguez-Moo, M., Moo-Mena, F., & Uc-Cetina, V. (2013). Use of
classification algorithms for semantic web services discovery. J.
Comput., 8(7), 1810–1814.

Wohed, P., van der Aalst, W.M., Dumas, M., & Ter Hofstede, A.H.
(2003). Analysis of web services composition languages: The case
of bpel4ws. In Conceptual Modeling-ER 2003 (pp. 200–215):
Springer.

Wu, C., & Chang, E. (2008). Searching services on the web- a public
web services discovery approach. In Third Conf. on Signal-Image
Technologies and Internet based Systems, IEEE.

Wu, C., et al. (2008). An empirical approach for semantic web
services discovery. In 19th Australian Conference on Software
Engineering, 2008. ASWEC 2008. (pp. 412–421).

Xie, X., Chen, K., & Li, J. (2006). A composition oriented and graph-
based service search method. In The Semantic Web–ASWC 2006
(pp. 530–536): Springer.

Yang, J., & Zhou, X. (2014). Semi-automatic algorithm based on web
service classification. In Advanced Science and Technology Letters
(Vol. 53 pp. 88-91).

Sowmya Kamath S is currently Assistant Professor at the Depart-
ment of Information Technology, National Institute of Technology
Karnataka (NITK), Surathkal. She earned her bachelors and mas-
ters degrees from Manipal University and her doctoral degree from
NITK Surathkal. Her research work is primarily focused on the role
of semantics in Web-based applications like Web services. Her current
interests lie in the areas of distributed Web service discovery, large-
scale knowledge discovery, machine learning and natural language
processing.

Ananthanarayana V. S. is Full Professor at the Department of Infor-
mation Technology and currently the Dean (Research and Consul-
tancy) at NITK Surathkal. He received his PhD from IISc Bangalore,
India, and is a post doctoral fellow of the Memorial University of
Newfoundland, Canada. His fields of interest include Web services,
distributed computing & multi-database-based mining and he has
published extensively in these fields.

(2019) 21:175–1Inf Syst Front 89 189

Author's personal copy

http://dx.doi.org/10.1108/17440080910947295

	Discovering composable web services using functional semantics and service dependencies based on natural language requests
	Abstract
	Introduction
	Related work
	Proposed system
	Service processing module
	OWL-S parsing
	Element extraction and term generation
	Term weighting
	Adding synsets and word senses
	Feature vector generation

	Query processing module
	Subquery identification
	AND/OR condition processing
	Determining set of subqueries
	Stopword removal & stemming
	Query expansion
	Query feature vector generation

	Similarity computation
	Service matchmaking and ranking

	Finding a composable service set
	Constructing the service interface graph
	Serving complex queries

	Experimental results and analysis
	Web service retrieval
	Composition template generation accuracy
	Theoretical analysis
	Indexing OWL-S services
	Query analysis
	Constructing the service interface graph
	Adding new services to the service interface graph
	Traversing the service interface graph

	Comparing proposed approach with existing techniques

	Conclusion and future work
	References

