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Abstract This paper proposes a new harmonic wavelet
transform (HWT) based on discrete cosine transform
(DCTHWT) and its application for signal or image compres-
sion and subband spectral estimation using modified group
delay (MGD). Further, the existing DFTHWT has also been
explored for image compression. The DCTHWT provides
better quality decomposed decimated signals, which enable
improved compression and MGD processing. For signal/
image compression, compared to the HWT based on DFT
(DFTHWT), the DCTHWT reduces the reconstruction error.
Compared to DFTHWT for the speech signal considered
for a compression factor of 0.62, the DCTWHT provides
a 30% reduction in reconstruction error. For an image, the
DCTHWT algorithm due to its real nature, is computationally
simple and more accurate than the DFTHWT. Further com-
pared to Cohen–Daubechies–Feauveau 9/7 biorthogonal
symmetric wavelet, the DCTHWT, with its computational
advantage, gives a better or comparable performance. For
an image with 6.25% coefficients, the reconstructed image
by DFTHWT is significantly inferior in appearance to that
by DCTHWT which is reflected in the error index as its
values are 3.0 and 2.65%, respectively. For spectral esti-
mation, DCTHWT reduces the bias both in frequency (fre-
quency resolution) and spectral magnitude. The reduction
in magnitude bias in turn improves the signal detectability.
In DCTHWT, the improvement in frequency resolution and
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the signal detectability is not only due to good quality DCT
subband signals but also due to their stretching (decimation)
in the wavelet transform. The MGD reduces the variance
while preserving the frequency resolution achieved by DCT
and decimation. In view of these, the new spectral estimator
facilitates a significant improvement both in magnitude and
frequency bias, variance and signal detection ability; com-
pared to those of MGD processing of both DFT and DCT
fullband and DFT subband signals.

Keywords DCT harmonic wavelet transform · Signal
and image compression · Subband spectral estimation and
modified group delay

1 Introduction

A wavelet transform (WT) decomposes a signal into its sub-
band components of nonuniform bandwidth and can be real-
ized by a filter bank. In WT, the decimation of the subband
components results in spectrum expansion. Further restora-
tion of the processed overall spectrum corresponding to the
original sampling rate, involves interpolation and summation
of the interpolated subband outputs in time. The harmonic
wavelet transform based on DFT (DFTHWT) [11] does the
subband decomposition in the frequency domain by group-
ing the Fourier transform (FT) coefficients and the inverse
of these groups results in decimated signals. Further after
processing, the FT of the subband signals can be repositioned
in their corresponding positions to recover the overall spec-
trum, with the original sampling rate. Therefore, this will not
involve explicit decimation and interpolation operations. As
a consequence, also, no band limiting and image rejection
filters are necessary. In view of this, the harmonic subband
decomposition is very attractive due to its simplicity. Further,
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the decomposition being done in frequency domain,it is well
suited for those processing methods which are performed in
frequency domain, like group delay processing.

The DFTHWT is very attractive as long as no processing
of the components is involved prior to inverse transforma-
tion. However, for a signal segment obtained without using
any window function, there can be a severe leakage effect
from one signal subband into another. If different subbands
have to be processed differently, this is not achieved as the
signal energy from one to another has already leaked. The
DFTHWT may be tolerable for a signal with well-separated
frequency components of sufficiently high magnitude. But
for closely spaced components of significantly different mag-
nitudes, during the computation of the FT itself, energy will
leak from the higher amplitude component to the lower one.
This results in a large bias in the spectral magnitude and
may even totally eclipse smaller amplitude spectral peaks. In
such a case, decomposing the signal based on DFTHWT and
processing the subbands may not be very effective. Further
leakage in DFTHWT will also limit its use in signal or image
compression application. The reason for this is that it is not
possible to get a good signal reconstruction by omitting the
lower scales (corresponding to high frequencies) in WT as
the leaked energy cannot be recovered unless all the scales
are considered.

A good spectral estimator will have minimum variance
and bias; and provides the required frequency resolution. In
practice, it is required to estimate the spectrum of a signal of
finite limited length. The Gibbs ripple effect that varies from
segment to segment, the driving noise of a system whose out-
put forms the signal, the observation noise at the output of a
system or the associated noise with the signal; contribute to
the variance of an estimate. For the popular averaged win-
dowed periodogram spectral estimator, the window used and
the number of segments averaged decide its variance. For
this, the variance reduction achieved is only at the cost of fre-
quency resolution and hence for a given length of data, there
is a tradeoff between frequency resolution and variance [12].
The parametric model based methods provide high frequency
resolution and low variance [3] even for a relatively short data
length. However this is valid only when the signal is matched
to the assumed model and the signal to noise ratio (SNR) is
high [10].

In order to overcome the above tradeoff between variance
reduction and frequency resolution, the modified group delay
function (MGD) [4,18] was introduced. The spectral ripple,
the source of variance, manifests as zeros close to the unit
circle in the z-plane. In reducing the variance by a window,
the zeros close to the unit circle are moved towards the origin
and hence the ripple magnitude or variance is reduced. How-
ever as the window also pulls the signal poles towards the
origin, the spectral peaks get broadened resulting in a poorer
frequency resolution. But in the MGD, the effect of the zeros

close to the unit circle is reduced without disturbing the sig-
nal poles and hence the reduction in variance without any loss
of frequency resolution. Since the MGD removes the zeros
close to the unit circle, even due to the associated white noise,
its performance is valid even when the SNR is low. The MGD
has been successfully applied for formant and pitch extrac-
tion of speech signals [4], spectral estimation of real and
complex signals [8,18]. Further, the MGD has been applied
to WVD and instantaneous power spectrum to remove the
Gibbs ripple [5,10] and both the Gibbs ripple and ringing
effect, respectively; preserving the frequency resolution of
the rectangular window.

DCT is the DFT of a symmetrically extended signal. The
symmetrical extension reduces the abruptness of truncation
significantly and results in a smooth transition from one
period to another (due to built in periodicity of DFT), as if
there is no windowing and no side lobes to enhance the Gibbs
and leakage effects [2], resulting in a significant reduction in
the leakage effect or variance. In view of this, the analytic
DCT [6] which is the DFT that has the desired properties
of DCT, is explored. Such a DFT derived from DCT has a
smaller magnitude and frequency bias. The lower magnitude
and frequency bias are due to low leakage and improved
frequency resolution (due to symmetrical data extension),
respectively. The lower magnitude bias improves the
detectability of a smaller spectral peak in the presence of
a larger one. The improved spectral detail may result in a
higher variance. However, the application of MGD to a DFT
derived from DCT reduces the variance significantly while
preserving the frequency resolution of the analytic DCT.

The performance of any spectral estimator improves when
it is applied to its subband components rather than to the
original fullband signal. The subband components, due to
their reduced bandwidth, can be decimated and this stretches
the spectrum improving the frequency resolution and the
detectability of a weaker spectral peak in presence a stronger
one [7]. Further if the two components fall into different
bands, their mutual influence on each other is totally removed.
Thus any further processing in subbands will be much more
effective than in the case of a fullband signal as the frequency
resolution and the signal to noise ratio improve by the dec-
imation factor [13,15]. These motivate, to extend the desir-
able properties of the DCT to harmonic wavelet transform by
grouping the DCT coefficients, instead of DFT coefficients
and apply MGD to subband signals of DCTHWT. Such an
attempt reduces the undesired leakage effect of DFT and its
implications in DFTHWT. Also the simplicity and computa-
tional efficiency of the harmonic wavelet transform tempts to
extend its application for image compression and processing.

In this paper, a new harmonic wavelet transform based on
DCT (DCTHWT) is proposed. Further the DFTHWT and the
new DCTHWT have been explored for image compression.
Compared to DFTHWT, the DCTHWT provides subband
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components of a good quality and this enables better signal
or image compression. Also, a subband spectral estimator
based on DCTHWT and the modified group delay, has been
proposed. The application of MGD to the DCTHWT sub-
band components results in a significant variance reduction.
The DCT subband decomposition enjoys the simplicity and
computational efficiency of the DFT based harmonic wavelet
transform. Further, as the MGD is a frequency domain oper-
ation, it can be directly applied to decimated harmonic sub-
band DFTs derived from the DCT of subband components.
Thus in the decimated subbands, the MGD reduces the vari-
ance more effectively than in fullband. For the proposed
spectral estimator, the subband decomposition, smaller mag-
nitude bias and better spectral details provided by DCT enable
good detectability (for a low level spectral peak in the pres-
ence of a high level one) and improved frequency resolution.
The proposed DCTHWT is found to be computationally effi-
cient and for signal and image compression it has a lower
reconstruction error than the DFTHWT.

2 Harmonic wavelet transform based on DFT
(DFTHWT)

To localize both in time and frequency, the short time Fourier
transform (STFT) in which a window function slides along
the time axis, is used [11]. Here, the FT of the signal within
the window provides the spectral information of the signal at
the window position. However, as the FT of the same window
gets convolved with the different frequency components of
the signal, the frequency resolution is same, for all frequen-
cies. A generalization of this, where the window function can
be different for different frequencies has led to the wavelet
transform (WT). Using windows of different duration, the
information about the signal both in time and frequency in
the desired way can be obtained in terms of the window func-
tions or wavelet basis functions used. Thus the main fea-
ture of WT is multi-resolution signal analysis and it breaks
the coupling of the uniform resolution between the low and
high frequency regions. That is, it provides higher frequency
resolution and lower time resolution (localization) for low
frequencies and higher time resolution and lower frequency
resolution for higher frequencies. This is well suited for the
analysis of nonstationary signals, which are to be processed
in practice.

The wavelet transform Wx (a, b) characterizes the corre-
lation or similarity between the signal x(t) to be analyzed
and the wavelet function ψ ((t − b)/a). Such a correlation
is given by

Wx (a, b) = 1

a1/2

∞∫

−∞
x(t)ψ∗

(
t − b

a

)
dt (1)
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Fig. 1 WT implemented by a dyadic structure filter bank

where ψ(t) is the prototype/mother wavelet. By shifting and
scaling ψ(t) by the parameters b and a, respectively; all
the basis functions ψa,b(t) = a−1/2 ψ ((t − b)/a) are
obtained.

Computing Wx (a, b) using Eq. (1) is quite involved even
for discrete values of b and a. Hence generally, the WT is
implemented by a dyadic structure that uses a two-channel
filter bank [16] with a lowpass filter H0(ω) and a highpass
filter H1(ω) (Fig. 1). The outputs of the analysis filter bank
are decimated in time and these form the WT coefficients
at different scales (frequencies). The WT coefficients at dif-
ferent scales after processing (if any) can be combined in
time domain by a synthesis filter bank realized by a dyadic
structure that uses reconstruction filters F0(ω) and F1(ω).
The synthesis filter bank involves interpolation prior to filter-
ing and combining the different channel outputs. The filters
H0(ω), H1(ω), F0(ω) and F1(ω) are related to each other to
overcome aliasing and to provide perfect reconstruction [16].

Equation (1) can be realized in the frequency domain using
Parseval’s theorem as [1]

Wx (a, b) = a1/2

2π

∞∫

−∞
X (ω)�∗ (aω) e jω bdω. (2a)

Therefore, the wavelet transform can be derived by win-
dowing the spectrum X (ω)with�∗(aω) and inverse Fourier
transforming the product.

Wx (a, b) = a1/2 F−1 [
X (ω)�∗ (aω)

]
(2b)

�(ω) and X (ω) are the FT of the mother wavelet ψ(t) and
the signal x(t). That is, Wx (a, b) for a particular scale ‘a’ can
be computed by the Eq. (2b) using X (ω) and�(aω) by FFT
algorithm. Especially �(ω) is very simple for the harmonic
wavelet transform (HWT) of Newland [11], and it is zero at
all frequencies except constant over a small frequency band

�(ω) =
{

1, ω0 − ωc < ω < ω0 + ωc,

0, otherwise.
(2c)

The wavelet ψ(t) for this is [1]

ψ(t) = ωc

π

sinωct

ωct
e jω0t

ψ(t) = e jω0t ωc

π
sinc(ωct). (2d)
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Fig. 2 a Harmonic wavelet decomposition, N = 16, subbands:
G4,G3,G2,G1. b Harmonic wavelet transform synthesis

That is, the mother wavelet is a modulated sinc function. The
daughter wavelets are derived from ψ(t) by scaling and this
involves scaling of the frequencies ωc andω0 which deter-
mine the bandwidth and the centre frequency of the scales,
respectively. Even though the decomposition of the signal
in the frequency domain looks attractive due to its simplic-
ity, if the interest is also to localize in time, this choice of
�(ω) is not suitable, as sinc function exists over the interval
−∞ ≤ t ≤ ∞ with a decay rate inversely proportional to
time. Some type of spectral weighing (like Gaussian) other
than rectangular is necessary for improving localization in
time, but this may result in non-orthogonal wavelets due to
possible overlap in the frequency domain. Thus the type of
spectral weighing will decide the wavelet, as the spectral
weighing function is the FT of the wavelet.

For HWT, the spectral weighing is a rectangular function
and for a discrete signal it is zero except over a finite band
[π/p, π/q],where p, q can be real numbers, not necessarily
integers.

Using the above �(ω) in the HWT, the subband decom-
position is done in frequency domain unlike in time domain
by a filter bank. This is achieved by grouping the {N/2 + 1}
coefficients of a discrete Fourier transform (DFT) of length
N and this is equivalent to applying a window in the fre-
quency domain. Figure 2a shows the grouping of the DFT
coefficients for a dyadic type of subband decomposition with
a DFT length N = 16. At each stage of division, the upper
group is left without being divided. This is true with the filter
bank also, where the output of lowpass filter H0(z) is divided
and the output of highpass filter H1(z) is left without being
divided (Fig. 1).

The decimation carried out in the filter bank is achieved by
constructing a DFT for each subgroup using the symmetry
property; that is, the conjugate of the values in the subgroup
are filled in the reverse order in the upper half of DFT and
for G1, G2, G3 the value of the 1st bin is made as zero
(Fig. 2a).

An inverse DFT of G1, G2, G3, G4 will give the deci-
mated subband signals and hence G1, G2, G3, G4 are the
DFTs of the decimated signals. In the reconstructed array, the
locations 1–16 represent the DFT coefficients of a real signal
and X∗

8, X∗
7, . . . are the complex conjugates of X8, X7, . . .

For synthesis, the last group (G4) values are placed as it
is in a new DFT array {1–9}. Then next groups (G3,G2,G1)

are concatenated with the first element zero being removed in
each group. Then the bins {10–16} are filled by the conjugate
of the values of the bins {1–8} in the reverse order. This
procedure is shown in Fig. 2b.

The replacement of the smaller groups into their corre-
sponding original positions in the DFT array corresponds to
interpolation and summing of the subband signals in the filter
bank. Hence the inverse FT of this restored DFT gives the
synthesized signal.

Even though in the above scheme the DFT symmetry for
a real signal is attempted, the coefficients of the DFTHWT
will not be real. In the original DFT of a real signal, only
the first and (N/2 + 1)th coefficients are real and others are
complex. As DFT coefficient grouping progresses, some of
the complex coefficients take the real coefficient position
corresponding to (N/2 + 1)th (of the original DFT) in the
new DFT length and due to this the coefficients of DFTHWT
will be complex but not purely real.

The first coefficient of each group G3,G2,G1 is put as
zero to preserve the second coefficient which would have
become the first coefficient and would have been lost while
processing by mean removal operation. This is valid even
while processing the group G4.

3 Modified group delay (MGD)

The fine structure, viz., the ripples in the magnitude spec-
trum or the spikes in the group delay result in zeros close to
the unit circle in the z-plane and contribute significantly to
the variance of the spectral estimate [4,18]. Thus, the spec-
tral ripples or variance is due to the zeros or the numera-
tor of a transfer function. On the other hand, the signal or
system spectral peaks are due to the denominator. By nor-
mal smoothing using windows, the ripple effect or variance
can be reduced but only at the cost of frequency resolution.
This is because in addition to the zeros close to unit cir-
cle, the signal poles also get pulled towards the origin. To
reduce the variance of a spectral estimate without any loss
in frequency resolution, it is necessary to reduce only the
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effect of the numerator and this can be achieved by dividing
the signal transfer function by an estimate of the numer-
ator. The GD domain achieves this operation without any
singularity as it involves the multiplication of GD by the
squared spectral magnitude of the numerator, rather than divi-
sion.

For a minimum phase signal x(n) the spectral magnitude
|X (ω)| and phase θ(ω) are given by

ln |X (ω)| =
∞∑

n=0

c(n) cosωn, (3a)

θ(ω) = −
∞∑

n=0

c(n) sinωn (3b)

where c(n) are the cepstral coefficients. The group delay
τ(ω), the negative derivative of the phase θ(ω), is

τ(ω) = − d

dω
θ(ω) =

∞∑
n=0

nc(n) cosωn. (4)

If x(n) is a signal generated by an all-pole system driven by
a white noise or sinusoids associated with white noise and
further, if it can be represented by X (ω) = N (ω)/D(ω) then,
D(ω) corresponds to the system or sinusoids and N (ω) to the
excitation or the associated noise. Its group delay [5,10] is

τ(ω) = τN (ω)− τD(ω) (5)

τ(ω) = KN

|N (ω)|2 − K D

|D(ω)|2 . (6)

τN (ω) and τD(ω) are group delay functions of N (ω) and
D(ω), respectively. KN and K D can be considered as con-
stants for simplicity. For the zeros close to unit circle due to
signal truncation or input driving noise of a system or the
associated noise with the signal, |N (ω)|2 is small and hence
from Eq. (6) the ripples will mask the signal peaks in the
group delay domain as magnitude of |D(ω)|2 is sufficiently
large for poles well in side the unit circle. On multiplying
τ(ω) [Eq. (6)] by |N (ω)|2,

τo(ω) = τ(ω) |N (ω)|2

or

τo(ω) = αN (ω)− αD(ω)

|D(ω)|2 |N (ω)|2 . (7)

This modification reduces the masking effect of ripples
due to the zeros close to the unit circle on the spectral peaks
due to poles. To get τo(ω) which is free from fluctuations
|N (ω)|2 has to be determined with the given signal. The
|N (ω)|2 estimate, |N̂ (ω)|2 is generally derived using a cep-
strally smooth spectrum |X̃(ω)|2 obtained by truncating the
cepstral coefficient sequence of the signal given by

|N̂ (ω)| 2 = |X (ω)|2
|X̃(ω)|2 . (8)

The spectral estimate of reduced variance is derived from the
modified group delay using the Eqs. (4) and (3a).

4 DCT based harmonic wavelet transform (DCTHWT)

The harmonic wavelet transform based on DFT (DFTHWT),
as already explained, has the attractive features of simplicity
as it has built in decimation and interpolation operations. The
decimation is achieved by taking inverse transform of each
group of DFT coefficients and the interpolation by concate-
nation of the groups of DFT coefficients. The very purpose
of orthogonal wavelet transform is to decompose the signal
into orthogonal components, which are independent and their
further processing will not affect one another. However, this
is not so, as in the DFTHWT the Fourier coefficients, which
are already affected by leakage, are grouped. For example,
for compression with DFTHWT, the signal reconstructed by
removing the group corresponding to the first scale may differ
from the original signal significantly even though its contri-
bution is negligible. In an ideal situation, this group may not
have significant contribution to the signal but due to the DFT
leakage problem the energy gets scattered from second and
higher scales (to first scale). Hence processing on any scale
like deleting the first scale will affect the neighboring scales
indirectly as the leaked energy also gets processed. But if no
processing is done and simply the grouping of the Fourier
coefficients is undone, it is possible to get back the original
signal.

Therefore to utilize the attractive features of the harmonic
wavelet transform, it is very much necessary to reduce the
leakage effects and in this direction, use of DCT instead of
DFT is an important step. This is because DCT extends the
data symmetrically resulting in a smooth transition from one
DCT period to the other and the discontinuity, which is the
root cause for leakage, is significantly removed. Further as
the leakage is reduced, the spectral magnitude bias is reduced
which enables detectability of the low level spectral peak in
the neighborhood of high level one. Compared to the DFT, the
DCT has a better frequency resolution due to data extension
and this enables DCT to resolve the closely spaced spectral
peaks, which is not possible by the former. Thus from the
spectral estimation point of view, the DCT is superior as it is
having lesser bias both in spectral magnitude and frequency
and hence a better detectability. However, as its frequency
resolution is more, it may have a higher variance as it captures
more spectral details.

The DCTHWT for a one-dimensional (1D) real signal
like speech and for a 2D real signal like an image will be
considered.

123



90 SIViP (2009) 3:85–99

4.1 DCTWHT for a real 1D signal

For a real symmetric signal xs(t) and a real symmetric wavelet
ψs(t) function, Eq. (2a) becomes

Cx (a, b) = a1/2

2π

∞∫

−∞
Xs(ω)�s (aω) cos(ω b)dω. (9a)

Xs(ω) and�s (ω) are the Fourier transform of xs(t) and
ψs(t), respectively. [Generally the wavelet function is a sym-
metrical one but to have consistency in the notation ψs(t) is
used]. In other words, they are the cosine transforms of xs(t)
and the mother wavelet ψs(t). Cx (a, b) is the wavelet trans-
form in cosine domain instead of Fourier domain. Hence the
corresponding equation for Eq. (2b) is

Cx (a, b) = a1/2C−1 [Xs(ω)�s (aω)] . (9b)

Therefore, the cosine wavelet transform coefficient Cx (a, b)
for a particular scale ‘a’ can be computed by the Eq. (9b)
using Xs(ω) and�s(aω) by a fast cosine transform algorithm
which indirectly uses FFT algorithm. Again �s(ω) is very
simple for the Harmonic cosine wavelet transform (CHWT),
and it is zero at all frequencies except constant over a small
frequency band.

�s(ω) =
⎧⎨
⎩

1, ω0 − ωc < ω < ω0 + ωc,

−ω0 − ωc < ω < −ω0 + ωc,

0, otherwise.
(9c)

The wavelet ψs(t) for this is

ψs(t) = ωc

π

sinωct

ωct
cosω0t

ψs(t) = ωc

π
cosω0t sinc(ωct). (9d)

Hence, the mother wavelet is a cosine modulated sinc func-
tion. Here also, the decomposition of the signal in the fre-
quency domain is simple but suffers from the problem of poor
time localization due to slow decaying of the sinc function.
Though a spectral weighing other than rectangular improves
the localization in time, it results in a non-orthogonal wavelet
set. The type of spectral weighing will determine the wavelet
as it is the cosine transform of the wavelet.

For the cosine harmonic wavelet transform, the spectral
weighing is a symmetrical rectangular function and for a dis-
crete signal it is zero except over symmetrical finite bands
[π/p, π/q] and [−π/p,−π/q] where p, q can be real num-
bers, not necessarily integers [9].

The discrete cosine transform (DCT) enables the imple-
mentation of the above cosine transform discussed as it forms
the symmetric signals xs(t) and ψs(t) by itself [for the given
non-symmetric x(t) and ψ(t)]. For a sampled signal x(n),
n = 0, 1, 2, . . . (N − 1), the DCT of N points, is defined as
the DFT of a 2N point symmetrically extended signal y(n)

y(n) =
{

x(n), 0 ≤ n ≤ N − 1
x(2N − 1 − n), N ≤ n ≤ 2N − 1.

(9e)

y(n) is even symmetric with respect to the point [N −(1/2)].
This leads to DCT and is given by

Cx (k) =

⎧⎪⎨
⎪⎩

N−1∑
n=0

2x(n) cos
π k(2 n + 1)

2N
, 0 ≤ k ≤ N − 1

−Cx (2N − k), N ≤ k ≤ 2N − 1

(10)

Here, the DCT has been derived from the DFT.
Using the above �s(ω) in the CHWT also, the subband

decomposition is done in frequency domain unlike in time
domain by a filter bank. This is achieved by grouping the 2N
coefficients of a discrete cosine transform (DCT) of length
2N and this is equivalent to applying a window or weighing
by a constant in the frequency domain.

The DCT coefficients can be grouped in a way similar to
that of DFT coefficients and the DCT being real, there is no
necessity to do the conjugate operation in placing the coeffi-
cients symmetrically. The symmetrical placement is also not
necessary due to the very definition of the DCT as it provides
only half the number of coefficients and the inverse DCT def-
inition takes care of the symmetry. The grouped coefficients
for each band have to be treated as if they are the DCT coef-
ficients of that subband (Fig. 3) and the inverse DCT of these
groups leads to DCTHWT. For the reconstruction, each group
is concatenated to get DCT of the fullband signal.

For an orthogonal CHWT, the wavelet function is fixed
and corresponds to a rectangular weighing in the frequency
domain and indirectly, grouping of the DCT coefficients
results in such a wavelet transform.

4.2 DCTWHT for a 2D signal

For a 1D signal in the DFTHWT, the grouping of the DFT
coefficients with possible conjugate symmetry (Fig. 2a)
though makes the WT coefficients complex, this will not
pose problem for reconstruction as after concatenation of the
groups, the conjugate symmetry is restored to get the real
signal.

An extension of this to two-dimensions results in an error.
Here first for the columns the DFT is taken and the (0 − π)

region is divided in to two groups (0 to π/2) and (π/2 to π).
The group (π/2 to π) will have conjugate symmetry and its
IDFT results in a real signal. But the group (0 to π/2) will
not be so and its IDFT will result in a complex signal. For a
signal of this group, a DFT along the rows results in a DFT
which may not have any symmetry at all and the grouping
becomes uncertain. But by making the signal for this group
real, that is omitting the imaginary part of the one coefficient
(X5 in Fig. 2a), this problem can be solved. Again while
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Fig. 3 a DCT harmonic wavelet transform N =16, subbands: C4,C3,
C2,C1; b 2D-DFTHWT; c 2D-DCTHWT

taking the DFT along the rows and grouping, there will be a
similar problem and this again can be solved by neglecting
the imaginary part of one coefficient. This omission of the
imaginary part of a DFT coefficient once for the columns
and for the rows results in an error. For the next scale, the
LL block is fed as the input as shown in Fig. 3(b). Thus
depending upon the number of scales considered, this error
process will repeat. This results in an error even when the
image is reconstructed with 100% 2D DFTHWT coefficients.

For a 2D signal, the DCTHWT does not pose such a prob-
lem. This is due to the fact that the DCT is a real transform and
the grouping does not involve conjugate symmetry to get real
signals. Here for the image, the DCT coefficients for the col-
umn are grouped and their inverse DCT results in DCTHWT
coefficients for the columns. The DCT coefficients along the
row for each scale are taken and grouped. The inverse DCT
of these groups will result in 2D DCTHWT (Fig. 3c). This
procedure is repeated for further scales considering the LL
block as input. Since no approximations are made, there will
not be any error when the image is constructed with 100%
coefficients.

5 Power spectrum estimation based on DCTHWT
and MGD

As already stated the power spectrum estimate should have
desired frequency resolution, low variance and good

detectability. There is a trade off between frequency
resolution and variance with the averaged windowed peri-
odogram estimate. The variance can be due to any of the rea-
sons as mentioned in Sect. 3 and by using the MGD method
it is possible to reduce the variance without any loss of fre-
quency resolution (with reference to rectangular window).
However, if the signal contains closely spaced spectral peaks
and low-level spectral peaks in the neighborhood of high
level ones, treating the fullband spectrum for the MGD may
not result in required frequency resolution and detectability
though it reduces the variance while preserving the frequency
resolution of a rectangular window (corresponding to the data
length). This may become severe particularly when the signal
is associated with noise. As indicated, decomposition of the
fullband into suitable subbands and decimation of the sub-
band outputs will improve the performance from the point of
view of frequency resolution and detectability. However, the
increased frequency resolution may lead to increased vari-
ance and this can be reduced by applying MGD to decimated
subband components. In view of this, it is felt desirable to
apply MGD to subband decimated signals and then combine
the processed subband signals to get the overall spectrum
with the original sampling rate.

Use of filter bank for this purpose involves: generation of
subband signals, their decimation in time domain, convert-
ing these decimated signals to frequency domain for MGD
processing, conversion of the MGD processed responses to
time, their interpolation and summing. The Fourier transform
of the synthesized overall signal gives the fullband spectrum
with the original sampling rate. Thus it has too many opera-
tions and is very much involved. The advantage of applying
MGD to subband signals is attractive provided these opera-
tions are reduced in number and made simpler.

It has been seen in Sects. 2 and 4 that harmonic wavelet
decomposition is very much simpler compared to that of the
filter bank. This is due to the fact that subband signals are
generated in frequency domain directly by mere grouping of
the Fourier coefficients. The decimation operation is built in
and no explicit decimation is required. Also on the synthesis
side, interpolation is built in and it need not be done explicitly.
Further, the HWT does not use any antialiasing filter prior
to down sampling but this is achieved by just grouping the
FT coefficients and no image rejection filter is required for
reconstruction. Thus the HWT decomposition is very simple
and as the subband decimated signals are available in fre-
quency domain directly (Fig. 2a), they can be straight away
used as inputs for the MGD.

As it is seen that the MGD can be applied in the DFT
domain, it is necessary to have an equivalent DFT for each
group of DCT coefficients. The equivalent DFT coefficients
will have the properties of the DCT, viz., low leakage which
implies low magnitude bias and improved frequency resolu-
tion by a factor of 2, that results in a low frequency bias.
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In Sect. 4, the general procedure of deriving DCT by taking
the DFT of a symmetrically extended signal was considered.
The equivalent DFT which has the desired properties of the
DCT can only be computed using the analytic DCT [6]. It is
not possible to get a DFT equivalent to a DCT, from the DCT,
just by applying the inverse DCT and further computing the
DFT of the one sided signal of the symmetric signal as this
does not exploit the properties of the DCT and it is same as
the DFT of the original signal. The analytic DCT spectrum,
Ca

x (k) is given by

Ca
x (k) = Cx (k)+ jCx H (k) (11)

where Cx H (k): Hilbert transform of Cx (k).
If the desired DFT is represented as Xd(k), then its mag-

nitude |Xd(k)| and phase φd (k) are given by

|Xd(k)| = 1

2

∣∣Ca
x (k)

∣∣ = 1

2

√
C2

x (k)+ jC2
x H (k) (12a)

and

φd (k) = tan−1
[

Cx H (k)

Cx (k)

]
. (12b)

This is similar to (dual to) getting a one sided spectrum from
a symmetric spectrum by an analytic signal [6]. For a real
signal the spectral magnitude is symmetric. For an analytic
signal, the spectrum is one sided which implies that for a
one sided signal, the spectrum is analytic. In DCT, the signal
is symmetric. To get a one sided signal from the DCT, its
analytic spectrum must be considered.

The magnitude of the analytic spectrum is the envelope
of the DCT spectrum. That is, the DFT coefficients are the
envelope of the DCT coefficients and this is the reason for
the frequency resolution of the DFT to be poorer than that of
DCT. Further, the DFT coefficients so obtained from the DCT
enjoy the desired properties of the DCT, viz., the reduced
spectral leakage/reduced spectral magnitude bias and better
detectability. These desirable features of the DCT [2] and
the relation to get the equivalent DFT from the DCT [6] have
motivated to apply the MGD to subband components derived
from DCTHWT.

For each of the DCT subbands, C1,C2,C3,C4, . . ., the
equivalent DFTs G1,G2,G3,G4, . . . are derived [using
Eq. (11) and DFT symmetry] and the MGD is applied to
each of these to reduce their variance or the effect of noise
on them. The application of MGD to subband spectra rather
than to the fullband will be very effective as the spectral res-
olution is improved due to spectral expansion by decimation
and also as the spectral components are separated reducing
their mutual effect on one another, while processing. The
MGD processed spectrum for the subband can be derived
from the MGD using Eqs. (4) and (3a). The MGD processed
subband spectra so obtained can be concatenated directly to
get the overall fullband spectrum using the DFT symmetry
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Fig. 4 Speech waveform (65,536 samples)

as shown in Fig. 2b. The fullband spectrum so obtained is
of reduced variance, improved frequency resolution and has
good detectability.

The choice of subbands and their number depend upon
the signal spectrum. In the reconstructed fullband spectrum,
there can be discontinuities both in level and shape. The level
discontinuity can be reduced by making the subsequent spec-
trum to have the same spectral DC level as its previous one.
Further, any shape discontinuity can be reduced by a moving
average smoothing over a small number of points, across the
boundaries.

This method thus exploits the desirable properties of the
DCT, viz., the low leakage resulting in a reduced magnitude
bias that improves detectability (for the low level spectral
peaks in the presence of a high level one) and an improved
frequency bias due to better spectral details provided by the
analytic DCT and subband processing. The concept of the
HWT efficiently provides the subband decimated signals in
the frequency domain for applying the MGD and also recon-
struction of the full band MGD processed spectrum by mere
concatenation of the individual MGD processed subband
spectra.

6 Simulation results

To illustrate the performance of the DCTHWT over that of the
DFTHWT in terms of leakage, (1) a speech segment (65,536
samples) (Fig. 4); (2) low frequency images: “Boat” (512 ×
512) and “Street” (480 × 640) (Figs. 7, 9) are considered.

The Speech signal is decomposed into 16 scales by
DFTHWT and DCTHWT (Fig. 5a, b). Scale numbers are
also indicated. In the DCTHWT, the six scales correspond-
ing to lower frequency are of smaller magnitude compared
to the other scales. This is due to low energy leakage or scat-
tering. However, this is not so with the DFTHWT (Fig. 5a).
The signal is reconstructed removing these six scales and
the errors for the reconstructed signal are shown in Fig. 6.
For a compression factor of 0.62 (10/16), the error energies
for the methods which use DFTHWT and DCTHWT are
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found to be 0.3590 and 0.2746, respectively, which implies a
30% reduction in reconstruction error using DCTHWT. The
reconstruction error is given by

%Erecon = DFTEE − DCTEE

DCTEE
× 100

where DFTEE is DFT error energy and DCTEE is the DCT
error energy.

The “Boat” image is decomposed into three levels by
DFTHWT and DCTHWT as in Fig. 7a. The scales at dif-
ferent levels are shown in Fig. 8a, b. The lower scales have a
more intense structure for DFTHWT compared to that with
DCTHWT. This may be due to leakage effect in DFT. The
image is reconstructed by considering different % of the coef-
ficients, setting remaining coefficients equal to zero. The per-
formance index considered here is the average pixel error
(APE) [17]

APE = 1

(N ∗ N )

∑
i

∑
j

|x(i, j)− r(i, j)|.

The average pixel error (APE) for different % of coeffi-
cients in case of DFTHWT and with DCTHWT are tabulated
in Table 1a. From this, it is clear that, with DCTHWT we can
achieve better compression compared to that of DFTHWT.
Figure 7c, d shows the reconstructed images by considering
6.25% of the subband coefficients that means retaining only
LL3, HL3, LH3, and HH3 subband coefficients and setting
remaining sub band coefficients equal to zero. The recon-
structed image using DCTHWT has a better resemblance
to the original image (Fig. 7b) than that by DFTHWT. The
percentage errors for DCTHWT and DFTHWT are 3.1 and
3.23%, respectively.

The performance of compression by DFTHWT and
DCTHWT is compared with that of Cohen–Daubechies–
Feauveau 9/7 (CDF9/7) biorthogonal symmetric wavelet
[14]. This is chosen as both DFTHWT and DCTHWT result
in symmetric wavelets. For different compression factors, the
DCTHWT has a comparable error performance with that of
CDF9/7. However, this performance for DFTHWT is infe-
rior both to that of DCTHWT and CDF9/7. Further the per-
formance of Daubechies-4 (DB-4) is inferior both to that
of DCTHWT and DFTHWT and this is due to DB-4 being
orthogonal but of asymmetrical nature, which may result in
phase error.

From Fig. 7e, it is evident that there are some striations
on the inclined posts. But such a distortion is not there for
the images reconstructed by DCTHWT and DFTHWT. In
this respect, the performance of DCTHWT and DFTHWT is
superior to that of CDF9/7.

For the “Boat image”, even though the error index shows
a difference, this is not obvious from the pictures shown for
6.25% compression. The “Street” image is able to bring out
such a difference. Even without any compression, there is
a significant difference between the original and the recon-
structed image by DFTHWT (Fig. 9b), which is not desir-
able. This is due to the approximation made in the algorithm
by neglecting the imaginary part of the complex coefficient,
both during row and column wise grouping, which repeats
for every scale. This difference appears as undulations on
the road in the “Street image”, which does not exist for the
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Fig. 7 Image reconstruction
with 6.25% coefficients for
“Boat” image. a Three level
decomposition, b original
“Boat” image, c DFTHWT,
d DCTHWT, e CDF9/7

DCTHWT (Fig. 9c) as no approximations are made while
grouping (as the DCT coefficients by themselves are real
both for row and column wise). Regarding compression, the
DFTHWT shows additional undulations on the road of the
“Street image” (Fig. 9d). The DCTHWT, though introduces
some undulations on the road (Fig. 9e), they are significantly
less compared to that by DFTHWT. This performance dif-
ference is due to less DCT leakage and is also significantly
reflected in the error index, APE shown in Table 1b. The
percentage errors for DCTHWT and DFTHWT are 2.65 and
3.0%, respectively.

For this image also, the performance of DFTHWT and
DCTHWT are compared with those of CDF9/7 and DB-4
algorithms. It is evident from the APE values in Table 1b
that the performance of DCTHWT is comparable to that
of CDF9/7, but that of DFTHWT is inferior. However, the
reconstructed image by CDF9/7 (Fig. 9f) is blurred compared

to that by DCTHWT (Fig. 9e) and DFTHWT (Fig. 9d).
DB-4 has a larger error than both that of DCTHWT and
DFTHWT.

It is important to note that the DCTHWT can provide bet-
ter compression performance to that by CDF9/7 wavelets
with computational efficiency as the latter realizes the deci-
mation and interpolation operations without any explicit fil-
tering required for antialiasing and image rejection.

To bring out the performance of the subband spectral esti-
mation based on DCTHWT and MGD, a signal (SNR = 3 dB)
with two sinusoids at 0.3π and 0.7π radians plus an additive
zero mean white Gaussian noise of length 1,024 samples is
considered. Further 50 such data segments are used for statis-
tical analysis. The DFT length used is 1,024. The following
nomenclature will be used for simplicity.

Fullband DFTMGD : FDFT, Fullband DCTMGD : FDCT
Subband DFTMGD : SDFT, Subband DCTMGD : SDCT
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Fig. 8 a DFTHWT scales,
b DCTHWT scales

The cepstral coefficients used are two for FDFT, one for
FDCT, three for SDFT and two for SDCT. The overlay of
50 spectral estimates obtained by each method is shown in
Fig. 10. The spread indicates that variance of FDCT is better

than that of FDFT. Further, SDCT variance is better than that
of SDFT and its performance is much better than those of
FDFT and FDCT. The spread of the estimates is quantified by
the index, normalized sum sample variance (NSSV) given by
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Fig. 9 Image reconstruction
for “Street” image. a Original
“Street” image, b DFTHWT
(100% coefficients), c
DCTHWT (100% coefficients),
d DFTHWT (6.25%
coefficients), e DCTHWT
(6.25% coefficients), f CDF9/7
(6.25% coefficients)

Table 1 APE by different methods

% Coeffs (%) DFTHWT DCTHWT CDF9/7 DB4

(a) “Boat” image

100 0.986 0 0 0

25 2.572 2.297 2.275 2.7813

6.25 4.187 4.017 3.957 4.8653

1.56 5.794 5.691 5.678 6.5908

(b) “Street” image

100 0.964 0 0 0

25 1.821 1.258 1.246 1.6773

6.25 3.053 2.695 2.603 3.3186

1.56 4.752 4.456 4.292 4.9634

NSSV = 1

N

∑
i

V (i),

V (i) = 1

P

P−1∑
k=0

[Sm(i)− Sk(i)]
2, i = 1, 2, . . . , N .

Sm(i) = 1
P

∑P−1
k=0 Sk(i), V (i): variance, Sk(i): Individual

spectral estimates, P: number of segments, N : FFT points.
The NSSV values for FDFT, FDCT, SDFT and SDCT are

0.62, 0.1977, 0.1292 and 0.0537, respectively. That is, the
SDCT has a variance 2.6 times lower than that of SDFT. The
mean and variance are shown in Fig. 11 and the variance
plots also support the performance superiority of the SDCT.
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The fourth order autoregressive (AR) process y(n) con-
sidered is given by

y(n) = u(n)+ 2.76y(n − 1)− 3.809y(n − 2)

+2.654y(n − 3)− 0.924y(n − 4)

where u(n) is zero mean white Gaussian noise. Fifty data
segments of the AR process, each of length of 1,024 samples,
are considered. DFT length used is 1,024.

The mean spectrum is shown in Fig. 12a. In case of sub-
band methods, around 0.5π rad, the mean spectrum is some
what discontinuous (i.e., not a smooth transition at the posi-
tion indicated by a dotted line). The discontinuity is due to
band splitting which is not a part of the true spectrum and
hence has been reduced by smoothing across the boundary
(as explained in Sect. 5). After this discontinuity, the subband
DCT follows the ideal spectrum in a better way compared to
subband DFT.

The deviation of the individual estimates with respect to
the ideal one is quantified by the index, average root mean
square error (ARMSE) given by

ARMSE = 1

N

∑
i

E(i)

where E(i) is root mean square error (RMSE) given by

E(i) = 1

P

√√√√P−1∑
k=0

[S(i)− Sk(i)]2, i = 1, 2, . . . , N .

P: number of segments, N : FFT points, Sk(i): individual
estimates and S(i): ideal spectrum.

The RMSE’s are plotted in Fig. 12b. Average RMSE’s
(ARMSE) are computed for first band, second band and
whole band and their values are tabulated in Table 2. The
overall ARMSE for SDCT is less than those by other meth-
ods.

To bring out the resolving capability and detectability in
estimating the spectral content of a signal, a composite signal
made up of four sinusoids is considered. Their frequencies are
0.4π, 0.415π, 0.55π and 0.8π . Their corresponding ampli-
tudes in order are 20.0, 15.0, 0.08 and 0.015. The third and
fourth sinusoid are 48 and 63 dB below the first one and are
well separated. Further, 50 segments of data, each of length
1,024, are considered in estimating the mean plot (Fig. 13).
DFT length used is 1,024.

The leakage effect due to the DFT is so high that it masks
(cannot detect properly) the low level in case of FDFT as
well as SDFT. Also they cannot resolve the closely spaced
sinusoid well (Fig. 13a, c). But the proposed method resolves
the closely spaced peaks very well and also detects and brings
out the low level peaks very well as shown in Fig. 13b, d.
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shown in Fig. 10

7 Conclusions

A new Discrete Cosine Harmonic Wavelet transform
(DCTHWT) and its application to signal/image compression
and subband spectral estimation that uses the Modified Group
Delay (MGD), were proposed.

The proposed DCTHWT compared to the DFTHWT, has a
significantly smaller reconstruction error as it is less affected
by leakage and is preferred for signal/image compression and
for further processing.

For the considered speech signal and for a compression
factor of 0.62, DCTWHT provides a 30% reduction in recon-
struction error.

For image compression/reconstruction, the DFTHWT is
inferior to DCTHWT due to the approximation in the
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Fig. 12 a Mean spectra, b their
RMSE’s of an AR process by:
1 - FDFT, 2 - FDCT, 3 - SDFT,
4 -SDCT
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Table 2 ARMSE by different
methods Methods ARMSE in band 1 (0–0.5π rad) ARMSE in band 2 (0.5π–π rad) Overall

FDFT 0.8384 0.7976 0.8180

FDCT 0.9196 0.4842 0.6979

SDFT 0.9637 1.1345 1.0491

SDCT 0.7883 0.9686 0.6079

Fig. 13 Spectrum of two
closely spaced and two low level
sinusoids by a FDFT, b FDCT,
c SDFT, d DCT
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algorithm as only the real part of a complex coefficient is
considered both during row and column wise coefficient
grouping which repeats for every scale. For an image, the
DCTHWT algorithm due to its real nature is computation-
ally simple and more accurate than the DFTHWT. The “Boat”
image reconstructed by DFTHWT with 6.25% coefficients is
significantly inferior in appearance to that by DCTHWT and
this is reflected in the error indices as their values are 3.23
and 3.1%, respectively. For the same compression factor, the
errors for the reconstruction of “Street” image by DFTHWT
and DCTHWT are 3.0 and 2.65%, respectively.

DCTHWT, with its computational advantage, gives a
better visual performance compared to that of CDF9/7
biorthogonal symmetric wavelet, though the former has a
larger error. For the “Boat image”, with 6.25% coefficients,
the average pixel errors for DCTHWT and CDF9/7 are 4.02
and 3.96, respectively. For the same compression factor, the
values of this error index for the “Street” image by DCTHWT
and CDF9/7 are 2.69 and 2.60, respectively.

As the DCTHWT facilitates good quality decimated sub-
band components directly in the frequency domain, the MGD
(being a frequency domain operation) can be applied directly.
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The decimated subband DFT components are derived from
DCT by analytic DCT. In the DCTHWT, DCT by itself pro-
vides an improvement in frequency resolution by a factor
of 2. As each subband gets stretched due to decimation, the
frequency resolution further improves and also as the compo-
nents get separated, the detectability of low level peaks in the
presence of high level one in turn improves. The increased
frequency resolution may lead to increased variance and this
is remarkably reduced in subbands by the MGD without any
loss in frequency resolution, as its processing ability is very
effective in these derived DFT subbands. Hence the new esti-
mator when applied to sinusoids in noise and AR signals
plus low level sinusoids, has been found to have a signif-
icant improvement in terms of: reduction in variance, bias
both in magnitude and frequency and hence in signal detecta-
bility; compared to those of MGD processing in fullband and
subband signals provided by DFTHWT.
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