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Abstract The emergence of novel techniques for automatic anomaly detection in surveil-
lance videos has significantly reduced the burden of manual processing of large, continuous
video streams. However, existing anomaly detection systems suffer from a high false-
positive rate and also, are not real-time, which makes them practically redundant. Further-
more, their predefined feature selection techniques limit their application to specific cases.
To overcome these shortcomings, a dynamic anomaly detection and localization system is
proposed, which uses deep learning to automatically learn relevant features. In this tech-
nique, each video is represented as a group of cubic patches for identifying local and global
anomalies. A unique sparse denoising autoencoder architecture is used, that significantly
reduced the computation time and the number of false positives in frame-level anomaly
detection by more than 2.5%. Experimental analysis on two benchmark data sets - UMN
dataset and UCSD Pedestrian dataset, show that our algorithm outperforms the state-of-
the-art models in terms of false positive rate, while also showing a significant reduction in
computation time.
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1 Introduction

Video analysis of crowded environments such as public parks, universities, stadiums and
stations has garnered significant interest in pattern recognition and surveillance applications
that aim to detect any anomalies. An anomaly or abnormality can be defined as any unusual
event that is aberrant from those usual ones that frequently take place at a particular spot
in a given scene. Manual scrutiny of surveillance videos to identify such abnormalities is
a highly time consuming process. In situations where a robbery or trespassing incident is
reported, often many days of recordings need to be checked. It is, therefore, highly possible
that due to manual error such abnormalities might be missed, and so, automatic systems are
particularly beneficial in such situations. Anomaly detection has its applications in med-
ical imaging as well. Computer aided abnormality detection in MRI Images is useful in
diagnosing malformations often missed by the human eye.

The description of unusual activities in complex scenes like pedestrian walkways and
parks is an arduous task, as an anomalous event can be anything ranging from a dog to a
vehicle. As such, it is practically impossible to develop an exhaustive list of all anomalies
in any given situation. Yet, this problem is usually tackled by deploying high-dimensional
feature descriptors to define all known irregularities. An event can be considered a normal
activity in one context and suspicious in another. So when an event is not represented by
sufficient samples in the training data set, the unusual behavior is labeled as a context-
related anomaly. To develop an efficient model to be trained with these descriptors, an
extensive amount of training data is needed. Also, the computational complexity of this
is usually very large because of high dimensional feature sets required to represent large
variety of anomalous situations.

Scene modeling and anomaly behaviors are challenging problems in computational
approaches for anomaly detection. Occlusion is a problem when multiple objects are present
in a crowded scene, which often makes object tracking difficult. Also, within the same
scene, the behavior of individuals may vary greatly, due to which, distinguishing between
anomalies and a normal event is a difficult task. To this end, training videos are used to
learn a set of models which are used in the test phase. This method labels a test video as an
anomaly if it does not match the learned model, and specific feature descriptors are used to
build the reference models.

In this paper, an unsupervised learning model capable of detecting and localizing anoma-
lies in videos is proposed. Our primary goal is to develop a robust anomaly detection system
for crowded scene videos. Although the model was trained and tested on a pedestrian walk-
way, it can be easily extended to any other situation by training on the pertinent video
data. Further, the proposed method also encompasses a novel technique of representing the
videos using local and global descriptors that account for any spatial and temporal changes.
These two views are integrated using Gaussian classifiers to identify the anomalous frame
(detection) and the location of the anomaly within that frame (localization). Previous works
relied on several low level features which not only added to the computational time and
model complexity but also restricted the applicability of the model. To overcome this, we
use a deep learning method known as sparse denoising autoencoders to automatically learn
feature representations of a video We introduce the concept of denoising as described by
Vincent et al. [28] as a sparse autoencoder [21]. Our main contribution was incorporating
a drop out layer, which was converted to a denoising autoencoder to curb model over fit-
ting. KL Divergence regularization [8] helped further generalize the model. The problem of
dying weights was countered by using Parametric ReLU [9] activation function. The pro-
posed anomaly detection and localization framework was applied to popular data sets and

@ Springer



Multimed Tools Appl (2018) 77:13173-13195 13175

experimentally validated. Our method is capable of real-time anomaly detection in a video
which is being currently played. The proposed approach was evaluated on two real world
datasets, the UCSD Pedestrian dataset! and UMN dataset.? It was observed that it out-
performed the state-of-the-art methods in terms of false positive rate by achieving an
improvement of 2.5% over the previously reported best results. The main advantage of our
approach is the significant reduction in execution time. Our algorithm takes 4.3 seconds to
evaluate each frame whereas the existing best method takes 7.5 seconds per frame. This
greatly reduces the time taken to detect anomalies in large videos with many frames.

The rest of the paper is organized as follows: Section 2 presents a discussion on exist-
ing methods for automatic anomaly detection in videos. Section 3 illustrates the proposed
methodology and describes the working of each of the components. In Section 4, we
describe the experiments performed for the validation of the proposed model and compare
its performance with 7 other state-of-the-art methods. Section 5 summarizes the advantages
of the proposed framework and explains directions of future work, followed by references.

2 Related work

Automatic anomaly detection techniques can be categorized as trajectory learning methods,
spatial-temporal gradients and feature learning models. We discuss the state-of-the-art in
each of these categories.

Trajectory learning methods In these methods, the pedestrians and other objects in
motion are extracted using background subtraction and frame difference. Trajectory based
methods involve learning the normal walking patterns of pedestrians from normal trajecto-
ries obtained using tracking algorithms. The trajectories from a test video are then compared
which these established standard and any deviation is reported as anomalous. Li et al. [14]
represented normal behavior trajectories as cubic B-Spline curves and a normal dictionary
set is constructed. Dictionary sets are divided into Route sets and every test trajectory is
compared with Route Set using sparse reconstruction analysis to determine the residual. If
the residual is larger than a certain threshold, it is classified anomalous. Kong et al. [13]
described a technique to identify the goal of individuals within a crowd based on the same
tracking principle. The authors proposed another method [7] where any moving objects that
are detected are initially classified as vehicles or pedestrians through a co-trained classifier.
This method capitalizes on the multi-view information of objects and results in a framework
that is able to learn motion patterns automatically respectively for vehicles and pedestrians,
thus addressing the problem of diversity of objects in a scene.

The main drawback of trajectory based methods is the effect of occlusion. In crowded
scenes, it is common for some objects to be hidden behind other objects partially or com-
pletely, causing partial or full occlusion. Since trajectory modeling first detects an object to
determine its trajectory, the technique will fail if the detection of the object is unsuccessful
due to occlusion [27]. Further, crowded scenes often have several trajectories which need
to be tracked in a single scene. This poses a great challenge in trajectory based learning
methods.

'UCSD Pedestrian dataset http://www.svcl.ucsd.edu/projects/anomaly/dataset.htm
2UMN Detection of Unusual Crowd Activity dataset http:/mha.cs.umn.edu/proj_events.shtml
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Spatial-temporal gradients These techniques are suitable for crowded scenes where
multiple objects are difficult to track. Adam et al. [1]’s method was based on multiple
local monitors, where each local monitor detects unusual event by collecting low-level
statistics and generates an alert. The final decision is taken by integrating all these alerts.
In Jiang et al. [10]’s method, anomalies are detected in the spatio-temporal context con-
sidering sequential, point and co-occurrence anomalies. This is achieved by employing
a hierarchical data mining approach wherein a frequency based analysis is performed at
each level. Rules are established to define normalcy in a spatio-temporal context and their
method detects hazardous events. However, synthesizing rules for all scenarios is a tedious
task. In Zhang et al. [33], a Locality Sensitive Hashing function is defined which hashes
anomalous activities into different feature buckets and thus helps filter out anomalies. Li
et al. [15] proposed an unsupervised statistical learning framework to detect anomalies in
crowded scenes by dividing videos into cubic spaces. Using sparse coding and clustering,
their method can learn spatial and temporal gradients of global activities and local salient
behavior patterns. With this, an activity pattern code book is constructed that extends their
model to localize anomalies through multiple scale analysis. Their model outperforms five
other well known methods but it cannot be updated to automatically work on any input
video. For each new video, the dictionary learning process needs to be repeated which
makes their technique scenario specific. A social force model was used for the first time
by Mehran et al. [19] to detect and localize anomalous events. These represent interaction
forces between moving particles which are placed in the form of a grid on top of the image.
Force flow is estimated by mapping these interaction forces into the image frame. Normalcy
in crowd behavior is modeled by randomly chosen spatio-temporal patched. Events are clas-
sified using a bag of words technique and localized using the forces of interaction defined
earlier.

Feature learning models For solving the problem of occlusion, a third class of anomaly
detection algorithms emerged. These methods involved slicing the video into frames or
cuboids and extracting features such as texture and optical flow gradient from these seg-
mented regions of the video. Reddy et al. [23] proposed a technique where foreground
frames obtained from foreground segmentation are split into cells that are non-overlapping
and features like texture, motion and size are extracted from these for cell-wise anomaly
detection. However, the cell size used is determined heuristically and can cause large varia-
tions of accuracy across different scenes. Mahadevan et al. [18] and Li et al. [16] modeled
normal crowd behavior by capturing both guise and motion by using a mixture of dynamic
texture (MDT) models. Spatial discriminate salience detector aided in detection of spatial
anomalies whereas background behavior subtraction was used to detect temporal anoma-
lies. The final detection result was obtained by combining the two results obtained from
both temporal and spatial dimensions. Techniques for mining for patterns in temporal data
have been studied in works such as Aljawarneh et al. [3] and Radhakrishna et al. [22].
Radhakrishna et al. [22] proposes a novel approach for estimating temporal association pat-
tern prevalence values and a fuzzy similarity measure is proposed. Aljawarneh et al. [3]’s
approach was able to find temporal patterns whose true prevalence values vary similar to
a reference support time sequence satisfying subset constraints through estimating tem-
poral pattern support bounds and using a novel fuzzy dissimilarity measure which holds
monotonicity to find similarity between any two temporal patterns.

A Markov random field model based on space-time was employed by Kim and Grauman
[12] to detect activities that are considered abnormal in video. A local region was repre-
sented as a node and spatio-temporal relations with other local regions was shown with
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the help of links. Normal patterns at each node were learned by mixture of optical flow
distributions and probabilistic PCA models. For any new optical flow patterns in the test
videos, a degree of normality was computed using maximum a posteriori algorithm. Their
model was also adaptive to new situations. Wu et al. [30] proposed a system for modeling
crowd flow and anomaly detection by efficiently representing trajectories and introducing
chaotic invariant features into the scenes. A probabilistic framework for detecting anoma-
lous behaviors in crowded scenes by learning dominant behaviors online was proposed by
Roshtkhari and Levine [24]. Crowd behavior was shown as a spatio-temporal arrangement
of small cuboids of the video with anomalous instances being those which had less fre-
quency of occurrence in terms of arrangement. Another application of anomaly detection
was presented by Aljawarneh et al. [2], where an anomaly-based intrusion detection system
based on a hybrid model was used to determine the intrusion scope threshold degree based
on the network transaction data.

Cheng et al. [6] divide anomalies into two kinds: local and global. Global anomalies
denote anomalies across frames whereas local anomalies fixate on the anomalous patch
within a frame. Cheng et al. [6] use a hierarchical feature representation and Gaussian
process regression technique is used to detect anomalies. A linear sparsity model for supe-
rior class separability and detection of anomalies involving multiple objects was proposed
by Mo et al. [20]. Saligrama and Chen [26] focus on localizing spatio-temporal anoma-
lies by using optimal decision rules. They use a local nearest neighbor search to define
score functions of the empirical rules. Anti¢ and Ommer [4] proposed an indirect method
of anomaly detection by defining a set of hypotheses to describe normal behavior in the
foreground by finding examples that support the hypotheses. They describe a probabilistic
model which uses statistical inference to localizes abnormalities. In extension to the works
related to local and global anomaly detection in videos, Sabokrou et al. [25] proposed a
framework for defining spatio-temporal feature descriptors for a video. These descriptors
are passed as inputs to two Gaussian classifiers which are then combined using a fusion
technique. Appearance and Motion DeepNet Model introduced by Xu et al. [32] uses deep
neural networks to automatically learn feature representations coupled with a deep fusion
technique. Motion and appearance features are learned separately using stacked denoising
autoencoders and then fused together in this work.

3 Methodology and framework

With reference to state-of-the-art methods discussed earlier, we identified several shortcom-
ings, which we intend to address in the proposed methodology. Feature extraction is highly
dependent on the context of the video. However, features extracted for some crowded scenes
are not applicable everywhere and there is no significance associated with the features. For
complex scenes, many features would have to be considered, which increases the dimension
of the descriptor, thus resulting in added complexity and computational time. High false
positive rate is also a common shortcoming in all these methods. To address these setbacks,
we propose a model that efficiently overcomes the aforementioned drawbacks, which we
discuss in detail in Section 3. Our significant contributions are manifested in the following
aspects -

1. A sparse denoising autoencoder with Parametric ReLU as the activation function and

KL Divergence as the regularization function is used to automatically learn features.
Thus, our model is context independent and can adapt to being trained on any data.
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Fig. 1 Proposed methodology

2. Different feature descriptors are used for local and global anomalies. Local feature
descriptors account for spatio-temporal changes and global feature descriptors account
for changes across many frames.

3. Gaussian classifiers are utilized to classify the local and global descriptors separately
and a fusion technique is used to combine the results of both.

4. Inclusion of drop-out layers in the autoencoder and KL-Regularization considerably
diminishes over-fitting of the model.

Figure 1 describes the proposed model’s architecture. The system works in real-time and
reports anomalies in an incoming video. The methodology consists of five distinct phases,
each of which is described in detail next.

Preprocessing the video to generate cubic patches.

Generation of local descriptors.

Generation of global descriptors using sparse denoising autoencoders.
Gaussian Classification of local and global features.

Aggregation of results from both the classifiers and anomaly localization.

NS

3.1 Video preprocessing and cubic patch generation

Each video is represented by a set of key frames. For a given set of key frames we obtain non
overlapping cubical patches as shown in Fig. 2. The main concept of anomaly detection is
that the probability of occurrence of an anomalous patch is much less compared to a normal
one. There will be one or more patches which are similar to the neighboring patches and

Fig. 2 Cubic patch generation
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have a high probability of occurrence in the video. Thus, an anomalous patch would meet
the following requirements:

1. The situation of a similarity between the patches that are normal and the patches which
are adjacent, which is described by the spatial descriptor, follow a certain pattern which
cannot be seen when it comes to the similarity of the anomaly patches and patches that
are adjacent to them.

2. Temporal changes in normal patches follow a particular pattern. This is not seen in the
temporal changes of abnormal patches.

3. Lower probability of occurrence of a patch that is anomalous than that of patches that
are normal under the given circumstances.

The points 1 and 2 are local to a set of frames and correspond to spatio-temporal changes.
They are represented by the local feature descriptors. The 3rd point is quite similar to the
scene that is global in nature and is encoded by a set of global descriptors. Considering all
the aforementioned dimensions at once can result in an inefficient and exceedingly complex
framework. Thus, we construct the two independently. To arrive at a decisive conclusion,
the results from the models are fitted to Gaussian distributions and a boundary that is used to
make a decision is calculated for every model. A patch is classified as an anomaly depending
on the results obtained from both classifiers, as shown in Fig. 3.

3.2 Local descriptor generation

For a given cubic patch, the local descriptors are those which describe its spatio-temporal
relations with its neighboring patches. Algorithm 1 illustrates the process of local descriptor
generation. The local descriptor is composed of two parts, which are generated as per the
defined processes.

—  Spatial Descriptors: Similarity of the chosen patch with 8 surrounding patches is con-
sidered, in addition to the five frames which constitute the patch. Frame 1 is compared
with Frame 2 and 2 with 3 and so on, after which a total of 12 spatial descriptors are
obtained.

—  Temporal Descriptors: The patches that are obtained before and after the patch under
consideration are considered for determining any anomaly quickly, such that it is iden-
tified even before proceeding to the next patches in the video. This process produces 14
local descriptors for each patch.
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8 ' ( 1

1 Local Classifier .
n
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al! :
2 ' '
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Fig. 3 Extracting video information
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Algorithm 1 Local descriptor generation process

for Each frame in video do

LocalDescriptor = ];

Divide frame into 10 x 10 patches;

for Each patch in frame do

Compute SSIM value with surrounding 8 patches;
LocalDescriptor.append(SSIM values);

end

for Each patch in frame do

Compute SSIM value with the next 5 frames for the same patch;
LocalDescriptor.append(SSIM values);

end

end

The similarity between the patch and its neighbors is computed by using a image quality
assessment tool, SSIM [29]. SSIM? is a good measuring tool when it comes to similar-
ity measurement between images in terms of the image structure. The SSIM index is a
metric that predicts the measurement of the quality of the image based on a primary refer-
ence image which is distortion-free or uncompressed. SSIM, which is a perception based
model, differs from other techniques namely the peak signal-to-noise ratio (PSNR) and the
mean squared error (MSE) by not estimating absolute errors. It is perceptive due to the
consideration of image degradation as a structural information change, and it also takes
care of perceptual phenomena, such as contrast masking terms and luminescence mask-
ing. This structural information is based on the fact of spatially close pixels having strong
inter-dependencies which contain information about the structure of the objects in the
visual scene. Hence, SSIM fits perfectly into our application wherein we need structural
information to distinguish between anomalous and normal frames.

Next, the SSIM index is applied on many image windows. The measure between two
windows and common size N x N is given by:

Quapp +di) 2oap + do)
(12 + wor +di) (02 + 0 + db)

SSIM(a,b) = @)
where, [1,] is average of a,[up] is average of b, [aaz] is variance of a, [abz] is variance of b,
[oap] is covariance of a and b, [d, d»] are variables for weak denominator division stability
and j; = 0.01, j» = 0.03 by default.

Figure 4 shows local feature assessment through the spatio-temporal neighboring which
is the combination of the values, [dO - d9;D0 - Dt1]. SSIM tool is used to compare two
frames. To extend this to patches we compute the sum of the SSIM index for the corre-
sponding frames in two patches. This is described in Fig. 5. Thus, the similarity between
any two patches is the sum of the similarities between the corresponding frames.

3.3 Global descriptor generation

Global descriptors are features set used to represent the video holistically. Using HOG, HOF
and SIFT features isn’t suitable for anomaly detection as they are not discriminating enough.

3Structural Similarity Index Measurement. Online: http://live.ece.utexas.edu/research/quality/SSIM/
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Fig. 4 Illustration of local descriptor generation [25]

Including several features can make the problem exceedingly complex and difficult to learn.
To overcome this, we use autoencoders for unsupervised feature learning. Autoencoder neu-
ral networks [21] are unsupervised learning algorithms that apply gradient descent. Figure 6
depicts the architecture of a sparse auto encoder neural network.

In the proposed system, the autoencoder is used as a feature selection technique. Given
an unlabeled set of training examples {x(1), x(2), x(3), ...} where x! € R™, an autoencoder
neural network will set the target values to be equal to the value of the inputs: x' = y.
The autoencoder learns a function AW, b (z) & z. By equating output to input, it learns an
approximation to the identity function. In spite of the identity function being a trivial func-
tion, interesting underlying structure about the data can be found by incorporating network
constraints which limit the number of hidden layer nodes and modifying average activation
at each of these nodes.

SSIM(X.,Yy)
5 | SSIM(X5,Y,) |

h SSIM(Xo,Yo)

t
Similarity = > SSIM(Xi,Yi)
i=0

Fig. 5 Cubic patch comparison with SSIM tool
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Fig. 6 Sparse autoencoder

h\‘.‘,b(x]

—_—

Layer L, Layerls

Layer L,

Let the inputs x be the intensity values of pixels from a 10 x 10 image (100 pixels). So,
n = 100 and there exist s = 50 hidden units in L,. The hidden layer nodes are fewer than
those in the input layer hence forced to learn a ‘compressed’ input representation, which
means, trying and reconstructing the 100-pixel input from 50 hidden neurons. If a random
input is provided, i.e., each x;, independent of the other features is from a two-dimensional
Gaussian function, then, the task of compression is difficult. However, if some of the input
features are correlated and there is a structure in the input, the algorithm will be able to find
some correlations. Just like in Principal Component Analysis, an autoencoder tries to learn
data that is of a lower dimension.

The autoencoder, with the help of gradient descent, can learn sparse features. Suppose
there exist n normal patches having dimensions (/, b, h) create a structure of x; € RP,D =
I x b x h. An autoencoder does the task of minimization of the defined objective in (2) by
re-reconstructing the raw original data:

I.b.h 8

m 8
L= ;; i — Was (Wixi +b0) + bal P+ Y2 30 (W3) + 8 KL (oll0)) @

i=1 j=1 j=1
where,

— s - number of hidden layer nodes in autoencoder.

— Wi € R**P - weight matrix mapping the input to hidden layer nodes.

— W, € RP*S - weight matrix which maps nodes of hidden layer to nodes of output layer
—  WJ’ - weight between the i’" layer node and the j** hidden layer node

— § - Parametric ReLU activation function defined in (3).

x ifx>0
ax otherwise

§(x) = { (3)
Here « is a small constant, say 0.01.

— by and b; - hidden layer and output layer bias.

— KL - Kullback-Leibler measures divergence between two Bernoulli random variables
with mean p and mean p; respectively. KL(pp’j) - regularization function and it
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enforces sparse hidden layer activation. KL is based on similarity between active node
distribution and a Bernoulli distribution with p as parameter. It is a standard function
for measuring the variability of two distributions.

—  Parameter f is the penalty term’s weight used in the sparse autoencoder cost function.

In the above example, we consider the count of hidden units s, being less than the count
of input units. However, interesting structure can be uncovered when the hidden unit number
is more than input pixel numbers by imposing other network constraints such as sparsity
constraint. The autoencoder will then find fascinating structure in the given data, despite
the presence of a large number of hidden units. A neuron is considered to be ‘inactive’ if
the output value obtained is approximately ax as a result of the Parametric ReLLU function
and ‘active’ if the output value is approximately x. Parametric ReLLU avoids the problem
of dying weights which is encountered while using sigmoid or ReLU activation functions.
Most of the neurons must be inactive for a sparse autoencoder. This way it is easier to
achieve the desired goal of reconstructing the output nodes from the input nodes.

Parameter (ajz) is the hidden unit j’s activation in the autoencoder. But, this notation

doesn’t clearly explain which input x led to activation. Therefore, we denote a? (x) as the

hidden unit activation when a specific input x is given to the network. Equation (4) is the
average activation of unit j over the training set.

o= [

The sparse autoencoder tries to enforce the constraint shown in (5), where, p is a sparsity
parameter approximately zero (say p = 0.05). Each hidden neuron should have an average
activation j approximately 0.05. The hidden unit’s activation must be near O in order to
satisfy this constraint. In order to obtain this, the optimization objective is added to an
extra penalizing term that g; deviates significantly from p (given by (6)). In our work, the
Kullback-Leibler divergence term is used as the penalty (7).

pj=p (%)
R p 1—p
B =2 plog -+ (1 = pllog—x (©)
j=1
N
Penalty = Z KL(pllp) @)

j=1
In the proposed framework, the sparse autoencoder learns the optimal weights to represent
the features of all the patches in the training video. Each input is a vector containing the
intensities of all the pixels in the 10 x 10 x 5 patch. As we read the frames in grey scale,
the intensity is a single value. Therefore, each input node of the autoencoder is a vector
containing 500 intensity values. The total number of input nodes is equal to the number of
patches in the entire training dataset containing all the videos.

The count of the number of unites in the hidden layer indicate optimal feature count
being used to represent a patch. When this exceeds the number of input nodes, we have
a sparse autoencoder with sparsity greater than 1. The autoencoder tries to learn the right
set of weights by making the input nodes equal to the output nodes. After each input node,
the back propagation step of the neural network is performed to adjust the weights as per
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the error at the output nodes. The training is continued until the threshold on the maximum
number of iterations or the minimum cost (given by (8) is attained.

Tsparse(W,b) = J(W,b) + B> KL(pl|f)) ®)
j=1

Algorithm 2 Global descriptor generation process

while iterations <maxlIters do

for Each frame in video do

GlobalDescriptor = [;

InputLayer = Intensity of each pixel in frame;

HiddenLaer = Sigmoid(InputLayer * Weights1);

OutputLayer = Sigmoid(HiddenLayer * Weights2);

diff = OutputLayer - InputLayer;

KLDivGrad = beta * (-(rho / thoCap) + ((1 - rho) / (1 - thoCap)));
errOut = multiply(diff, multiply(outputLayer, 1 - outputLayer));
errHid = multiply((transpose(W2), errOut) + transpose(matrix(KLDivGrad)),
multiply(hiddenLayer, 1 hiddenLayer));

weight2Gradient = LearningRate*(errOut * HiddenNodes);
WeightlGradient = LearningRate*(errHid * InputNodes);

Update weights of hidden and outer layers;

end
end

3.4 Denoising sparse auto-encoder using dropout technique

A problem commonly encountered in any learning process is over fitting. The number of
false-positives can be greatly reduced by incorporating techniques such as regularization
and drop-out which counter overfitting. Denoising the auto encoder enhances the model to
account for corruptness in input patterns and forces the hidden layer to learn more robust
features. The network now learns an identity function of the corrupted version of the image.
As defining normalcy under all circumstances given the limited training data is difficult,
denoising the auto encoder proves to be an efficient solution. The image is distorted by
setting a fixed percentage of the pixels to 0, i.e., dropping out some pixels. Figure 7 shows
the architecture of a denoising auto encoder.

[@Qz&oo%—[ooo’éo}—@obool

Fig. 7 Denoising autoencoder by dropping out pixels
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3.5 Anomaly detection using gaussian classifiers

Gaussian classifiers are used to classify the local and global descriptors as anomalous or
normal [17]. The local and global descriptors are constructed patch wise. Thus the job of
the classifier is to distinguish the normal patches of the video from the anomalous patches.
Gaussian Classifiers C'1 and C?2 use partially independent feature sets which are both global
and local, to compute the Mahalanobis distance [11] which measures the distance of point
X from a data distribution D, characterized by a mean and covariance matrix, and hence it is
hypothesized as a Gaussian distribution that is multivariate and measures how far the point
X is from the mean of the Gaussian distribution by taking into account all the dimensions of
the dataset. If X is at the mean of D, then this distance is zero. This distance increases as X
goes farther away from the mean and is computed by measuring the standard deviation along
each principal component axis from X to the mean of D. Mahalanobis distance represents
standard Euclidean distance in transformed space when each of these axes is re-scaled to
have a variance of unity. It considers correlations of the dataset as it is scale-invariant and
unitless [5]. The Mahalanobis distance for a data point is given by:

Normal f (x) < threshold
Anomaly Otherwise

Ci(x) = { C))

where, Y and p are covariance and mean matrices respectively. For the classifier C1, we
compute the Mahalanobis distance for each of the global descriptors - wlxx’. For C2, we
give the local descriptors [d0...d9,D0..D4] as input to the distance function. If the distance
exceeds a threshold value then, it specifies an abnormal patch (Fig. 8).

-1
fO=@=-w"y (x—pw (10)

The threshold value greatly influences the performance of the system. Thus, choosing an
optimal threshold value is essential to model an efficient classifier. This threshold value is
got from the training patches. If both C1 and C2 classifiers classify a patch as anomalous,

Correlated Data

2P 7
ol

Fig. 8 Mahalanobis distance of two points for a distribution D
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then it is an anomaly, but the patch is considered as normal if any one of them label it as
normal. The following equation summarizes it mathematically.

Anomaly if C1 = C» = Anomaly
Normal Otherwise

F(x) = { an

The above steps describe a model that helps identify anomalous video patches. The main
challenge is to decide the patch size. Using large patches would result in low true positive
rate and using small patches would result in high false positive rate. Furthermore, using large
patches would increase the number of input dimensions to the autoencoder as the model has
to be trained for a larger descriptors. Increasing the number of weights makes the program
run slower and increases the complexity of the autoencoder, making it difficult to check for
1TOorS.

To overcome this problem, in the training phase we learn features from small patches of
size 10 x 10 x 5. During the testing phase, patches of size 40 x 40 x 5 are considered.
To bridge the dimension gap, the patches from the training phase are grouped into patches
of size 40 x 40 x 5 patches, without overlapping, and 16 feature vectors that have been
extracted from the 16 — 10 x 10 x 5 patches are combined using mean pooling technique,
to obtain 40 x 40 x 5 patch representation that can be verified by the learned classifier.
Figure 9 shows this procedure.

4 Implementation specifics
4.1 Local feature extraction

During this process, 14 local features were extracted to form a local descriptor- 8 spatial and
6 temporal. Each frame was divided into patches of size 10x 10 pixels giving 864 patches,
thus 864 local descriptors (each descriptor containing 14 features) for each frame. This
process took about 12—15 seconds to extract all the local descriptors from each frame. To
do the same with one video which contains 120-150 key frames, the time taken was close
to 45 minutes. For extracting local features from all the 16 training videos, the time taken
was about 25-30 h.

4.2 Global feature extraction
The training videos were divided into 5 x 10 x 10 cubic patches as learning from large

patches is impractical. The intensity of these 500 pixels constituted a single input node. For
all the 12 videos considered, we had 440640 input nodes. We assumed the hidden layer unit

16 Feature Vectors Mean Pooling
16 Small Patches I'fl-o f20  «e Tf160 fo
f1-2 fou1 wee Ti61 f1
»l ¢ ¢ .. ¢ [®d4 : }PClassifier
Y fion-2 Foenz  yee T16-n-1 -1
i To coe ficin i

Fig. 9 Using feature learning for large patch anomaly detection
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to consist of 100 nodes. This represents the number of sparse features we were trying to
build. The sparse autoencoder details are as follows:

— Input layer size: 500

—  Hidden layer sizes: We tested the autoencoder on the following sizes- 50, 100, 250, 400
and 600. Finally 100 was chosen as it gave the least cost.

—  Sparsity parameter of the hidden units (p): The average activation of each node was
chosen as 0.05 (standard value chosen for a sparse autoencoder).

—  Weight decay parameter (1): 0.0001

—  Sparsity penalty term (8): 0.03, 0.05, 1, 1.5, 3, 6 of which 0.03 gave the least cost

—  Max iterations: To prevent the problem of overfitting we reduced the number of
iterations from 1000 to 400.

—  Learning Rate: 0.5

—  Weights: were chosen randomly using a Normal Distribution function. The weights
connecting input to hidden nodes and hidden nodes to the output were both chosen
using the same technique.

—  Bias: Bias values at hidden nodes and output nodes are initialized to 0.

—  Error Threshold: 0.05 was determined as the best threshold on performing several runs
on the training data.

During preprocessing, each frame in the video was distorted by 25%. Pixels were cho-
sen at random and their values were set to 0. The input nodes were then multiplied with the
weights and the output at the hidden nodes was computed using the Parametric ReLLU func-
tion. These outputs act as inputs for the second part of the forward pass connecting hidden
layer to output layer. Error was calculated using the difference between the output and input
layer, using which final set of optimal weights were obtained. These were then multiplied
with the input nodes of all the videos. Since this is a computationally expensive process,
we found the mean of 20 nodes at a time and compiled a new list of nodes. These input
nodes were then multiplied with the weights connecting input layer to hidden layer. The
100 x 500 weight matrix multiplied with 500 x 22032 input nodes. This results in a global
descriptor matrix of size 100 x 22032. The Mahalanobis classifier was applied on this to
compute the optimal threshold. The threshold was obtained as 192 on choosing the above
parameters.

With the above experimental setup, the global feature extraction took about 3040 sec-
onds to extract all the local descriptors from each frame. To do the same with one video
which contains 120-180 key frames, the time taken was close to 120 minutes. For the
extraction of local features from all the 16 training videos, the time taken was about 30-32 h.

4.3 Anomaly classification
The Gaussian classifier was used separately for local and global features obtained during

the process described earlier. For the Gaussian Local Classifier, the Mahalanobis distance of

Table 1 Parameters used in anomaly classification using Gaussian Classifier

Classifier Feature set Avg. dist Max. dist Threshold
Gaussian local Local features 14.2324 78.33432 15
Gaussian global Global features 45.4564 148.65481 45
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Fig. 10 Ground Truth with
bounding box

'x=300, v=53) ~ R:0 G:0 B:0

all videos in the training set, which contains all normal patches was calculated first. Mean
of all these distances was used as threshold during classification. The values of the other
parameters is indicated in Table 1. A low threshold was chosen to decrease the false negative
rate, at the expense of false positive rate. This was motivated by the fact that we can afford
to detect a normal event as anomaly, but we cannot afford to miss an anomalous event by
reporting it as normal. For the Gaussian Global Classifier, the Mahalanobis distances for the
training patches were computed (given in Table 1). The threshold value chosen was again
motivated by the same reason as mentioned for the local classifier.

5 Experimental results

For local testing, local feature descriptors from the test videos are extracted in the same
manner as done for the training set. Each descriptor corresponding to a spatio-temporal
patch is classified using the Gaussian classifier. The results of each video, in the form of list
of detected anomalous patches in each frame, are written to a separate file. To evaluate the
results, we extracted the ground truth from the testing videos. The ground truth videos had
white patches against black background. The position of the white patch represented the
ground truth anomaly in the video. We found the contours along the anomaly, and developed
a bounding box around the contour as shown in Fig. 10. The co-ordinates of this bounding
box were written to a separate file, to be used while evaluating the results.

Anomaly Anomaly Normal Anomaly

Fig. 11 Levels of evaluation - a Frame b Pixel ¢ Dual pixel d Dual pixel
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(x=300, v=191) ~ R:160 G:160 B:160

Fig. 12 Anomalous activity identified by Local classifier

Evaluation The results of the global classifier and the local classifier were evaluated sep-
arately. Finally, the results of both the classifiers were combined and evaluated. A logical
AND was applied to the results of the two classifiers to combine their results, i.e., a patch
is considered as an anomaly if it is detected as an anomaly by both the classifiers. The files
containing the anomaly patch numbers detected from the local and global classifiers, along
with those containing the ground truth values were also read. Three levels of evaluation
were performed (illustrated in Fig. 11)

—  Frame Level: Here, the entire frame was classified as anomalous if an anomaly was
detected in at least one pixel in that frame.

—  Pixel Level: The entire frame is marked anomalous if the detected anomaly is covering
at least 40 percent of the pixels in ground truth anomaly.

(x=227.v=117) ~ R:40 G:40 B:40

Fig. 13 Anomalous activity identified by Global classifier
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(x=300, y=191) ~ R:159 G:159 B:159

Fig. 14 Anomalous activity identified after combining Local and Global classifier results

—  Dual Pixel Level: A frame is determined an anomaly if the anomaly condition at pixel
level is satisfied and the ground truth pixels cover at least ‘B’, which in our case is 15%
of the detected anomaly pixels.

Figures 12 and 13 show an example of the anomaly being detected using local and global
classifiers respectively. The results from both the classifiers were combined using the dual
pixel level technique and the result of an anomaly being detected is shown in Fig. 14.

For experimental evaluation, the UCSD Pedestrian Dataset and UMN Dataset were used.
The UCSD dataset was created with the aid of an elevated camera in order to capture
movement of pedestrians and contains 2 subsets. Only the UCSD Peds2 dataset containing
16 training video samples and 12 testing video samples of pedestrians walking in the view-
plane of the camera was used to evaluate our algorithm. The UMN dataset contains videos
shot in three different environments. Each video shows a group of people initially walking
normally, who then run all of a sudden, which is the anomalous activity.

Table 2 Frame and pixel level

comparison of EER Algorithm Frame-Level(%) Pixel-Level (%)

Social Force [19] 42 79
MPCCA [12] 30 82
MPCCA+SF [18] 36 72
[11 42 76
MDT [18] 25 55
[31] 20 42
[16] 18.5 29.9
[25] 19 24
[32] 17 -
Proposed method 16 20
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Fig. 15 ROC Curves for pixel level evaluation on UCSD Ped2 Dataset (Existing approaches vs. Proposed
Method)

Testing For global testing, the test data is divided into patches of size 40 x 40 x 5. Mean
pooling is performed based on the weights obtained from the training samples of size 10 x
10 x 5. The test input nodes are then multiplied with these weights to obtain the global
descriptors. On this, the Mahalanobis distance metric is applied to determine if the patch is
an anomaly or not. The mean and co-variance for Mahalanobis classifier are the same as the
training set.

Table 2 shows the Equal Error Rate (EER) values obtained for different algorithms when
applied to the UCSD Pedestrian 2 dataset. The lower the EER value the better. As is evident
from the tabulated data, the pixel-level EER of the proposed algorithm is the lowest among
the state-of-the-art algorithms considered for comparison and is at par with [32]’s method.

100
£ 80 ST S R
§ : H : ~——@&— Proposed
g : : : ——&——  Sabokrou et al.
% 60 : : —@— Xuetal
o) S SRS USRS
a
w
o 40
4
=
20
0

0 20 40 60 80 100
FALSE POSITIVE RATE

Fig. 16 ROC Curve for frame level evaluation on UCSD Ped2 Dataset (Existing approaches vs. Proposed
Method)
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Table 3 Comparative

performance measured in AUC Algorithm AUC EER

and EER
Chaotic invariant [30] 99.4 53
Social force [19] 94.9 12.6
Sparse [7] 99.6 2.8
[26] 99.5 34
[16] 99.5 3.7
[25] 99.6 2.5
[32] 90.8 24
Proposed method 99.6 22

However, the frame-level EER outperforms all the existing algorithms. While our proposed
method achieves a frame-level EER of 16%, [32]’s method attained the second best result of
17%. In summary, we found that our method was better by a margin of 1% than the previous
best result. The dropout technique used in the sparse autoencoder helped reduce the rate of
false positives (Figs. 15 and 16).

Figure 15 depicts the ROC curve for pixel level measure. The proposed method was
compared against 7 other existing algorithms on the basis of pixel level anomaly detection
performance. Again, it was found that the proposed method performed the best in this case
too. The lowest frame level EER of 17 was obtained for proposed method. Figure 16 shows
the ROC curve for frame level evaluation of our algorithm. The rate of false positives was
also lower than any other method as can be interpreted from the curve.

The Area under ROC Curve (AUC) and EER values for the UMN Dataset are shown in
Table 3. This dataset has no pixel-level ground truth and there are only three anomalous
scenes. Moreover, the spatio-temporal changes between normal and abnormal frames are
very high. Considering these limitations, we used the EER and AUC at frame-level to eval-
uate the proposed model. From the tabulated results, it is clear that our algorithm obtained
the best EER value of 2.2% which is 0.2% better than the current best achieved by Xu et al.
[32]. The AUC value (99.6) is at par with the previous best value obtained by Sabokrou
et al. [25].

From Table 4, it can be observed that our method also achieved the least running time
when compared to all current state-of-the-art methods. Xu et al. [32]’s algorithm is presently
the fastest and takes 7.5 seconds per frame while testing on the UCSD Ped-2 dataset. Our

Table 4 Comparison of different

methods in terms of Method UCSD Ped 2
computational time during test
(seconds per frame) [32] without foreground detection 13.5
[32] with foreground detection 7.5
Proposed method 4.3
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algorithm takes 4.3 seconds to test on the same dataset and is faster by a margin of 3.2
seconds, thus resulting in a 1.7 x speedup.

6 Conclusion and future work

In this paper, a dynamic anomaly detection system for crowded scene videos using sparse
autoencoders was propsed. The incoming video stream was divided into voxels of size
10 x 10 x 5 from which the local and global feature descriptors are captured. The local
descriptors help learn the spatial and temporal relations that aid in localizing anomalies
while the global descriptors constructed using sparse denoising autoencoders are used for
interpreting the video as a whole. Gaussian classifiers were modeled using the descriptors
and the minimum threshold to define abnormality was learned using the Mahalanobis dis-
tance metric. Further, a dual pixel measure was employed to evaluate anomalies detected
using our method. Experimental validation clearly showed that the frame level anomaly
detection rate achieved by the proposed method on the UCSD dataset was the best result
achieved yet when compared to several existing methods. Similarly, for the UMN Dataset,
an AUC value of 99.6 was obtained, which is at par with the current best. The time taken
by our algorithm (4.3 seconds per frame) is the least compared to existing works. Also,
an improved EER of 2.2 (0.2% improvement) was observed, which makes the proposed
method the most efficient when compared to state-of-the-art methods. This implies that the
proposed method can be applied on other crowded scene videos to detect anomalies in less
time and with a high accuracy.

For further improving our approach, we plan to extend our framework and employ it over
parallel environments such as SPARK, so that video inputs of larger sizes can be handled
and the model can be trained faster. Likewise, using tools like Caffe and Tensor Flow which
offer GPU support is another possibility for further optimization. With reference to the
Gaussian Classifier, we intend to evaluate the performance of statistical distance measures
in place of the Mahalanobis distance used currently.
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