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1 Introduction

The study of inverse (ill-posed) problems is an active area of research both theoretically and
numerically as these problems arise from important physical and engineering applications
(see [2,13,15,18]). It can be quite challenging to solve such problems because of their ill-
posed nature. Many of these problems can be characterized abstractly as

A(x) = y

where y denotes the data, A an abstract (ill-posed) operator and x the unknown solution.
However, in practice, because of modelling, experimental and computational errors, y is
only available as an approximation yδ . Consequently, it is necessary to solve

A(xδ) = yδ

instead of

A(x) = y,

and, for given classes of operators A, examine how the errors xδ − x depend on yδ − y.
Tikhonov’s regularization (e.g., [3]) method has been used extensively to stabilize the

approximate solution of nonlinear ill-posed problems. In recent years, increased emphasis
has been placed on iterative regularization procedures [6,11] for the approximate solution of
such problems. In this paper, we examine the use of iterative regularization procedures for
Hammerstein-type integral equations of the form

(Ax)(t) :=
∫ 1

0
k(s, t) f (s, x(s))ds

where k(s, t) ∈ L2([0, 1]×[0, 1]), x ∈ L2[0, 1] and t ∈ [0, 1]. A method and associated
algorithm are proposed for which local-cubic convergence is established theoretically and
validated numerically.

Formally a Hammerstein operator A takes the form A = K F where K : L2[0, 1] →
L2[0, 1] is a linear integral operator with kernel k(s, t):

Kx(t) =
∫ 1

0
k(s, t)x(s)ds

and F : D(F) ⊆ L2[0, 1] → L2[0, 1] is the nonlinear superposition operator (cf. [12], Page
430)

Fx(s) = f (s, x(s)). (1.1)

More generally, an equation of the form

K F(x) = y (1.2)

where F : D(F) ⊆ X → Z , is nonlinear and K : Z → Y is a bounded linear operator is
called a (nonlinear) Hammerstein equation [5,8]. In this paper X, Z , Y are Hilbert spaces
with inner product 〈., .〉 and norm ‖.‖ respectively.

In [5], George studied an iterative Newton-Tikhonov regularization (NTR) method for
approximating a x0-minimum norm solution x̂ of (1.2), where x̂ is called an x0-minimum
norm solution, if

‖x̂ − x0‖ := min{‖x − x0‖ : K F(x) = y, x ∈ D(F)}.
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The element x0 plays the role of a selection criterion (cf. [4]). Because of the nonlinearity of
F , the solution x̂ may not be unique.

It is assumed throughout that yδ ∈ Y are the available noisy data with

‖y − yδ‖ ≤ δ,

F possesses a uniformly bounded Fréchet derivative for each x ∈ D(F), i.e.,

‖F ′(x)‖ ≤ M, x ∈ D(F)

for some M .
Observe that the solution x of (1.2) with yδ in place of y can be obtained by first solving

Kz = yδ (1.3)

for z and then solving the non-linear problem

F(x) = z. (1.4)

In [5,7,8] this was exploited. In [5], z is approximated with zδα;
zδα = (K ∗K + α I )−1K ∗yδ, α > 0, δ > 0,

and then solve (1.4) iteratively using the following Newton-type procedure

xδ
n+1,α = xδ

n,α − F ′(x0)−1(F(xδ
n,α) − zδα)

to determine the approximations (xδ
n,α)with xδ

0,α := x0. Local linear convergencewas proved
in [5]. In [7], to solve (1.4), George and Kunhanandan used the iteration

xδ
n+1,α = xδ

n,α − F ′(xδ
n,α)−1(F(xδ

n,α) − zδα)

with xδ
0,α := x0 and

zδα = (K ∗K + α I )−1K ∗(yδ − K F(x0)) + F(x0). (1.5)

Local quadratic convergence was established in [7]. As in [7], it is assumed that the solution
x̂ of (1.2) satisfies

‖F(x̂) − F(x0)‖ = min{‖F(x) − F(x0)‖ : K F(x) = y, x ∈ D(F)}.
A sequence (xn) in X with lim xn = x∗ is said to be convergent of order p > 1, if there

exist positive reals β and γ such that, for all n ∈ N ,

‖xn − x∗‖ ≤ βe−γ pn . (1.6)

If a sequence (xn) satisfies ‖xn − x∗‖ ≤ βqn , 0 < q < 1, then (xn) is said to be linearly
convergent.

Recently, George and Shobha [9], considered a dynamical systemmethod for solving (1.2)
and obtained optimal order convergence rate. In [5,8,9] it is assumed that F ′(x0)−1 exists
and in [7] it is assumed that F ′(x)−1 exists for all x ∈ Br (x0) (the ball of radius r on the
centre x0) for some r > 0.

In [1], Argyros and Hilout considered a method called Two Step Directional Newton
Method (TSDNM) for approximating a zero x∗ of a differentiable function F defined on a
convex subsetD of a Hilbert space H with values in R. Motivated by TSDNMwe propose, a
Two Step Newton-Tikhonov Methods (TSNTM) in this paper for solving (1.2). In particular,
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its convergence for two different regularity classes of the operator F are examined: Invertible
Fréchet derivative (IFD) class and Monotone Fréchet derivative (MFD) class.
The IFD class F ′(u)−1 exists and is a bounded operator for all u ∈ Br (x0); i.e., ‖F ′(u)−1‖ ≤
β, ∀u ∈ Br (x0). Consequently, in this situation, the ill-posedness of (1.2) is essentially due
to the nonclosedness of the range of the linear operator K (see [18], page 26).

Remark 1.1 Let the function f in (1.1) be differentiable with respect to the second variable.
Then, it follows that the operator F in (1.1) is Fréchet differentiable with

[F ′(x)u](t) = ∂2 f (t, x(t))u(t), t ∈ [0, 1],
where ∂2 f (t, s) represents the partial derivative of f with respect to the second variable. If,
in addition, the existence of a constant κ1 > 0 is assumed such that, for all x ∈ Br (x0) and
for all t ∈ [0, 1], ∂2 f (t, x(t)) ≥ κ1, then F ′(u)−1 exists and is a bounded operator for all
u ∈ Br (x0). So F belongs to the IFD class.

TheMFD class F is a monotone operator (i.e., 〈F(x)− F(y), x − y〉 ≥ 0, ∀x, y ∈ D(F))
and F ′(.)−1 does not exists. Consequently, in this situation, the ill-posedness of (1.2) is due
to the ill-posedness of F as well as the nonclosedness of the range of the linear operator K .

Example 1.2 ([14, Example 6.1]) Let F : L2[0, 1] → L2[0, 1] be defined by
F(x)(t) = K (x)(t) + f (t), x, f ∈ L2[0, 1], t ∈ [0, 1]

where K : L2[0, 1] → L2[0, 1] is a compact linear operator such that range of K denoted
by R(K ) is not closed and 〈Kh, h〉 ≥ 0 for h ∈ L2[0, 1]. Then, F(x) = y is ill-posed as K
is a compact operator with non-closed range.The Fréchet derivative F ′(x) of F is given by

F ′(x)h = Kh, ∀x, h ∈ L2[0, 1].
Now, since 〈Kh, h〉 ≥ 0 for all h ∈ L2[0, 1], F is monotone. Further F ′(u)−1 does not exists
for any u ∈ L2[0, 1]. Consequently, the operator K F , with K and F as defined above is an
example of the MFD Class.

The Preliminaries are given in Sect. 2. Section 3 investigates the convergence of the
TSNTM for both the IFD and MFD Classes. Section 4 discusses the algorithm details and
Numerical examples are given in Sect. 5.

2 Preliminaries

This section deals with Tikhonov regularized solution zδα of (1.3) and (an a priori and an a
posteriori) error estimate for ‖F(x̂) − zδα‖. The following assumption is required to obtain
the error estimate .

Assumption 2.1 There exists a continuous, strictly monotonically increasing function ϕ :
(0, a] → (0,∞) with a ≥ ‖K‖2 satisfying;
• lim

λ→0
ϕ(λ) = 0)

•
sup
λ≥0

αϕ(λ)

λ + α
≤ ϕ(α), ∀λ ∈ (0, a],

and
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• there exists v ∈ X, ‖v‖ ≤ 1 such that

F(x̂) − F(x0) = ϕ(K ∗K )v.

Remark 2.2 The functions

ϕ(λ) := λν, λ > 0,

for 0 < ν ≤ 1 and

ϕ(λ) = { [
ln 1

λ

]−p
, 0 < λ ≤ e−(p+1)

0 otherwise

for p ≥ 0 satisfy the above assumption (see [14]).

Let zα = (K ∗K + α I )−1K ∗(y − K F(x0)) + F(x0). Then by Assumption 2.1 we have,

‖F(x̂) − zα‖ ≤ ‖α(K ∗K + α I )−1(F(x̂) − F(x0))‖
≤ ‖α(K ∗K + α I )−1ϕ(K ∗K )v‖
≤ sup

0<λ≤‖K‖2
αϕ(λ)

λ + α
‖v‖ ≤ ϕ(α),

and

‖zα − zδα‖ ≤ ‖(K ∗K + α I )−1K ∗(y − yδ)‖ ≤ δ√
α

.

The above discussion leads to the following Theorem.

Theorem 2.3 Let zδα be as in (1.5) and Assumption 2.1 holds. Then

‖F(x̂) − zδα‖ ≤ ϕ(α) + δ√
α

. (2.1)

2.1 A priori choice of the parameter

Note that the estimate ϕ(α) + δ√
α
in (2.1) is of optimal order for the choice α := αδ which

satisfies ϕ(αδ) = δ√
αδ
. Letψ(λ) := λ

√
ϕ−1(λ), 0 < λ ≤ a. Then we have δ = √

αδϕ(αδ) =
ψ(ϕ(αδ)) and

αδ = ϕ−1(ψ−1(δ)).

So the relation (2.1) leads to ‖F(x̂) − zδα‖ ≤ 2ψ−1(δ).

2.2 An adaptive choice of the parameter

In this paper, we propose to choose the parameter α according to the balancing principle
established by Pereverzev and Shock [17] for solving ill-posed problems. Let

DN = {αi : 0 < α0 < α1 < α2 < · · · < αN }
be the set of possible values of the parameter α.

The selection of numerical value k for the parameterα according to the balancing principle
is performed using the rule

l := max

{
i : ϕ(αi ) ≤ δ√

αi

}
< N . (2.2)
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Let

k = max{i : αi ∈ D+
N } (2.3)

where D+
N = {αi ∈ DN : ‖zδαi − zδα j

‖ ≤ 4δ√
α j

, j = 0, 1, 2, . . . , i − 1}.
We will be using the following theorem from [7] for our error analysis.

Theorem 2.4 (cf. [7, Theorem 4.3]) Let l be as in (2.2), k be as in (2.3) and zδαk be as in
(1.5) with α = αk . Then l ≤ k and

‖F(x̂) − zδαk‖ ≤ (2 + 4μ

μ − 1
)μψ−1(δ).

3 Two step Newton–Tikhonov method

We propose TSNTM for IFD class in Sect. 3.1 and a TSNTM for MFD class in Sect. 3.2.

3.1 TSNTM for IFD class

For an initial guess x0 ∈ X the TSNTM for IFD Class is defined as;

yδ
n,αk

= xδ
n,αk

− F ′(xδ
n,αk

)−1(F(xδ
n,αk

) − zδαk ), (3.1)

xδ
n+1,αk = yδ

n,αk
− F ′(xδ

n,αk
)−1(F(yδ

n,αk
) − zδαk ). (3.2)

We need the following assumption for the convergence of TSNTM and to obtain the error
estimate.

Assumption 3.1 (cf. [10, Assumption 1.2]) There exist a constant k0 > 0 such that for every
x, u ∈ Br (x0) andv ∈ X there exists an element�(x, u, v) ∈ X such that [F ′(x)−F ′(u)]v =
F ′(u)�(x, u, v), ‖�(x, u, v)‖ ≤ k0‖v‖‖x − u‖.

Let

eδ
n,αk

:= ‖yδ
n,αk

− xδ
n,αk

‖, ∀n ≥ 0 (3.3)

and for 0 < k0 ≤ 1, let g : (0, 1) → (0, 1) be the function defined by

g(t) = k20
8

(4 + 3k0t)t
2 ∀t ∈ (0, 1). (3.4)

For convenience we will use the notation xn , yn and en for xδ
n,αk

, yδ
n,αk

and eδ
n,αk

respectively.

Hereafter we assume that δ ∈ (0, δ0] where δ0 <
√

α0
β

. Let ‖x̂ − x0‖ ≤ ρ,

ρ <
1

M

(
1

β
− δ0√

α0

)
(3.5)

and

γρ := β[Mρ + δ0√
α0

].

Theorem 3.2 Let en and g(en) be as in Eqs. (3.3) and (3.4) respectively, xn and yn be as
in (3.2) and (3.1) respectively with δ ∈ (0, δ0]. Then under the Assumptions of Theorem 2.4,
the following hold:
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(a) ‖xn − yn−1‖ ≤ k0en−1
2 ‖yn−1 − xn−1‖;

(b) ‖xn − xn−1‖ ≤ (1 + k0en−1
2 )‖yn−1 − xn−1‖;

(c) ‖yn − xn‖ ≤ g(en−1)‖yn−1 − xn−1‖;
(d) g(en) ≤ g(γρ)3

n
, ∀n ≥ 0;

(e) en ≤ g(γρ)(3
n−1)/2γρ ∀n ≥ 0.

Proof Observe that

xn − yn−1 = yn−1 − xn−1 − F ′(xn−1)
−1(F(yn−1) − F(xn−1))

= F ′(xn−1)
−1[F ′(xn−1)(yn−1 − xn−1) − (F(yn−1) − F(xn−1))]

= F ′(xn−1)
−1

∫ 1

0
[F ′(xn−1) − F ′(xn−1 + t (yn−1 − xn−1))](yn−1 − xn−1)dt

and hence by Assumption 3.1, we have

‖xn − yn−1‖ ≤ ‖
∫ 1

0
�(xn−1, xn−1 + t (yn−1 − xn−1), yn−1 − xn−1)dt‖

≤ k0
2

‖yn−1 − xn−1‖2.

This proves (a). Now (b) follows from (a) and the triangle inequality;

‖xn − xn−1‖ ≤ ‖xn − yn−1‖ + ‖yn−1 − xn−1‖.

To prove (c) we observe that

en = ‖yn − xn‖ ≤ ‖xn − yn−1 − F ′(xn)−1(F(xn) − zδα)‖
+ ‖F ′(xn−1)

−1(F(yn−1) − zδα)‖
≤ ‖xn − yn−1 − F ′(xn)−1(F(xn) − F(yn−1))‖

+ ‖[F ′(xn−1)
−1 − F ′(xn)−1](F(yn−1) − zδα)‖

≤ ‖F ′(xn)−1[F ′(xn)(xn − yn−1) − (F(xn) − F(yn−1))]‖
+ ‖[F ′(xn−1)

−1 − F ′(xn)−1](F(yn−1) − zδα)‖

≤
∥∥∥∥F ′(xn)−1

∫ 1

0
[F ′(xn) − F ′(yn−1 + t (xn − yn−1))]dt (xn − yn−1)

∥∥∥∥
+ ‖F ′(xn)−1(F ′(xn) − F ′(xn−1))F

′(xn−1)
−1(F(yn−1) − zδα)‖

≤
∥∥∥∥F ′(xn)−1

∫ 1

0
[F ′(xn) − F ′(yn−1 + t (xn − yn−1))]dt (xn − yn−1)

∥∥∥∥
+ ‖F ′(xn)−1(F ′(xn) − F ′(xn−1))(yn−1 − xn)‖

≤
∥∥∥∥
∫ 1

0
�(xn, yn−1 + t (xn − yn−1), xn − yn−1)dt

∥∥∥∥
+ ‖�(xn, xn−1, yn−1 − xn)‖

≤ k0
2

‖xn − yn−1‖2 + k0‖xn − xn−1‖‖xn − yn−1‖.
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Therefore by (a) and (b) we have

en ≤
(
k20
2

+ 3k30
8

‖yn−1 − xn−1‖
)

‖yn−1 − xn−1‖3

≤ g(en−1)en−1. (3.6)

This completes the proof of (c). ��

Since for μ ∈ (0, 1), g(μt) ≤ μ2g(t), for all t ∈ (0, 1), by (3.6) we have,

g(en) ≤ g(e0)
3n

and

en ≤ g3(en−2)en−1 ≤ g3(en−2)g
3(en−3)en−2 · · · g(e0)e0

≤ g(e0)
3n−1+3n−2+···+1e0

≤ g(e0)
(3n−1)/2e0, (3.7)

provided en < 1,∀n ≥ 0. From (3.6) it is clear that, en ≤ 1 if e0 ≤ 1, but

e0 = ‖y0 − x0‖ = ‖F ′(x0)−1(F(x0) − zδαk )‖
≤ ‖F ′(x0)−1‖‖(F(x0) − zδαk )‖
≤ β‖F(x0) − zαk + zαk − zδαk‖
≤ β

[‖F(x0) − F(x̂)‖ + ‖zαk − zδαk‖
]

≤ β

[∥∥∥∥
∫ 1

0
F ′(x̂ + t (x0 − x̂))(x0 − x̂)dt

∥∥∥∥ + δ√
αk

]

≤ β

[
Mρ + δ√

αk

]

≤ β

[
Mρ + δ0√

α0

]

= γρ < 1.

As g is monotonic increasing and e0 ≤ γρ , we have g(e0) ≤ g(γρ). This completes the proof
of the Theorem.

Theorem 3.3 Let r = ( 1
1−g(γρ)

+ k0
2

γρ

1−g(γρ)2
)γρ and let the hypothesis of Theorem 3.2 holds.

Then xn, yn ∈ Br (x0), for all n ≥ 0.

Proof Note that by (b) of Theorem 3.2 we have

‖x1 − x0‖ ≤
[
1 + k0

2
e0

]
e0

≤
[
1 + k0

2
γρ

]
γρ

≤ r (3.8)
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i.e., x1 ∈ Br (x0). Again note that by (3.8) and (c) of Theorem 3.2 we have

‖y1 − x0‖ ≤ ‖y1 − x1‖ + ‖x1 − x0‖
≤

(
1 + g(e0) + k0

2
e0

)
e0

≤
(
1 + g(γρ) + k0

2
γρ

)
γρ

≤ r

i.e., y1 ∈ Br (x0). Further by (3.8) and (b) of Theorem 3.2 we have

‖x2 − x0‖ ≤ ‖x2 − x1‖ + ‖x1 − x0‖
≤

(
1 + k0

2
e1

)
e1 +

(
1 + k0

2
e0

)
e0

≤
(
1 + k0

2
g(e0)e0

)
g(e0)e0 +

(
1 + k0

2
e0

)
e0

≤
(
1 + g(e0) + k0

2
e0(1 + g(e0)

2)

)
e0

≤
(
1 + g(γρ) + k0

2
γρ(1 + g(γρ)2)

)
γρ

≤ r (3.9)

and by (3.9) and (c) of Theorem 3.2 we have

‖y2 − x0‖ ≤ ‖y2 − x2‖ + ‖x2 − x0‖
≤ g(e1)e1 + (1 + g(e0) + k0

2
e0(1 + g(e0)

2))e0

≤ g(e0)
4e0 + (1 + g(e0) + k0

2
e0(1 + g(e0)

2))e0

≤ (1 + g(e0) + g(e0)
4 + k0

2
e0(1 + g(e0)

2))e0

≤ (1 + g(e0) + g(e0)
2 + k0

2
e0(1 + g(e0)

2))e0

≤ (1 + g(γρ) + g(γρ)2 + k0
2

γρ(1 + g(γρ)2))γρ

≤ r.

i.e., x2, y2 ∈ Br (x0). Continuing this way one can prove that xn, yn ∈ Br (x0),∀n ≥ 0. This
completes the proof. ��

The main result of this section is the following Theorem.

Theorem 3.4 Let yn and xn be as in (3.1) and (3.2) respectively, Assumptions of Theorem
3.3 hold and let 0 < g(γρ) < 1. Then (xn) is a Cauchy sequence in Br (x0) and converges to
xδ
αk

∈ Br (x0). Further F(xδ
αk

) = zδαk and

‖xn − xδ
αk

‖ ≤ Ce−γ 3n

where C = ( 1
1−g(γρ)3

+ k0γρ

2
1

1−(g(γρ)2)3
g(γρ)3

n
)γρ and γ = − log g(γρ).
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Proof Using the relation (b) and (e) of Theorem 3.2, we obtain

‖xn+m − xn‖ ≤
i=m−1∑
i=0

‖xn+i+1 − xn+i‖

≤
i=m−1∑
i=0

(
1 + k0en+i

2

)
en+i

≤
i=m−1∑
i=0

(
1 + k0e0

2
g(e0)

3n+i
)
g(e0)

3n+i
e0

=
(
1 + k0e0

2
g(e0)

3n
)
g(e0)

3n e0

+
(
1 + k0e0

2
g(e0)

3n+1
)
g(e0)

3n+1
e0 + · · ·

+
(
1 + k0e0

2
g(e0)

3n+m
)
g(e0)

3n+m
e0

≤
[(

1 + g(e0)
3 + g(e0)

32 + · · · + g(e0)
3m

)

+ k0e0
2

(
1 +

(
g(e0)

2
)3 +

(
g(e0)

2
)32 + · · · +

(
g(e0)

2
)3m

)g(e0)
3n

]
g(e0

)3n

e0

≤
[(

1 + g(γρ)3 + g(γρ)3
2 + · · · + g(γρ)3

m )

+ k0γρ

2

(
1 +

(
g(γρ)2

)3 +
(
g(γρ)2

)32 + · · · +
(
g(γρ)2

)3m)
g(γρ)3

n
]
g(γρ)3

n
γρ

≤ Cg(γρ)3
n

≤ Ce−γ 3n .

Thus xn is a Cauchy sequence in Br (x0) and hence it converges, say to xδ
αk

∈ Br (x0). Observe
that

‖F(xn) − zδαk‖ = ‖F ′(xn)(xn − yn)‖
≤ ‖F ′(xn)‖‖(xn − yn)‖
≤ Men ≤ Mg(γρ)3

n
γρ. (3.10)

Now by letting n → ∞ in (3.10) we obtain F(xδ
αk

) = zδαk . This completes the proof. ��
Remark 3.5 Note that 0 < g(γρ) < 1 and hence γ > 0. So by (1.6), sequence (xn) converges
cubically to xδ

αk
.

Hereafter we assume that

ρ ≤ r <
1

k0
.

Remark 3.6 Note that the above assumption is satisfied, if

k0 ≤ min

{
1,

1 − g(γρ)2

γρ

[
−1

1 − g(γρ)
+

√
1

(1 − g(γρ))2
+ 2

1 − g(γρ)2

]}
.

Theorem 3.7 Suppose that Assumption 2.1 holds. If in addition k0r < 1 , then

‖x̂ − xδ
αk

‖ ≤ β

1 − k0r
‖F(x̂) − zδαk‖.
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Proof Observe that

‖x̂ − xδ
αk

‖ = ‖x̂ − xδ
αk

+ F ′(x0)−1[F(xδ
αk

) − F(x̂) + F(x̂) − zδαk ]‖
≤ ‖F ′(x0)−1[F ′(x0)(x̂ − xδ

αk
) + F(xδ

αk
) − F(x̂)]‖

+ ‖F ′(x0)−1(F(x̂) − zδαk )‖

≤
∥∥∥∥F ′(x0)−1

∫ 1

0
[F ′(x0) − F ′(x̂ + t (xδ

αk
− x̂)](x̂ − xδ

αk
)dt

∥∥∥∥
+ ‖F ′(x0)−1(F(x̂) − zδαk )‖

≤
∥∥∥∥
∫ 1

0
�(x0, x̂ + t (xδ

αk
− x̂), x̂ − xδ

αk
)dt

∥∥∥∥
+ ‖F ′(x0)−1(F(x̂) − zδαk )‖

≤ k0r‖x̂ − xδ
αk

‖ + β‖F(x̂) − zδαk‖.
The last step follows from Assumption 3.1 and the relation ‖x0 − x̂ − t (xδ

αk
− x̂)‖ ≤ r . This

completes the proof. The following Theorem is a consequence of Theorems 3.4 and 3.7. ��
Theorem 3.8 Let xn be as in (3.2), assumptions in Theorems 3.4 and 3.7 hold. Then

‖x̂ − xn‖ ≤ Ce−γ 3n + β

1 − k0r
‖F(x̂) − zδαk‖

where C and γ are as in Theorem 3.4.

Now since l ≤ k and αδ ≤ αl+1 ≤ μαl , we have

δ√
αk

≤ δ√
αl

≤ μ
δ√
αδ

= μϕ(αδ) = μψ−1(δ).

This leads to the following theorem.

Theorem 3.9 Let xn be as in (3.2), assumptions in Theorems 2.4, 3.4 and 3.7 hold. Let

nk := min

{
n : e−γ 3n ≤ δ√

αk

}
.

Then

‖x̂ − xnk‖ = ©(ψ−1(δ)).

3.2 TSNTM for MFD class

We need the following assumption in addition to the earlier assumptions for our convergence
analysis.

Assumption 3.10 There exists a continuous, strictly monotonically increasing function ϕ1 :
(0, b] → (0,∞) with b ≥ ‖F ′(x̂)‖ satisfying;

• lim
λ→0

ϕ1(λ) = 0,
•

sup
λ≥0

αϕ1(λ)

λ + α
≤ ϕ1(α) ∀λ ∈ (0, b]

and
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• there exists v ∈ X with ‖v‖ ≤ 1 (cf. [16]) such that

x0 − x̂ = ϕ1(F
′(x̂))v.

• for each x ∈ Br̃ (x̂) there exists a bounded linear operator G(x, x̂) (cf. [19]) such that

F ′(x) = F ′(x̂)G(x, x̂)

with ‖G(x, x̂)‖ ≤ K1.

Let Assumption 3.1 holds with r̃ in place of r , ρ ≤ r̃ < 1
k0

and let c ≤ αk .

First we consider a TSNTM for approximating the zero xδ
cαk of

F(x) + αk

c
(x − x0) = zδαk . (3.11)

and then we show that xδ
cαk is an approximation to the solution x̂ of (1.2). For an initial guess

x0 ∈ X and for R(x) := F ′(x) + αk
c I , the TSNTM for MFD Class is defined as:

ỹδ
n,α = x̃δ

n,α − R(x̃δ
n,α)−1[F(x̃δ

n,α) − zδαk + αk

c
(x̃δ

n,α − x0)] (3.12)

and

x̃δ
n+1,α = ỹδ

n,α − R(x̃δ
n,α)−1[F(ỹδ

n,α) − zδαk + αk

c
(ỹδ

n,α − x0)]. (3.13)

where x̃0,α := x0. Note that with the above notation

‖R(x)−1F ′(x)‖ ≤ 1.

Let

ẽδ
n,α := ‖ỹδ

n,α − x̃δ
n,α‖, ∀n ≥ 0. (3.14)

Here also for convenienceweuse the notation x̃n , ỹn and ẽn for x̃δ
n,α , ỹ

δ
n,α and ẽ

δ
n,α respectively.

Let

ρ ≤ 1

M

(
1 − δ0√

α0

)

with δ0 <
√

α0

and

γ̃ρ := Mρ + δ0√
α0

.

Theorem 3.11 Let ẽn and g be as in Eqs. (3.14) and (3.4) respectively, x̃n and ỹn be as in
(3.13) and (3.12) respectively with δ ∈ (0, δ0]. Then the following hold:

(a) ‖x̃n − ỹn−1‖ ≤ k0 ẽn−1
2 ‖ỹn−1 − x̃n−1‖;

(b) ‖x̃n − x̃n−1‖ ≤ (1 + k0 ẽn−1
2 )‖ỹn−1 − x̃n−1‖;

(c) ‖ỹn − x̃n‖ ≤ g(ẽn−1)‖ỹn−1 − x̃n−1‖;
(d) g(ẽn) ≤ g(γ̃ρ)3

n
, ∀n ≥ 0;

(e) ẽn ≤ g(γ̃ρ)(3
n−1)/2γ̃ρ ∀n ≥ 0.
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Proof Observe that

x̃n − ỹn−1 = ỹn−1 − x̃n−1 − R(x̃n−1)
−1 (F(ỹn−1) − F(x̃n−1)

+αk

c
(ỹn−1 − x̃n−1)

)

= R(x̃n−1)
−1 [

R(x̃n−1)(ỹn−1 − x̃n−1)

−
(
F(ỹn−1) − F(x̃n−1) − αk

c
(ỹn−1 − x̃n−1)

)]

= R(x̃n−1)
−1

∫ 1

0
[F ′(x̃n−1) − F ′(x̃n−1 + t (ỹn−1 − x̃n−1))]

× (ỹn−1 − x̃n−1)dt.

Now since ‖R(x̃n−1)
−1F ′(x̃n−1)‖ ≤ 1, the proof of (a) and (b) follows as in Theorem 3.2.

To prove (c) we observe that

ẽn ≤
∥∥∥x̃n − ỹn−1 − R(x̃n)

−1
(
F(x̃n) − zδα + αk

c
(x̃n − x0)

)∥∥∥
+

∥∥∥R(x̃n−1)
−1

(
F(ỹn−1) − zδα + αk

c
(ỹn−1 − x0)

)∥∥∥
≤

∥∥∥x̃n − ỹn−1 − R(x̃n)
−1

(
F(x̃n) − F(ỹn−1) + αk

c
(x̃n − ỹn−1)

)∥∥∥
+

∥∥∥[R(x̃n−1)
−1 − R(x̃n)

−1]
(
F(ỹn−1) − zδαk + αk

c
(ỹn−1 − x0)

)∥∥∥
≤ ∥∥R(x̃n)

−1 [
R(x̃n)(x̃n − ỹn−1) − (F(x̃n) − F(ỹn−1))

−αk

c
(x̃n − ỹn−1

)]∥∥∥
+

∥∥∥[R(x̃n−1)
−1 − R(x̃n)

−1]
(
F(ỹn−1) − zδαk + αk

c
(ỹn−1 − x0)

)∥∥∥
≤

∥∥∥∥R(x̃n)
−1

∫ 1

0
[F ′(x̃n) − F ′(ỹn−1 + t (x̃n − ỹn−1)]dt (x̃n − ỹn−1)

∥∥∥∥
+ ∥∥R(x̃n)

−1(F ′(x̃n) − F ′(x̃n−1))R(x̃n−1)
−1 (

F(ỹn−1) − zδαk

+αk

c
(ỹn−1 − x0)

)∥∥∥ .

The remaining part of the proof is analogous to the proof of Theorem 3.2. ��

Theorem 3.12 Let r̃ = ( 1
1−g(γ̃ρ )

+ k0
2

γ̃ρ

1−g(γ̃ρ )2
)γ̃ρ and the assumptions of Theorem 3.11

hold. Then x̃n, ỹn ∈ Br̃ (x0), for all n ≥ 0.

Proof Analogous to the proof of Theorem 3.3. ��

Theorem 3.13 Let ỹn and x̃n be as in (3.12) and (3.13) respectively and assumptions of
Theorem3.12hold. Then (x̃n) is aCauchy sequence in Br̃ (x0)andconverges to xδ

cαk ∈ Br̃ (x0).
Further F(xδ

cαk ) + αk
c (xδ

cαk − x0) = zδαk and

‖x̃n − xδ
cαk‖ ≤ C̃e−γ13n

where C̃ = ( 1
1−g(γ̃ρ )3

+ k0γ̃ρ

2
1

1−(g(γ̃ρ )2)3
g(γ̃ρ)3

n
)γ̃ρ and γ1 = − log g(γ̃ρ).
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Proof Analogous to the proof of Theorem 3.4 one can prove that x̃n is a Cauchy sequence
in Br̃ (x0) and hence it converges, say to xδ

cαk ∈ Br̃ (x0). Observe that

∥∥∥F(x̃n) − zδαk + αk

c
(x̃n − x0)

∥∥∥ = ‖R(x̃n)(x̃n − ỹn)‖
≤ ‖R(x̃n)‖‖(x̃n − ỹn)‖
≤

(
‖F ′(xn)‖ + αk

c

)
ẽn

≤
(
‖F ′(xn)‖ + αk

c

)
g(ẽ0)

3n ẽ0

≤
(
‖F ′(xn)‖ + αk

c

)
g(γ̃ρ)3

n
γ̃ρ . (3.15)

Now by letting n → ∞ in (3.15) we obtain F(xδ
cαk ) + αk

c (xδ
cαk − x0) = zδαk . This completes

the proof. ��

Assume that K1 < 1−k0r̃
1−c and for the sake of simplicity assume that ϕ1(α) ≤ ϕ(α) for

α > 0.

Theorem 3.14 Suppose xδ
cαk is the solution of (3.11) and Assumptions 3.1 and 3.10 hold.

Then

‖x̂ − xδ
cαk‖ = O(ψ−1(δ))

Proof Note that c(F(xδ
cαk ) − zδαk ) + αk(xδ

cαk − x0) = 0, so

(F ′(x̂) + αk I )(x
δ
cαk − x̂) = (F ′(x̂) + αk I )(x

δ
cαk − x̂)

−c(F(xδ
cαk ) − zδαk ) − αk(x

δ
cαk − x0)

= αk(x0 − x̂) + F ′(x̂)(xδ
cαk − x̂)

−c[F(xδ
cαk ) − zδαk ]

= αk(x0 − x̂) + F ′(x̂)(xδ
cαk − x̂)

−c[F(xδ
cαk ) − F(x̂) + F(x̂) − zδαk ]

= αk(x0 − x̂) − c(F(x̂) − zδαk ) + F ′(x̂)(xδ
cαk − x̂)

−c[F(xδ
cαk ) − F(x̂)].

Thus

‖xδ
cαk − x̂‖ ≤ ‖αk(F

′(x̂ + αk I )
−1(x0 − x̂)‖ + ‖(F ′(x̂) + αk I )

−1

c(F(x̂) − zδαk )‖ + ‖(F ′(x̂) + αk I )
−1[F ′(x̂)(xδ

cαk − x̂)

−c(F(xδ
cαk ) − F(x̂))]‖

≤ ‖αk(F
′(x̂) + αk I )

−1(x0 − x̂)‖ + ‖F(x̂) − zδαk‖

+‖(F ′(x̂) + αk I )
−1

∫ 1

0
[F ′(x̂) − cF ′(x̂ + t (xδ

cαk − x̂))]
(xδ

cαk − x̂)dt‖
≤ ‖αk(F

′(x̂) + αk I )
−1(x0 − x̂)‖ + ‖F(x̂) − zδαk‖ + � (3.16)
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where � := ‖(F ′(x̂) + αk I )−1
∫ 1
0 [F ′(x̂) − cF ′(x̂ + t (xδ

cαk − x̂)](xδ
cαk − x̂)dt‖. So by

Assumption 3.10, we obtain

� ≤
∥∥∥∥(F ′(x̂) + αk I )

−1
∫ 1

0
[F ′(x̂) − F ′(x̂ + t (xδ

cαk − x̂)k)](xδ
cαk − x̂)dt

∥∥∥∥
+ (1 − c)

∥∥(F ′(x̂) + αk I )
−1F ′(x̂)

×
∫ 1

0
G(x̂ + t (xδ

cαk − x̂), x̂)(xδ
cαk − x̂)dt

∥∥∥∥
≤ k0r̃‖xδ

cαk − x̂‖ + (1 − c)K1‖xδ
cαk − x̂‖ (3.17)

and hence by (3.16) and (3.17) we have

‖xδ
cαk − x̂‖ ≤ ‖αk(F ′(x̂) + αk I )−1(x0 − x̂)‖ + ‖F(x̂) − zδαk‖

1 − (1 − c)K1 − k0r̃

≤ ϕ1(αk) + (2 + 4μ
μ−1 )μψ−1(δ)

1 − (1 − c)K1 − k0r̃

= O(ψ−1(δ)).

This completes the proof of the Theorem. ��
The following Theorem is a consequence of Theorems 3.13 and 3.14.

Theorem 3.15 Let x̃n be as in (3.13), assumptions in Theorems 3.13 and 3.14 hold. Then

‖x̂ − x̃n‖ ≤ C̃e−γ13n + O(ψ−1(δ))

where C̃ and γ1 are as in Theorem 3.13.

Theorem 3.16 Let x̃n be as in (3.13), assumptions in Theorems 2.4, 3.13 and 3.14 hold. Let

nk := min

{
n : e−γ13n ≤ δ√

αk

}
.

Then

‖x̂ − x̃nk‖ = O(ψ−1(δ)).

4 Algorithm

Note that for i, j ∈ {0, 1, 2, · · · , N }
zδαi − zδα j

= (α j − αi )(K
∗K + α j I )

−1(K ∗K + αi I )
−1[K ∗(yδ − K F(x0))].

Therefore the balancing principle algorithm associated with the choice of the parameter
specified in Sect. 2 involves the following steps.

• α0 = μ2δ2, μ > max{1, β} for IFD class and μ > 1 for MFD class.
• αi = μ2iα0;
• solve for wi : (K ∗K + αi I )wi = K ∗(yδ − K F(x0));
• solve for j < i , zi j : (K ∗K + α j I )zi j = (α j − αi )wi ;
• if ‖zi j‖ > 4

μ j+1 , then take k = i − 1;
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• otherwise, repeat with i + 1 in place of i .
• choose nk = min{n : e−γ 3n ≤ δ√

αk
} in IFD Class and nk = min{n : e−γ13n ≤ δ√

αk
} in

MFD Class
• solve xnk using the iteration (3.2) or x̃nk using the iteration (3.13).

5 Numerical examples

In this section we consider an example for illustrating the algorithm considered in the above
section. We apply the algorithm by choosing a sequence of finite dimensional subspace (Vn)
of X with dimVn = n+1. Precisely we choose Vn as the space of linear splines in a uniform
grid of n + 1 points in [0, 1].
Example 5.1 We consider the operator K F : L2(0, 1) −→ L2(0, 1) where F : D(F) ⊆
L2(0, 1) −→ L2(0, 1) defined by

F(u) := u3

and K : L2(0, 1) −→ L2(0, 1) defined by

K (x)(t) =
∫ 1

0
k(t, s)x(s)ds

where

k(t, s) =
{

(1 − t)s, 0 ≤ s ≤ t ≤ 1
(1 − s)t, 0 ≤ t ≤ s ≤ 1

.

The Fréchet derivative of F is given by

F ′(u)w = 3(u2)w.

Observe that

[F ′(v) − F ′(u)]w = 3(v2 − u2)w

= 3u2
(

v2

u2
− 1

)
w

= F ′(u)�(u, v, w),

where �(u, v, w) = ( v2

u2
− 1)w = (v+u)(v−u)

u2
w. Thus � satisfies the Assumption 3.1 (cf.

[20, Example 2.7] ).

We take f (t) = 6 sin π t+sin3(π t)
9π2 and f δ = f + δ. Then the exact solution

x̂(t) = sin π t.

We use

x0(t) = sin π t + 1/10

as our initial guess, so that the function F(x0) − F(x̂) satisfies the source condition

F(x0) − F(x̂) = ϕ(F ′(x̂))
(
3 sin2(π t) + 3.3 sin(π t) + 0.91

30(1/2 + sin π t)2

)

where ϕ(λ) = λ. Thus we expect to have an accuracy of order at least O(δ
1
2 ).
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Table 1 Iterations and
corresponding error estimates of
Example 5.1

n k αk ‖uhk − x̂‖ ‖uhk−x̂‖
(δ+εh )1/2

32 4 0.1714 0.0246 0.0953

64 4 0.1710 0.0248 0.0960

128 4 0.1709 0.0249 0.0964

256 4 0.1709 0.0250 0.0966

512 4 0.1709 0.0250 0.0967

1024 4 0.1709 0.0250 0.0968

0 0.2 0.4 0.6 0.8 1
0
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0.4

0.6

0.8

1

1.2

1.4
exact soln
approx.soln

n=32

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
exact soln
approx.soln

n=64

Fig. 1 Curve of the exact and approximate solutions of Example 5.1

We choose α0 = (1.5))δ + εh)
2, μ = 1.5, δ = 0.0667, β = 0.925, ρ = 0.1, γρ = 0.8212

and gh(γρ) = 0.54 approximately. In this example, for all n, the number of iteration nk = 2.
The results of the computation are presented in Table 1. The plots of the exact and the
approximate solution obtained are given in Figs. 1 and 2.

Example 5.2 (cf. [21, section 4.3]) To illustrate the method for MFD class, we consider the
space X = Y = L2[0, 1] and the Fredholm integral operator K : L2(0, 1) → L2(0, 1). Then
for all x(t), y(t) : x(t) > y(t) :

〈F(x) − F(y), x − y〉 =
∫ 1

0

[∫ 1

0
k(t, s)(x3 − y3)(s)ds

]
(x − y)(t)dt ≥ 0.

Thus the operator F is monotone. The Fréchet derivative of F is given by

F ′(u)w = 3
∫ 1

0
k(t, s)(u(s))2w(s)ds.

So for any u ∈ Br (x0), x02(s) ≥ k3 > 0,∀s ∈ (0, 1), we have

F ′(u)w = F ′(x0)G(u, x0)w,

where G(u, x0) = ( u
x0

)2.
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n=1024

Fig. 2 Curve of the exact and approximate solutions of Example 5.1

Further observe that

[F ′(v) − F ′(u)]w(s) = 3
∫ 1

0
k(t, s)(v2(s) − u2(s))w(s)ds

:= F ′(u)�(u, v, w),

where �(u, v, w) = [ v2

u2
− 1]w.

In our computation, we take

f (t) = 1

36π2 (27 sin π t − sin 3π t) + 1

36π
(27t2 cosπ t − 3t2 cos 3π t

+ 6t cos 3π t − 3 cos 3π t − 27t cosπ t)

and f δ = f + δ. Then the exact solution is

x̂(t) = sin π t.

We use

x0(t) = sin π t + 3

4π2 (1 + tπ2 − t2π2 − cos2(π t))
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Table 2 Iterations and
corresponding error estimates of
Example 5.2

n k αk ‖uhk − x̂‖ ‖uhk−x̂‖
(δ+εh )1/2

8 4 0.1790 0.0363 0.1388

16 4 0.1729 0.0432 0.1669

32 4 0.1714 0.0450 0.1742

64 4 0.1710 0.0455 0.1761

128 4 0.1709 0.0456 0.1765

256 4 0.1709 0.0456 0.1767

512 4 0.1709 0.0456 0.1767

1024 4 0.1709 0.0456 0.1767
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Fig. 3 Curve of the exact and approximate solutions of Example 5.2

as our initial guess, so that the function x0 − x̂ satisfies the source condition

x0 − x̂ = F ′(x̂)1 = ϕ1(F
′(x0))G(x0, û)

where ϕ1(λ) = λ. Thus we expect to have an accuracy of order at least O((δ + εh)
1
2 ).
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Fig. 4 Curve of the exact and approximate solutions of Example 5.2

We choose α0 = (1.5)δ2, μ = 1.5, δ = 0.0667 = c, εh = 1
10n2

, ρ = 0.19, γ̃ρ = 0.8173
and g̃h(γρ) = 0.54 approximately. For all n, the number of iteration nk = 3 in this example.
The results of the computation are presented in Table 2. The plots of the exact and the
approximate solution obtained are given in Figs. 3 and 4.
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