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Abstract
Weexpand the applicability of an a posteriori parameter choice strategy for Tikhonov regular-
ization of the nonlinear ill-posed problempresented in Jin andHou (NumerMath 83:139–159,
1999) by weakening the conditions needed in Jin and Hou [13]. Using a center-type Lips-
chitz condition instead of a Lipschitz-type condition used in Jin and Hou [13], Scherzer et
al. (SIAM J Numer Anal 30:1796–1838, 1993), we obtain a tighter convergence analysis.
Numerical examples are presented to show that our results apply but earlier ones do not apply
to solve equations.
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1 Introduction

Jin and Hou [13] considered an a posteriori parameter choice strategy for Tikhonov regular-
ization [6–10,14,18–21] of the nonlinear ill-posed problem

F(x) = y. (1.1)

Here F : D(F) ⊆ X → Y is a weakly continuous and Fréchet differentiable nonlinear
operator between the Hilbert spaces X and Y . It is assumed that y ∈ R(F), the range of F
and that the available data is yδ with

‖yδ − y‖ ≤ δ.

Recall that, in Tikhonov regularization for solving the problem (1.1), the solution xδ
α of

the minimization problem

min
x∈D(F)

{‖F(x) − yδ‖2 + α‖x − x0‖2} (1.2)

is used to approximate the x0-minimal norm solution (shortly, x0-MNS) of the problem
(1.1), where α > 0 is the regularization parameter and x0 ∈ D(F) is an a priori guess of the
x0-MNS x̂ of the problem (1.1), i.e.,

F(x̂) = y, ‖x̂ − x0‖ = min
x∈D(F)

{‖x − x0‖ : F(x) = y}.
It is known [9,13] that the regularization parameter α affects not only the convergence

of xδ
α but also the rates of convergence and hence the choice of the regularization parameter

is crucial. Many discrepancy principles are considered in the literature for choosing the
parameterα (see [8,11–13,17–19]). In [13], the following discripancy principle (developed by
Gfrere in [8] for linear ill-posed problems) has been considered for choosing the regularization
parameter α.

Rule 1 Let c ≥ 1 be a given constant and x0 ∈ D(F).

1. If ‖F(x0) − yδ‖ ≤ cδ2, then choose α = ∞, i.e., take x0 as approximation;
2. If ‖F(x0) − yδ‖ > cδ2, then choose α := α(δ) be the root of the equation

f (α) := α〈F(xδ
α) − yδ, (α I + F ′(xδ

α)F ′(xδ
α)∗(F(xδ

α) − yδ)〉 = cδ2 (1.3)

where F ′(x) denotes the Fréchet derivative of F at point x ∈ D(F) and F ′(x)∗ denote
the adjoint of F ′(x).
This rule was considered in [19] under a series of restrictive conditions on F (see the

assumptions (10)–(14) and (93)–(98) in [19]). In [13], Jin and Hou considered Rule 1 under
the following weaker and more easier to check conditions.

Assumption 1.1 Let x̂ be an x0-MNS of the problem (1.1) such that there exists a number
p > 3‖x0 − x̂‖ such that B(x̂, p) ⊂ D(F) and there exists a constant K0 such that, for all
x, z ∈ B(x̂, p) and v ∈ X , there exists k(x, z, v) ∈ X such that

[F ′(x) − F ′(z)]v = F ′(z)k(x, z, v)

and

‖k(x, z, v)‖ ≤ K0‖x − z‖‖v‖.
Further, it is assumed that there exist ν > 0 and an element ω ∈ N (F ′(x̂))⊥ ⊂ X such that

x0 − x̂ = (F ′(x̂)∗F ′(x̂))ν/2ω. (1.4)
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In this paper, we further weaken the above assumption and the assumption (12) in [19]
with the following assumptions.

Assumption 1.2 Suppose that there exist constants L0 > 0, L∗
0 > 0 such that, for all x ∈

B(x0, r) ⊆ D and w ∈ X , there exists ϕ(x, x0, w), ϕ1(x, x0, w) ∈ X such that

1. [F ′(x) − F ′(x0)]w = F ′(x0)ϕ(x, x0, w), ‖ϕ(x, x0, w)‖ ≤ L0‖x − x0‖‖w‖
and

2. [F ′(x)∗ − F ′(x0)∗]F ′(x0)w = F ′(x0)∗F ′(x0)ϕ1(x, x0, w),

‖ϕ1(x, x0, w)‖ ≤ L∗
0‖x − x0‖‖w‖.

Assumption 1.3 There exists a continuous and strictly monotonically increasing function
ϕ : (0, a] → (0,∞) with a ≥ ‖F ′(x0)‖2 satisfying the following:

1. limλ→0 ϕ(λ) = 0;
2. supλ≥0

αϕ(λ)
λ+α

≤ ϕ(α) for all λ ∈ (0, a];
3. there exists v ∈ X such that

x0 − x̂ = ϕ(A∗
0A0)v. (1.5)

Remark 1.4 The hypotheses of Assumption 1.1 may not hold or may be very expensive
or impossible to verify in general. In particular, as it is the case for well-posed nonlinear
equations the computation of the Lipschitz constant K0 even if this constant exists is very
difficult. Moreover, there are classes of operators for which Assumption 1.1 is not satisfied
but the method (1.3) with Rule 1 converges.

In the present paper, we expand the applicability of the method (1.3) with Rule 1 under
less computational cost.

The advantages of the new approach are:

1. Assumption 1.2 is weaker than Assumption 1.1. Notice that there are classes of operators
that satisfy Assumption 1.2 but do not satisfy Assumption 1.1;

2. The computational cost of constant L0 is less than that of constant K0, even when
K0 = L0;

3. The sufficient convergence criteria are weaker;
4. The computable error bounds on the distances involved (including L0) are less costly

and more precise than the old ones (including K0);
5. The information on the location of the solution is more precise;

and

6. The convergence domain of the method (1.3) with Rule 1 is larger.

These advantages are also very important in computationalmathematics since they provide
under less computational cost a wider choice of initial guesses for the method (1.3) with
Rule 1 and the computation of fewer iterates to achieve a desired error tolerance. Numerical
examples for 1–6 are presented in Sect. 3.

Remark 1.5 Note that the source condition (1.4) involves the Fréchet derivative at the exact
solution x̂ which is unknown in practice. But the source condition (1.5) depends on the
Fréchet derivative of F at x0. It can be seen that the functions

ϕ(λ) = λν, λ > 0,

123



2816 I. K. Argyros et al.

for all 0 < ν ≤ 1 and

ϕ(λ) =
{ (

ln 1
λ

)−p
, 0 < λ ≤ e−(p+1),

0, otherwise

for all p ≥ 0 satisfy Assumption 1.3 (see [15]).

Now, we give an example which satisfies Assumption 1.2.

Example 1.6 ([19], Example 2.7) Let F : H1(0, 1) → L2(0, 1) be defined by

(Fx)(t) =
∫ 1

0
k(t, τ )g(τ, x(τ ))dτ, (1.6)

where k is continuous and g sufficiently smooth so that F is Fréchet differentiable with
respect to x and

F ′(x)h(t) =
∫ 1

0
k(t, τ )gx (τ, x(τ ))h(τ )dτ. (1.7)

Let N : H1(0, 1) → H1(0, 1) be defined by (Nx)(t) = gx (t, x(t)).Assume that N is locally
Lipschitz continuous in a neighborhoodU (x0) of x0 in H1, i.e., there exists L = L(U ) such
that

‖gx (·, x(·)) − gx (·, x0(·))‖H1 ≤ L‖x − x0‖H1 (1.8)

for all x ∈ H1. Further, we assume that there exists κ > 0 such that (Nx0)(t) =
gx (t, x0(t)) ≥ κ for all t ∈ [0, 1]. Then, for all x ∈ B(x0,

κ
2L ), we have in turn

(Nx)(t) ≥ κ

2
(1.9)

for all t ∈ [0, 1]. Note that

[F ′(x)h − F ′(x0)h](t) =
∫ 1

0
k(t, τ )gx (τ, x0(τ ))

[
gx (τ, x(τ ))

gx (τ, x0(τ ))
− 1

]
h(τ )dτ

= F ′(x0)ϕ(x, x0, h), (1.10)

where

ϕ(x, x0, h) =
[
gx (τ, x(τ ))

gx (τ, x0(τ ))
− 1

]
h(τ ).

By (1.8), gx (τ, x(τ )) is bounded for all x ∈ B(x0,
κ
2L ) and hence, by the Banach algebra

property [19] of H1, there exists a constant K such that

‖ϕ(x, x0, h)‖ ≤ K‖gx (τ, x(τ )) − gx (τ, x0(τ ))‖H1

∥∥∥ h(·)
gx (·, x0(·))

∥∥∥
H1

≤ K L‖x − x0‖H1

√∥∥∥gxht − h d
dt gx (·, x(·))

g2x (·, x(·))
∥∥∥2
L2

+
∥∥∥ h

gx

∥∥∥2
L2

≤ K L‖x − x0‖H1 max
{ 2

κ
,
4

κ2

}

×
√

‖gxht − h
d

dt
gx (·, x(·))‖2L2 + ‖h‖2

L2 . (1.11)
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The above estimate and the the fact that gx (τ, x(τ )) is bounded for all x ∈ B(x0,
κ
2L ) implies

that

‖ϕ(x, x0, h)‖ ≤ K1‖x − x0‖H1‖h|H1 ,

where K1 is independent of x, h ∈ H1. So F satisfies the condition 1 of Assumption 1.2.
To verify 2 of Assumption 1.2 as in [19], we introduce the Neumann operator ℵ : H1 →

(H1)∗ by

〈Dx, Dφ〉L2 + 〈x, φ〉L2 = 〈ℵx, φ〉(H1)∗H1

for all φ ∈ H1. Formally, we have ℵx = (−�+ I )x . Then the dual F ′(x)∗ of F ′(x) is given
by

F ′(x)∗h = ℵ−1
[
gx (·, x(·))

∫ 1

0
k(t, ·)h(t)dt

]
.

Then we have

[F ′(x)∗ − F ′(x0)∗]F ′(x0)h

= ℵ−1
[
(gx (·, x(·)) − gx (·, x0(·)))

∫ 1

0
k(t, ·)

( ∫ 1

0
k(·, τ )gx (τ, x0(τ ))h(τ )dτ

)
dt

]

= ℵ−1
[
gx (·, x0(·))

∫ 1

0
k(t, ·)

( ∫ 1

0
k(·, τ )gx (τ, x0(τ ))

[
gx (·, x(·))
gx (·, x0(·)) − 1

]
h(τ )dτ

)
dt

]

= ℵ−1
[
gx (·, x0(·))

∫ 1

0
k(t, ·)

( ∫ 1

0
k(·, τ )gx (τ, x0(τ ))ϕ1(x, x0, h)dτ

)
dt

]
,

where

ϕ1(x, x0, h) =
[ gx (., x(.))

gx (., x0(.))
− 1

]
h.

As in (1.11), one can prove that

‖ϕ1(x, x0, h)‖ ≤ K2‖x − x0‖H1‖h|H1

for some constant K2. Let ρ := ‖x0 − x̂‖ < 1− δ0√
α0

for some α0 > 0 and let δ0√
α0

+ρ := r .

Then, for any α ≥ α0, we have xδ
α ∈ B(x0, r).

The organization of this paper is as follows: Convergence analysis and parameter choice
strategy are discussed in Sect. 2 and Numerical examples are given in Sect. 3.

2 Error analysis

Considering all notations of the Sect. 1, let

r <

√
(L0 + L∗

0)
2 + 4L0L∗

0 − (L0 + L∗
0)

2L0L∗
0

.

Theorem 2.1 Let xδ
α be as in (1.2) and Assumption 1.3 holds. Then

‖xδ
α − x̂‖ ≤ 1 + L0r

1 − q

(
δ√
α

+ ϕ(α)

)
,
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where q = (L0 + L∗
0 + L0L∗

0r)r .

Proof Let M = ∫ 1
0 F ′(x̂ + t(xδ

α − x̂))dt . Then we have

F(xδ
α) − F(x̂) = M(xδ

α − x̂)

and hence, by (1.2), we have

(A∗
0M + α I )(xδ

α − x̂) = A∗
0(y

δ − y) + α(x0 − x̂) + (F ′(xδ
α)∗ − F ′(x0)∗)(yδ − F(xδ

α)).

Thus we have

xδ
α − x̂ = (A∗

0A0 + α I )−1[A∗
0(y

δ − y) + α(x0 − x̂) + A∗
0(A0 − M)(xδ

α − x̂)]
+ (A∗

0A0 + α I )−1(F ′(xδ
α)∗ − F ′(x0)∗)(yδ − F(xδ

α))

= s1 + s2 + s3 + s4, (2.1)

where

s1 : = (A∗
0A0 + α I )−1A∗

0(y
δ − y), s2 := (A∗

0A0 + α I )−1α(x0 − x̂),

s3 : = (A∗
0A0 + α I )−1A∗

0(A0 − M)(xδ
α − x̂)

and

s4 = (A∗
0A0 + α I )−1(F ′(xδ

α)∗ − F ′(x0)∗)(yδ − F(xδ
α)).

Note that

‖s1‖ ≤ δ√
α

, (2.2)

by Assumption 1.3,

‖s2‖ ≤ ϕ(α), (2.3)

by Assumption 1.2,

‖s3‖ ≤ L0r‖xδ
α − x̂‖ (2.4)

and

‖s4‖ ≤ ‖(A∗
0A0 + α I )−1(F ′(xδ

α)∗ − F ′(x0)∗)(yδ − y + F(x̂) − F(xδ
α))‖

≤ ‖(A∗
0A0 + α I )−1(F ′(xδ

α)∗ − F ′(x0)∗)(yδ − y)‖
+

∥∥∥∥(A∗
0A0 + α I )−1(F ′(xδ

α)∗ − F ′(x0)∗)(F(x̂) − F(xδ
α))

∥∥∥∥
≤ ‖(A∗

0A0 + α I )−1ϕ1(x
δ
α, x0, y

δ − y)‖
+

∥∥∥∥(A∗
0A0 + α I )−1(F ′(xδ

α)∗ − F ′(x0)∗)
∫ 1

0
F ′(x̂ + t(x̂ − xδ

α))dt(x̂ − xδ
α)

∥∥∥∥
≤ ‖(A∗

0A0 + α I )−1A∗
0ϕ1(x

δ
α, x0, y

δ − y)‖
+

∥∥∥∥(A∗
0A0 + α I )−1(F ′(xδ

α)∗ − F ′(x0)∗)
∫ 1

0
F ′(x̂ + t(x̂ − xδ

α))dt(x̂ − xδ
α)

∥∥∥∥
≤ L∗

0‖xδ
α − x0‖ δ√

α
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+
∥∥∥∥(A∗

0A0 + α I )−1(F ′(xδ
α)∗ − F ′(x0)∗)

×
∫ 1

0
[F ′(x̂ + t(x̂ − xδ

α)) − F ′(x0) + F ′(x0)]dt(x̂ − xδ
α)

∥∥∥∥
≤ L∗

0r
δ√
α

+ ‖(A∗
0A0 + α I )−1(F ′(xδ

α)∗ − F ′(x0)∗)

×F ′(x0)ϕ(x̂ + t(x̂ − xδ
α), x0, x̂ − xδ

α)‖
+‖(A∗

0A0 + α I )−1(F ′(xδ
α)∗ − F ′(x0)∗)F ′(x0)(x̂ − xδ

α)‖
≤ L∗

0r
δ√
α

+ ‖(A∗
0A0 + α I )−1F ′(x0)∗F ′(x0)

×ϕ1(x
δ
α, x0, ϕ(x̂ + t(x̂ − xδ

α), x0, x̂ − xδ
α))‖

+‖(A∗
0A0 + α I )−1F ′(x0)∗F ′(x0)ϕ1(x

δ
α, x0, x̂ − xδ

α)‖
≤ L∗

0r
δ√
α

+ L∗
0L0‖xδ

α − x0‖‖x̂ + t(x̂ − xδ
α) − x0‖‖x̂ − xδ

α‖
+ L∗

0‖xδ
α − x0‖‖x̂ − xδ

α‖
≤ L∗

0r
δ√
α

+ L∗
0L0r

2‖x̂ − xδ
α‖ + L∗

0r‖x̂ − xδ
α‖

≤ L∗
0r

δ√
α

+ (L∗
0L0r

2 + L∗
0r)‖x̂ − xδ

α‖. (2.5)

The result now follows from (2.1), (2.2), (2.3) and (2.4). This completes the proof. ��
In order to show that themethod (1.3) has a root, we first show that the function α → f (α)

is continuous. Observe that, if xδ
α is differentiable with respect to α, then

‖xδ
α − xδ

β‖ ≤ sup
γ∈[min{α,β},max{α,β}]

∥∥∥∥dx
δ
α

dα
(γ )

∥∥∥∥|β − α|.

This implies limα→β xδ
α = xδ

β . Thus our main aim is to show that xδ
α is differentiable with

respect to α. Note that the minimizer of (1.2) satisfies the equation

F ′(xδ
α)∗(F(xδ

α) − yδ) + α(xδ
α − x0) = 0. (2.6)

The formal differentiation of (2.6) with respect to α yields

F ′(xδ
α)∗F ′(xδ

α)
dxδ

α

dα
+ (F ′(xδ

α)∗)′(F(xδ
α) − yδ)

dxδ
α

dα
+ α

dxδ
α

dα
= −(xδ

α − x0) (2.7)

or, equivalently,

dxδ
α

dα
= −(α I + F ′(xδ

α)∗F ′(xδ
α) + (F ′(xδ

α)∗)′(F(xδ
α) − yδ))−1(xδ

α − x0) (2.8)

if the operator

(α I + F ′(xδ
α)∗F ′(xδ

α) + (F ′(xδ
α)∗)′(F(xδ

α) − yδ)) (2.9)

is invertible. Note that the operator (2.9) is invertible (see [19]) if the bilinear form

α(x, x) + 〈F ′(xδ
α)x, F ′(xδ

α)x〉 + 〈F(xδ
α) − yδ, F ′′(xδ

α)(x, x)〉 (2.10)

is elliptic.
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Now, we prove that the bilinear form (2.10) is elliptic.

Lemma 2.2 The bilinear form (2.10) is elliptic. Further, if L0(L0 + 1)r ≤ 1, then

‖(α I + F ′(xδ
α)∗F ′(xδ

α) + (F ′(xδ
α)∗)′(F(xδ

α) − yδ))−1‖ ≤ 1

α
.

Proof Observe that

F ′′(xδ
α)(x, x) = lim

t→0

F ′(xδ
α + t x) − F ′(xδ

α)

t

= lim
t→0

F ′(xδ
α + t x) − F ′(x0) + F ′(x0) − F ′(xδ

α)

t

= lim
t→0

F ′(x0)[ϕ(xδ
α + t x, x0, x) − ϕ(xδ

α, x0, x)]
t

= lim
t→0

F ′(x0)ϕ(xδ
α + t x, xδ

α, x)

t

and so ∣∣∣∣
〈
F(xδ

α) − yδ, F ′′(xδ
α)(x, x)

〉∣∣∣∣
= lim

t→0

∣∣∣∣
〈
F(xδ

α) − yδ,
F ′(x0)ϕ(xδ

α + t x, xδ
α, x)

t

〉∣∣∣∣
= lim

t→0

∣∣∣∣
〈
F(xδ

α) − yδ,
[F ′(x0) − F ′(xδ

α) + F ′(xδ
α)]ϕ(xδ

α + t x, xδ
α, x)

t

〉∣∣∣∣
= lim

t→0

∣∣∣∣
〈
F ′(xδ

α)∗[F(xδ
α) − yδ], ϕ(x0, xδ

α, ϕ(xδ
α + t x, xδ

α, x))

t

〉∣∣∣∣
+ lim

t→0

∣∣∣∣
〈
F ′(xδ

α)∗[F(xδ
α) − yδ], ϕ(xδ

α + t x, xδ
α, x)

t

〉∣∣∣∣
= lim

t→0
α

∣∣∣∣
〈
xδ
α − x0,

ϕ(x0, xδ
α, ϕ(xδ

α + t x, xδ
α, x))

t

〉∣∣∣∣
+ lim

t→0
α

∣∣∣∣
〈
xδ
α − x0,

ϕ(xδ
α + t x, xδ

α, x)

t

〉∣∣∣∣
≤ αL0(L0 + 1)‖xδ

α − x0‖‖x‖2. (2.11)

This implies the bilinear form is elliptic. Again, by (2.11), we have

|〈F(xδ
α) − yδ, F ′′(xδ

α)(x, x)〉| ≤ α‖x‖2.
Therefore, we have (see [19])

‖(α I + F ′(xδ
α)∗F ′(xδ

α) + (F ′(xδ
α)∗)′(F(xδ

α) − yδ))−1‖ ≤ 1

α
.

This completes the proof. ��
Lemma 2.3 Let yδ be fixed, c > 2 and a := c/2−1

‖x0−x̂‖2 δ
2. Suppose that the assumptions in

Lemma 2.2 holds. Then f : (a,∞) → R is continuous. For any α > a sufficiently small,

f (α) < cδ2.
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Moreover, we have

lim
α→∞ f (α) = ‖F(x0) − yδ‖.

Proof Note that

‖xδ
α − xδ

β‖ ≤ sup
γ∈[min{α,β},max{α,β}]

∥∥∥dxδ
α

dα
(γ )

∥∥∥|β − α|

≤ 1

min{α, β}‖x
δ
α − x0‖|β − α|.

This implies ‖F(xδ
α) − F(xδ

β)‖ → 0 as α → β and so the function f is continuous. The
rest of the proof follows as in Lemma 3.8 in [19]. This completes the proof. ��
Lemma 2.4 Let χ(λ) := λ

√
ϕ−1(λ). If α is chosen according to the method (1.3), then

α ≥ ϕ−1χ−1(Cδ),

where C =
√
c− (L0r+1)2

1−q −1

(L0r+1)2

1−q

.

Proof Observe that√
cδ = ‖√α(A0A

∗
0 + α I )−1/2(F(xδ

α) − yδ)‖
≤ ‖√α(A0A

∗
0 + α I )−1/2(F(xδ

α) − F(x̂))‖ + δ

≤
∥∥∥∥√

α(A0A
∗
0 + α I )−1/2

∫ 1

0
[F ′(x̂ + t(xδ

α − x̂))

−F ′(x0) + F ′(x0)]dt(xδ
α − x̂)

∥∥∥∥ + δ

≤
∥∥∥∥√

α(A0A
∗
0 + α I )−1/2A0

[ ∫ 1

0
ϕ(x̂ + t(xδ

α − x̂), x0, x
δ
α − x̂)dt

+ (xδ
α − x̂)

]∥∥∥∥ + δ

≤ √
α(L0r + 1)‖xδ

α − x̂‖ + δ

≤ √
α

(L0r + 1)2

1 − q

(
δ√
α

+ ϕ(α)

)
+ δ. (2.12)

Thus we have (√
c − (L0r + 1)2

1 − q
− 1

)
δ ≤ (L0r + 1)2

1 − q

√
αϕ(α).

This completes the proof. ��
Theorem 2.5 If α is chosen according to the method (1.3) and χ−1(cλ) = χ−1(c)χ−1(λ),

then we have

‖xδ
α − x̂‖ = O(χ−1(δ)).

Proof Let

F(xδ
α)∗(F(xδ

α) − yδ) + α(xδ
α − x0) = 0.
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Then we have

xδ
α − x̂ = (A∗

0A0 + α I )−1α(x0 − x̂) − (A∗
0A0 + α I )−1(sα + rα),

where

rα = (F ′(xδ
α)∗ − F ′(x0)∗)(F(xδ

α) − yδ)

and

sα = F ′(x0)∗[F(xδ
α) − y − F ′(x0)(xδ

α − x0)].
Note that

[α(A∗
0A0 + α I )−1 − α0(A

∗
0A0 + α0 I )

−1](x0 − x̂) = I1 + I2 + I3,

where

I1 =
(
1 − α0

α

)
(A∗

0A0 + α0 I )
−1A∗

0(F(xδ
α) − yδ),

I2 =
(
1 − α0

α

)
(A∗

0A0 + α0 I )
−1A∗

0[A0(x
δ
α − x̂) − (F(xδ

α) − yδ)]

and

I3 =
(
1 − α0

α

)
(A∗

0A0 + α0 I )
−1A∗

0A0[α(A∗
0A0 + α I )−1(x0 − x̂) − (xδ

α − x̂)].

Observe that

‖I1‖ ≤ 1√
α0

‖α1/2(A∗
0A0 + α I )−1/2(F(xδ

α) − yδ)‖,

‖I2‖ ≤ ‖(A∗
0A0 + α0 I )

−1A∗
0[A0(x

δ
α − x̂) − (F(xδ

α) − F(x̂) + y − yδ)]‖
≤ ‖(A∗

0A0 + α0 I )
−1A∗

0[A0(x
δ
α − x̂) − (F(xδ

α) − F(x̂)‖
+‖(A∗

0A0 + α0 I )
−1A∗

0(y − yδ)‖
≤

∥∥∥∥(A∗
0A0 + α0 I )

−1A∗
0

∫ 1

0
[A0 − F ′(x̂ + t(xδ

α − x̂)]dt(xδ
α − x̂)

∥∥∥∥
+‖(A∗

0A0 + α0 I )
−1A∗

0(y − yδ)‖
≤

∥∥∥∥(A∗
0A0 + α0 I )

−1A∗
0A0

∫ 1

0
ϕ(x̂ + t(xδ

α − x̂), x0, x
δ
α − x̂)

∥∥∥∥ + δ√
α0

≤ L0r‖xδ
α − x̂‖ + δ√

α0
,

‖I3‖ = ‖(A∗
0A0 + α I )−1(sα + rα)‖, (2.13)

where

sα = A∗
0(F(xδ

α) − yδ − A0(x
δ
α − x̂),

rα = (F ′(xδ
α)∗ − A∗

0)(F(xδ
α) − yδ),

‖(A∗
0A0 + α I )−1sα‖ = ‖(A∗

0A0 + α I )−1A∗
0(F(xδ

α) − F(x̂) − A0(x
δ
α − x̂)‖

+‖(A∗
0A0 + α I )−1A∗

0(y − yδ)‖ ≤ L0r‖xδ
α − x̂‖ + δ√

α
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and

‖(A∗
0A0 + α I )−1rα‖ = ‖(A∗

0A0 + α I )−1(F ′(xδ
α)∗ − A∗

0)(F(xδ
α) − yδ)‖

= s4

≤ L∗
0r

δ√
α

+ (L∗
0L0r

2 + L∗
0r)‖x̂ − xδ

α‖

Thus we have

[1 − ((2L0 + L∗
0)r + L0L

∗
0r

2)]‖xδ
α − x̂‖ ≤ δ

α0
+ ϕ(α0) + δ

α0

+‖α1/2(A∗
0A0 + α I )−1/2(F(xδ

α) − yδ)‖
≤ (

√
c + 1)

δ

α0
+ ϕ(α0) + δ

α

≤ (
√
c + 2)

δ

α0
+ ϕ(α0)

≤ (
√
c + 2)

(
δ

α0
+ ϕ(α0)

)
. (2.14)

Thus the result follows by choosing α0 = ϕ−1χ−1(Cδ), where C is as in Lemma 2.2. This
completes the proof. ��

Remark 2.6 Let us denote by q̄, c̄ the crucial constants obtained in the convergence analysis
in [13] obtained using Assumption 1.1 instead of Assumption 1.2 (with K0 replacing L0 and
L∗
0). Then, we have

q̄

q
→ 0,

c̄

c
→ 0 as

L0

K0
→ 0,

L∗
0

K0
→ 0, respectively.

These estimates show by howmany times our new estimates can be better than the ones in
[13]. A similar favorable comparison can be given using the rest of the constants introduced
in our convergence analysis. The rest of the advantages of our approach have already been
stated in the Abstract and the Introduction of this paper.

3 Numerical examples

In the next two cases, we present examples for nonlinear equations where Assumption 1.2 is
satisfied but not Assumption 1.1.

Example 3.1 Let X = Y = R, D = [0,∞), x0 = 1 and define a function F on D by

F(x) = x1+ 1
i

1 + 1
i

+ c1x + c2, (3.1)

where c1, c2 are real parameters and i > 2 is an integer. Then F ′(x) = x1/i + c1 is not Lips-
chitz on D. Hence Assumption 1.1 is not satisfied. However, the central Lipschitz condition
in Assumption 1.2 holds for K0 = 1. Indeed, we have
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‖F ′(x) − F ′(x0)‖ = |x1/i − x1/i0 |
= |x − x0|

x
i−1
i

0 + · · · + x
i−1
i

and so

‖F ′(x) − F ′(x0)‖ ≤ K 0|x − x0|.
Example 3.2 We consider the integral equations

u(s) = f (s) + λ

∫ b

a
G(s, t)u(t)1+1/ndt (3.2)

for each n ∈ N. Here f is a given continuous function satisfying f (s) > 0 for any s ∈ [a, b],
λ is a real number and the kernel G is continuous and positive in [a, b] × [a, b].

For example, when G(s, t) is the Green kernel, the corresponding integral equation is
equivalent to the boundary value problem{

u′′ = λu1+1/n,

u(a) = f (a), u(b) = f (b).

These type of problems have been considered in [1–5]. The equation of the form (3.2)
generalize equations of the form

u(s) =
∫ b

a
G(s, t)u(t)ndt (3.3)

studied in [1–5]. Instead of (3.2), we can try to solve the equation F(u) = 0, where

F : � ⊆ C[a, b] → C[a, b],� = {u ∈ C[a, b] : u(s) ≥ 0, s ∈ [a, b]},
and

F(u)(s) = u(s) − f (s) − λ

∫ b

a
G(s, t)u(t)1+1/ndt .

The norm we consider is the max-norm. The derivative F ′ is given by

F ′(u)v(s) = v(s) − λ

(
1 + 1

n

) ∫ b

a
G(s, t)u(t)1/nv(t)dt

for all v ∈ �.
First of all, we notice that F ′ does not satisfy a Lipschitz-type condition in �. Let us

consider, for instance, [a, b] = [0, 1], G(s, t) = 1 and y(t) = 0. Then F ′(y)v(s) = v(s)
and

‖F ′(x) − F ′(y)‖ = |λ|
(
1 + 1

n

) ∫ b

a
x(t)1/ndt .

If F ′ were a Lipschitz function, then we have

‖F ′(x) − F ′(y)‖ ≤ L1‖x − y‖,
or, equivalently, the inequality∫ 1

0
x(t)1/ndt ≤ L2 max

x∈[0,1] x(s) (3.4)
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would hold for all x ∈ � and for a constant L2. But this is not true. Consider, for example,
the functions

x j (t) = t

j

for each j ≥ 1 and t ∈ [0, 1].
If these are substituted into (3.4), then we have

1

j1/n(1 + 1/n)
≤ L2

j
⇐⇒ j1−1/n ≤ L2(1 + 1/n)

for each j ≥ 1. This inequality is not true when j → ∞. Therefore, the condition (3.4) is not
satisfied in this case. Hence Assumption 1.1 is not satisfied. However, the central Lischitz
condition in Assumption 1.2 holds. To show this, let x0(t) = f (t), γ = mins∈[a,b] f (s) and
α > 0. Then, for any v ∈ �, we have

‖[F ′(x) − F ′(x0)]v‖ = |λ|
(
1 + 1

n

)
max
s∈[a,b]

∣∣∣
∫ b

a
G(s, t)(x(t)1/n − f (t)1/n)v(t)dt

∣∣∣
≤ |λ|

(
1 + 1

n

)
max
s∈[a,b]Gn(s, t),

where

Gn(s, t) = G(s, t)|x(t) − f (t)|
x(t)(n−1)/n + x(t)(n−2)/n f (t)1/n + · · · + f (t)(n−1)/n

‖v‖.

Hence we have

‖[F ′(x) − F ′(x0)]v‖ = |λ|(1 + 1/n)

γ (n−1)/n
max
s∈[a,b]

∫ b

a
G(s, t)dt‖x − x0‖

≤ K 0‖x − x0‖,
where

K 0 = |λ|(1 + 1/n)

γ (n−1)/n
N , N = max

s∈[a,b]

∫ b

a
G(s, t)dt .

Then Assumption 1.2 holds for sufficiently small λ.

In the last example, we show that K0
K 0

can be arbitrarily large in certain nonlinear equation.

Example 3.3 Let X = D(F) = R, x0 = 0 and define a function F on D(F) by

F(x) = d0x + d1 + d2 sin e
d3x , (3.5)

where di for each i = 0, 1, 2, 3 are given parameters. Then it can easily be seen that, for d3
sufficiently large and d2 sufficiently small, K0

K 0
can be arbitrarily large.
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