J. Nonlinear Var. Anal. 3 (2019), No. 3, pp. 257-275
Available online at http://jnva.biemdas.com
https://doi.org/10.23952/jnva.3.2019.3.03
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Abstract. An iteratively regularized projection method, which converges quadratically, is considered for stable approximate
solutions to a nonlinear ill-posed operator equation F(x) =y, where F : D(F) C X — X is a nonlinear monotone operator
defined on the real Hilbert space X. We assume that only a noisy data y® with |y —y®|| < & are available. Under the assumption
that the Fréchet derivative F’ of F is Lipschitz continuous, a choice of the regularization parameter using an adaptive selection
of the parameter and a stopping rule for the iteration index using a majorizing sequence are presented. We prove that, under a
general source condition on xo — £, the error Hxﬁjg — £|| between the regularized approximation xﬁ:g, (xg:g := Pyxo, where P, is
an orthogonal projection on to a finite dimensional subspace X}, of X) and the solution £ is of optimal order.
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1. INTRODUCTION

Let X be a real Hilbert space. Let F : D(F) — X with domain D(F) C X be a monotone operator. We
consider the problem of solving the nonlinear ill-posed operator equation

F(x)=y (1.1)

approximately when the data y is not known exactly. Assume that y® € X are the available noisy data
with

ly—y°| <8, (1.2)
and that (1.1) has a solution £. Equation (1.1) is ill-posed in the sense that the Fréchet derivative F'(.) is
not boundedly invertible (see, [19, page 26]). Since (1.1) is ill-posed, one has to replace equation (1.1)
by a nearby equation whose solution is less sensitive to perturbation in the right side y. This replacement
is known as regularization. A well known method for regularizing (1.1), when F is monotone, is the
method of the Lavrentiev regularization (see, [20]). In this method, approximation xg is obtained by
solving the singularly perturbed operator equation

F(x) 4 a(x—x0) =y°. (1.3)
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In practice, one has to deal with some sequence (xsva) converging to X, the solution of (1.1). Recently,

many authors considered such sequences; see [6, 7, 8, 12, 17, 18] and the references therein.
In [6], Bakushinsky and Smirnova considered an iteratively regularized Lavrentiev method:

o =xf — (AL +opd) T (F (D) — 3% + o (xf — x0)), (1.4)

for k = 0,1,2,---, where A? := F'(x?) and (04) is a sequence of positive real numbers such that
limy_,. 0z = 0 as an approximate solution for (1.1). A general discrepancy principle was considered
in [6] for choosing the stopping index ks and showed that x,‘; — £ as 0 — 0. However, no error estimate
for Hx,‘zS — X|| was given in [6]. Later, Mahale and Nair [13] considered method (1.4) and obtained an
error estimate for Hx,‘f(S — X|| under weaker assumptions than the assumptions in [6].

In [9], George and Elmahdy considered the iterative regularization method

X 10 = Fna — (F'(x0) + ) 7 (F (x) o) =3° + au(x 4 —x0)), (1.5)

where xg‘ o := X0 and proved that (x,‘ia) converges to the unique solution x& of (1.3) under the following
Assumptions.

Assumpion 1.1. There exists ro > 0 such that B,,(£) C D(F) and F is Fréchet differentiable at all
X € By (%).

Assumpion 1.2. There exists a constant L > 0 such that, for every x,u € B,,(£) and v € X, there exists
an element ®(x,u,v) € X satisfying

[F'(x) = F'(w)]v = F'(0)®(x,u,v), [ @Cx,uv)| < L|v],
for all x,u € B, (%).

Assumpion 1.3. There exists a continuous, strictly monotonically increasing function @ : (0,a] — (0, )
with a > ||F'(®)]| satisfying lim; ,o@(A) =0 and a vector v € X with ||v|| < 1 such that

xo—£=@(F'(%))v

and

sy 220

<o(a),Vo € (0,q].
sup s < 0(@), Vo€ (0.d

The main drawback of the method considered in [9] is that the initial guess x¢ of the iterative sequence
(xg’a) is highly dependent on [y (see Lemma 2.4 and Theorem 2.6 in [9]), so it is hard to obtain such
an initial guess xo when [y is not small enough. One of the purposes of this paper is to overcome this
drawback.

In this paper we use the following modified form of Assumption 1.2.

Assumpion 1.4. Let x € B,(£) be fixed. There exists a constant /o > 0 such that, for every x,xy € B, (%)
and v € X, there exists an element ®(x,xg,v) € X satisfying

[F'(x) = F'(x0)Jv = F'(x0) ®(x,%0,v), [ ®(x,x0,v) || < lo|[v][[lx = o,

forall x € B, (%) and v € X.
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From Assumption 1.4, one sees that the first hypotheses in Assumption 1.4 is weaker but the sec-
ond hypotheses is stronger (but more practical) than the corresponding ones in Assumption 1.2. Hence
Assumption 1.4 is stronger than Assumption 1.2. The autoconvolution problem discussed in [10] is an
example of the nonlinear ill-posed problem satisfying Assumption 1.2 but not Assumption 1.4.

Further note that [y < L holds in general and % can be arbitrarily large [1, 2, 3, 4, 5]. The results in [9]
really require Assumption 1.4 not Assumption 1.2. If [y = L, the results of this paper coincide with the
results in [9]. Otherwise, i.e., if [y < L, then our convergence results are better under weaker majorizing
sequences. The error estimates are tighter and the information on the location of the solution as well
at least as precise and the stopping rule at least as tight. Hence, the applicability of method (1.5) has
been extended under less computational cost since, in practice, computing L is more expensive (if at all
possible) than computing /.

The main advantage of using the stronger Assumption 1.4 is that the majorizing sequence we are going
to use in this paper is independent of the regularization parameter ¢. Further the majorizing sequence
gives an a priori error estimate which can be used to determine the number of iterations needed to achieve
a prescribed solution accuracy before actual computation takes place.

Remark 1.1. It can be seen that functions
p(A)=2"1>0,

forO<v <1and

(Inf)77, 0<A<e D
0, otherwise

for p > 0 satisfy the above assumption (see [15]).

2. CONVERGENCE ANALYSIS

To prove the main results in this paper, we consider the sequence (t,),n > 0 defined iteratively by
Io = O)tl =7,
lom
(1=r)
where r € [0, 1) as a majorizing sequence of the sequence (xg’a).

In+1 =t + (tn_tnfl)a (2-1)

The following lemma is a essential reformulation of a Lemma in [9]. For the sake of completeness,
we give its proof as well.

Lemma 2.1. Assume there exist nonnegative numbers ly,1 and r € [0, 1) such that

lo
<r 2.2
(1 7 r) 77 ST ( )
Then the sequence (t,) defined in (2.1) is increasing, bounded above by t** := %, and converges to
some t*, such that 0 < t* < & Moreover, for n > 0,
0 <tnp1 —tn < r(ta—tn1) <"1 (2.3)
and
rl’l
=1, < n. (2.4)

“1-r
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Proof. Since the result holds for n =0,/ = 0 or r = 0, we assume that [y # 0,1 # 0 and r # 0. Observe
that | —f9o =1 > 0. We assume that ;| —#; > 0, for all i < k for some k. Hence,

/!
tey2 — g1 = (10_nr)(tk+1 —1;) > 0.

and t,11 —t, > 0 for all n > 0. From ( fﬂ) < r, estimate (2.3) follows from (2.1). Further observe that

tip1 <t r(te—t—1)

< ...

<N+
n

1—r

Hence (#,) is bounded above by % and nondecreasing. So, it converges to some t* < %, and

i—1 n

. . r
£ =ty =1limty i —t, < UMY (fyy14j —larj) < ——1.
1—0 l%ooj:O 1—r

This completes the proof of the Lemma. U

To prove the convergence of the sequence (x,‘i ) defined in (1.5), we introduce the following notations.
Let Ry (xo) := F'(x0) + al and

G(x) :=x — R (x0) " [F(x) —y° + at(x —x0)]. (2.5)

Note that G(x,‘ia) =X ¢ and

IRa(x0) ™" F'(x0)|| < 1. (2.6)

The following Lemma based on the Assumption 1.4 will be used later.
Lemma 2.2. For u,v,xy € B,(%),
F(v) —F(u) — F'(xo) (v —u) = F'(x0) /01 P(u+1(v—u),xo,v—u)dt.
Proof. Using the Fundamental Theorem of Integration, for u,v,xo € B,,(£) we have
F(v)—F(u) = /01 F'(u+1(v—u))(v—u)d.
From Assumption 1.4, we have
F(v) = F(u) — F'(x0) (v — 1) = F'(xo) /01 ®(u+1(v— ), x0,v — )dr.
This completes the proof of the Lemma. g
Hereafter we assume that ||xo —£|| < p and
r(l1—r)

I 8
2p24p+=<n<min{—2 r(1—r} 2.7)
2 o l()
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Theorem 2.1. Suppose that (2.1) holds. Let the assumptions in Lemma 2.1 with M be as in (2.7) and
Assumption 1.4 be satisfied. Then the sequence (xi o) defined in (1.5) is well defined and x,‘ia € By (x0)
forall n > 0. Further (x,‘ia) is a Cauchy sequence in By (xo) (converges to x5 € By-(xg) C By (xo)) and
F(x3) + a(xE — xo) = 5. Moreover, the following estimate hold, for all n > 0,

041,00 = Xnall < tnsr =t (2.8)
and
160 o = x| <" =1, < ( lr"_nr)_ 2.9)
Proof. Let G be as in (2.5). Then, for u,v € By (xo),
G(u)—G(v) = u—v—Rea(xo) '[F(u)—y° + at(u—x)]
+Ra(x0) " [F(v) =° + a(v —x0)]
= Ra(x0)™' [Ra(x0) (=) = (F(u) = F(v))]
+aRg(x0) 1 (v—u)
= Ra(x0) ™' [F'(x0) (u—v) = (F(u) = F(v)) + &t(u—v)]
+aRg(x0) L (v—u)
= Ra(x0)'[F'(x0) (u—v) — (F(u) = F(v))].
Using Lemma 2.2, Assumption 1.4, (2.6) and (2.7) we have
1G ) — G| < lot*Ju—v]|. (2.10)

Now we prove that the sequence (7,) defined in Lemma 2.1 is a majorizing sequence of (xia) and
xia € By« (xp), for all n > 0. Since F(X) =y, one has
(

S
1¥.q = %ol = [|Ra

IA
=
8
5

1
o CI)()’C\—FZ(XQ —XA),X(), (X() —)E))dtH

+HRa(X0)71F’(xo))(x0 —%)|| + z

IA
=
R
=
NP
|
~
=
=
(=)
N—

l 0
< o217+ flxo — £+

< Dpripi S cnon
S P tpT s =h—h

The last but one step follows from Assumption 1.4. Assume that

%0y o — X0l < i1 — 11, Vi<k 2.11)
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for some k. Then

s 5 s 5 5 5
6 41,0 — %ol k1.0 = XK T X0 — X1, T XY o — X0

IN

S S S ) (4]
k1.0 = Xkl + 1% — X1l - 4 (127 o — ol

< Gy —hth—thoa+-+H —1

= frp <t
So xﬁrlﬂ € B+ (xp) for all i < k. Hence, by (2.10) and (2.11), one has
I = fall < 10 1.0 =l € G (1 =) =2 =t
Thus by induction, |[x% la —x,‘ia” <ty+1 —t, for all n > 0. Hence (¢,),n > 0 is a majorizing sequence

)

of (x,‘ia). In particular, xfm —xol| <t, <t ie., x,ia € By(xo), for all n > 0. Hence, (x; ,) is a Cauchy

sequence and converges to some x5 € B,(xq) C By (xo) and

rn
IS —x | <t =ty < 1

“(1-r)

Letting n — oo in (1.5), we obtain F (x3) + ot(x —xo) = y®. This completes the proof of the Theorem. [

3. ERROR BOUNDS UNDER SOURCE CONDITIONS

We will use the error estimates in the following Proposition, which can be found in [20] for our error
analysis.

Proposition 3.1. [20, Proposition 3.1] Let £ € D(F) be a solution of (1.1) and let F : D(F) C X — X be
a monotone operator in X. Let xq be the unique solution of

F(x)+a(x—x)) =y (3.1)
and let xg be the unique solution of (1.3). Then

5
% —xall < — 3.2)

and

o — %] < [|xo — £]]-

To obtain an error estimate for ||x — £]|, it is enough to obtain an error estimate for ||x3 — x| and
[l — |-

Let us introduce the following operators:
A:=F'(%) (3.3)
and
My = /OlF’()€+t(xa—)2))dt. (3.4)
Using the Mean Value Theorem in Integral form, we have
F(xq) — F (%) = Mo (xo — %) (3.5)

The following Theorem gives an estimate for ||xy — £||.



AN ITERATIVE REGULARIZATION METHOD FOR ILL-POSED PROBLEMS 263

Theorem 3.1. Let xy, be the unique solution of (3.1) and let the Assumptions 1.1, 1.3 and 1.4 be satisfied.
Then

[[xe — 2|l < (1 +1loro)cop(a). (3.6)
Proof. Since F(x¢) 4 0t(xgq —x0) =y, for any o > 0, we obtain from (3.5) that

Hence

=
I

(Mg +al)™! (xo—)e)

[(Mg+al) ™ — (A4 al) o(xg — £) + (A4 al) " (xg — %)

= (Mg+ol) " (A—My)a(A+al) " (xg— %)+ a(A+al) " (x— %)
(Mg + o) "' Mo® (%, 84 1(xo — %), (A + al) "L (xo — %))

Xop —

+a(A+al) ! (xo - %),
which follows from Assumption 1.4. From Proposition 3.1, Assumptions 1.1, 1.3 and 1.4 we have

X =&l = ||(Mg+al) 'Mg®(%,%+1(xeq — %), t(A+al) ! (xo — £))
+a(A+al) (xo— )|

< (Mg + o) ' Mo ®(£,5 41 (xq — %), (A + D) (xg — £)) |
+Hlo(A+al)™ (xo — )|
< (loro+1)cop(a).
This completes the proof. U

Combining the estimates in Theorem 2.1, (3.2) and (3.6), we obtain the following Theorem.

Theorem 3.2. Letx o be as in (1.5) and let the assumptions in Theorem 2.1, (3.2) and (3.6) be satisfied.
Then

r o
I =l < 175+ <+ (loro + 1eg@(@). (37
Let
ng:=min{n:r" <48} (3.8)
and
C = max{ 1’1r +1, (Ioro + Deg . (3.9)

Theorem 3.3. Let x,‘ia be as in (1.5) and let the assumptions in Theorem 3.2 be satisfied. Let ng be as in
(3.8) and let C be as in (3.9). Then, forall 0 < o < 1,

ey — £l < C(p(ex) +

s
) (3.10)
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3.1. A priori choice of the parameter. Note that the error ¢ (o) + g in (3.10) is of optimal order if
o := a(d) satisfies az@(ag) = 8. Using w(1) := 19~ (1),0 < A < a, we have

6 = o5p(a5) = w(@(ats))-
Hence, a5 = ¢~ ' (y~1(8)). Using (3.10), we have the following.

Theorem 3.4. Let w(4) := 2@~ (1) for 0 < A < a, and let the assumptions in Theorem 3.3 holds. For
>0, leta:=o5=0 '(y1(3)). Let ns be as in (3.8). Then

ey = = O(w™'(8)).

3.2. An adaptive choice of the parameter. In this subsection, we present a parameter choice rule based
on the adaptive method studied in [14, 16].
In practice, the regularization parameter ¢ is often selected from some finite set

Dy(a):={o;=ploy,i=0,1,--- ,M}, (3.11)

where ¢t > 1 and M is such that oy < 1 < otyy41. We choose o := v/ because in general @(A) =
AY,0 < v < 1. In this case, the best possible error estimate is of order Q(\/S) From Theorem 3.4, it
follows that such an accuracy cannot be guaranteed for o < /8. Let

ny :=min{n:r" <5} (3.12)
Then, fori =0,1,--- M,
5 s .9 ,
||ng,(X,'_x(X,’|| S E? \v/l:()’l)'“M' (313)
i
Letx; :=x5 . We selects a = o; from Dy () and operates only with corresponding x;, i =0,1,--- , M.

Theorem 3.5. Assume that there exists i € {0,1,2,--- M} such that @(0;) < g’_. Let assumptions of
Theorem 3.3 and Theorem 3.4 hold and let

l:=max{i: @(o;) < 2} <M,

)
k:=max{i: [jx; —x;|| < 4C;,j:0,1,2,--- i} (3.14)
J

Then, | <k, || —xi|| < cy~ (), where c = 6CL.

Proof. To see that [ < k, it is enough to show that, for eachi € {1,2,--- M},

0 )
(p(al)§7:>||xl_x]H§4C77 VJ:O,I,,I
o; o;

For j < i, we conclude from (3.10)that

[l =l < e = &[]+ |2 =]
0 o
< C(QD(OC[)‘FE)‘FC((P(O‘/')‘FE)
i ]
< 20000
o; OCJ'
< 4

o
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Thus the relation / < k is proved. Next we observe that

£ —xell < (1% =2l 4[] — x|

0 0
< C(o(ag)+—)+4C—
< Clo(a) + 061)+ o
< 6l
o
Since ag < a1 < Woy, one has
4 i
—<Uu—= =uy (9).
o Mo, THelas) =ry(9)
This completes the proof. U

4. IMPLEMENTATION OF THE ADAPTIVE CHOICE RULE

In this section, we provide an algorithm for the determination of a parameter fulfilling the balancing
principle (3.14) and provide a starting point for the iteration (1.5) to approximate the unique solution xg
of (1.3). The choice of the starting point involves the following steps:

e Choose 0 = /8 and pu > 1.
e Choose xp € D(F) such that ||xo — £|| < p.
o Choose 7 satisfying (2.7).
The choice of the stopping index ny involves the following step:
e Choose ny such that nyy = min{n: " < 6}.

Finally, the adaptive algorithm associated with the choice of the parameter specified in Theorem 3.5
involves the following steps.

4.1. The algorithm.

o Seti<+ 0.

e Solve x; 1= xf,M?ai via iteration (1.5).
Ifoi—xjH>4C§, J <i, then we take k =i — I.
Set i =i+ 1 and return to step 2.

5. THE ITERATIVELY REGULARIZED PROJECTION METHOD

Let H be a bounded subset of positive real numbers such that zero is a limit point of H. Let {P, }ren
be a family of orthogonal projections from X into itself. Let

Ty := (I = Py)F' (xo)| (5.1)
and
Y= | F'(Puxo) (1 = By (5.2)
We assume that
by :=||(I — Py)xol| = 0, as — 0. (5.3)

The above assumption is satisfied if P, — I pointwise. Let (1,,),n > 0 be defined iteratively by 1y, =
0,11, = M,

/!
st =tp+ (14 ﬁ) 0T

o) =) (ta = ta—1), (5.4)
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where Iy, & and r;, € [0,1) are nonnegative numbers with (1+ %) (15)” 71 < - We need the following
Lemma. Its proof is analogous to the proof of Lemma 2.1. So, we omit the proof.

Lemma 5.1. Assume there exist nonnegative numbers ly, & and ry, € [0, 1) such that

1+ <, (5.5)
rh)

o’ (1—

Then the sequence (t,, h) deﬁned in (5.4) is increasing, bounded above by t;* := lﬂ”rh, and converges to

some t;, such that 0 < 1 Moreover forn >0,

0 <tyyih—tan < th(twp —tao1n) < P (5.6)

and

Gy —tun < T (5.7)

L —rp
We considered the following iteratively regularized projection method

01 = — (B (Bixo) + o) ' Py(F (x70) —3° + @y, — x0)), (5.8)

where xg’g 1= Pyx for (xﬁ’g) in a finite dimensional subspace X, of X.

Next we prove that sequence (1, ) is a majorizing sequence of (xn a) Let

Yh)(

6 g 'y
(1+ (bp+p)? +bitp) < My < minf{ A ro(1— 1)} (5.9)

2

Theorem 5.1. Let the assumptions in Lemma 5.1 with 1y, be as in (5.9) and let Assumption 1.4 be
satisfied. Then the sequence (t, ) defined in (5.4) is a majorizing sequence of the sequence (xZ’g) defined
in (5.8) and xﬁjg € By (Puxo) for alln > 0.

Proof. Let

G(x) = x—Re(Pyxo) ' [F (x) —y® + at(x — x0)],
where R, (Pyxo) ™' = (B,F' (Pyxo)P, +aB,)~'. Since

Ra(Puxo) ™" = Ra(Pixo) ' Py = PiRa(Pixo) ™",
for u,v € By (Puxo), one has

G(u) — G(v) = u—v — Re(Puxo) " [F () — y° + ot (e — x0)] + R (Puxo) " [F(v) =y + (v — x0))]
= Ro(Puxo) ™' [Ra(Pixo) (1 — v) = (F (u) = F (v))] + aRa(Pixo) ™' (v —u)
= Ry (Pyxo) " [F(Pyxo) Py(u—v) — (F () — F(v)) 4 at(u—v)] + 0tRo (Prxo) "' (v — 1)
= Ro(Pyxo) ' [F(Pyxo) Py(u —v) — (F (1) — F(v))].
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Since G(xl¥ 0= zfl o and P, (xf;;:i —fol’a) = (ijg —x2f17a), we have from Lemma 2.2 that
hs hé 6 hé
(xn+l,a Xn, OC) G(xn,oc) - G(xnfl oc)

:Ra(Pth)fl[F (Phxo)(ng—xha )—(F(ng) F(xh,6 )]

n—1,0 n—1,0

h,6 h,6 h,6
= Ry (Puxo) " F'(Pyxo /@xna+t X —Xp'ar)s PhXo, X, Lo — Xy )dt

= Rq(Pixo) ™' [F'(Puxo) Py + F' (Prxo) (I — Py)]
1
h,6 h,6 h,6 h,6 h,6
></0 D (X +1(x,%) o — Xnlar)s Pux0,%,°) o — Xne)dt.

Using Assumption 1.4 and

?’h

HRa(Pth) [F (Pth)Ph+F (PhX())(I Ph)]” <1 —l— (5.10)

we have
h,6
Hxn-i—la xna||<(1+ )ZO|’xntx+t(n Lo xn(x) PhXOHHXna Xy— la”

Now we prove that the sequence (7,,,) defined in (5.4) is a majorizing sequence of (xn a) and xn 2 €
By (Pixo), for all n > 0. In view of F(£) =y, Assumption 1.4, (5.10) and inequality ||Pyxo —£|| < by, +p,
one has

) “P(F (Pixo) —¥°) |
= |(PoF' (Puxo) + o) "' Py(F (Pyxo) — F (£) +y —»°) |
< |[(PyF' (Puxo) + &)~ Py(F (Phxo) — F (£) — F'(Puxo) (Phxo — £)) |

[B5 ‘o — Puxoll = [[(PuF' (Poxo) + al

)
)

+ || (PoF' (Prxo) + o) "' P,F! (Pyxo) (Poxo — 2)|
+{|(PF' (Pixo) + o)~ Py —»°) |

()
< (4 ) (2 g — 5P + 1P — £1) +
<1+”’><2<b PP +butp)+ o
< M.
So, 0 —PthH <t n—Ttop- Assume that
B .
sz+1a z,bg|| <tivthn—tin, Vi<k, (5.11)
for some k. Then
6 X
1% 1.0 — Baxoll = ||xk+1a xka+xka_xk Lot +x1a_Phx0||
< ”karl(x xk(x”"’kaa_xlz 1aH+ +||x1a_Phx0||
< hpip—hpthop—hapt - +hp—ton
= tra <t
So xl+] o € B (Puxo) for all i < k. Hence,

hS he  ho
Yo TH g = X1 o) € Bi; (Paxo).
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By (5.11) and (5.11), we have
7,8 h,8 h,8
”xk+2a xk+1a|| < Db (1+ )th” /:+1oz xka”
= lkt2h— tk+1,h-

Thus, ||xn+1 o ijgH <tyiy1h —tan, Yn > 0. Hence (t,),n > 0 is a majorizing sequence of (xﬁjg). In

particular Hx,w —Puxol| <ty <17, i, xz;g € By (Pyxo), for all n > 0. Hence

H¢§‘4%WH§$551?%{ (5.12)
This completes the proof. U
Let
#:=max{r,r,} (5.13)
and
_ %[Z?Jrlobh]. (5.14)

For 0 < b, < ( ), g < 1, one has the following.
Theorem 5.2. Let xn a be as in (5.8) and let x o be asin (1.5). Let assumptions in Theorem 2.1 and
Theorem 5.1 hold. Then

Ty +||F' (x0)||br "
a q—r

e = x8ll < q"bi+

Proof. Note that

) X _ _
Yo —Xoq = 00 =501 o~ [(PuF (Pixo) + al) ™ By — (F'(x0) +af) ']

n—1,x
x(F(2) ) =y +al® , —x0))
—(F'(x0) + o) P00 )~ F(d ) o)+ a(alh® o —x8 )]

= (F'(x0) + o) [F'(x0) (6} ¢ =0 1.0) = (F (5%, o) = F(x3_1.0))]
—(F'(x0) + al)‘ [F(x0) Py — PoF' (Poxo) Py) (PoF' (Pyxo) + ozl)‘l
<P l(F (2 ) =3 + a(adh® o —x0))]

= (F'(x0) + o) [F'(x0) (6, o =0 1.0) = (F(5,%) o) = F(x3_1.0))]
—(F'(x0) + &) " [F' (x0) — PiF' (x0) + PF (x0) — PuF' (Pyxo)] (e, — 222 )

= [T, (5.15)

where

1 = (F'(x0) + o) " [F' (x0) (1%, o =281 o) = (F(2 ) = F(x_y o))

nla

and

T = (F'(x0)+al) ' [F'(x0) = BiF' (x0) + PiF' (x0) — PuF" (Poxo)] (Xt — 2, ).

n—1,
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Using Lemma 2.2, one has

T < o [ o= (A0 108 =%, D)
< o [ o gl + (10 Bro
U= 1Bio =0 o =340,
< M T b -l

< ;[ZH-lobh]HX o 3—1,(1”

1)
S QH n l(x xnfl,(xH‘

From Assumption 1.4, one has

T2l = H(F/(xo)+al)fl[(I—Ph)F/(xo)—Ph(F/(Phxo)—F/(xo))](xﬁig—xn’_lva
< (F'(x0) +al) " (I = P)F (x0) |
H|(F' (x0) + o) "' PLF" (x0) @ (Pyxo, x0, X125 fxﬁfm)
< Fh+loHF’(x0)||bhH he _ hé

Qa Xy l,oc”'
It follows from (5.15), (5.16) and (5.17) that
U+ lo[| F' (x0) || o

nl(x

h,6
—X

h,6

n—1,0

||dt

h,6 ) h,8 S h,6
xne —Xnell < gl o — X1 all + p [Ep
Ty + || F' (x9) || _ _ _
< q"bh+ h OHa( 0)” hnh(r;: 1_+_qu 2+”__’_qn l)
L, + Dl F' (x9)||1b n
< byt L ol [F'(x0)[1br ¢ -
a q—rp

This completes the proof.

6. ERROR BOUNDS UNDER SOURCE CONDITIONS

It follows from Proposition 3.1 and Theorem 3.1 that

0
o
I —xall < S

and
[xe = 2] < (loro+ 1) @(a),

where xg is the unique solution of F(x) + a(x —xp) = y.
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(5.16)

(5.17)

6.1

(6.2)

Combining the estimates in Theorem 2.1, Theorem 5.2, equation (6.1) and equation (6.2), we obtain

the following Theorem.

Theorem 6.1. Let xzjg be as in (5.8) and let the assumptions in Theorem 2.1 and Theorem 5.2 be satisfied.

Then
Ly +1o||F' (x0) b 4" 7N

5
128 — 2| < ¢"b+ N+ +a+(loro+1)(p(oc).

a q—ry 1—r

(6.3)
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Let
ng := min{n : max{q",r"} < 6} (6.4)

and

T+ lo||F' (x0)]|b
ntloll Fxo)llbw ’lrﬂ,(lm“)}, 6.5)

Cyn := max{b, + - 1

Theorem 6.2. Let ijg be as in (5.8) and let the assumptions in Theorem 2.1 and Theorem 5.2 be satisfied.
Let ng be as in (6.4) and let C,, be as in (6.5). Then, for all 0 < o0 < 1,
. o
oo — < Culp(@) + ). (6.6)

6.1. A priori choice of the parameter. We observe that the error @(o) + g in (6.6) is of optimal
order if o5 := a(8) satisfies az@(0s) = 8. Using the function y(1) := 29~1(1),0 < A < a, we have
3 =os0(as) = w(e(as)). Hence, os = ¢~ (w~1(8)). Using (6.6), we have the following result.

Theorem 6.3. Let () := Ao~ (1) for 0 < A < a, and assumptions in Theorem 6.2 holds. For § > 0,
let « =: o5 = @~ ' (y~1(8)). Let ns be as in (6.4). Then Hxﬁ&aa — % = 0(y~1(5)).

6.2. An adaptive choice of the parameter. We will present a parameter choice rule based on the adap-
tive method studied in [14, 16]. The regularization parameter ¢ is selected from the finite set
Dy(a):={o;=p'ay,i =0,1,--- ,M}, (6.7)
where 1 > 1 and M is such that oy < 1 < @41 We choose o := v/ because in general @(A) =
AY,0 < v <1 and in this case the best possible error estimate is order ()(1/§). From Theorem 6.3, it
follows that such an accuracy cannot be guaranteed for o < V8. Let
ny = min{n : max{q",r"} <6} (6.8)

and x; := xZ;,iai. We select & = o; from Dys( ) and operates only with corresponding x;, i =0,1,--- M.

Theorem 6.4. (cf. Theorem 3.5) Assume that there exists i € {0,1,2,--- M} such that ¢(a;) < g,_. Let
assumptions of Theorem 6.2 and Theorem 6.3 hold and let | := max{i: @(0;) < g} <M,

1)
k:=max{i: [jx; —x;|| < 4Cma,j =0,1,2,---,i}. (6.9)
J
Then | <k and ||z — x| < cy~1(8), where ¢ = 6C,, .

7. IMPLEMENTATION OF THE ADAPTIVE CHOICE RULE

In this section, we provide an algorithm for the determination of a parameter fulfilling the balancing
principle (6.9) and provide a starting point for iteration (5.8) to approximate the unique solution xg of
(1.3). The choice of the starting point involves the following steps:

e Choose ot =V/8, u>landg < 1.

e Choose xyp € D(F) such that ||xo — £|| < p and n, satisfying (5.9).
The choice of the stopping index ny, involves the following step:

e Choose nys such that nyy = min{n : max{q", "} < 8}.
Finally the adaptive algorithm associated with the choice of the parameter specified in Theorem 6.4
involves the following steps.
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7.1. Algorithm.

o Seti<+ 0.
e Solve x; := xﬁ;j}ai via iteration (5.8).

If [|x; —xj[| > 4C, 32, j <i, then we take k =i~ 1.
Set i =i+ 1 and return to step 2.

8. EXAMPLES

In this section, we consider some simple examples satisfying the assumptions made in this paper and
presents a few of examples.
We consider the operator F : L2[0,1] — L2[0, 1] defined by [15, Example 6.1]

F(x)(s) = K'K(x)(s) + f(s), x.feL’0,1],s€0,1], (8.1)

where K : L?[0,1] — L*[0, 1] is a compact linear operator such that the range of K denoted by R(K) is not
closed in L2[0, 1]. Then the equation F(x) =y is ill-posed as K is compact with non-closed range. The
Fréchet derivative F’(.) of F is given by

F'(x)z=K*Kz, Vx,z € L*[0,1]. (8.2)

So, F is monotone on L?[0, 1]. Further, for x,y,z € L*[0, 1], one has
[F'(x) = F'(y)]z=0. (8.3)
It is obvious that Assumption 1.4 holds. Since ®(x,y,z) =0 < lonH |x —yl|, ¥lp > 0 we can choose 1,

large enough in step 2 of the algorithm. Further, due to (8.2), x’ ho

m+1.¢ Only needs one step to compute.

This can be seen as follows:

A2 = 2 — (PF! (Prxo) + o) ' ByF (i) — 30 + a(alsy —x0)),
i.e.,
(PF’ (Phx0)+al)Phxm+l(x = (PF'(Pixo) + )Py, — PL[F (23 — 30 + (xS, — x0)]
= (P K+ al) Py — PilK Ky + f = y° + o (x5 — x0)]
= —P(f—y°— o). (8.4)

Next, we give the details for implementing the algorithm given in the above section. Let (V},) be a
sequence of finite dimensional subspaces of X and let P,,h = 1/n denote the orthogonal projection on
X with range R(P,) = V,. We assume that dimV,, =n+1, and ||P,x —x|| — 0 as h — 0 for all x € X.

Let{vi,va2, -+ ,vnt1} be a basis of V,,n =1,2,--- . Note that xﬁ;iw € V,. Thus, xmle o s of the form
):"+1 Av; for some scalars A1,A,, -+, A, 1. It can be seen that xﬁﬁl o 18 a solution of (8.4) if and only if

A = (A1, A2, , Auy1)T is the unique solution of
(M, + aB,)A = a, (8.5)
where M, = ((Kv;,Kvj)), i,j=1,2,--- ,n+1B, = ((vi,vj)),i,j=1,2,--- ,n+1and
a=((P(° +oxo—f)vi)) T i=1,2,- ,n+1.

Note that (8.5) is uniquely solvable because M, is a positive definite matrix (i.e., xM,x” > 0 for all
non-zero vector x) and B, is an invertible matrix.
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8.1. Numerical Examples. In order to illustrate the method considered in the above section, we con-
sider the space X =Y = L2[0,1] and K : L?[0, 1] — L?[0, 1] as the Fredholm integral operator

1
K(x)(s) = / k(s,1)x(t)dt, (8.6)
0
with
0 t <
k(t,s) = { ’ =7 (8.7)
t—s, t>s.
We apply the Algorithm in Section 7 by choosing V,, as the space of linear splines in a uniform grid of
n+ 1 points in [0, 1]. Specifically, for fixed n, we consider #; = %, i=1,2,--- ,n+1 as the grid points.
We take the basis function v;,i = 1,2,--- ,n+ 1 of V,, as follows:
Ll 0=1<t<t
n()=4 = = (8.8)
0, n<t<t=1

for j=2,3,---,n,

0, 0=n<t<t,
1—tj_|
~ ti <t<t
ti—ti 1 J — — ]
vy =9 T UL (89)
i USTSIjn
0, tip1 <t <t =1
and
0, 0<1r <1,
() =4 ", (8.10)
[ tn St Stl’l—i-l

Let P, be the orthogonal projection onto V,,. We note that, for x € C[0, 1],

|Pix—x|2 = dist(x,R(Py))
< |1 mx — x|

< [1x =]l

where 7, is the (piecewise linear) interpolatory projection onto Vj,. It is known that ||7,x — x| — 0 as
n — oo. Therefore using the fact that C[0,1] is dense in L?[0, 1], it follows that ||P,x — x||» — O for all
x € L?[0,1]. The elements Kv;,i = 1,2,--- ,n+ 1, the entries of the matrix B,, M, and @ are computed
explicitly. For the operator K defined by (8.6) and (8.7), Iy =y, = ||(I — P,)F'(x0)|| = ||(I — P.)K*K|| =
O(n?) (see, [11]).

Example 8.1. Take y = -15(26 +s® — 65° 4 155s* — 365) + f(s), where f(s) = s> and xg = 0. Then the
exact solution is £ = 1 (s — 1)2. Since £ —xp = £ = K*1 € R(K*) = R(F'(¥)"/?), ¢(1) = /2. Hence
v 1(8) = ¢(as) = (8)"/3. This implies that ||£ — x|| < cw~!(8), where ¢ = 6C,, 1. The result are given
in the following Table and Figures.
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100 0.0377 0.1385

8 99 0.0385 0.1400
16 99 0.0385 0.1399
32 99 0.0385 0.1400
64 99 0.0385 0.1400
128 99 0.0385 0.1400
256 99 0.0385 0.1400
512 99 0.0385 0.1400
1024 99 0.0385 0.1400

Table 3.1: 6 =0.001; pu =1.002.
Here ¢ := ||x; —£|| and y® =y +§.
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Remark 8.1. The last column of the Table shows that ¢; = O(y~!(8)). From computation, we observe

that due to the round off error k and e; remains as a constant for large values of n.

approx.soln
— — —exactsoln |5

0.2

0.4 0.6 0.8

approx.soln
— — —exactsoln

0.2

0.4 0.6 0.8

n=8

n=16

approx.soln
— — —exactsoln |5

0.2

0.4 0.6 0.8

approx.soln
— — —exactsoln

0.2

0.4 0.6 0.8

n=32

n=64

FIGURE 1. Curve of the exact and approximate solutions
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ill-posed operator equation F(x) =y, when the available data is y® in place of the exact data y with
ly —y®|| < 8. It is assumed that F is Fréchet differentiable in a neighborhood of some initial guess
xo of the actual solution £. The procedure involves finding the fixed point of the function Gj(x) :
x — (P,F' (Puxo) + ol ) ' P, (F (x) — y® + at(x — x¢)), in a finite dimensional subspace Xj, of X iteratively,
where P, is the orthogonal projection on to Xj,. For choosing the regularization parameter o, we employed
the adaptive method suggested by Pereversev and Schock in [16] and the stopping rule is based on a
majorizing sequence. Our numerical experiments show that if & is chosen according to the balancing
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FIGURE 2. Curve of the exact and approximate solutions

9. CONCLUDING REMARK

principle (6.9), then ||x; — £|| < cy~1(8).
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