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FOR ILL-POSED PROBLEMS

IOANNIS K. ARGYROS1, SANTHOSH GEORGE2,∗

1Department of Mathematicsal Sciences, Cameron University, Lawton, OK 73505, USA
2Department of Mathematical and Computational Sciences,

National Institute of Technology Karnataka, Mangaluru 575 025, India

Abstract. An iteratively regularized projection method, which converges quadratically, is considered for stable approximate
solutions to a nonlinear ill-posed operator equation F(x) = y, where F : D(F) ⊆ X → X is a nonlinear monotone operator
defined on the real Hilbert space X . We assume that only a noisy data yδ with ‖y−yδ ‖ ≤ δ are available. Under the assumption
that the Fréchet derivative F ′ of F is Lipschitz continuous, a choice of the regularization parameter using an adaptive selection
of the parameter and a stopping rule for the iteration index using a majorizing sequence are presented. We prove that, under a
general source condition on x0− x̂, the error ‖xh,δ

n,α − x̂‖ between the regularized approximation xh,δ
n,α , (xh,δ

0,α := Phx0, where Ph is
an orthogonal projection on to a finite dimensional subspace Xh of X) and the solution x̂ is of optimal order.
Keywords. Majorizing sequence; Monotone operator; Nonlinear ill-posed operator; Quadratic convergence; Regularized Pro-
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1. INTRODUCTION

Let X be a real Hilbert space. Let F : D(F)→ X with domain D(F)⊆ X be a monotone operator. We
consider the problem of solving the nonlinear ill-posed operator equation

F(x) = y (1.1)

approximately when the data y is not known exactly. Assume that yδ ∈ X are the available noisy data
with

‖y− yδ‖ ≤ δ , (1.2)

and that (1.1) has a solution x̂. Equation (1.1) is ill-posed in the sense that the Fréchet derivative F ′(.) is
not boundedly invertible (see, [19, page 26]). Since (1.1) is ill-posed, one has to replace equation (1.1)
by a nearby equation whose solution is less sensitive to perturbation in the right side y. This replacement
is known as regularization. A well known method for regularizing (1.1), when F is monotone, is the
method of the Lavrentiev regularization (see, [20]). In this method, approximation xδ

α is obtained by
solving the singularly perturbed operator equation

F(x)+α(x− x0) = yδ . (1.3)

∗Corresponding author.
E-mail addresses: ioannisa@cameron.edu (I. K. Argyros), sgeorge@nitk.edu.in; nitksanthosh@gmail.com (S. George).
Received July 3, 2017; Accepted May 4, 2019.

c©2019 Journal of Nonlinear and Variational Analysis

257



258 I.K. ARGYROS, S. GEORGE

In practice, one has to deal with some sequence (xδ
n,α) converging to x̂, the solution of (1.1). Recently,

many authors considered such sequences; see [6, 7, 8, 12, 17, 18] and the references therein.
In [6], Bakushinsky and Smirnova considered an iteratively regularized Lavrentiev method:

xδ
k+1 = xδ

k − (Aδ
k +αkI)−1(F(xδ

k )− yδ +αk(xδ
k − x0)), (1.4)

for k = 0,1,2, · · · , where Aδ
k := F ′(xδ

k ) and (αk) is a sequence of positive real numbers such that
limk→∞ αk = 0 as an approximate solution for (1.1). A general discrepancy principle was considered
in [6] for choosing the stopping index kδ and showed that xδ

kδ
→ x̂ as δ → 0. However, no error estimate

for ‖xδ
kδ
− x̂‖ was given in [6]. Later, Mahale and Nair [13] considered method (1.4) and obtained an

error estimate for ‖xδ
kδ
− x̂‖ under weaker assumptions than the assumptions in [6].

In [9], George and Elmahdy considered the iterative regularization method

xδ
n+1,α = xδ

n,α − (F ′(x0)+αI)−1(F(xδ
n,α)− yδ +α(xδ

n,α − x0)), (1.5)

where xδ
0,α := x0 and proved that (xδ

n,α) converges to the unique solution xδ
α of (1.3) under the following

Assumptions.

Assumpion 1.1. There exists r0 > 0 such that Br0(x̂) ⊆ D(F) and F is Fréchet differentiable at all
x ∈ Br0(x̂).

Assumpion 1.2. There exists a constant L > 0 such that, for every x,u ∈ Br0(x̂) and v ∈ X , there exists
an element Φ(x,u,v) ∈ X satisfying

[F ′(x)−F ′(u)]v = F ′(u)Φ(x,u,v), ‖Φ(x,u,v)‖ ≤ L‖v‖,

for all x,u ∈ Br0(x̂).

Assumpion 1.3. There exists a continuous, strictly monotonically increasing function ϕ : (0,a]→ (0,∞)

with a≥ ‖F ′(x̂)‖ satisfying limλ→0 ϕ(λ ) = 0 and a vector v ∈ X with ‖v‖ ≤ 1 such that

x0− x̂ = ϕ(F ′(x̂))v

and

sup
λ≥0

αϕ(λ )

λ +α
≤ ϕ(α),∀α ∈ (0,a].

The main drawback of the method considered in [9] is that the initial guess x0 of the iterative sequence
(xδ

n,α) is highly dependent on l0 (see Lemma 2.4 and Theorem 2.6 in [9]), so it is hard to obtain such
an initial guess x0 when l0 is not small enough. One of the purposes of this paper is to overcome this
drawback.

In this paper we use the following modified form of Assumption 1.2.

Assumpion 1.4. Let x0 ∈ Br(x̂) be fixed. There exists a constant l0 > 0 such that, for every x,x0 ∈ Br0(x̂)
and v ∈ X , there exists an element Φ(x,x0,v) ∈ X satisfying

[F ′(x)−F ′(x0)]v = F ′(x0)Φ(x,x0,v), ‖Φ(x,x0,v)‖ ≤ l0‖v‖‖x− x0‖,

for all x ∈ Br0(x̂) and v ∈ X .
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From Assumption 1.4, one sees that the first hypotheses in Assumption 1.4 is weaker but the sec-
ond hypotheses is stronger (but more practical) than the corresponding ones in Assumption 1.2. Hence
Assumption 1.4 is stronger than Assumption 1.2. The autoconvolution problem discussed in [10] is an
example of the nonlinear ill-posed problem satisfying Assumption 1.2 but not Assumption 1.4.

Further note that l0 ≤ L holds in general and L
l0

can be arbitrarily large [1, 2, 3, 4, 5]. The results in [9]
really require Assumption 1.4 not Assumption 1.2. If l0 = L, the results of this paper coincide with the
results in [9]. Otherwise, i.e., if l0 < L, then our convergence results are better under weaker majorizing
sequences. The error estimates are tighter and the information on the location of the solution as well
at least as precise and the stopping rule at least as tight. Hence, the applicability of method (1.5) has
been extended under less computational cost since, in practice, computing L is more expensive (if at all
possible) than computing l0.

The main advantage of using the stronger Assumption 1.4 is that the majorizing sequence we are going
to use in this paper is independent of the regularization parameter α. Further the majorizing sequence
gives an a priori error estimate which can be used to determine the number of iterations needed to achieve
a prescribed solution accuracy before actual computation takes place.

Remark 1.1. It can be seen that functions

ϕ(λ ) = λ
ν ,λ > 0,

for 0 < ν ≤ 1 and

ϕ(λ ) =

{
(ln 1

λ
)−p, 0 < λ ≤ e−(p+1)

0, otherwise

for p≥ 0 satisfy the above assumption (see [15]).

2. CONVERGENCE ANALYSIS

To prove the main results in this paper, we consider the sequence (tn),n ≥ 0 defined iteratively by
t0 = 0, t1 = η ,

tn+1 = tn +
l0η

(1− r)
(tn− tn−1), (2.1)

where r ∈ [0,1) as a majorizing sequence of the sequence (xδ
n,α).

The following lemma is a essential reformulation of a Lemma in [9]. For the sake of completeness,
we give its proof as well.

Lemma 2.1. Assume there exist nonnegative numbers l0,η and r ∈ [0,1) such that

l0
(1− r)

η ≤ r. (2.2)

Then the sequence (tn) defined in (2.1) is increasing, bounded above by t∗∗ := η

1−r , and converges to
some t∗, such that 0 < t∗ ≤ η

1−r . Moreover, for n≥ 0,

0≤ tn+1− tn ≤ r(tn− tn−1)≤ rn
η (2.3)

and

t∗− tn ≤
rn

1− r
η . (2.4)
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Proof. Since the result holds for η = 0, l0 = 0 or r = 0, we assume that l0 6= 0,η 6= 0 and r 6= 0. Observe
that t1− t0 = η ≥ 0. We assume that ti+1− ti ≥ 0, for all i≤ k for some k. Hence,

tk+2− tk+1 =
l0η

(1− r)
(tk+1− tk)≥ 0.

and tn+1− tn ≥ 0 for all n≥ 0. From l0η

(1−r) ≤ r, estimate (2.3) follows from (2.1). Further observe that

tk+1 ≤ tk + r(tk− tk−1)

≤ ·· ·

≤ η + rη + · · ·+ rk
η

<
η

1− r
.

Hence (tn) is bounded above by η

1−r and nondecreasing. So, it converges to some t∗ ≤ η

1−r , and

t∗− tn = lim
i→∞

tn+i− tn ≤ lim
i→∞

i−1

∑
j=0

(tn+1+ j− tn+ j)≤
rn

1− r
η .

This completes the proof of the Lemma. �

To prove the convergence of the sequence (xδ
n,α) defined in (1.5), we introduce the following notations.

Let Rα(x0) := F ′(x0)+αI and

G(x) := x−Rα(x0)
−1[F(x)− yδ +α(x− x0)]. (2.5)

Note that G(xδ
n,α) = xδ

n+1,α and

‖Rα(x0)
−1F ′(x0)‖ ≤ 1. (2.6)

The following Lemma based on the Assumption 1.4 will be used later.

Lemma 2.2. For u,v,x0 ∈ Br0(x̂),

F(v)−F(u)−F ′(x0)(v−u) = F ′(x0)
∫ 1

0
Φ(u+ t(v−u),x0,v−u)dt.

Proof. Using the Fundamental Theorem of Integration, for u,v,x0 ∈ Br0(x̂) we have

F(v)−F(u) =
∫ 1

0
F ′(u+ t(v−u))(v−u)dt.

From Assumption 1.4, we have

F(v)−F(u)−F ′(x0)(v−u) = F ′(x0)
∫ 1

0
Φ(u+ t(v−u),x0,v−u)dt.

This completes the proof of the Lemma. �

Hereafter we assume that ‖x0− x̂‖ ≤ ρ and

l0
2

ρ
2 +ρ +

δ

α
≤ η ≤min{r(1− r)

l0
,r0(1− r)}. (2.7)
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Theorem 2.1. Suppose that (2.1) holds. Let the assumptions in Lemma 2.1 with η be as in (2.7) and
Assumption 1.4 be satisfied. Then the sequence (xδ

n,α) defined in (1.5) is well defined and xδ
n,α ∈ Bt∗(x0)

for all n≥ 0. Further (xδ
n,α) is a Cauchy sequence in Bt∗(x0) (converges to xδ

α ∈ Bt∗(x0)⊂ Bt∗∗(x0)) and
F(xδ

α)+α(xδ
α − x0) = yδ . Moreover, the following estimate hold, for all n≥ 0,

‖xδ
n+1,α − xδ

n,α‖ ≤ tn+1− tn (2.8)

and

‖xδ
n,α − xδ

α‖ ≤ t∗− tn ≤
rnη

(1− r)
. (2.9)

Proof. Let G be as in (2.5). Then, for u,v ∈ Bt∗(x0),

G(u)−G(v) = u− v−Rα(x0)
−1[F(u)− yδ +α(u− x0)]

+Rα(x0)
−1[F(v)− yδ +α(v− x0)]

= Rα(x0)
−1[Rα(x0)(u− v)− (F(u)−F(v))]

+αRα(x0)
−1(v−u)

= Rα(x0)
−1[F ′(x0)(u− v)− (F(u)−F(v))+α(u− v)]

+αRα(x0)
−1(v−u)

= Rα(x0)
−1[F ′(x0)(u− v)− (F(u)−F(v))].

Using Lemma 2.2, Assumption 1.4, (2.6) and (2.7) we have

‖G(u)−G(v)‖ ≤ l0t∗‖u− v‖. (2.10)

Now we prove that the sequence (tn) defined in Lemma 2.1 is a majorizing sequence of (xδ
n,α) and

xδ
n,α ∈ Bt∗(x0), for all n≥ 0. Since F(x̂) = y, one has

‖xδ
1,α − x0‖ = ‖Rα(x0)

−1(F(x0)− yδ )‖

= ‖Rα(x0)
−1(F(x0)− y+ y− yδ )‖

= ‖Rα(x0)
−1(F(x0)−F(x̂)−F ′(x0)(x0− x̂)

+F ′(x0)(x0− x̂)+ y− yδ )‖

≤ ‖Rα(x0)
−1(F(x0)−F(x̂)−F ′(x0)(x0− x̂))‖

+‖Rα(x0)
−1F ′(x0)(x0− x̂)‖+‖Rα(x0)

−1(y− yδ )‖

≤ ‖Rα(x0)
−1F ′(x0)

∫ 1

0
Φ(x̂+ t(x0− x̂),x0,(x0− x̂))dt‖

+‖Rα(x0)
−1F ′(x0))(x0− x̂)‖+ δ

α

≤ l0
2
‖x0− x̂‖2 +‖x0− x̂‖+ δ

α

≤ l0
2

ρ
2 +ρ +

δ

α
≤ η = t1− t0.

The last but one step follows from Assumption 1.4. Assume that

‖xδ
i+1,α − xδ

i,α‖ ≤ ti+1− ti, ∀i≤ k (2.11)
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for some k. Then

‖xδ
k+1,α − x0‖ = ‖xδ

k+1,α − xδ
k,α + xδ

k,α − xδ
k−1,α + · · ·+ xδ

1,α − x0‖

≤ ‖xδ
k+1,α − xδ

k,α‖+‖xδ
k,α − xδ

k−1,α‖+ · · ·+‖xδ
1,α − x0‖

≤ tk+1− tk + tk− tk−1 + · · ·+ t1− t0

= tk+1 ≤ t∗.

So xδ
i+1,α ∈ Bt∗(x0) for all i≤ k. Hence, by (2.10) and (2.11), one has

‖xδ
k+2,α − xδ

k+1,α‖ ≤ l0t∗‖xδ
k+1,α − xδ

k,α‖ ≤
l0η

(1− r)
(tk+1− tk) = tk+2− tk+1.

Thus by induction, ‖xδ
n+1,α − xδ

n,α‖ ≤ tn+1− tn for all n ≥ 0. Hence (tn),n ≥ 0 is a majorizing sequence
of (xδ

n,α). In particular, ‖xδ
n,α −x0‖ ≤ tn ≤ t∗, i.e., xδ

n,α ∈ Bt∗(x0), for all n≥ 0. Hence, (xδ
n,α) is a Cauchy

sequence and converges to some xδ
α ∈ Bt∗(x0)⊂ Bt∗∗(x0) and

‖xδ
α − xδ

n,α‖ ≤ t∗− tn ≤
rnη

(1− r)
.

Letting n→∞ in (1.5), we obtain F(xδ
α)+α(xδ

α−x0)= yδ . This completes the proof of the Theorem. �

3. ERROR BOUNDS UNDER SOURCE CONDITIONS

We will use the error estimates in the following Proposition, which can be found in [20] for our error
analysis.

Proposition 3.1. [20, Proposition 3.1] Let x̂ ∈ D(F) be a solution of (1.1) and let F : D(F)⊆ X 7→ X be
a monotone operator in X . Let xα be the unique solution of

F(x)+α(x− x0) = y (3.1)

and let xδ
α be the unique solution of (1.3). Then

‖xδ
α − xα‖ ≤

δ

α
(3.2)

and

‖xα − x̂‖ ≤ ‖x0− x̂‖.

To obtain an error estimate for ‖xδ
α − x̂‖, it is enough to obtain an error estimate for ‖xδ

α − xα‖ and
‖xα − x̂‖.

Let us introduce the following operators:

A := F ′(x̂) (3.3)

and

Mα :=
∫ 1

0
F ′(x̂+ t(xα − x̂))dt. (3.4)

Using the Mean Value Theorem in Integral form, we have

F(xα)−F(x̂) = Mα(xα − x̂). (3.5)

The following Theorem gives an estimate for ‖xα − x̂‖.
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Theorem 3.1. Let xα be the unique solution of (3.1) and let the Assumptions 1.1, 1.3 and 1.4 be satisfied.
Then

‖xα − x̂‖ ≤ (1+ l0r0)cϕϕ(α). (3.6)

Proof. Since F(xα)+α(xα − x0) = y, for any α > 0, we obtain from (3.5) that

Mα(xα − x̂)+α(xα − x̂) = α(x0− x̂).

Hence

xα − x̂ = (Mα +αI)−1
α(x0− x̂)

= [(Mα +αI)−1− (A+αI)−1]α(x0− x̂)+α(A+αI)−1(x0− x̂)

= (Mα +αI)−1(A−Mα)α(A+αI)−1(x0− x̂)+α(A+αI)−1(x0− x̂)

= (Mα +αI)−1MαΦ(x̂, x̂+ t(xα − x̂),α(A+αI)−1(x0− x̂))

+α(A+αI)−1(x0− x̂),

which follows from Assumption 1.4. From Proposition 3.1, Assumptions 1.1 , 1.3 and 1.4 we have

‖xα − x̂‖ = ‖(Mα +αI)−1MαΦ(x̂, x̂+ t(xα − x̂),α(A+αI)−1(x0− x̂))

+α(A+αI)−1(x0− x̂)‖

≤ ‖(Mα +αI)−1MαΦ(x̂, x̂+ t(xα − x̂),α(A+αI)−1(x0− x̂))‖

+‖α(A+αI)−1(x0− x̂)‖

≤ (l0r0 +1)cϕϕ(α).

This completes the proof. �

Combining the estimates in Theorem 2.1, (3.2) and (3.6), we obtain the following Theorem.

Theorem 3.2. Let xδ
n,α be as in (1.5) and let the assumptions in Theorem 2.1, (3.2) and (3.6) be satisfied.

Then

‖xδ
n,α − x̂‖ ≤ rnη

1− r
+

δ

α
+(l0r0 +1)cϕϕ(α). (3.7)

Let

nδ := min{n : rn ≤ δ} (3.8)

and

C := max{ η

1− r
+1,(l0r0 +1)cϕ}. (3.9)

Theorem 3.3. Let xδ
n,α be as in (1.5) and let the assumptions in Theorem 3.2 be satisfied. Let nδ be as in

(3.8) and let C be as in (3.9). Then, for all 0 < α ≤ 1,

‖xδ
nδ ,α
− x̂‖ ≤C(ϕ(α)+

δ

α
). (3.10)



264 I.K. ARGYROS, S. GEORGE

3.1. A priori choice of the parameter. Note that the error ϕ(α)+ δ

α
in (3.10) is of optimal order if

αδ := α(δ ) satisfies αδ ϕ(αδ ) = δ . Using ψ(λ ) := λϕ−1(λ ), 0 < λ ≤ a, we have

δ = αδ ϕ(αδ ) = ψ(ϕ(αδ )).

Hence, αδ = ϕ−1(ψ−1(δ )). Using (3.10), we have the following.

Theorem 3.4. Let ψ(λ ) := λϕ−1(λ ) for 0 < λ ≤ a, and let the assumptions in Theorem 3.3 holds. For
δ > 0, let α := αδ = ϕ−1(ψ−1(δ )). Let nδ be as in (3.8). Then

‖xδ
nδ ,α
− x̂‖=©(ψ−1(δ )).

3.2. An adaptive choice of the parameter. In this subsection, we present a parameter choice rule based
on the adaptive method studied in [14, 16].

In practice, the regularization parameter α is often selected from some finite set

DM(α) := {αi = µ
i
α0, i = 0,1, · · · ,M}, (3.11)

where µ > 1 and M is such that αM < 1 ≤ αM+1. We choose α0 :=
√

δ because in general ϕ(λ ) =

λ ν ,0 < ν ≤ 1. In this case, the best possible error estimate is of order©(
√

δ ). From Theorem 3.4, it
follows that such an accuracy cannot be guaranteed for α <

√
δ . Let

nM := min{n : rn ≤ δ}. (3.12)

Then, for i = 0,1, · · · ,M,

‖xδ
nM ,αi
− xδ

αi
‖ ≤ δ

αi
, ∀i = 0,1, · · ·M. (3.13)

Let xi := xδ
nM ,αi

. We selects α = αi from DM(α) and operates only with corresponding xi, i = 0,1, · · · ,M.

Theorem 3.5. Assume that there exists i ∈ {0,1,2, · · · ,M} such that ϕ(αi) ≤ δ

αi
. Let assumptions of

Theorem 3.3 and Theorem 3.4 hold and let

l := max{i : ϕ(αi)≤
δ

αi
}< M,

k := max{i : ‖xi− x j‖ ≤ 4C
δ

α j
, j = 0,1,2, · · · .i}. (3.14)

Then, l ≤ k, ‖x̂− xk‖ ≤ cψ−1(δ ), where c = 6Cµ.

Proof. To see that l ≤ k, it is enough to show that, for each i ∈ {1,2, · · · ,M},

ϕ(αi)≤
δ

αi
=⇒‖xi− x j‖ ≤ 4C

δ

α j
, ∀ j = 0,1, · · · , i.

For j ≤ i, we conclude from (3.10)that

‖xi− x j‖ ≤ ‖xi− x̂‖+‖x̂− x j‖

≤ C(ϕ(αi)+
δ

αi
)+C(ϕ(α j)+

δ

α j
)

≤ 2C
δ

αi
+2C

δ

α j
.

≤ 4C
δ

α j
.
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Thus the relation l ≤ k is proved. Next we observe that

‖x̂− xk‖ ≤ ‖x̂− xl‖+‖xl− xk‖

≤ C(ϕ(αl)+
δ

αl
)+4C

δ

αl

≤ 6C
δ

αl
.

Since αδ ≤ αl+1 ≤ µαl, one has

δ

αl
≤ µ

δ

αδ

= µϕ(αδ ) = µψ
−1(δ ).

This completes the proof. �

4. IMPLEMENTATION OF THE ADAPTIVE CHOICE RULE

In this section, we provide an algorithm for the determination of a parameter fulfilling the balancing
principle (3.14) and provide a starting point for the iteration (1.5) to approximate the unique solution xδ

α

of (1.3). The choice of the starting point involves the following steps:

• Choose α0 =
√

δ and µ > 1.
• Choose x0 ∈ D(F) such that ‖x0− x̂‖ ≤ ρ .
• Choose η satisfying (2.7).

The choice of the stopping index nM involves the following step:

• Choose nM such that nM = min{n : rn ≤ δ}.
Finally, the adaptive algorithm associated with the choice of the parameter specified in Theorem 3.5

involves the following steps.

4.1. The algorithm.

• Set i← 0.
• Solve xi := xδ

nM ,αi
via iteration (1.5).

• If ‖xi− x j‖> 4C
√

δ

µ j , j ≤ i, then we take k = i−1.
• Set i = i+1 and return to step 2.

5. THE ITERATIVELY REGULARIZED PROJECTION METHOD

Let H be a bounded subset of positive real numbers such that zero is a limit point of H. Let {Ph}h∈H

be a family of orthogonal projections from X into itself. Let

Γh := ‖(I−Ph)F ′(x0)‖ (5.1)

and
γh := ‖F ′(Phx0)(I−Ph)‖. (5.2)

We assume that
bh := ‖(I−Ph)x0‖→ 0, as → 0. (5.3)

The above assumption is satisfied if Ph → I pointwise. Let (tn,h),n ≥ 0 be defined iteratively by t0,h =
0, t1,h = ηh,

tn+1,h = tn,h +(1+
γh

α
)

l0ηh

(1− rh)
(tn,h− tn−1,h), (5.4)
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where l0,α and rh ∈ [0,1) are nonnegative numbers with (1+ γh
α
) l0
(1−rh)

ηh ≤ rh. We need the following
Lemma. Its proof is analogous to the proof of Lemma 2.1. So, we omit the proof.

Lemma 5.1. Assume there exist nonnegative numbers l0,α and rh ∈ [0,1) such that

(1+
γh

α
)

l0
(1− rh)

ηh ≤ rh. (5.5)

Then the sequence (tn,h) defined in (5.4) is increasing, bounded above by t∗∗h := ηh
1−rh

, and converges to
some t∗h , such that 0 < ηh

1−rh
. Moreover, for n≥ 0,

0≤ tn+1,h− tn,h ≤ rh(tn,h− tn−1,h)≤ rn
hηh (5.6)

and

t∗h − tn,h ≤
rn

h
1− rh

ηh. (5.7)

We considered the following iteratively regularized projection method

xh,δ
n+1,α := xh,δ

n,α − (PhF ′(Phx0)+αI)−1Ph(F(xh,δ
n,α)− yδ +α(xh,δ

n,α − x0)), (5.8)

where xh,δ
0,α := Phx0 for (xh,δ

n,α) in a finite dimensional subspace Xh of X .

Next we prove that sequence (tn,h) is a majorizing sequence of (xh,δ
n,α). Let

(1+
γh

α
)(

l0
2
(bh +ρ)2 +bh +ρ)+

δ

α
≤ ηh ≤min{ rh(1−rh)

l0(1+γh/α) ,r0(1− rh)}. (5.9)

Theorem 5.1. Let the assumptions in Lemma 5.1 with ηh be as in (5.9) and let Assumption 1.4 be
satisfied. Then the sequence (tn,h) defined in (5.4) is a majorizing sequence of the sequence (xh,δ

n,α) defined
in (5.8) and xh,δ

n,α ∈ Bt∗h (Phx0) for all n≥ 0.

Proof. Let

G(x) = x−Rα(Phx0)
−1[F(x)− yδ +α(x− x0)],

where Rα(Phx0)
−1 = (PhF ′(Phx0)Ph +αPh)

−1. Since

Rα(Phx0)
−1 = Rα(Phx0)

−1Ph = PhRα(Phx0)
−1,

for u,v ∈ Bt∗h (Phx0), one has

G(u)−G(v) = u− v−Rα(Phx0)
−1[F(u)− yδ +α(u− x0)]+Rα(Phx0)

−1[F(v)− yδ +α(v− x0)]

= Rα(Phx0)
−1[Rα(Phx0)(u− v)− (F(u)−F(v))]+αRα(Phx0)

−1(v−u)

= Rα(Phx0)
−1[F ′(Phx0)Ph(u− v)− (F(u)−F(v))+α(u− v)]+αRα(Phx0)

−1(v−u)

= Rα(Phx0)
−1[F ′(Phx0)Ph(u− v)− (F(u)−F(v))].
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Since G(xh,δ
n,α) = xh,δ

n+1,α and Ph(x
h,δ
n,α − xh,δ

n−1,α) = (xh,δ
n,α − xh,δ

n−1,α), we have from Lemma 2.2 that

(xh,δ
n+1,α − xh,δ

n,α) = G(xh,δ
n,α)−G(xh,δ

n−1,α)

= Rα(Phx0)
−1[F ′(Phx0)(x

h,δ
n,α − xh,δ

n−1,α)− (F(xh,δ
n,α)−F(xh,δ

n−1,α))]

= Rα(Phx0)
−1F ′(Phx0)

∫ 1

0
Φ(xh,δ

n,α + t(xh,δ
n−1,α − xh,δ

n,α),Phx0,x
h,δ
n−1,α − xh,δ

n,α)dt

= Rα(Phx0)
−1[F ′(Phx0)Ph +F ′(Phx0)(I−Ph)]

×
∫ 1

0
Φ(xh,δ

n,α + t(xh,δ
n−1,α − xh,δ

n,α),Phx0,x
h,δ
n−1,α − xh,δ

n,α)dt.

Using Assumption 1.4 and

‖Rα(Phx0)
−1[F ′(Phx0)Ph +F ′(Phx0)(I−Ph)]‖ ≤ 1+

γh

α
, (5.10)

we have

‖xh,δ
n+1,α − xh,δ

n,α‖ ≤ (1+
γh

α
)l0‖xh,δ

n,α + t(xh,δ
n−1,α − xh,δ

n,α)−Phx0‖‖xh,δ
n,α − xh,δ

n−1,α‖.

Now we prove that the sequence (tn,h) defined in (5.4) is a majorizing sequence of (xh,δ
n,α) and xh,δ

n,α ∈
Bt∗h (Phx0), for all n≥ 0. In view of F(x̂) = y, Assumption 1.4, (5.10) and inequality ‖Phx0− x̂‖ ≤ bh +ρ,

one has

‖xh,δ
1,α −Phx0‖= ‖(PhF ′(Phx0)+αI)−1Ph(F(Phx0)− yδ )‖

= ‖(PhF ′(Phx0)+αI)−1Ph(F(Phx0)−F(x̂)+ y− yδ )‖

≤ ‖(PhF ′(Phx0)+αI)−1Ph(F(Phx0)−F(x̂)−F ′(Phx0)(Phx0− x̂))‖

+‖(PhF ′(Phx0)+αI)−1PhF ′(Phx0)(Phx0− x̂)‖

+‖(PhF ′(Phx0)+αI)−1Ph(y− yδ )‖

≤ (1+
γh

α
)(

l0
2
‖Phx0− x̂‖2 +‖Phx0− x̂‖)+ δ

α

≤ (1+
γh

α
)(

l0
2
(bh +ρ)2 +bh +ρ)+

δ

α

≤ ηh.

So, ‖xh,δ
1,α −Phx0‖ ≤ t1,h− t0,h. Assume that

‖xh,δ
i+1,α − xh,δ

i,α ‖ ≤ ti+1,h− ti,h, ∀i≤ k, (5.11)

for some k. Then

‖xh,δ
k+1,α −Phx0‖ = ‖xh,δ

k+1,α − xh,δ
k,α + xh,δ

k,α − xh,δ
k−1,α + · · ·+ xh,δ

1,α −Phx0‖

≤ ‖xh,δ
k+1,α − xh,δ

k,α‖+‖x
h,δ
k,α − xh,δ

k−1,α‖+ · · ·+‖x
h,δ
1,α −Phx0‖

≤ tk+1,h− tk,h + tk,h− tk−1,h + · · ·+ t1,h− t0,h

= tk+1,h ≤ t∗h .

So xh,δ
i+1,α ∈ Bt∗h (Phx0) for all i≤ k. Hence,

xh,δ
k+1,α + t(xh,δ

k,α − xh,δ
k+1,α) ∈ Bt∗h (Phx0).
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By (5.11) and (5.11), we have

‖xh,δ
k+2,α − xh,δ

k+1,α‖ ≤ l0(1+
γh

α
)t∗h‖x

h,δ
k+1,α − xh,δ

k,α‖

= tk+2,h− tk+1,h.

Thus, ‖xh,δ
n+1,α − xh,δ

n,α‖ ≤ tn+1,h− tn,h, ∀n ≥ 0. Hence (tn,h),n ≥ 0 is a majorizing sequence of (xh,δ
n,α). In

particular ‖xh,δ
n,α −Phx0‖ ≤ tn,h ≤ t∗h , i.e., xh,δ

n,α ∈ Bt∗h (Phx0), for all n≥ 0. Hence

‖xh,δ
n,α −Phx0‖ ≤ t∗h ≤

ηh

1− rh
. (5.12)

This completes the proof. �

Let

˜̃r := max{r,rh} (5.13)

and

q :=
1
2
[2˜̃r+ l0bh]. (5.14)

For 0 < bh <
2(1− ˜̃r)

l0
, q < 1, one has the following.

Theorem 5.2. Let xh,δ
n,α be as in (5.8) and let xδ

n,α be as in (1.5). Let assumptions in Theorem 2.1 and
Theorem 5.1 hold. Then

‖xh,δ
n,α − xδ

n,α‖ ≤ qnbh +
Γh + l0‖F ′(x0)‖bh

α

qn

q− rh
ηh.

Proof. Note that

xh,δ
n,α − xδ

n,α = xh,δ
n−1,α − xδ

n−1,α − [(PhF ′(Phx0)+αI)−1Ph− (F ′(x0)+αI)−1]

×(F(xh,δ
n−1,α)− yδ +α(xh,δ

n−1,α − x0))

−(F ′(x0)+αI)−1[F(xh,δ
n−1,α)−F(xδ

n−1,α)+α(xh,δ
n−1,α − xδ

n−1,α)]

= (F ′(x0)+αI)−1[F ′(x0)(x
h,δ
n−1,α − xδ

n−1,α)− (F(xh,δ
n−1,α)−F(xδ

n−1,α))]

−(F ′(x0)+αI)−1[F ′(x0)Ph−PhF ′(Phx0)Ph](PhF ′(Phx0)+αI)−1

×Ph[(F(xh,δ
n−1,α)− yδ +α(xh,δ

n−1,α − x0))]

= (F ′(x0)+αI)−1[F ′(x0)(x
h,δ
n−1,α − xδ

n−1,α)− (F(xh,δ
n−1,α)−F(xδ

n−1,α))]

−(F ′(x0)+αI)−1[F ′(x0)−PhF ′(x0)+PhF ′(x0)−PhF ′(Phx0)](x
h,δ
n,α − xh,δ

n−1,α)

:= Γ1−Γ2, (5.15)

where

Γ1 = (F ′(x0)+αI)−1[F ′(x0)(x
h,δ
n−1,α − xδ

n−1,α)− (F(xh,δ
n−1,α)−F(xδ

n−1,α))]

and

Γ2 = (F ′(x0)+αI)−1[F ′(x0)−PhF ′(x0)+PhF ′(x0)−PhF ′(Phx0)](x
h,δ
n,α − xh,δ

n−1,α).
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Using Lemma 2.2, one has

‖Γ1‖ ≤ l0
∫ 1

0
‖x0− (xh,δ

n−1,α + t(xδ
n−1,α − xh,δ

n−1,α))‖‖x
δ
n−1,α − xh,δ

n−1,α‖dt

≤ l0
∫ 1

0
[t‖x0− xδ

n−1,α‖+(1− t)‖Phx0− xh,δ
n−1,α‖

+(1− t)‖Phx0− x0‖]‖xδ
n−1,α − xh,δ

n−1,α‖dt

≤ l0
2
[

η

1− r
+

ηh

1− rh
+bh]‖xh,δ

n−1,α − xδ
n−1,α‖

≤ 1
2
[2˜̃r+ l0bh]‖xh,δ

n−1,α − xδ
n−1,α‖

≤ q‖xh,δ
n−1,α − xδ

n−1,α‖. (5.16)

From Assumption 1.4, one has

‖Γ2‖ = ‖(F ′(x0)+αI)−1[(I−Ph)F ′(x0)−Ph(F ′(Phx0)−F ′(x0))](x
h,δ
n,α − xh,δ

n−1,α)‖

≤ ‖(F ′(x0)+αI)−1(I−Ph)F ′(x0)‖

+‖(F ′(x0)+αI)−1PhF ′(x0)Φ(Phx0,x0,x
h,δ
n,α − xh,δ

n−1,α)

≤ Γh + l0‖F ′(x0)‖bh

α
‖xh,δ

n,α − xh,δ
n−1,α‖. (5.17)

It follows from (5.15), (5.16) and (5.17) that

‖xh,δ
n,α − xδ

n,α‖ ≤ q‖xh,δ
n−1,α − xδ

n−1,α‖+
Γh + l0‖F ′(x0)‖bh

α
‖xh,δ

n,α − xh,δ
n−1,α‖

≤ qnbh +
Γh + l0‖F ′(x0)‖bh

α
ηh(rn−1

h +qrn−2
h + · · ·+qn−1)

≤ qnbh +
Γh + l0‖F ′(x0)‖bh

α

qn

q− rh
ηh.

This completes the proof. �

6. ERROR BOUNDS UNDER SOURCE CONDITIONS

It follows from Proposition 3.1 and Theorem 3.1 that

‖xδ
α − xα‖ ≤

δ

α
(6.1)

and

‖xα − x̂‖ ≤ (l0r0 +1)ϕ(α), (6.2)

where xα is the unique solution of F(x)+α(x− x0) = y.
Combining the estimates in Theorem 2.1, Theorem 5.2, equation (6.1) and equation (6.2), we obtain

the following Theorem.

Theorem 6.1. Let xh,δ
n,α be as in (5.8) and let the assumptions in Theorem 2.1 and Theorem 5.2 be satisfied.

Then

‖xh,δ
n,α − x̂‖ ≤ qnbh +

Γh + l0‖F ′(x0)‖bh

α

qn

q− rh
ηh +

rnη

1− r
+

δ

α
+(l0r0 +1)ϕ(α). (6.3)
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Let
nδ := min{n : max{qn,rn} ≤ δ} (6.4)

and

Cm := max{bh +
Γh + l0‖F ′(x0)‖bh

q− rh
ηh +

η

1− r
+1,(l0r0 +1)}. (6.5)

Theorem 6.2. Let xh,δ
n,α be as in (5.8) and let the assumptions in Theorem 2.1 and Theorem 5.2 be satisfied.

Let nδ be as in (6.4) and let Cm be as in (6.5). Then, for all 0 < α ≤ 1,

‖xh,δ
nδ ,α − x̂‖ ≤Cm(ϕ(α)+

δ

α
). (6.6)

6.1. A priori choice of the parameter. We observe that the error ϕ(α) + δ

α
in (6.6) is of optimal

order if αδ := α(δ ) satisfies αδ ϕ(αδ ) = δ . Using the function ψ(λ ) := λϕ−1(λ ),0 < λ ≤ a, we have
δ = αδ ϕ(αδ ) = ψ(ϕ(αδ )). Hence, αδ = ϕ−1(ψ−1(δ )). Using (6.6), we have the following result.

Theorem 6.3. Let ψ(λ ) := λϕ−1(λ ) for 0 < λ ≤ a, and assumptions in Theorem 6.2 holds. For δ > 0,
let α =: αδ = ϕ−1(ψ−1(δ )). Let nδ be as in (6.4). Then ‖xh,δ

nδ ,α − x̂‖= O(ψ−1(δ )).

6.2. An adaptive choice of the parameter. We will present a parameter choice rule based on the adap-
tive method studied in [14, 16]. The regularization parameter α is selected from the finite set

DM(α) := {αi = µ
i
α0, i = 0,1, · · · ,M}, (6.7)

where µ > 1 and M is such that αM < 1 ≤ αM+1. We choose α0 :=
√

δ because in general ϕ(λ ) =

λ ν ,0 < ν ≤ 1 and in this case the best possible error estimate is order ©(
√

δ ). From Theorem 6.3, it
follows that such an accuracy cannot be guaranteed for α <

√
δ . Let

nM := min{n : max{qn,rn} ≤ δ} (6.8)

and xi := xh,δ
nM ,αi . We select α = αi from DM(α) and operates only with corresponding xi, i = 0,1, · · · ,M.

Theorem 6.4. (cf. Theorem 3.5) Assume that there exists i ∈ {0,1,2, · · · ,M} such that ϕ(αi) ≤ δ

αi
. Let

assumptions of Theorem 6.2 and Theorem 6.3 hold and let l := max{i : ϕ(αi)≤ δ

αi
}< M,

k := max{i : ‖xi− x j‖ ≤ 4Cm
δ

α j
, j = 0,1,2, · · · , i}. (6.9)

Then l ≤ k and ‖x̂− xk‖ ≤ cψ−1(δ ), where c = 6Cmµ.

7. IMPLEMENTATION OF THE ADAPTIVE CHOICE RULE

In this section, we provide an algorithm for the determination of a parameter fulfilling the balancing
principle (6.9) and provide a starting point for iteration (5.8) to approximate the unique solution xδ

α of
(1.3). The choice of the starting point involves the following steps:

• Choose α0 =
√

δ , µ > 1 and q < 1.
• Choose x0 ∈ D(F) such that ‖x0− x̂‖ ≤ ρ and ηh satisfying (5.9).

The choice of the stopping index nM involves the following step:

• Choose nM such that nM = min{n : max{qn,rn} ≤ δ}.
Finally the adaptive algorithm associated with the choice of the parameter specified in Theorem 6.4
involves the following steps.
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7.1. Algorithm.

• Set i← 0.
• Solve xi := xh,δ

nM ,αi via iteration (5.8).
• If ‖xi− x j‖> 4Cm

√
δ

µ j , j ≤ i, then we take k = i−1.
• Set i = i+1 and return to step 2.

8. EXAMPLES

In this section, we consider some simple examples satisfying the assumptions made in this paper and
presents a few of examples.

We consider the operator F : L2[0,1]→ L2[0,1] defined by [15, Example 6.1]

F(x)(s) = K∗K(x)(s)+ f (s), x, f ∈ L2[0,1],s ∈ [0,1], (8.1)

where K : L2[0,1]→ L2[0,1] is a compact linear operator such that the range of K denoted by R(K) is not
closed in L2[0,1]. Then the equation F(x) = y is ill-posed as K is compact with non-closed range. The
Fréchet derivative F ′(.) of F is given by

F ′(x)z = K∗Kz, ∀x,z ∈ L2[0,1]. (8.2)

So, F is monotone on L2[0,1]. Further, for x,y,z ∈ L2[0,1], one has

[F ′(x)−F ′(y)]z = 0. (8.3)

It is obvious that Assumption 1.4 holds. Since Φ(x,y,z) = 0 ≤ l0‖z‖‖x− y‖, ∀l0 ≥ 0 we can choose ηh

large enough in step 2 of the algorithm. Further, due to (8.2), xh,δ
m+1,α only needs one step to compute.

This can be seen as follows:

xh,δ
m+1,α = xh,δ

m,α − (PhF ′(Phx0)+αI)−1Ph[F(xh,δ
m,α)− yδ +α(xh,δ

m,α − x0)],

i.e.,

(PhF ′(Phx0)+αI)Phxh,δ
m+1,α = (PhF ′(Phx0)+αI)Phxh,δ

m,α −Ph[F(xh,δ
m,α)− yδ +α(xh,δ

m,α − x0)]

= (PhK∗K +αI)Phxh,δ
m,α −Ph[K∗Kxh,δ

m,α + f − yδ +α(xh,δ
m,α − x0)]

= −Ph( f − yδ −αx0). (8.4)

Next, we give the details for implementing the algorithm given in the above section. Let (Vn) be a
sequence of finite dimensional subspaces of X and let Ph,h = 1/n denote the orthogonal projection on
X with range R(Ph) = Vn. We assume that dimVn = n+ 1, and ‖Phx− x‖ → 0 as h→ 0 for all x ∈ X .

Let{v1,v2, · · · ,vn+1} be a basis of Vn,n = 1,2, · · · . Note that xh,δ
m+1,α ∈ Vn. Thus, xh,δ

m+1,α is of the form

∑
n+1
i=1 λivi for some scalars λ1,λ2, · · · ,λn+1. It can be seen that xh,δ

m+1,α is a solution of (8.4) if and only if
λ̄ = (λ1,λ2, · · · ,λn+1)

T is the unique solution of

(Mn +αBn)λ̄ = ā, (8.5)

where Mn = (〈Kvi,Kv j〉), i, j = 1,2, · · · ,n+1 Bn = (〈vi,v j〉), i, j = 1,2, · · · ,n+1 and

ā = (〈Ph(yδ +αx0− f ),vi〉)T , i = 1,2, · · · ,n+1.

Note that (8.5) is uniquely solvable because Mn is a positive definite matrix (i.e., xMnxT > 0 for all
non-zero vector x) and Bn is an invertible matrix.
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8.1. Numerical Examples. In order to illustrate the method considered in the above section, we con-
sider the space X = Y = L2[0,1] and K : L2[0,1]→ L2[0,1] as the Fredholm integral operator

K(x)(s) =
∫ 1

0
k(s, t)x(t)dt, (8.6)

with

k(t,s) =

{
0, t ≤ s
t− s, t > s.

(8.7)

We apply the Algorithm in Section 7 by choosing Vn as the space of linear splines in a uniform grid of
n+1 points in [0,1]. Specifically, for fixed n, we consider ti = i−1

n , i = 1,2, · · · ,n+1 as the grid points.
We take the basis function vi, i = 1,2, · · · ,n+1 of Vn as follows:

v1(t) =

{
t2−t

t2
, 0 = t1 ≤ t ≤ t2

0, t2 ≤ t ≤ tn+1 = 1
(8.8)

for j = 2,3, · · · ,n,

v j(t) =


0, 0 = t1 ≤ t ≤ t j−1,
t−t j−1
t j−t j−1

, t j−1 ≤ t ≤ t j,
t j+1−t
t j+1−t j

, t j ≤ t ≤ t j+1,

0, t j+1 ≤ t ≤ tn+1 = 1

(8.9)

and

vn+1(t) =

{
0, 0≤ t ≤ tn,

t−tn
tn+1−tn

, tn ≤ t ≤ tn+1.
(8.10)

Let Ph be the orthogonal projection onto Vn. We note that, for x ∈C[0,1],

‖Phx− x‖2 = dist(x,R(Ph))

≤ ‖πnx− x‖2

≤ ‖πnx− x‖∞,

where πn is the (piecewise linear) interpolatory projection onto Vn. It is known that ‖πnx− x‖∞→ 0 as
n→ ∞. Therefore using the fact that C[0,1] is dense in L2[0,1], it follows that ‖Phx− x‖2 → 0 for all
x ∈ L2[0,1]. The elements Kvi, i = 1,2, · · · ,n+ 1, the entries of the matrix Bn,Mn and ā are computed
explicitly. For the operator K defined by (8.6) and (8.7), Γh = γh = ‖(I−Ph)F ′(x0)‖= ‖(I−Ph)K∗K‖=
O(n−2) (see, [11]).

Example 8.1. Take y = 1
720(26+ s6− 6s5 + 15s4− 36s)+ f (s), where f (s) = s2 and x0 = 0. Then the

exact solution is x̂ = 1
2(s− 1)2. Since x̂− x0 = x̂ = K∗1 ∈ R(K∗) = R(F ′(x̂)1/2), ϕ(λ ) = λ 1/2. Hence

ψ−1(δ ) = ϕ(αδ ) = (δ )1/3. This implies that ‖x̂−xk‖ ≤ cψ−1(δ ), where c = 6Cmµ. The result are given
in the following Table and Figures.
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n k ek
ek

ψ−1(δ )

4 100 0.0377 0.1385
8 99 0.0385 0.1400
16 99 0.0385 0.1399
32 99 0.0385 0.1400
64 99 0.0385 0.1400
128 99 0.0385 0.1400
256 99 0.0385 0.1400
512 99 0.0385 0.1400

1024 99 0.0385 0.1400
Table 3.1: δ = 0.001; µ = 1.002 .

Here ek := ‖xk− x̂‖ and yδ = y+δ .

Remark 8.1. The last column of the Table shows that ek = O(ψ−1(δ )). From computation, we observe
that due to the round off error k and ek remains as a constant for large values of n.
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FIGURE 1. Curve of the exact and approximate solutions
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FIGURE 2. Curve of the exact and approximate solutions

9. CONCLUDING REMARK

In this paper, we considered an iteratively regularized projection method for solving the nonlinear
ill-posed operator equation F(x) = y, when the available data is yδ in place of the exact data y with
‖y− yδ‖ ≤ δ . It is assumed that F is Fréchet differentiable in a neighborhood of some initial guess
x0 of the actual solution x̂. The procedure involves finding the fixed point of the function Gh(x) :=
x− (PhF ′(Phx0)+αI)−1Ph(F(x)− yδ +α(x− x0)), in a finite dimensional subspace Xh of X iteratively,
where Ph is the orthogonal projection on to Xh. For choosing the regularization parameter α , we employed
the adaptive method suggested by Pereversev and Schock in [16] and the stopping rule is based on a
majorizing sequence. Our numerical experiments show that if α is chosen according to the balancing
principle (6.9), then ‖xk− x̂‖ ≤ cψ−1(δ ).
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