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Abstract In this paper we consider the Kantorovich’s theorem for solving generalized equa-
tions F(x)+ Q(x) � 0 using Newton’s method, where F is a Fréchet differentiable function
and Q is a set-valued and maximal monotone function acting between Hilbert spaces. We
used our new idea of restricted convergence domains to obtain better location about where
the iterates are located leading to a tighter convergence analysis than in the earlier studies
and under the same or less computational cost of the majorant functions involved.

Keywords Generalized equation · Kantorovich’s theorem · Newton’s method ·
Restricted convergence domains · Maximal monotone operator
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Introduction

In [18], G. S. Silva considered the problem of approximating the solution of the generalized
equation

F(x) + Q(x) � 0, (1)

where F : D −→ H is a Fréchet differentiable function, H is a Hilbert space with inner
product 〈., .〉 and corresponding norm ‖.‖, D ⊆ H an open set and T : H ⇒ H is set-valued
and maximal monotone. It is well known that the system of nonlinear equations and abstract
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inequality system can bemodeled as equation of the form (1) [17]. Ifψ : H −→ (−∞,+∞]
is a proper lower semi continuous convex function and

Q(x) = ∂ψ(x) = {u ∈ H : ψ(y) ≥ ψ(x) + 〈u, y − x〉}, for all y ∈ H (2)

then (1) becomes the variational inequality problem

F(x) + ∂ψ(x) � 0,

including linear and nonlinear complementary problems. Newton’s method for solving (1)
for an initial guess x0 is defined by

F(xk) + F ′(xk)(xk+1 − xk) + Q(xk+1) � 0, k = 0, 1, 2 . . . (3)

has been studied by several authors [1–24]. In [13], Kantorovich obtained a convergence
result for Newton’s method for solving the equation F(x) = 0 under some assumptions on
the derivative F ′(x0) and ‖F ′(x0)−1F(x0)‖. Kantorovich, used the majorization principle
to prove his results. Later in [16], Robinson considered generalization of the Kantorovich
theorem of the type F(x) ∈ K ,where K is a nonempty closed and convex cone, and obtained
convergence results and error bounds for this method. Josephy [12], considered a semilocal
Newton’s method of the kind (3) in order to solving (1) with F = NC the normal cone
mapping of a convex set C ⊂ R

2.

The main concern in this paper is the enlargement of the convergence domain which is
small in general, the improvement of the error bounds and a better information on the location
of the solution. The novelty of this paper is in the fact that the above are obtained under the
same computational cost on the majorizing functions involved. In particular, the sufficient
convergence conditions are weaker as demonstrated in the theoretical part of the paper as
well as through the numerical example. So it is clear that readers in this area will go and use
the new sufficient criteria and abandon the old ones, since those will never be better than the
new ones (unless if all majorizing sequences are the same, which is not true in general and
thats the whole point of this paper). These are main concerns in computational mathematics.

The rest of this paper is organized as follows. Preliminaries are given in “Preliminaries”
section and themain results are presented in the concluding “SemilocalConvergence” section.

Preliminaries

LetU (x, ρ) and Ū (x, ρ) stand respectively for open and closed balls in H with center x ∈ H
and radius ρ > 0. The following Definitions and Lemmas are used for proving our results.
These items are stated briefly here in order to make the paper as self contains as possible.
More details can be found in [18].

Definition 2.1 Let D ⊆ H be an open nonempty subset of H, h : D −→ H be a Fréchet
differentiable function with Fréchet derivative h′ and Q : H ⇒ H be a set mapping. The
partial linearization of the mapping h + Q at x ∈ H is the set-valued mapping Lh(x, .) :
H ⇒ H given by

Lh(x, y) := h(x) + h′(x)(y − x) + Q(y). (4)

For each x ∈ H, the inverse Lh(x, .)−1 : H ⇒ H of the mapping Lh(x, .) at z ∈ H is
defined by

Lh(x, .)−1 := {y ∈ H : z ∈ h(x) + h′(x)(y − x) + Q(y)}. (5)
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Definition 2.2 Let Q : H ⇒ H be a set-valued operator. Q is said to be monotone if for
any x, y ∈ dom Q and u ∈ Q(y), v ∈ Q(x) implies that the following inequality holds:

〈u − v, y − x〉 ≥ 0.

A subset of H × H is monotone if it is the graph of a monotone operator. If ϕ : H −→
(−∞,+∞] is a proper function then the subgradient of ϕ is monotone.

Definition 2.3 Let Q : H ⇒ H bemonotone. Then Q is maximal monotone if the following
implication holds for all x, u ∈ H :

〈u − v, y − x〉 ≥ 0 for each y ∈ dom Q and v ∈ Q(y) ⇒ x ∈ dom Q and v ∈ Q(y).

(6)

Lemma 2.4 ([22]) Let G be a positive operator (i.e.,〈G(x), x〉 ≥ 0). The following state-
ments about G hold:

• ‖G2‖ = ‖G‖2;
• If G−1 exists, then G−1 is a positive operator.

Lemma 2.5 ([21, Lemma 2.2]) Let G be a positive operator. Suppose G−1 exists, then for
each x ∈ H we have

〈G(x), x〉 ≥ ‖x‖2
‖G−1‖ .

Semilocal Convergence

We present the semilocal convergence analysis of generalized Newton’s method using some
more flexible scalar majorant functions than in [18].

Theorem 3.1 Let F : D ⊆ H −→ H be continuous with Fréchet derivative F ′ continuous
on D. Let also Q : H ⇒ H be a set-valued operator. Suppose that there exists x0 ∈ D
such that F ′(x0) is a positive operator and F̂ ′(x0)−1 exists. Let R > 0 and ρ := sup{t ∈
[0, R) : U (x0, t) ⊆ D}. Suppose that there exists f0 : [0, R) −→ R twice continuously
differentiable such that for each x ∈ U (x0, ρ)

‖F̂ ′(x0)
−1‖‖F ′(x) − F ′(x0)‖ ≤ f ′

0(‖x − x0‖) − f ′
0(0). (7)

Moreover, suppose that

(h0
1) f0(0) > 0 and f ′

0(0) = −1.

(h0
2) f ′

0 is convex and strictly increasing.

(h0
3) f0(t) = 0 for some t ∈ (0, R).

Then, sequence {t0n } generated by t00 = 0,

t0n+1 = t0n − f0(t0n )

f ′
0(t

0
n )

, n = 0, 1, 2, . . .

is strictly increasing, remains in (0, t∗0 ) and converges to t∗0 , where t∗0 is the smallest zero of
function f0 in (0, R). Furthermore, suppose that for each x, y ∈ D1 := Ū (x0, ρ)∩U (x0, t∗0 )

there exists f1 : [0, ρ1) −→ R, ρ1 = min{ρ, t∗0 } such that
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‖F̂ ′(x0)
−1‖‖F ′(y) − F ′(x)‖ ≤ f ′

1(‖x − y‖ + ‖x − x0‖) − f ′
1(‖x − x0‖)

and ‖x1 − x0‖ ≤ f ′
1(0) (8)

Moreover, suppose that

(h1
1) f1(0) > 0 and f ′

1(0) = −1.

(h1
2) f ′

1 is convex and strictly increasing.

(h1
3) f1(t) = 0 for some t ∈ (0, ρ1).

(h1
4) f0(t) ≤ f1(t) and f ′

0(t) ≤ f ′
1(t) for each t ∈ [0, ρ1).

Then, f1 has a smallest zero t∗1 ∈ (0, ρ1), the sequences generated by generalized Newton’s
method for solving the generalized equation F(x) + Q(x) � 0 and the scalar equation
f1(0) = 0, with initial point x0 and t10 (or s0 = 0), respectively,

0 ∈ F(xn) + F ′(xn)(xn+1 − xn) + Q(xn+1),

t1n+1 = t1n − f1(t1n )

f ′
1(t

1
n )

(or sn+1 = sn − f1(sn)

f ′
0(sn)

)

are well defined, {t1n } (or sn) is strictly increasing, remains in (0, t∗1 )and converges to t∗1 .More-
over, sequence {xn} generated by generalized Newton’s method (3) is well defined, remains
in U (x0, t∗1 ) and converges to a point x∗ ∈ Ū (x0, t∗1 ), which is the unique solution of gener-
alized equation F(x) + Q(x) � 0 in Ū (x0, t∗1 ). Furthermore, the following estimates hold:

‖xn − x∗‖ ≤ t∗1 − t1n , ‖xn − x∗‖ ≤ t∗1 − sn,

‖xn+1 − x∗‖ ≤ t∗1 − t1n+1

(t∗1 − t1n )2
‖xn − x∗‖2

‖xn+1 − x∗‖ ≤ t∗1 − s1n+1

(t∗1 − s1n )2
‖xn − x∗‖2

sn+1 − sn ≤ t1n+1 − t1n ,

and sequences {t1n }, {sn} and {xn} converge Q−linearly as follows:

‖xn+1 − x∗‖ ≤ 1

2
‖xn − x∗‖,

t∗1 − t1n+1 ≤ 1

2
(t∗1 − tn),

and

t∗1 − s1n+1 ≤ 1

2
(t∗1 − sn).

Finally, if
(h1

5) f ′
1(t

∗
1 ) < 0,

then the sequences {t1n }, {sn} and {xn} converge Q−quadratically as follows:

‖xn+1 − x∗‖ ≤ D− f ′
1(t

∗
1 )

−2 f ′
1(t

∗
1 )

‖xn − x∗‖2,

‖xn+1 − x∗‖ ≤ D− f ′
1(t

∗
1 )

−2 f ′
0(t

∗
1 )

‖xn − x∗‖2,
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t∗1 − tn+1 ≤ D− f ′
1(t

∗
1 )

−2 f ′
1(t

∗
1 )

(t∗1 − tn)2,

and

t∗1 − sn+1 ≤ D− f ′
1(t

∗
1 )

−2 f ′
0(t

∗
1 )

(t∗1 − sn)2,

where D− stands for the left directional derivative of function f1.

Remark 3.2 (a) Suppose that there exists f : [0, R) −→ R twice continuously differentiable
such that for each x, y ∈ U (x0, ρ)

‖F̂ ′(x0)
−1‖‖F ′(y) − F ′(x)‖ ≤ f ′(‖x − y‖ + ‖x − x0‖) − f ′(‖x − x0‖). (9)

If f1(t) = f0(t) = f (t) for each t ∈ [0, R), then Theorem 3.1 specializes to Theorem
4 in [18]. Otherwise, i.e., if

f0(t) ≤ f1(t) ≤ f (t) for each t ∈ [0, ρ1), (10)

then, our Theorem is an improvement of Theorem 4 under the same computational cost,
since in practice the computation of function f requires the computation of functions f0
or f1 as special cases. Moreover, we have that for each t ∈ [0, ρ1)

f0(t) ≤ f (t) (11)

and

f1(t) ≤ f (t) (12)

leading to t1n ≤ tn, sn ≤ tn,

t1n+1 − t1n ≤ tn+1 − tn (13)

s1n+1 − s1n ≤ sn+1 − sn (14)

and

t∗1 ≤ t∗, (15)

where {tn} is defined by

t0 = 0, tn+1 = tn − f (tn)

f ′(tn)
,

t∗ = limn−→∞ tn and t∗ is the smallest zero of function f in (0, R) (provided that the
“h” conditions hold for function f replacing f1 and f0). If

− f1(t)

f ′
1(t)

≤ − f (s)

f ′(s)
(16)

or

− f1(t)

f ′
0(t)

≤ − f (s)

f ′(s)
, (17)

respectively for each t ≤ s. Estimates (13) and (14) can be strict if (16) and (17) hold as
strict inequalities.
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(b) So far we have improved the error bounds and the location of the solution x∗ but not
necessarily the convergence domain of the generalized Newton’s method (3). We can
also show that convergence domain can be improved in some interesting special cases.
Let F ≡ {0},

f (t) = L

2
t2 − t + η,

f0(t) = L0

2
t2 − t + η

and

f1(t) = L1

2
t2 − t + η,

where ‖x1 − x0‖ ≤ η and L , L0 and L1 are Lipschitz constants satisfying:

‖F̂ ′(x0)
−1‖‖F ′(y) − F ′(x)‖ ≤ L‖y − x‖

‖F̂ ′(x0)
−1‖‖F ′(x) − F ′(x0)‖ ≤ L0‖x − x0‖

and

‖F̂ ′(x0)
−1‖‖F ′(y) − F ′(x)‖ ≤ L1‖y − x‖,

on the corresponding balls. Then, we have that

L0 ≤ L

and

L1 ≤ L .

The corresponding majorizing sequences are

t0 = 0, t1 = η, tn+1 = tn − f (tn)

f ′(tn)
= tn + L(tn − tn−1)

2

2(1 − Ltn)
, n = 1, 2, . . .

t10 = 0, t11 = η, t1n+1 = t1n − f1(t1n )

f ′
1(t

1
n )

= t1n + L1(t1n − t1n−1)
2

2(1 − Lt1n )
, n = 1, 2, . . .

s0 = 0, s1 = η,

sn+1 = sn − f1(sn) − f1(sn−1) − f ′
1(sn−1)(sn − sn−1)

f ′
0(sn)

= sn + L1(sn − sn−1)
2

2(1 − L0sn)
, n = 1, 2, . . . .

Then, sequences converge provided, respectively that

q = Lη ≤ 1

2
(18)

and for the last two

q1 = L1η ≤ 1

2
,

so

q ≤ 1

2
�⇒ q1 ≤ 1

2
.
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It turns out from the proof of Theorem 3.1 that sequence {rn} defined by [6]

r0 = 0, r1 = η, r2 = r1 + L0(r1 − r0)2

2(1 − L0r1)
,

rn+2 = rn+1 + L1(rn+1 − rn)2

2(1 − L0rn+1)

is also a tighter majorizing sequence than the preceding ones for {xn}. The sufficient
convergence condition for {rn} is given by [6]:

q2 = Kη ≤ 1

2
,

where

K = 1

8
(4L0 +

√
L1L0 + 8L2

0 + √
L0L1).

Then, we have that

q1 ≤ 1

2
�⇒ q2 ≤ 1

2
.

Hence, the old results in [18] have been improved. Similar improvements can follow for
the Smale’s alpha theory [2,6] or Wang’s theory [18,22,24]. Examples where L0 < L or
L1 < L or L0 < L1 can be found in [6]. It is worth noticing that (18) is the famous for its
simplicity and clarity Newton-Kantorovich hypothesis for solving nonlinear equations
using Newton’s method [13] employed as a sufficient convergence condition in all earlier
studies other than ours.

(c) The introduction of (8) depends on (7) (i.e., f1 depends on f0). Such an introduction was
not possible before (i.e., when f was used instead of f1).

Proof of Theorem 3.1 Simply notice that the iterates {xn} ∈ D1 which is a more precise
location than Ū (x0, ρ) used in [18], since D1 ⊆ Ū (x0, ρ). Then, the definition of function
f1 becomes possible and replaces f in the proof [18], whereas for the computation on the
upper bounds ‖F̂ ′(x)−1‖ we use the more precise f0 than f as it is shown in the next
perturbation Banach lemma [13]. ��
Lemma 3.3 Let x0 ∈ D be such that F̄ ′(x0) is a positive operator and F̄ ′(x0)−1 exists. If
‖x − x0‖ ≤ t < t∗, then F̄ ′(x) is a positive operator and F̄ ′(x)−1 exists. Moreover,

‖F̄ ′(x)−1‖ ≤ F̄ ′(x0)−1‖
f ′
0(t)

. (19)

Proof Observe that

‖F̄ ′(x) − F̄ ′(x0)‖ ≤ 1

2
‖F̄ ′(x) − F̄ ′(x0)‖ + 1

2
‖(F̄ ′(x) − F̄ ′(x0))

∗‖ = ‖F̄ ′(x) − F̄ ′(x0)‖.
(20)

Let x ∈ Ū (x0, t), 0 ≤ t < t∗. Thus f ′(t) < 0. Using, (h1
1) and (h1

2), we obtain that

‖F̄ ′(x0)
−1‖‖F̄ ′(x) − F̄ ′(x0)‖ ≤ ‖F̄ ′(x0)

−1‖‖F̄ ′(x) − F̄ ′(x0)‖
≤ f ′

0(‖x − x0‖) − f0(0)

< f ′
0(t) + 1 < 1. (21)
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So by Banach’s Lemma on invertible operators, we have F̄ ′(x)−1 exists. Moreover by above
inequality,

‖F̄ ′(x)−1‖ ≤ ‖F̄ ′(x0)−1‖
1 − ‖F̄ ′(x0)−1‖‖F ′(x) − F ′(x0)‖

≤ ‖F̄ ′(x0)−1‖
1 − ( f ′

0(t) + 1)
= −‖F ′(x0)−1‖

f ′
0(t)

.

Using (21) we have

‖F̄ ′(x) − F̄ ′(x0)‖ ≤ 1

‖F̄ ′(x0)−1‖ . (22)

Thus, we have

〈(F̄ ′(x0) − F̄ ′(x))y, y〉 ≤ ‖F̄ ′(x0) − F̄ ′(x)‖‖y‖2 ≤ ‖y‖2
‖F̄ ′(x0)−1‖ ,

which implies,

〈F̄ ′(x0)y, y〉 − ‖y‖2
‖F̄ ′(x0)−1‖ ≤ 〈F̄ ′(x)y, y〉. (23)

Now since F̄ ′(x0) is a positive operator and F̄ ′(x0)−1 exists by assumption, we obtain that

〈F̄ ′(x0)y, y〉 ≥ ‖y‖2
‖F̄ ′(x0)−1‖ . (24)

The result now follows from (23) and (24). ��
Remark 3.4 This result improves the corresponding one in [18, Lemma 8](using function f
instead of f0 or f1) leading to more precise estimates on the distances ‖xn+1 − x∗‖ which
together with idea of restricted convergence domains lead to the aforementioned advantages
stated in Remark 3.2.

Next, we present an academic example to show that: (11), (12) hold as strict inequalities;
the old convergence criteria (18) does not hold but the new involving q1 and q2 do hold
and finally the new majorizing sequences {sn} and {rn} are tighter than the old majorizing
sequence {tn}. Hence, the advantages of our approach (as already stated in the abstract of
this study) over the corresponding ones such as the ones in [18] follow.

Example 3.5 Let F ≡ {0}, H = R, D = U (x0, 1 − p), x0 = 1, p ∈ (0, 1
2 ) and define

function F on D by

F(x) = x3 − p. (25)

Then, we get using (25) that L = 2(2− p), L0 = 3− p, L1 = 2(1+ 1
L0

) and η = 1
3 (1− p),

so we have

L0 < L1 < L

and

f0(t) < f1(t) < f (t) for each p ∈
(
0,

1

2

)
.

In particular the sufficient Kantorovich convergence criterion (18) used in [18] is not
satisfied, since

q = Lη >
1

2
for each p ∈

(
0,

1

2

)
. (26)
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Table 1 Error bound comparison n tn+1 − tn sn+1 − sn rn+1 − rn

2 0.0397 0.0370 0.0314

3 0.0043 0.0033 0.0023

4 5.1039e−05 2.6253e−05 1.2571e−05

5 7.2457e−09 1.6743e−09 3.7365e−10

Hence, there is no guarantee under the results in [18] that Newton’s method converges to the
solution x∗ = 3

√
p. However, our convergence criteria are satisfied:

q1 = L1η ≤ 1

2
for each p ∈

(
0.4619831630,

1

2

)
. (27)

and

q2 = Kη ≤ 1

2
for each p ∈

(
0.2756943786,

1

2

)
. (28)

In order for us to compare the majorizing sequences {tn}, {sn}, {rn}, let p = 0.6. Then, old
condition (26) as well as new conditions (27) and (28) are satisfied. Then, we present the
following table showing that the new error bounds are tighter. It is worth noticing that these
advantages are obtained under the same computational cost since the evaluation of the old
Lipschitz constants L requires the computation of the new constants L0, L1 and K as special
cases (Table1).
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