FURTHER RESULTS ON SUPER EDGE-MAGIC DEFICIENCY OF GRAPHS

S. M. HEGDE, SUDHAKAR SHETTY, AND P. SHANKARAN

Abstract

Acharya and Hegde have introduced the notion of strongly k-indexable graphs: A (p, q)-graph G is said to be strongly k-indexable if its vertices can be assigned distinct integers $0,1,2, \ldots, p-1$ so that the values of the edges, obtained as the sums of the numbers assigned to their end vertices can be arranged as an arithmetic progression $k, k+$ $1, k+2, \ldots, k+(q-1)$. Such an assignment is called a strongly k-indexable labeling of G. Figueroa-Centeno et.al, have introduced the concept of super edge-magic deficiency of graphs: Super edge-magic deficiency of graph G is the minimum number of isolated vertices added to G so that the resulting graph is super edge-magic. They conjectured that super edge-magic deficiency of complete bipartite graph $K_{m, n}$ is $(m-1)(n-1)$ and proved it for the case $m=2$. In this paper we prove that the conjuctre is true for $m=3$, 4 and 5 , using the concept of strongly k-indexable labelings ${ }^{1}$.

1 Introduction

For all terminology and notation in graph theory we follow Harary [6] and West [7].
Graph labelings, where the vertices and edges are assigned real values or subsets of a set are subject to certain conditions, have often been motivated by their utility to various applied fields and their intrinsic mathematical interest (logico-mathematical). An enormous body of literature has grown around the subject, especially in the last forty years or so, and is still getting embellished due to increasing number of application driven concepts [5].

Acharya and Hegde $[1,2]$ have introduced the the concept of strongly k-indexable graphs.
Given a graph $G=(V, E)$, the set \mathcal{N} of nonnegative integers, a finite subset \mathcal{A} of \mathcal{N} and a commutative binary operation $+: \mathcal{N} \times \mathcal{N} \rightarrow \mathcal{N}$, every vertex function $f: V(G) \rightarrow \mathcal{A}$ induces an edge function $f^{+}: E(G) \rightarrow \mathcal{N}$ such that $f^{+}(u v)=f(u)+f(v), \forall u v \in E(G)$. Such vertex functions are called additive vertex functions. An additive labeling of a graph G is an injective additive vertex function f such that the induced edge function f^{+}is injective.

For the given (p, q)-graph $G=(V, E)$.

1. $f(V)=\{f(u): u \in V(G)\}$.
2. $f^{+}(E)=\left\{f^{+}(e): e \in E(G)\right\}$.

Definition 1.1 An indexable labeling of a (p, q)-graph G with $f^{+}(E)=\{k, k+d, \ldots, k+(q-$ $1) d\}$ is called strongly (k, d)-indexable labeling of G.

[^0]Definition 1.2 A strongly (k, d)-indexable labeling of a (p, q) graph G with $d=1$ is called a strongly k-indexable labeling. A graph which admits such a labeling for atleast one value of k is called strongly k-indexable graph.

Enomoto et.al., [3] have introduced the the concept of super edge-magic graph.
Definition 1.3 A graph G is said to be super edge-magic if it admits a bijection $f: V \cup$ $E \rightarrow\{1,2, \ldots, p+q\}$ with $f(V)=\{1,2, \ldots, p\}$ and $f(E)=\{p+1, p+2, \ldots, p+q\}$ such that $f(u)+f(v)+f(u v)=c(f), u v \in V$ where $c(f)$ is a constant.

From the above definition one can see that a graph is super edge-magic if and only if it is strongly k-indexable for some k.
R. M. Figueroa-Centenoa et.al.,[4] have introduced the concept of super edge-magic deficiency of graphs.

Definition 1.4 Super edge-magic deficiency of a graph G is the minimum number of isolated vertices added to G so that the resulting graph is super edge-magic. and is denoted by $\mu_{s}(G)$.

From the above definitions one can see that $0 \leq \mu_{s}(G) \leq \infty$.
As, a graph is super edge-magic if and only if it is strongly k-indexable, super edge-magic deficiency can be equvialently defined as the minimum number of isolated vertices added to a graph G so that the resulting graph is strongly k-indexable for some k. For the sake of convenience we call this parameter as vertex dependent characteristic and is denote it by $d_{c}(G)$. Figueroa-Centenoa et.al.,[4] have proved that

Theorem 1.5 : The vertex dependent characteristic of complete bipartite graph $K_{m, n}$ is at most $\leq(m-1)(n-1)$.

They conjuctured that
Conjecture 1.6 : The vertex dependent characteristic of complete bipartite graph $K_{m, n}$ is equal to $(m-1)(n-1)$.

Also, they proved that
Theorem 1.7 The vertex dependent characteristic of complete bipartite graph $K_{2, n}$ is $(n-1)$.

2 Results

In this section we prove the above mentioned conjucture for $m=3,4$ and 5 , using the concept of strongly k-indexable labelings.

Theorem 2.1 : The vertex dependent characteristic of complete bipartite graph $K_{3, n}$ is $2(n-1)$.
Proof: From Theorem 1.5, clearly

$$
\begin{equation*}
d_{c}\left(K_{3, n}\right) \leq 2(n-1) \tag{1}
\end{equation*}
$$

From Theorem 1.7, $d_{c}\left(K_{3,2}\right)=2$.
Suppose $d_{c}\left(K_{3, n}\right)<2(n-1)$ for some integer $n \geq 3$ then there exists a strongly k-indexable labeling $f: V\left(K_{3, n} \cup(2 n-2-j) K_{1}\right) \rightarrow\{0,1, \ldots ., 3 n-j\}$ for some integer $j \geq 1$ such that

$$
f^{+}\left(K_{3, n}\right)=f^{+}\left(K_{3, n} \cup(2 n-2-j) K_{1}\right)=\{k, k+2, \ldots, k+3 n-1\} .
$$

Let $A=\left\{x_{i}: x_{i} \in V\left(K_{3, n}\right), \operatorname{deg}\left(x_{i}\right)=n\right.$ and $\left.f\left(x_{i}\right)<f\left(x_{i+1}\right), i=1,2\right\}$.
$B=\left\{y_{i}: y_{i} \in V\left(K_{3, n}\right), \operatorname{deg}\left(y_{i}\right)=3\right.$ and $\left.f\left(y_{i}\right)<f\left(y_{i+1}\right) ; 1 \leq i \leq n-1\right\}$.
$C=\left\{z_{i}: z_{i} \in V\left((2 n-2-j) K_{1}\right), \operatorname{deg}\left(z_{i}\right)=0,1 \leq i \leq 2 n-2-j\right\}$.
Let $f\left(x_{1}\right)=a$ then $f\left(x_{2}\right)=a+b$ and $f\left(x_{3}\right)=a+b+c$ where b, c are positive integers. Consider the following mutually exclusive subsets of $f^{+}\left(K_{3, n}\right)$.

$$
\begin{align*}
& A_{1}=\left\{a+f\left(y_{1}\right), a+b+f\left(y_{1}\right), a+b+c+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+b+f\left(y_{2}\right), a+b+c+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+b+f\left(y_{3}\right), a+b+c+f\left(y_{3}\right)\right\} \tag{2}\\
& \cdot \cdot \cdot \cdot \\
& A_{n}=\left\{a+f\left(y_{n}\right), a+b+f\left(y_{n}\right), a+b+c+f\left(y_{n}\right)\right\}
\end{align*}
$$

Since f is strongly k-indexable,

$$
f^{+}\left(K_{3, n}\right)=A_{1} \cup A_{2} \cup A_{3} \cup \ldots \cup A_{n} .
$$

Therefore $a+f\left(y_{1}\right)=k$ and $a+b+c+f\left(y_{n}\right)=k+3 n-1$. There are ($b-1$) edge values between each $a+f\left(y_{i}\right)$ and $a+b+f\left(y_{i}\right), 1 \leq i \leq n$ in $f^{+}\left(K_{3, n}\right)$ and $(c-1)$ edge values between each $a+b+f\left(y_{i}\right)$ and $a+b+c+f\left(y_{i}\right), 1 \leq i \leq n$ in $f^{+}\left(K_{3, n}\right)$. As there are only $3 n$ elements in $f^{+}\left(K_{3, n}\right)$, we must have $(b-1) n+(c-1) n+2 \leq 3 n$ which implies

$$
(b-1) n+(c-1) n \leq 3 n-2<3 n \Rightarrow b+c<5 .
$$

Therefore possible values of b and c are one among the following.
(1). $b=1$ and $c=3$.
(2). $b=3$ and $c=1$.
(3). $b=1$ and $c=2$.
(4). $b=2$ and $c=1$.
(5). $b=2$ and $c=2$.
(6). $b=1$ and $c=1$.

Case 1: $b=1$ and $c=3$.
From equation (2)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+1+f\left(y_{1}\right), a+4+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+1+f\left(y_{2}\right), a+4+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+1+f\left(y_{3}\right), a+4+f\left(y_{3}\right)\right\} \\
& \cdot \\
& A_{n}=\left\{a+f\left(y_{n}\right), a+1+f\left(y_{n}\right), a+4+f\left(y_{n}\right)\right\}
\end{aligned}
$$

One can observe that, the increasing order of edge values of $K_{3, n}$ are

$$
\begin{aligned}
& a+f\left(y_{1}\right), a+1+f\left(y_{1}\right), a+f\left(y_{2}\right) \\
& a+1+f\left(y_{2}\right), a+4+f\left(y_{1}\right), a+f\left(y_{3}\right), \ldots \ldots
\end{aligned}
$$

From this increasing order we get,

$$
f\left(y_{2}\right)=2+f\left(y_{1}\right) \text { and } f\left(y_{3}\right)=5+f\left(y_{1}\right)
$$

But then

$$
\begin{aligned}
f\left(x_{2}\right)+f\left(y_{3}\right) & =a+1+5+f\left(y_{1}\right) \\
& =a+6+f\left(y_{1}\right) \\
& =f\left(x_{3}\right)+f\left(y_{2}\right)-\text { a contradiction (because } f^{+} \text {is injective). }
\end{aligned}
$$

Case 2: $b=3$ and $c=1$.
By similar arguments as in Case 1, we get a contradiction.
Case 3: $b=1$ and $c=2$.
From equation (2)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+1+f\left(y_{1}\right), a+3+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+1+f\left(y_{2}\right), a+3+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+1+f\left(y_{3}\right), a+3+f\left(y_{3}\right)\right\} \\
& \cdot \cdot \cdot \cdot \\
& A_{n}=\left\{a+f\left(y_{n}\right), a+1+f\left(y_{n}\right), a+3+f\left(y_{n}\right)\right\}
\end{aligned}
$$

One can easily observe that

$$
\begin{aligned}
f\left(x_{2}\right)+f\left(y_{2}\right) & =a+1+f\left(y_{2}\right) \\
& =a+3+f\left(y_{1}\right) \\
& =f\left(x_{3}\right)+f\left(y_{1}\right)-\text { a contradiction. }
\end{aligned}
$$

Case 4: $b=2$ and $c=1$.
By similar arguments as in Case 3, we get a contradiction.
Case 5: $b=1$ and $c=1$.
If $b=c=1$ and then

$$
\begin{align*}
& k=a+f\left(y_{1}\right) \\
& k+1=a+1+f\left(y_{1}\right) \\
& k+2=a+2+f\left(y_{1}\right) \tag{3}\\
& k+3 n-1=a+2+f\left(y_{n}\right)
\end{align*}
$$

From equation (3) we get,

$$
\begin{align*}
& f\left(y_{2}\right)=3+f\left(y_{1}\right) \\
& f\left(y_{3}\right)=6+f\left(y_{1}\right) \tag{4}\\
& \cdot \cdot \cdot \cdot \cdot \\
& f\left(y_{n}\right)=3(n-1)+f\left(y_{1}\right)
\end{align*}
$$

From equation (3),

$$
\begin{aligned}
f\left(y_{n}\right) & =k+3 n-1-2-a \\
& =k+3 n-3-\left(k-f\left(y_{1}\right)\right) \\
& \left.=3 n-3+f\left(y_{1}\right)\right) \\
& \leq 3 n-j(\because 3 n-j \text { is the maximum vertex value. }) \\
\Rightarrow f\left(y_{1}\right) & \leq 3-j .
\end{aligned}
$$

$$
\text { But } f\left(y_{1}\right) \geq 0 \Rightarrow 3-j \geq 0 \Rightarrow j \in\{1,2,3\}
$$

Note that

$$
\begin{aligned}
f(A) & =\{a, a+1, a+2\} . \\
f(B) & =\left\{f\left(y_{1}\right), f\left(y_{1}\right)+3, f\left(y_{1}\right)+6, \ldots, f\left(y_{1}\right)+3(n-1)\right\} .(\text { From }(4)) \\
f(C) & =\left\{f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), \ldots, f\left(z_{2 n-2-j}\right)\right\} .
\end{aligned}
$$

Let $F=\left\{f\left(y_{1}\right)+1, f\left(y_{1}\right)+2, f\left(y_{1}\right)+4, f\left(y_{1}\right)+5, f\left(y_{1}\right)+7, \ldots, f\left(y_{1}\right)+3 n-4\right\}$.
Clearly $F \subseteq f\left(K_{3, n} \cup(2 n-2-j) K_{1}\right)$ and F contains $2(n-1)$ vertex values. Also note that $F \cap f(B)=\phi$.
Sub Case (5.1): $j=1$.
Then $f(C)$ contains $2 n-3$ vertex values and therefore one element of F must be in $f(A)$. Let $f\left(y_{1}\right)+3 s-5 \in f(A)$ for some integer $s, 2 \leq s \leq n$. Then

$$
\begin{array}{cll}
a=f\left(y_{1}\right)+3 s-5 & \Rightarrow a+1 \in f(B) & \text {-a contradiction. } \\
a+1 & =f\left(y_{1}\right)+3 s-5 \Rightarrow a \in f(B) & \text {-a contradiction. } \\
a+2=f\left(y_{1}\right)+3 s-5 & \Rightarrow a+1 \in f(B) & \text {-a contradiction. }
\end{array}
$$

Let $f\left(y_{1}\right)+3 r-4 \in f(A)$ for some integer $s, 2 \leq r \leq n$. Then

$$
\begin{array}{cll}
a & =f\left(y_{1}\right)+3 r-4 & \Rightarrow a+1 \in f(B)
\end{array} \text {-a contradiction. }
$$

Therefore $j \neq 1$.
Sub Case (5.2): $j=2$.
Then $f(C)$ contains $2 n-4$ vertex values and therefore two elements of F must be in $f(A)$.
Let $f\left(y_{1}\right)+3 t-2, f\left(y_{1}\right)+3 t-4 \in f(A)$ for some integer $t, 1 \leq t \leq n$. Then, $a+1=$ $f\left(y_{1}\right)+3 t-3=f\left(y_{1}\right)+3(t-1) \in f(B)$-a contradiction.
Let $f\left(y_{1}\right)+3 m-5, f\left(y_{1}\right)+3 m-4 \in f(A)$ for some integer $m, 1 \leq m \leq n$. Since these two values are consecutive, either $a \in f(B)$ or $a+2 \in f(B)$-a contradiction.
Therefore $j \neq 2$.
Sub Case (5.3): $j=3$.
Then $f(C)$ contains $2 n-5$ elements and therefore three elements of F must be in $f(A)$, which is impossible because elements of $f(A)$ are consecutive. Clearly $j \neq 3$. Thus for $j \geq 1$, $\left(K_{3, n}\right) \cup(2 n-2-j) K_{1}$ is not strongly k-indexable.
Case 6: $b=2$ and $c=2$.
From equation (2)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+2+f\left(y_{1}\right), a+4+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+2+f\left(y_{2}\right), a+4+f\left(y_{2}\right)\right\} \\
& A_{n}=\left\{a+f\left(y_{n}\right), a+2+f\left(y_{n}\right), a+4+f\left(y_{n}\right)\right\}
\end{aligned}
$$

Then the increasing order of edge values of $K_{3, n}$ are

$$
\begin{aligned}
& a+f\left(y_{1}\right), a+f\left(y_{2}\right), a+2+f\left(y_{1}\right), a+2+f\left(y_{2}\right), \\
& a+4+f\left(y_{1}\right), a+4+f\left(y_{2}\right), a+f\left(y_{3}\right), \ldots \ldots \\
& \Longrightarrow f\left(y_{2}\right)=1+f\left(y_{1}\right), f\left(y_{3}\right)=6+f\left(y_{1}\right) \text { and } f\left(y_{4}\right)=7+f\left(y_{1}\right) .
\end{aligned}
$$

If n is odd, that is $n=2 r+1$ then there are $4 r$ vertex values which are not used between $f\left(y_{1}\right)$ and $f\left(y_{2 r+1}\right)$. Therefore $2 n-2-j=4 r-j \geq 4 r \Longrightarrow j \leq 0$-a contradiction to $j \geq 1$. If n is even integer then,

$$
\begin{aligned}
& f\left(y_{n}\right)=3 n-5+f\left(y_{1}\right), f\left(y_{n-1}\right)=f\left(y_{n}\right)-1 . \\
& k=a+f\left(y_{1}\right), k+3 n-1=a+4+f\left(y_{n}\right) \\
& \Longrightarrow f\left(y_{n}\right)=k+3 n-5-a \\
& \Longrightarrow f\left(y_{n}\right)=k+3 n-5-\left(k-f\left(y_{1}\right)\right) \\
& \left.\Longrightarrow f\left(y_{n}\right)=3 n-5+f\left(y_{1}\right)\right) \leq 3 n-j \\
& \Longrightarrow j \in\{1,2,, 3,4,5\}
\end{aligned}
$$

Threrefore

$$
\begin{aligned}
& f(A)=\{a, a+2, a+4\} \\
& f(B)=\left\{f\left(y_{1}\right), f\left(y_{1}\right)+1, f\left(y_{1}\right)+6, f\left(y_{1}\right)+7, \ldots, f\left(y_{1}\right)+3 n-5\right\} . \\
& f(C)=\left\{f\left(z_{1}\right), f\left(z_{2}\right), f\left(z_{3}\right), \ldots, f\left(z_{2 n-2-j}\right)\right\} .
\end{aligned}
$$

Again, let $R=\left\{f\left(y_{1}\right)+2, f\left(y_{1}\right)+3, f\left(y_{1}\right)+4, f\left(y_{1}\right)+5, f\left(y_{1}\right)+8, \ldots,\right\}$.
Clearly $R \subseteq f\left(K_{3, n} \cup(2 n-2-j) K_{1}\right)$ and R contains (2n-4) vertex values and $R \cap f(B)=$ ϕ. Similar to the arguments used for Sub Cases (5.1), (5.2) and (5.3) we can show that $j \neq 1,2,, 3,4,5$. Hence from (1) $d_{c}\left(K_{3, n}\right)=2(n-1)$. \diamond

Theorem 2.2: The vertex dependent characteristic of complete bipartite graph $K_{4, n}$ is $3(n-1)$.
Proof: From Theorem 1.5, clearly

$$
\begin{equation*}
d_{c}\left(K_{4, n}\right) \leq 3(n-1) \tag{5}
\end{equation*}
$$

From Theorem 1.7 and 2.1, $d_{c}\left(K_{4,2}\right)=3$ and $d_{c}\left(K_{4,3}\right)=6$. Assume that $d_{c}\left(K_{4, n}\right)<3(n-1)$ for some integer $n \geq 4$ then there exists a strongly k-indexable labeling $f: V\left(K_{4, n} \cup(3 n-3-\right.$ j) $\left.K_{1}\right) \rightarrow\{0,1, \ldots, 4 n-j\}$ for some integer $j \geq 1$ such that

$$
f^{+}\left(K_{4, n}\right)=f^{+}\left(K_{4, n} \cup(3 n-3-j) K_{1}\right)=\{k, k+2, \ldots, k+4 n-1\} .
$$

Let $A=\left\{x_{i}: x_{i} \in V\left(K_{4, n}\right), \operatorname{deg}\left(x_{i}\right)=n\right.$ and $\left.f\left(x_{i}\right)<f\left(x_{i+1}\right), i=1,2,3\right\}$.

$$
B=\left\{y_{i}: y_{i} \in V\left(K_{4, n}\right), \operatorname{deg}\left(y_{i}\right)=4 \text { and } f\left(y_{i}\right)<f\left(y_{i+1}\right) ; 1 \leq i \leq n-1\right\} .
$$

$C=\left\{z_{i}: z_{i} \in V\left((3 n-3-j) K_{1}\right), \operatorname{deg}\left(z_{i}\right)=0,1 \leq i \leq 3 n-3-j\right\}$.
Let $f\left(x_{1}\right)=a$ then $f\left(x_{2}\right)=a+b, f\left(x_{3}\right)=a+b+c$ and $f\left(x_{3}\right)=a+b+c+d$ where b, c, d are positive integers.
Similar to pevious theorems consider the mutually exclusive subsets of $f^{+}\left(K_{4, n}\right)$.

$$
\begin{align*}
& A_{1}=\left\{a+f\left(y_{1}\right), a+b+f\left(y_{1}\right), a+b+c+f\left(y_{1}\right), a+b+c+d+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+b+f\left(y_{2}\right), a+b+c+f\left(y_{2}\right), a+b+c+d+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+b+f\left(y_{3}\right), a+b+c+f\left(y_{3}\right), a+b+c+d+f\left(y_{3}\right)\right\} \tag{6}\\
& \cdot \\
& A_{n}=\left\{a+f\left(y_{n}\right), a+b+f\left(y_{n}\right), a+b+c+f\left(y_{n}\right), a+b+c+d+f\left(y_{n}\right)\right\}
\end{align*}
$$

There are $(b-1),(c-1)$ and $(d-1)$ distinct edge values between each $a+f\left(y_{i}\right)$ and $a+b+f\left(y_{i}\right), a+b+f\left(y_{i}\right)$ and $a+b+c+f\left(y_{i}\right)$ and $a+b+c+f\left(y_{i}\right)$ and $a+b+c+d+f\left(y_{i}\right), 1 \leq$ $i \leq n$ in $f^{+}\left(K_{4, n}\right)$ respectively. As there are only $4 n$ elements in $f^{+}\left(K_{4, n}\right)$, we must have $(b-1) n+(c-1) n+(d-1) n+2 \leq 4 n$. Therefore we get $b+c+d<7$.
There are many possible values of b, c and d but it is enough if we consider the following seven cases.
(1). $b=1, c=1$ and $d=2$.
(2). $b=1, c=1$ and $d=3$.
(3). $b=1, c=1$ and $d=4$.
(4). $b=2, c=1$ and $d=2$.
(5). $b=2, c=1$ and $d=3$.
(6). $b=1, c=1$ and $d=1$.
(7). $b=2, c=2$ and $d=2$.

Case 1: $b=1, c=1$ and $d=\mathbf{2}$.
In this case, note that $f\left(y_{2}\right)=3+f\left(y_{1}\right)$ and therefore we get

$$
f\left(x_{4}\right)+f\left(y_{1}\right)=f\left(x_{2}\right)+f\left(y_{2}\right)-\text { a contradiction (because } f^{+} \text {is injective). }
$$

Case 2: $b=1, c=1$ and $d=3$.
In this case also, note that $f\left(y_{2}\right)=3+f\left(y_{1}\right)$ and therefore we get

$$
f\left(x_{4}\right)+f\left(y_{1}\right)=f\left(x_{3}\right)+f\left(y_{2}\right)-\text { a contradiction. }
$$

Case 3: $b=1, c=1$ and $d=4$.
Similarly, in this case $f\left(y_{3}\right)=4+f\left(y_{2}\right)$. Therefore,

$$
f\left(x_{3}\right)+f\left(y_{3}\right)=f\left(x_{4}\right)+f\left(y_{2}\right)-\text { a contradiction. }
$$

Case 4: $b=2, c=1$ and $d=\mathbf{2}$.
Note that $f\left(y_{2}\right)=1+f\left(y_{1}\right)$

$$
f\left(x_{3}\right)+f\left(y_{1}\right)=f\left(x_{2}\right)+f\left(y_{2}\right)-\text { a contradiction. }
$$

Case 5: $b=2, c=1$ and $d=3$.
Note that in this case also $f\left(y_{2}\right)=1+f\left(y_{1}\right)$

$$
f\left(x_{3}\right)+f\left(y_{1}\right)=f\left(x_{2}\right)+f\left(y_{2}\right)-\text { a contradiction. }
$$

Case 6: $b=1, c=1$ and $d=1$. and
Case 7: $b=2, c=2$ and $d=2$. also arrive at contradiction using analogous arguments of Theorem 2.1 Case- 5 and Case- 6 . Therefore from all these seven cases, clearly $j \nsupseteq 1$. Hence from $(5) d_{c}\left(K_{4, n}\right)=3(n-1)$. \diamond

Theorem 2.3 . The vertex dependent characteristic of a complete bipartite graph $K_{5, n}$ is $4(n-1)$.

Proof. Consider the complete bipartite graph $K_{5, n}$. From Theorem 1.5, we have

$$
\begin{equation*}
d_{c}\left(K_{5, n}\right) \leq 4(n-1) \tag{7}
\end{equation*}
$$

Also, we see that $d_{c}\left(K_{5,2}\right)=4, d_{c}\left(K_{5,3}\right)=8$ and $d_{c}\left(K_{5,4}\right)=12$. Assume that $d_{c}\left(K_{5, n}\right)<$ $4(n-1)$ for some positive integer $n \geq 5$. Then, there exists a strongly k-indexable labeling $f: V\left(K_{5, n} \cup(4 n-4-j) K_{1}\right) \rightarrow\{0,1,2, \ldots, 5 n-j\}$ for some positive integer $j \geq 1$ such that $f^{+}\left(K_{5, n}\right)=f^{+}\left(K_{5, n} \cup(4 n-4-j) K_{1}\right)=\{k, k+2, \ldots, k+5 n-1\}$.

$$
\begin{aligned}
& A=\left\{x_{i}: x_{i} \in V\left(K_{5, n}\right), \operatorname{deg}\left(x_{i}\right)=n, f\left(x_{i}\right)<f\left(x_{i+1}\right), i=1,2,3,4\right\} \\
B= & \left\{y_{i}: y_{i} \in V\left(K_{5, n}\right), \operatorname{deg}\left(y_{i}\right)=5, f\left(y_{i}\right)<f\left(y_{i+1}\right), 1 \leq i \leq n-1\right\} \\
C= & \left\{z_{i}: z_{i} \in V\left((4 n-4-j) K_{1}\right), \operatorname{deg}\left(z_{i}\right)=0,1 \leq i \leq 4 n-4-j\right\} .
\end{aligned}
$$

$$
f\left(x_{1}\right)=a, \text { then } f\left(x_{2}\right)=a+b, f\left(x_{3}\right)=a+b+c, f\left(x_{4}\right)=a+b+c+d \text { and } f\left(x_{5}\right)=a+b+c+d+e,
$$ where b, c, d, e are positive integers. Consider the following mutually exclusive subsets of $f^{+}\left(K_{5, n}\right)$.

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+b+f\left(y_{1}\right), a+b+c+f\left(y_{1}\right), a+b+c+d+f\left(y_{1}\right), a+b+c+d+e+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+b+f\left(y_{2}\right), a+b+c+f\left(y_{2}\right), a+b+c+d+f\left(y_{2}\right), a+b+c+d+e+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+b+f\left(y_{3}\right), a+b+c+f\left(y_{3}\right), a+b+c+d+f\left(y_{3}\right), a+b+c+d+e+f\left(y_{3}\right)\right\}
\end{aligned}
$$

$$
\begin{equation*}
A_{n}=\left\{a+f\left(y_{n}\right), a+b+f\left(y_{n}\right), a+b+c+f\left(y_{n}\right), a+b+c+d+f\left(y_{n}\right), a+b+c+d+e+f\left(y_{n}\right)\right\} \tag{8}
\end{equation*}
$$

Since f is strongly k-indexable,

$$
f^{+}\left(K_{5, n}\right)=A_{1} \cup A_{2} \cup \cdots \cup A_{n}
$$

Therefore, $a+f\left(y_{1}\right)=k$ and $a++b+c+d+e+f\left(y_{n}\right)=k+5 n-1$. Note that there are ($b-1$) edge values between $a+f\left(y_{i}\right)$ and $a+b+f\left(y_{i}\right), 1 \leq i \leq n,(c-1)$ edge values between $a+b+f\left(y_{i}\right)$ and $a+b+c+f\left(y_{i}\right), 1 \leq i \leq n,(d-1)$ edge values between $a+b+c+f\left(y_{i}\right)$ and $a+b+c+d+f\left(y_{i}\right), 1 \leq i \leq n$, $(e-1)$ edge values between $a+b+c+d+f\left(y_{i}\right)$ and $a+b+c+d+e+f\left(y_{i}\right), 1 \leq i \leq n$ in $f^{+}\left(K_{5, n}\right)$. As there are only $5 n$ elements in $f^{+}\left(K_{5, n}\right)$, we must have $(b-1) n+(c-1) n+(d-1) n+(e-1) n+2 \leq 5 n$, from which we get, $(b-1) n+(c-1) n+(d-1) n+(e-1) n \leq 5 n-2<5 n$
$\Rightarrow b+c+d+e<9$.
Even though there are many possible values of b, c, d, e satisfying $b+c+d+e<9$, it is enough to consider the following twelve cases.

Case 1: $b=1, c=1, d=1, e=5$.
From equation (8)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+1+f\left(y_{1}\right), a+2+f\left(y_{1}\right), a+3+f\left(y_{1}\right), a+8+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+1+f\left(y_{2}\right), a+2+f\left(y_{2}\right), a+3+f\left(y_{2}\right), a+8+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+1+f\left(y_{3}\right), a+2+f\left(y_{3}\right), a+3+f\left(y_{3}\right), a+8+f\left(y_{3}\right)\right\} \\
& A_{n}=\left\{a+f\left(y_{n}\right), a+1+f\left(y_{n}\right), a+2+f\left(y_{n}\right), a+3+f\left(y_{n}\right), a+8+f\left(y_{n}\right)\right\}
\end{aligned}
$$

Then, the increasing order of edge values of $K_{5, n}$ are $a+f\left(y_{1}\right), a+1+f\left(y_{1}\right), a+2+f\left(y_{1}\right), a+$ $3+f\left(y_{1}\right), a+f\left(y_{2}\right), a+1+f\left(y_{2}\right), a+2+f\left(y_{2}\right), a+3+f\left(y_{2}\right), a+8+f\left(y_{1}\right), a+f\left(y_{3}\right), \ldots, a+8+f\left(y_{n}\right)$. From this increasing order, we get

$$
\begin{aligned}
& a+f\left(y_{2}\right)=a+3+f\left(y_{1}\right) \text { and } a+8+f\left(y_{1}\right)=a+f\left(y_{3}\right) \\
& \Rightarrow f\left(y_{3}\right)=9+f\left(y_{1}\right) \text { and } f\left(y_{2}\right)=4+f\left(y_{1}\right)
\end{aligned}
$$

But $f\left(x_{4}\right)+f\left(y_{3}\right)=a+3+9+f\left(y_{1}\right)=(a+8)+\left(4+f\left(y_{1}\right)\right)=f\left(x_{5}\right)+f\left(y_{2}\right)$.
This is a contradiction as f is injective.
Case 2: $b=1, c=1, d=1, e=4$.
From equation (8)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+1+f\left(y_{1}\right), a+2+f\left(y_{1}\right), a+3+f\left(y_{1}\right), a+7+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+1+f\left(y_{2}\right), a+2+f\left(y_{2}\right), a+3+f\left(y_{2}\right), a+7+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+1+f\left(y_{3}\right), a+2+f\left(y_{3}\right), a+3+f\left(y_{3}\right), a+7+f\left(y_{3}\right)\right\} \\
& \ldots \quad \ldots \\
& A_{n}=\left\{a+f\left(y_{n}\right), a+1+f\left(y_{n}\right), a+2+f\left(y_{n}\right), a+3+f\left(y_{n}\right), a+7+f\left(y_{n}\right)\right\}
\end{aligned}
$$

Then, one can easily observe that

$$
a+3+f\left(y_{1}\right)=a+f\left(y_{2}\right) \text { and } a+7+f\left(y_{1}\right)=a+f\left(y_{3}\right)
$$

$$
\Rightarrow f\left(y_{2}\right)=4+f\left(y_{1}\right) \text { and } f\left(y_{3}\right)=8+f\left(y_{1}\right) .
$$

But $f\left(x_{4}\right)+f\left(y_{2}\right)=a+3+f\left(y_{2}\right)=(a+3)+\left(4+f\left(y_{1}\right)=f\left(x_{5}\right)+f\left(y_{1}\right)\right)$.
This is again a contradiction.
Case 3: $b=1, c=1, d=1, e=3$.
From equation (8)

$$
\begin{gathered}
A_{1}=\left\{a+f\left(y_{1}\right), a+1+f\left(y_{1}\right), a+2+f\left(y_{1}\right), a+3+f\left(y_{1}\right), a+6+f\left(y_{1}\right)\right\} \\
A_{2}=\left\{a+f\left(y_{2}\right), a+1+f\left(y_{2}\right), a+2+f\left(y_{2}\right), a+3+f\left(y_{2}\right), a+6+f\left(y_{2}\right)\right\} \\
A_{3}=\left\{a+f\left(y_{3}\right), a+1+f\left(y_{3}\right), a+2+f\left(y_{3}\right), a+3+f\left(y_{3}\right), a+6+f\left(y_{3}\right)\right\} \\
\ldots \\
\cdots
\end{gathered}
$$

Then, one can easily observe that
$a+3+f\left(y_{1}\right)=a+f\left(y_{2}\right)$ and $a+6+f\left(y_{1}\right)=a+f\left(y_{3}\right)$
$\Rightarrow f\left(y_{2}\right)=4+f\left(y_{1}\right)$ and $f\left(y_{3}\right)=7+f\left(y_{1}\right)$.
But $f\left(x_{3}\right)+f\left(y_{2}\right)=a+2+4+f\left(y_{2}\right)=(a+6)+f\left(y_{1}\right)=f\left(x_{5}\right)+f\left(y_{1}\right)$.
This is again a contradiction.

Case 4: $b=1, c=1, d=1, e=2$.
From equation (8)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+1+f\left(y_{1}\right), a+2+f\left(y_{1}\right), a+3+f\left(y_{1}\right), a+5+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+1+f\left(y_{2}\right), a+2+f\left(y_{2}\right), a+3+f\left(y_{2}\right), a+5+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+1+f\left(y_{3}\right), a+2+f\left(y_{3}\right), a+3+f\left(y_{3}\right), a+5+f\left(y_{3}\right)\right\}
\end{aligned}
$$

$$
\dddot{A}_{n}=\left\{a+f\left(y_{n}\right), \cdots+1+f\left(y_{n}\right), a+2+f\left(y_{n}\right), a+3+\underset{\left.f\left(y_{n}\right), a+5+f\left(y_{n}\right)\right\}}{ }\right.
$$

Then, one can easily observe that

$$
\begin{aligned}
& a+3+f\left(y_{1}\right)=a+f\left(y_{2}\right) \text { and } a+5+f\left(y_{1}\right)=a+f\left(y_{3}\right) \\
& \Rightarrow f\left(y_{2}\right)=4+f\left(y_{1}\right) \text { and } f\left(y_{3}\right)=6+f\left(y_{1}\right) .
\end{aligned}
$$

But $f\left(x_{2}\right)+f\left(y_{2}\right)=a+1+4+f\left(y_{1}\right)=(a+5)+f\left(y_{1}\right)=f\left(x_{5}\right)+f\left(y_{1}\right)$.
This is again a contradiction.

Case 5: $b=3, c=3, d=1, e=1$.
From equation (8)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+3+f\left(y_{1}\right), a+6+f\left(y_{1}\right), a+7+f\left(y_{1}\right), a+8+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+3+f\left(y_{2}\right), a+6+f\left(y_{2}\right), a+7+f\left(y_{2}\right), a+8+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+3+f\left(y_{3}\right), a+6+f\left(y_{3}\right), a+7+f\left(y_{3}\right), a+8+f\left(y_{3}\right)\right\}
\end{aligned}
$$

 Then, one can easily observe that

$$
a+3+f\left(y_{1}\right)=a+f\left(y_{2}\right) \text { and } a+8+f\left(y_{1}\right)=a+f\left(y_{3}\right)
$$

$$
\Rightarrow f\left(y_{2}\right)=4+f\left(y_{1}\right) \text { and } f\left(y_{3}\right)=9+f\left(y_{1}\right) .
$$

But $f\left(x_{2}\right)+f\left(y_{2}\right)=a+3+4+f\left(y_{1}\right)=(a+7)+f\left(y_{1}\right)=f\left(x_{4}\right)+f\left(y_{1}\right)$.
This is again a contradiction.
Case 6: $b=2, c=2, d=2, e=1$.
From equation (8)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+2+f\left(y_{1}\right), a+4+f\left(y_{1}\right), a+6+f\left(y_{1}\right), a+7+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+2+f\left(y_{2}\right), a+4+f\left(y_{2}\right), a+6+f\left(y_{2}\right), a+7+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+2+f\left(y_{3}\right), a+4+f\left(y_{3}\right), a+6+f\left(y_{3}\right), a+7+f\left(y_{3}\right)\right\}
\end{aligned}
$$

$\ddot{A}_{n}=\left\{a+f\left(y_{n}\right), \cdots+2+f\left(y_{n}\right), a+4+f\left(y_{n}\right), a+6+f\left(y_{n}\right), a+7+f\left(y_{n}\right)\right\}$
Then, one can easily observe that
$a+f\left(y_{2}\right)=a+2+f\left(y_{1}\right)$ and $a+f\left(y_{3}\right)=a+7+f\left(y_{1}\right)$
$\Rightarrow f\left(y_{2}\right)=3+f\left(y_{1}\right)$ and $f\left(y_{3}\right)=8+f\left(y_{1}\right)$.
But $f\left(x_{3}\right)+f\left(y_{2}\right)=a+4+3+f\left(y_{2}\right)=(a+7)+f\left(y_{1}\right)=f\left(x_{5}\right)+f\left(y_{1}\right)$.

This is again a contradiction.
Case 7: $b=2, c=2, d=1, e=1$.
From equation (8)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+2+f\left(y_{1}\right), a+4+f\left(y_{1}\right), a+5+f\left(y_{1}\right), a+6+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+2+f\left(y_{2}\right), a+4+f\left(y_{2}\right), a+5+f\left(y_{2}\right), a+6+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+2+f\left(y_{3}\right), a+4+f\left(y_{3}\right), a+5+f\left(y_{3}\right), a+6+f\left(y_{3}\right)\right\}
\end{aligned}
$$

$A_{n}=\left\{a+f\left(y_{n}\right), a+2+f\left(y_{n}\right), a+4+f\left(y_{n}\right), a+5+f\left(y_{n}\right), a+6+f\left(y_{n}\right)\right\}$
Then, one can easily observe that
$a+f\left(y_{2}\right)=a+2+f\left(y_{1}\right)$ and $a+f\left(y_{3}\right)=a+6+f\left(y_{1}\right)$
$\Rightarrow f\left(y_{2}\right)=3+f\left(y_{1}\right)$ and $f\left(y_{3}\right)=7+f\left(y_{1}\right)$.
But $f\left(x_{2}\right)+f\left(y_{2}\right)=a+2+3+f\left(y_{2}\right)=(a+5)+f\left(y_{1}\right)=f\left(x_{4}\right)+f\left(y_{1}\right)$.
This is again a contradiction.
Case 8: $b=1, c=2, d=2, e=3$.
From equation (8)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+1+f\left(y_{1}\right), a+3+f\left(y_{1}\right), a+5+f\left(y_{1}\right), a+8+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+1+f\left(y_{2}\right), a+3+f\left(y_{2}\right), a+5+f\left(y_{2}\right), a+8+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+1+f\left(y_{3}\right), a+3+f\left(y_{3}\right), a+5+f\left(y_{3}\right), a+8+f\left(y_{3}\right)\right\} \\
& A_{n}=\left\{a+f\left(y_{n}\right), a+1+f\left(y_{n}\right), a+3+f\left(y_{n}\right), a+5+f\left(y_{n}\right), a+8+f\left(y_{n}\right)\right\}
\end{aligned}
$$

Then, one can easily observe that

$$
\begin{aligned}
& a+f\left(y_{2}\right)=a+3+f\left(y_{1}\right) \text { and } a+f\left(y_{3}\right)=a+8+f\left(y_{1}\right) \\
& \Rightarrow \quad f\left(y_{2}\right)=4+f\left(y_{1}\right) \text { and } f\left(y_{3}\right)=9+f\left(y_{1}\right) .
\end{aligned}
$$

But $f\left(x_{2}\right)+f\left(y_{2}\right)=a+1+4+f\left(y_{1}\right)=(a+5)+f\left(y_{1}\right)=f\left(x_{4}\right)+f\left(y_{1}\right)$.
This is again a contradiction.
Case 9: $b=1, c=1, d=2, e=4$.
From equation (8)

$$
\left.\begin{array}{c}
A_{1}=\left\{a+f\left(y_{1}\right), a+1+f\left(y_{1}\right), a+2+f\left(y_{1}\right), a+4+f\left(y_{1}\right), a+8+f\left(y_{1}\right)\right\} \\
A_{2}=\left\{a+f\left(y_{2}\right), a+1+f\left(y_{2}\right), a+2+f\left(y_{2}\right), a+4+f\left(y_{2}\right), a+8+f\left(y_{2}\right)\right\} \\
A_{3}=\left\{a+f\left(y_{3}\right), a+1+f\left(y_{3}\right), a+2+f\left(y_{3}\right), a+4+f\left(y_{3}\right), a+8+f\left(y_{3}\right)\right\} \\
\ldots
\end{array} \ldots \quad \ldots\right\}
$$

Then, one can easily observe that

$$
\begin{aligned}
a+f\left(y_{2}\right)= & a+4+f\left(y_{1}\right) \text { and } a+f\left(y_{3}\right)=a+8+f\left(y_{1}\right) \\
& \Rightarrow f\left(y_{2}\right)=5+f\left(y_{1}\right) \text { and } f\left(y_{3}\right)=9+f\left(y_{1}\right)
\end{aligned}
$$

But $f\left(x_{1}\right)+f\left(y_{3}\right)=a+9+f\left(y_{2}\right)=(a+4)+\left(5+f\left(y_{1}\right)\right)=f\left(x_{4}\right)+f\left(y_{2}\right)$.
This is again a contradiction.
Case 10: $b=1, c=1, d=2, e=3$.
From equation (8)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+1+f\left(y_{1}\right), a+2+f\left(y_{1}\right), a+4+f\left(y_{1}\right), a+7+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+1+f\left(y_{2}\right), a+2+f\left(y_{2}\right), a+4+f\left(y_{2}\right), a+7+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+1+f\left(y_{3}\right), a+2+f\left(y_{3}\right), a+4+f\left(y_{3}\right), a+7+f\left(y_{3}\right)\right\} \\
& A_{n}=\left\{a+f\left(y_{n}\right), a+1+f\left(y_{n}\right), a+2+f\left(y_{n}\right), a+4+f\left(y_{n}\right), a+7+f\left(y_{n}\right)\right\}
\end{aligned}
$$

Then, one can easily observe that

$$
\begin{aligned}
& a+f\left(y_{2}\right)=a+4+f\left(y_{1}\right) \text { and } a+f\left(y_{3}\right)=a+7+f\left(y_{1}\right) \\
& \Rightarrow \quad f\left(y_{2}\right)=5+f\left(y_{1}\right) \text { and } f\left(y_{3}\right)=8+f\left(y_{1}\right) .
\end{aligned}
$$

But $f\left(x_{3}\right)+f\left(y_{2}\right)=a+2+5+f\left(y_{2}\right)=(a+7)+f\left(y_{1}\right)=f\left(x_{5}\right)+f\left(y_{1}\right)$.
This is again a contradiction.
Case 11: $b=2, c=2, d=2, e=2$.
From equation (8)

$$
\begin{aligned}
& A_{1}=\left\{a+f\left(y_{1}\right), a+2+f\left(y_{1}\right), a+4+f\left(y_{1}\right), a+6+f\left(y_{1}\right), a+8+f\left(y_{1}\right)\right\} \\
& A_{2}=\left\{a+f\left(y_{2}\right), a+2+f\left(y_{2}\right), a+4+f\left(y_{2}\right), a+6+f\left(y_{2}\right), a+8+f\left(y_{2}\right)\right\} \\
& A_{3}=\left\{a+f\left(y_{3}\right), a+2+f\left(y_{3}\right), a+4+f\left(y_{3}\right), a+6+f\left(y_{3}\right), a+8+f\left(y_{3}\right)\right\} \\
& A_{n}=\left\{a+f\left(y_{n}\right), a+2+f\left(y_{n}\right), a+4+f\left(y_{n}\right), a+6+f\left(y_{n}\right), a+8+f\left(y_{n}\right)\right\}
\end{aligned}
$$

Then, one can easily observe that

$$
\begin{array}{r}
a+2+f\left(y_{1}\right)=a+f\left(y_{2}\right) \text { and } a+8+f\left(y_{1}\right)=a+f\left(y_{3}\right) \\
\Rightarrow f\left(y_{2}\right)=3+f\left(y_{1}\right) \text { and } f\left(y_{3}\right)=9+f\left(y_{1}\right) .
\end{array}
$$

But $f\left(x_{1}\right)+f\left(y_{3}\right)=a+9+f\left(y_{1}\right)=(a+6)+\left(3+f\left(y_{1}\right)\right)=f\left(x_{4}\right)+f\left(y_{2}\right)$.
This is again a contradiction.
Case 12: $b=1, c=1, d=1, e=1$.
Then

$$
\begin{aligned}
& k=a+f\left(y_{1}\right) \\
& k+1=a+1+f\left(y_{1}\right) \\
& k+2=a+2+f\left(y_{1}\right) \\
& k+3=a+3+f\left(y_{1}\right) \\
& k+4=a+4+f\left(y_{1}\right) \\
& k+5=a+f\left(y_{2}\right)
\end{aligned}
$$

$$
\begin{align*}
& k+6=a+1+f\left(y_{2}\right) \\
& \ldots \tag{9}\\
& \ldots \\
& \quad \ldots+5 n-1=a+4+f\left(y_{n}\right)
\end{align*}
$$

From equation (9), we get

$$
\begin{align*}
& f\left(y_{2}\right)=5+f\left(y_{1}\right) \\
& f\left(y_{3}\right)=10+f\left(y_{1}\right) \\
& f\left(y_{4}\right)=15+f\left(y_{1}\right) \\
& \cdots \quad \cdots \\
& \left.\quad \begin{array}{c}
\ldots \\
\quad
\end{array} y_{n}\right)=5(n-1)+f\left(y_{1}\right) \tag{10}
\end{align*}
$$

From equation (9),

$$
\begin{aligned}
& =k+5 n-5-\left(k-f\left(y_{1}\right)\right. \\
& =5\left(y_{n}\right)=k+5 n-1-a-4 \\
& \leq 5 n-j+f\left(y_{1}\right. \\
& \Rightarrow f\left(y_{1}\right) \leq 5-j \\
& \text { But } f\left(y_{1}\right) \geq 0 \Rightarrow 5-j \geq 0 \\
& \Rightarrow j \in\{1,2,3,4,5\} .
\end{aligned}
$$

Note that $f(A)=\{a, a+1, a+2, a+3, a+4\}$,
$f(B)=\left\{f\left(y_{1}\right), 5+f\left(y_{1}\right), 10+f\left(y_{1}\right), \ldots, 5(n-1)+f\left(y_{1}\right)\right\}$,
$f(C)=\left\{f\left(z_{1}\right), f\left(z_{2}\right), \ldots, f\left(z_{(4 n-4-j)}\right)\right\}$.
Let $F=\left\{f\left(y_{1}\right)+1, f\left(y_{1}\right)+2, f\left(y_{1}\right)+3, f\left(y_{1}\right)+4, f\left(y_{1}\right)+6, f\left(y_{1}\right)+7, f\left(y_{1}\right)+8, f\left(y_{1}\right)+\right.$ $\left.9, \ldots, f\left(y_{1}\right)+5 n-6\right\}$.
Clearly $F \subseteq f\left(K_{5, n} \cup(4 n-4-j) K_{1}\right)$ and F contains $4(n-1)$ vertex values. Also $F \cap f(B)=\emptyset$.
We have three sub cases.
Case 12.1: $j=1$.
Then, $f(C)$ contains $4 n-5$ vertex values and hence one element of F must be in $f(A)$. Let $f\left(y_{1}\right)+5 m-7 \in f(A)$ for some positive integer $m, 2 \leq m \leq n$. Then $a=f\left(y_{1}\right)+5 m-7$

$$
\Rightarrow a+2 \in f(B), \text { a contradiction. }
$$

$$
\begin{aligned}
& a+1=f\left(y_{1}\right)+5 m-7 \Rightarrow a+3 \in f(B) \text { - a contradiction } \\
& a+2=f\left(y_{1}\right)+5 m-7 \Rightarrow a+4 \in f(B) \text { - a contradiction }
\end{aligned}
$$

$$
\begin{aligned}
& a+3=f\left(y_{1}\right)+5 m-7 \Rightarrow a+4 \in f(B) \text { - a contradiction } \\
& a+4=f\left(y_{1}\right)+5 m-7 \Rightarrow a+1 \in f(B) \text { - a contradiction }
\end{aligned}
$$

Let $f\left(y_{1}\right)+5 r-6 \in f(A)$ for some integer $r, 2 \leq r \leq n$. Then,

$$
\begin{aligned}
& a=f\left(y_{1}\right)+5 r-6 \Rightarrow a+1 \in f(B) \text { - a contradiction } \\
& a+1=f\left(y_{1}\right)+5 r-6 \Rightarrow a+2 \in f(B) \text { - a contradiction } \\
& a+2=f\left(y_{1}\right)+5 r-6 \Rightarrow a+3 \in f(B) \text { - a contradiction } \\
& a+3=f\left(y_{1}\right)+5 r-6 \Rightarrow a+4 \in f(B) \text { - a contradiction } \\
& a+4=f\left(y_{1}\right)+5 r-6 \Rightarrow a+3 \in f(B) \text { - a contradiction }
\end{aligned}
$$

Therefore $j \neq 1$.
Case 12.2: $j=2$.
Then, $f(C)$ contains $4 n-6$ vertex values and therefore two elements of F must be in $f(A)$. Let $f\left(y_{1}\right)+5 t-4, f\left(y_{1}\right)+5 t-6 \in f(A)$ for some positive integer $t, 1 \leq t \leq n$. Then, $a+1=$ $f\left(y_{1}\right)+5 t-5=f\left(y_{1}\right)+5(t-1) \in f(B)$ - a contradiction. Let $f\left(y_{1}\right)+5 w-7, f\left(y_{1}\right)+5 w-6 \in f(A)$ for some positive integer $w, 1 \leq w \leq n$. Since these two values are consecutive, either $a \in f(B)$ or $a+2 \in f(B)$ - a contradiction. Therefore, $j \neq 2$.
Case 12.3: $j=3$.
Then, $f(C)$ contains $4 n-7$ vertex values and therefore three elements of F must be in $f(A)$. This is impossible because elements of $f(A)$ are consecutive. Clearly $j \neq 3$.

Proceeding on similar lines to case 12.3 above, we get contradictions when $j=4,5$. Thus for $j \geq 1, K_{5, n} \cup(4 n-4-j) K_{1}$ is not strongly k-indexable. Hence from equation (7), we get $d_{c}\left(K_{5, n}\right)=4(n-1)$. This completes the proof. \diamond

Remark 1. In strongly k-indexable labelings it is enough to consider only vertex labelings(as vertex labelings induces edge labelings) whereas in super edge-magic labelings one has to deal with two functions. From the proof of theorem 1.7 mentioned in Figueroa-Conteno et.al., one can see that it is easier to prove the results on super edge-magic deficiency of graphs using the concept of strongly k-indexable labelings rather than super edge-magic labelings.

References

[1] B. D. Acharya and S. M. Hegde, Arithmetic graphs, J. Graph Theory, 14(3) (1990), 275299.
[2] B. D. Acharya and S. M. Hegde,, Strongly indexable graphs, Discrete Mathematics, 93(2-3) (1991), 123-129
[3] H. Enomoto, A.S. Llado, T. Nakamigwa and G. Ringel, Super edge-magic graphs, SUT Journal of Mathematics 34(2)(1998),105-109.
[4] R.M. Figueroa-Centeno, R. Ichishima and F. A. Muntanar-Batle, On the super edge-magic deficincy, ARS Combinatoria 78(2006)33-45.
[5] J.A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics \#DS 6 (2005), pp. 1-148.
[6] F. Harary, Graph Theory, Addison-Wesley, Reading, Massachusetts, 1972.
[7] D. B. West, Introduction to Graph Theory, Second edition, Prentice-Hall, 2001.
Department of Mathematical and Computational Sciences, National Institute of Technology Karnataka, Surathkal, INDIA.
Email: smhegde@nitk.ac.in
Department of Mathematics, Nitte Education Trust, Nitte, 574110, Karnataka, INDIA.
Email: drsshetty@yahoo.com,
Email:shankarbharath@yahoo.co.in

[^0]: ${ }^{1}$ Key Words: Strongly k-indexable graphs, Super edge-magic deficiency of graphs

