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Abstract

Acharya and Hegde have introduced the notion of strongly k-indexable graphs: A
(p, q)-graph G is said to be strongly k-indexable if its vertices can be assigned distinct
integers 0, 1, 2, ..., p − 1 so that the values of the edges, obtained as the sums of the
numbers assigned to their end vertices can be arranged as an arithmetic progression k, k+
1, k + 2, ..., k + (q − 1). Such an assignment is called a strongly k-indexable labeling of
G. Figueroa-Centeno et.al, have introduced the concept of super edge-magic deficiency
of graphs: Super edge-magic deficiency of graph G is the minimum number of isolated
vertices added to G so that the resulting graph is super edge-magic. They conjectured
that super edge-magic deficiency of complete bipartite graph Km,n is (m − 1)(n − 1) and
proved it for the case m = 2. In this paper we prove that the conjuctre is true for m = 3,
4 and 5, using the concept of strongly k-indexable labelings 1.

1 Introduction

For all terminology and notation in graph theory we follow Harary [6] and West [7].
Graph labelings, where the vertices and edges are assigned real values or subsets of a set

are subject to certain conditions, have often been motivated by their utility to various applied
fields and their intrinsic mathematical interest (logico-mathematical). An enormous body of
literature has grown around the subject, especially in the last forty years or so, and is still
getting embellished due to increasing number of application driven concepts [5].

Acharya and Hegde [1, 2] have introduced the the concept of strongly k-indexable graphs.
Given a graph G = (V, E), the set N of nonnegative integers, a finite subset A of N and a

commutative binary operation + : N ×N → N , every vertex function f : V (G) → A induces
an edge function f+ : E(G) → N such that f+(uv) = f(u) + f(v), ∀ uv ∈ E(G). Such vertex
functions are called additive vertex functions. An additive labeling of a graph G is an
injective additive vertex function f such that the induced edge function f+ is injective.

For the given (p, q)-graph G = (V, E).

1. f(V ) = {f(u) : u ∈ V (G)}.

2. f+(E) = {f+(e) : e ∈ E(G)}.

Definition 1.1 An indexable labeling of a (p, q)-graph G with f+(E) = {k, k + d, ..., k +(q −
1)d} is called strongly (k, d)-indexable labeling of G.

1Key Words: Strongly k-indexable graphs, Super edge-magic deficiency of graphs
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Definition 1.2 A strongly (k, d)-indexable labeling of a (p, q) graph G with d = 1 is called a

strongly k-indexable labeling. A graph which admits such a labeling for atleast one value

of k is called strongly k-indexable graph.

Enomoto et.al.,[3] have introduced the the concept of super edge-magic graph.

Definition 1.3 A graph G is said to be super edge-magic if it admits a bijection f : V ∪
E → {1, 2, ..., p + q} with f(V ) = {1, 2, ..., p} and f(E) = {p + 1, p + 2, ..., p + q} such that

f(u) + f(v) + f(uv) = c(f), uv ∈ V where c(f) is a constant.

From the above definition one can see that a graph is super edge-magic if and only if it is
strongly k-indexable for some k.

R. M. Figueroa-Centenoa et.al.,[4] have introduced the concept of super edge-magic defi-
ciency of graphs.

Definition 1.4 Super edge-magic deficiency of a graph G is the minimum number of isolated

vertices added to G so that the resulting graph is super edge-magic. and is denoted by µs(G).

From the above definitions one can see that 0 ≤ µs(G) ≤ ∞.
As, a graph is super edge-magic if and only if it is strongly k-indexable, super edge-magic

deficiency can be equvialently defined as the minimum number of isolated vertices added to
a graph G so that the resulting graph is strongly k-indexable for some k. For the sake of
convenience we call this parameter as vertex dependent characteristic and is denote it by
dc(G). Figueroa-Centenoa et.al.,[4] have proved that

Theorem 1.5 : The vertex dependent characteristic of complete bipartite graph Km,n is at

most ≤ (m − 1)(n − 1).

They conjuctured that

Conjecture 1.6 : The vertex dependent characteristic of complete bipartite graph Km,n is

equal to (m − 1)(n − 1).

Also, they proved that

Theorem 1.7 The vertex dependent characteristic of complete bipartite graph K2,n is (n− 1).

2 Results

In this section we prove the above mentioned conjucture for m = 3, 4 and 5, using the concept
of strongly k-indexable labelings.

Theorem 2.1 : The vertex dependent characteristic of complete bipartite graph K3,n is 2(n−1).

Proof: From Theorem 1.5, clearly

dc(K3, n) ≤ 2(n − 1). (1)

From Theorem 1.7, dc(K3,2)= 2.
Suppose dc(K3, n) < 2(n − 1) for some integer n ≥ 3 then there exists a strongly k-indexable
labeling f : V (K3, n ∪ (2n − 2 − j)K1) → {0, 1, ...., 3n − j} for some integer j ≥ 1 such that

f+(K3, n) = f+(K3, n ∪ (2n − 2 − j)K1) = {k, k + 2, ..., k + 3n − 1}.
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Let A = {xi : xi ∈ V (K3,n), deg(xi) = n and f(xi) < f(xi+1), i = 1, 2}.

B = {yi : yi ∈ V (K3, n), deg(yi) = 3 and f(yi) < f(yi+1); 1 ≤ i ≤ n − 1}.

C = {zi : zi ∈ V ((2n − 2 − j)K1), deg(zi) = 0, 1 ≤ i ≤ 2n − 2 − j}.
Let f(x1) = a then f(x2) = a + b and f(x3) = a + b + c where b, c are positive integers.
Consider the following mutually exclusive subsets of f+(K3,n).

A1 = {a + f(y1), a + b + f(y1), a + b + c + f(y1)}

A2 = {a + f(y2), a + b + f(y2), a + b + c + f(y2)}

A3 = {a + f(y3), a + b + f(y3), a + b + c + f(y3)}
. . . . . . . . . . . . . . .

An = {a + f(yn), a + b + f(yn), a + b + c + f(yn)}

(2)

Since f is strongly k-indexable,

f+(K3, n) = A1 ∪ A2 ∪ A3 ∪ ... ∪ An.

Therefore a + f(y1) = k and a + b + c + f(yn) = k + 3n − 1. There are (b - 1) edge values
between each a+f(yi) and a+b+f(yi), 1 ≤ i ≤ n in f+(K3, n) and (c - 1) edge values between
each a + b + f(yi) and a + b + c + f(yi), 1 ≤ i ≤ n in f+(K3, n). As there are only 3n elements
in f+(K3, n), we must have (b − 1)n + (c − 1)n + 2 ≤ 3n which implies

(b − 1)n + (c − 1)n ≤ 3n − 2 < 3n ⇒ b + c < 5.

Therefore possible values of b and c are one among the following.
(1). b = 1 and c = 3.
(2). b = 3 and c = 1.
(3). b = 1 and c = 2.
(4). b = 2 and c = 1.
(5). b = 2 and c = 2.
(6). b = 1 and c = 1.
Case 1: b = 1 and c = 3.

From equation (2)

A1 = {a + f(y1), a + 1 + f(y1), a + 4 + f(y1)}

A2 = {a + f(y2), a + 1 + f(y2), a + 4 + f(y2)}

A3 = {a + f(y3), a + 1 + f(y3), a + 4 + f(y3)}
. . . . . . . . . . . .

An = {a + f(yn), a + 1 + f(yn), a + 4 + f(yn)}

One can observe that , the increasing order of edge values of K3, n are

a + f(y1), a + 1 + f(y1), a + f(y2),

a + 1 + f(y2), a + 4 + f(y1), a + f(y3), ......
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From this increasing order we get,

f(y2) = 2 + f(y1) and f(y3) = 5 + f(y1)

But then

f(x2) + f(y3) = a + 1 + 5 + f(y1)

= a + 6 + f(y1)

= f(x3) + f(y2) − a contradiction (because f+ is injective).

Case 2: b = 3 and c = 1.
By similar arguments as in Case 1, we get a contradiction.
Case 3: b = 1 and c = 2.

From equation (2)

A1 = {a + f(y1), a + 1 + f(y1), a + 3 + f(y1)}

A2 = {a + f(y2), a + 1 + f(y2), a + 3 + f(y2)}

A3 = {a + f(y3), a + 1 + f(y3), a + 3 + f(y3)}
. . . . . . . . . . . . . . .

An = {a + f(yn), a + 1 + f(yn), a + 3 + f(yn)}

One can easily observe that

f(x2) + f(y2) = a + 1 + f(y2)

= a + 3 + f(y1)

= f(x3) + f(y1) − a contradiction.

Case 4: b = 2 and c = 1.
By similar arguments as in Case 3, we get a contradiction.
Case 5: b = 1 and c = 1.
If b = c = 1 and then

k = a + f(y1)

k + 1 = a + 1 + f(y1)

k + 2 = a + 2 + f(y1)

. . . . . . . .

k + 3n − 1 = a + 2 + f(yn)

(3)
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From equation (3) we get,
f(y2) = 3 + f(y1)

f(y3) = 6 + f(y1)

. . . . . . . .

f(yn) = 3(n − 1) + f(y1)

(4)

From equation (3),

f(yn) = k + 3n − 1 − 2 − a

= k + 3n − 3 − (k − f(y1))

= 3n − 3 + f(y1))

≤ 3n − j ( .
.
. 3n − j is the maximum vertex value. )

⇒ f(y1) ≤ 3 − j.

But f(y1) ≥ 0 ⇒ 3 − j ≥ 0 ⇒ j ∈ {1, 2, 3}

Note that

f(A) = {a, a + 1, a + 2}.

f(B) = {f(y1), f(y1) + 3, f(y1) + 6, ..., f(y1) + 3(n − 1)}. ( From (4))

f(C) = {f(z1), f(z2), f(z3), ..., f(z2n−2−j)}.

Let F = {f(y1) + 1, f(y1) + 2, f(y1) + 4, f(y1) + 5, f(y1) + 7, ..., f(y1) + 3n − 4}.
Clearly F ⊆ f(K3, n ∪ (2n − 2 − j)K1) and F contains 2(n-1) vertex values. Also note that

F ∩ f(B) = φ.
Sub Case (5.1): j = 1.
Then f(C) contains 2n − 3 vertex values and therefore one element of F must be in f(A).
Let f(y1) + 3s − 5 ∈ f(A) for some integer s, 2 ≤ s ≤ n. Then

a = f(y1) + 3s − 5 ⇒ a + 1 ∈ f(B) −a contradiction.

a + 1 = f(y1) + 3s − 5 ⇒ a ∈ f(B) −a contradiction.

a + 2 = f(y1) + 3s − 5 ⇒ a + 1 ∈ f(B) −a contradiction.

Let f(y1) + 3r − 4 ∈ f(A) for some integer s, 2 ≤ r ≤ n. Then

a = f(y1) + 3r − 4 ⇒ a + 1 ∈ f(B) −a contradiction.

a + 1 = f(y1) + 3r − 4 ⇒ a + 2 ∈ f(B) −a contradiction.

a + 2 = f(y1) + 3r − 4 ⇒ a ∈ f(B) −a contradiction.
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Therefore j 6= 1.
Sub Case (5.2): j = 2.
Then f(C) contains 2n − 4 vertex values and therefore two elements of F must be in f(A).
Let f(y1) + 3t − 2, f(y1) + 3t − 4 ∈ f(A) for some integer t, 1 ≤ t ≤ n. Then, a + 1 =
f(y1) + 3t − 3 = f(y1) + 3(t − 1) ∈ f(B)-a contradiction.
Let f(y1) + 3m − 5, f(y1) + 3m − 4 ∈ f(A) for some integer m, 1 ≤ m ≤ n. Since these two
values are consecutive, either a ∈ f(B) or a + 2 ∈ f(B)-a contradiction.
Therefore j 6= 2.
Sub Case (5.3): j = 3.
Then f(C) contains 2n− 5 elements and therefore three elements of F must be in f(A), which
is impossible because elements of f(A) are consecutive. Clearly j 6= 3. Thus for j ≥ 1,
(K3, n) ∪ (2n − 2 − j)K1 is not strongly k-indexable.
Case 6: b = 2 and c = 2.

From equation (2)

A1 = {a + f(y1), a + 2 + f(y1), a + 4 + f(y1)}

A2 = {a + f(y2), a + 2 + f(y2), a + 4 + f(y2)}

. . . . . . . . . . . . . . .

An = {a + f(yn), a + 2 + f(yn), a + 4 + f(yn)}

Then the increasing order of edge values of K3, n are

a + f(y1), a + f(y2), a + 2 + f(y1), a + 2 + f(y2),

a + 4 + f(y1), a + 4 + f(y2), a + f(y3), ......

=⇒ f(y2) = 1 + f(y1), f(y3) = 6 + f(y1) and f(y4) = 7 + f(y1).

If n is odd, that is n = 2r +1 then there are 4r vertex values which are not used between f(y1)
and f(y2r+1). Therefore 2n − 2 − j = 4r − j ≥ 4r =⇒ j ≤ 0 -a contradiction to j ≥ 1.
If n is even integer then,

f(yn) = 3n − 5 + f(y1), f(yn−1) = f(yn) − 1.

k = a + f(y1), k + 3n − 1 = a + 4 + f(yn)

=⇒ f(yn) = k + 3n − 5 − a

=⇒ f(yn) = k + 3n − 5 − (k − f(y1))

=⇒ f(yn) = 3n − 5 + f(y1)) ≤ 3n − j

=⇒ j ∈ {1, 2, , 3, 4, 5}
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Threrefore

f(A) = {a, a + 2, a + 4}.

f(B) = {f(y1), f(y1) + 1, f(y1) + 6, f(y1) + 7, ..., f(y1) + 3n − 5}.

f(C) = {f(z1), f(z2), f(z3), ..., f(z2n−2−j)}.

Again, let R = {f(y1) + 2, f(y1) + 3, f(y1) + 4, f(y1) + 5, f(y1) + 8, ..., }.
Clearly R ⊆ f(K3, n ∪ (2n− 2− j)K1) and R contains (2n-4) vertex values and R∩ f(B) =

φ. Similar to the arguments used for Sub Cases (5.1), (5.2) and (5.3) we can show that
j 6= 1, 2, , 3, 4, 5. Hence from (1) dc(K3, n) = 2(n − 1). ♦

Theorem 2.2 : The vertex dependent characteristic of complete bipartite graph K4, n is 3(n−1).

Proof: From Theorem 1.5, clearly

dc(K4, n) ≤ 3(n − 1). (5)

From Theorem 1.7 and 2.1, dc(K4, 2) = 3 and dc(K4, 3) = 6. Assume that dc(K4, n) < 3(n − 1)
for some integer n ≥ 4 then there exists a strongly k-indexable labeling f : V (K4, n ∪ (3n− 3−
j)K1) → {0, 1, ...., 4n − j} for some integer j ≥ 1 such that

f+(K4, n) = f+(K4, n ∪ (3n − 3 − j)K1) = {k, k + 2, ..., k + 4n − 1}.

Let A = {xi : xi ∈ V (K4, n), deg(xi) = n and f(xi) < f(xi+1), i = 1, 2, 3}.

B = {yi : yi ∈ V (K4, n), deg(yi) = 4 and f(yi) < f(yi+1); 1 ≤ i ≤ n − 1}.

C = {zi : zi ∈ V ((3n − 3 − j)K1), deg(zi) = 0, 1 ≤ i ≤ 3n − 3 − j}.
Let f(x1) = a then f(x2) = a + b, f(x3) = a + b + c and f(x3) = a + b + c + d where b, c, d are
positive integers.
Similar to pevious theorems consider the mutually exclusive subsets of f+(K4, n).

A1 = {a + f(y1), a + b + f(y1), a + b + c + f(y1), a + b + c + d + f(y1)}

A2 = {a + f(y2), a + b + f(y2), a + b + c + f(y2), a + b + c + d + f(y2)}

A3 = {a + f(y3), a + b + f(y3), a + b + c + f(y3), a + b + c + d + f(y3)}
. . . . . . . . . . . . . . .

An = {a + f(yn), a + b + f(yn), a + b + c + f(yn), a + b + c + d + f(yn)}

(6)

There are (b - 1), (c - 1) and (d - 1) distinct edge values between each a + f(yi) and
a+b+f(yi) , a+b+f(yi) and a+b+c+f(yi) and a+b+c+f(yi) and a+b+c+d+f(yi), 1 ≤
i ≤ n in f+(K4, n) respectively. As there are only 4n elements in f+(K4, n), we must have
(b − 1)n + (c − 1)n + (d − 1)n + 2 ≤ 4n. Therefore we get b + c + d < 7.
There are many possible values of b, c and d but it is enough if we consider the following seven
cases.
(1). b = 1, c = 1 and d = 2.
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(2). b = 1, c = 1 and d = 3.
(3). b = 1, c = 1 and d = 4.
(4). b = 2, c = 1 and d = 2.
(5). b = 2, c = 1 and d = 3.
(6). b = 1, c = 1 and d = 1.
(7). b = 2, c = 2 and d = 2.
Case 1: b = 1, c = 1 and d = 2.
In this case, note that f(y2) = 3 + f(y1) and therefore we get

f(x4) + f(y1) = f(x2) + f(y2) − a contradiction (because f+ is injective).

Case 2: b = 1, c = 1 and d = 3.
In this case also, note that f(y2) = 3 + f(y1) and therefore we get

f(x4) + f(y1) = f(x3) + f(y2) − a contradiction.

Case 3: b = 1, c = 1 and d = 4.
Similarly, in this case f(y3) = 4 + f(y2). Therefore,

f(x3) + f(y3) = f(x4) + f(y2) − a contradiction.

Case 4: b = 2, c = 1 and d = 2.
Note that f(y2) = 1 + f(y1)

f(x3) + f(y1) = f(x2) + f(y2) − a contradiction.

Case 5: b = 2, c = 1 and d = 3.
Note that in this case also f(y2) = 1 + f(y1)

f(x3) + f(y1) = f(x2) + f(y2) − a contradiction.

Case 6: b = 1, c = 1 and d = 1. and
Case 7: b = 2, c = 2 and d = 2. also arrive at contradiction using analogous arguments
of Theorem 2.1 Case-5 and Case-6. Therefore from all these seven cases, clearly j 6≥ 1. Hence
from (5) dc(K4, n) = 3(n − 1). ♦

Theorem 2.3 . The vertex dependent characteristic of a complete bipartite graph K5,n is

4(n − 1).

Proof. Consider the complete bipartite graph K5,n. From Theorem 1.5, we have

dc(K5,n) ≤ 4(n − 1) (7)

Also, we see that dc(K5,2) = 4, dc(K5,3) = 8 and dc(K5,4) = 12. Assume that dc(K5,n) <

4(n − 1) for some positive integer n ≥ 5. Then, there exists a strongly k-indexable labeling
f : V (K5,n ∪ (4n − 4 − j)K1) → {0, 1, 2, . . . , 5n − j} for some positive integer j ≥ 1 such that
f+(K5,n) = f+(K5,n ∪ (4n − 4 − j)K1) = {k, k + 2, . . . , k + 5n − 1}.
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A = {xi : xi ∈ V (K5,n), deg(xi) = n, f(xi) < f(xi+1), i = 1, 2, 3, 4}

B = {yi : yi ∈ V (K5,n), deg(yi) = 5, f(yi) < f(yi+1), 1 ≤ i ≤ n − 1}

C = {zi : zi ∈ V ((4n − 4 − j)K1), deg(zi) = 0, 1 ≤ i ≤ 4n − 4 − j}.

f(x1) = a, then f(x2) = a+b, f(x3) = a+b+c, f(x4) = a+b+c+d and f(x5) = a+b+c+d+e,
where b, c, d, e are positive integers. Consider the following mutually exclusive subsets of
f+(K5,n).
A1 = {a + f(y1), a + b + f(y1), a + b + c + f(y1), a + b + c + d + f(y1), a + b + c + d + e + f(y1)}

A2 = {a + f(y2), a + b + f(y2), a + b + c + f(y2), a + b + c + d + f(y2), a + b + c + d + e + f(y2)}

A3 = {a + f(y3), a + b + f(y3), a + b + c + f(y3), a + b + c + d + f(y3), a + b + c + d + e + f(y3)}

. . . . . . . . . . . .

An = {a+f(yn), a+b+f(yn), a+b+c+f(yn), a+b+c+d+f(yn), a+b+c+d+e+f(yn)} (8)

Since f is strongly k-indexable,

f+(K5,n) = A1 ∪ A2 ∪ · · · ∪ An.

Therefore, a + f(y1) = k and a + +b + c + d + e + f(yn) = k + 5n − 1. Note that there are
(b − 1) edge values between a + f(yi) and a + b + f(yi), 1 ≤ i ≤ n, (c− 1) edge values between
a + b + f(yi) and a + b + c + f(yi), 1 ≤ i ≤ n, (d − 1) edge values between a + b + c + f(yi)
and a + b + c + d + f(yi), 1 ≤ i ≤ n, (e − 1) edge values between a + b + c + d + f(yi)
and a + b + c + d + e + f(yi), 1 ≤ i ≤ n in f+(K5,n). As there are only 5n elements in
f+(K5,n), we must have (b − 1)n + (c − 1)n + (d − 1)n + (e − 1)n + 2 ≤ 5n, from which we
get,(b − 1)n + (c − 1)n + (d − 1)n + (e − 1)n ≤ 5n − 2 < 5n
⇒ b + c + d + e < 9.

Even though there are many possible values of b, c, d, e satisfying b + c + d + e < 9, it is
enough to consider the following twelve cases.

Case 1: b = 1, c = 1, d = 1, e = 5.
From equation (8)
A1 = {a + f(y1), a + 1 + f(y1), a + 2 + f(y1), a + 3 + f(y1), a + 8 + f(y1)}

A2 = {a + f(y2), a + 1 + f(y2), a + 2 + f(y2), a + 3 + f(y2), a + 8 + f(y2)}

A3 = {a + f(y3), a + 1 + f(y3), a + 2 + f(y3), a + 3 + f(y3), a + 8 + f(y3)}

. . . . . . . . . . . .

An = {a + f(yn), a + 1 + f(yn), a + 2 + f(yn), a + 3 + f(yn), a + 8 + f(yn)}
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Then, the increasing order of edge values of K5,n are a+f(y1), a+1+f(y1), a+2+f(y1), a+
3+f(y1), a+f(y2), a+1+f(y2), a+2+f(y2), a+3+f(y2), a+8+f(y1), a+f(y3), . . . , a+8+f(yn).
From this increasing order, we get
a + f(y2) = a + 3 + f(y1) and a + 8 + f(y1) = a + f(y3)

⇒ f(y3) = 9 + f(y1) and f(y2) = 4 + f(y1).

But f(x4) + f(y3) = a + 3 + 9 + f(y1)= (a + 8) + (4 + f(y1))= f(x5) + f(y2).

This is a contradiction as f is injective.

Case 2: b = 1, c = 1, d = 1, e = 4.
From equation (8)
A1 = {a + f(y1), a + 1 + f(y1), a + 2 + f(y1), a + 3 + f(y1), a + 7 + f(y1)}

A2 = {a + f(y2), a + 1 + f(y2), a + 2 + f(y2), a + 3 + f(y2), a + 7 + f(y2)}

A3 = {a + f(y3), a + 1 + f(y3), a + 2 + f(y3), a + 3 + f(y3), a + 7 + f(y3)}

. . . . . . . . . . . .
An = {a + f(yn), a + 1 + f(yn), a + 2 + f(yn), a + 3 + f(yn), a + 7 + f(yn)}

Then, one can easily observe that
a + 3 + f(y1) = a + f(y2) and a + 7 + f(y1) = a + f(y3)

⇒ f(y2) = 4 + f(y1) and f(y3) = 8 + f(y1).

But f(x4) + f(y2) = a + 3 + f(y2)= (a + 3) + (4 + f(y1)= f(x5) + f(y1)).

This is again a contradiction.
Case 3: b = 1, c = 1, d = 1, e = 3.
From equation (8)
A1 = {a + f(y1), a + 1 + f(y1), a + 2 + f(y1), a + 3 + f(y1), a + 6 + f(y1)}

A2 = {a + f(y2), a + 1 + f(y2), a + 2 + f(y2), a + 3 + f(y2), a + 6 + f(y2)}

A3 = {a + f(y3), a + 1 + f(y3), a + 2 + f(y3), a + 3 + f(y3), a + 6 + f(y3)}

. . . . . . . . . . . .

An = {a + f(yn), a + 1 + f(yn), a + 2 + f(yn), a + 3 + f(yn), a + 6 + f(yn)}

Then, one can easily observe that
a + 3 + f(y1) = a + f(y2) and a + 6 + f(y1) = a + f(y3)
⇒ f(y2) = 4 + f(y1) and f(y3) = 7 + f(y1).
But f(x3) + f(y2) = a + 2 + 4 + f(y2)= (a + 6) + f(y1)= f(x5) + f(y1).
This is again a contradiction.
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Case 4: b = 1, c = 1, d = 1, e = 2.
From equation (8)
A1 = {a + f(y1), a + 1 + f(y1), a + 2 + f(y1), a + 3 + f(y1), a + 5 + f(y1)}

A2 = {a + f(y2), a + 1 + f(y2), a + 2 + f(y2), a + 3 + f(y2), a + 5 + f(y2)}

A3 = {a + f(y3), a + 1 + f(y3), a + 2 + f(y3), a + 3 + f(y3), a + 5 + f(y3)}

. . . . . . . . . . . .
An = {a + f(yn), a + 1 + f(yn), a + 2 + f(yn), a + 3 + f(yn), a + 5 + f(yn)}

Then, one can easily observe that

a + 3 + f(y1) = a + f(y2) and a + 5 + f(y1) = a + f(y3)

⇒ f(y2) = 4 + f(y1) and f(y3) = 6 + f(y1).

But f(x2) + f(y2) = a + 1 + 4 + f(y1)= (a + 5) + f(y1)= f(x5) + f(y1).

This is again a contradiction.

Case 5: b = 3, c = 3, d = 1, e = 1.
From equation (8)
A1 = {a + f(y1), a + 3 + f(y1), a + 6 + f(y1), a + 7 + f(y1), a + 8 + f(y1)}

A2 = {a + f(y2), a + 3 + f(y2), a + 6 + f(y2), a + 7 + f(y2), a + 8 + f(y2)}

A3 = {a + f(y3), a + 3 + f(y3), a + 6 + f(y3), a + 7 + f(y3), a + 8 + f(y3)}

. . . . . . . . . . . .
An = {a + f(yn), a + 3 + f(yn), a + 6 + f(yn), a + 7 + f(yn), a + 8 + f(yn)}
Then, one can easily observe that
a + 3 + f(y1) = a + f(y2) and a + 8 + f(y1) = a + f(y3)

⇒ f(y2) = 4 + f(y1) and f(y3) = 9 + f(y1).

But f(x2) + f(y2) = a + 3 + 4 + f(y1)= (a + 7) + f(y1)= f(x4) + f(y1).

This is again a contradiction.

Case 6: b = 2, c = 2, d = 2, e = 1.
From equation (8)
A1 = {a + f(y1), a + 2 + f(y1), a + 4 + f(y1), a + 6 + f(y1), a + 7 + f(y1)}

A2 = {a + f(y2), a + 2 + f(y2), a + 4 + f(y2), a + 6 + f(y2), a + 7 + f(y2)}

A3 = {a + f(y3), a + 2 + f(y3), a + 4 + f(y3), a + 6 + f(y3), a + 7 + f(y3)}
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. . . . . . . . . . . .
An = {a + f(yn), a + 2 + f(yn), a + 4 + f(yn), a + 6 + f(yn), a + 7 + f(yn)}

Then, one can easily observe that
a + f(y2) = a + 2 + f(y1) and a + f(y3) = a + 7 + f(y1)

⇒ f(y2) = 3 + f(y1) and f(y3) = 8 + f(y1).

But f(x3) + f(y2) = a + 4 + 3 + f(y2)= (a + 7) + f(y1)= f(x5) + f(y1).

This is again a contradiction.

Case 7: b = 2, c = 2, d = 1, e = 1.
From equation (8)
A1 = {a + f(y1), a + 2 + f(y1), a + 4 + f(y1), a + 5 + f(y1), a + 6 + f(y1)}

A2 = {a + f(y2), a + 2 + f(y2), a + 4 + f(y2), a + 5 + f(y2), a + 6 + f(y2)}

A3 = {a + f(y3), a + 2 + f(y3), a + 4 + f(y3), a + 5 + f(y3), a + 6 + f(y3)}

. . . . . . . . . . . .

An = {a + f(yn), a + 2 + f(yn), a + 4 + f(yn), a + 5 + f(yn), a + 6 + f(yn)}

Then, one can easily observe that
a + f(y2) = a + 2 + f(y1) and a + f(y3) = a + 6 + f(y1)
⇒ f(y2) = 3 + f(y1) and f(y3) = 7 + f(y1).

But f(x2) + f(y2) = a + 2 + 3 + f(y2)= (a + 5) + f(y1)= f(x4) + f(y1).

This is again a contradiction.

Case 8: b = 1, c = 2, d = 2, e = 3.
From equation (8)

A1 = {a + f(y1), a + 1 + f(y1), a + 3 + f(y1), a + 5 + f(y1), a + 8 + f(y1)}

A2 = {a + f(y2), a + 1 + f(y2), a + 3 + f(y2), a + 5 + f(y2), a + 8 + f(y2)}

A3 = {a + f(y3), a + 1 + f(y3), a + 3 + f(y3), a + 5 + f(y3), a + 8 + f(y3)}

. . . . . . . . . . . .

An = {a + f(yn), a + 1 + f(yn), a + 3 + f(yn), a + 5 + f(yn), a + 8 + f(yn)}

Then, one can easily observe that
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a + f(y2) = a + 3 + f(y1) and a + f(y3) = a + 8 + f(y1)

⇒ f(y2) = 4 + f(y1) and f(y3) = 9 + f(y1).

But f(x2) + f(y2) = a + 1 + 4 + f(y1)= (a + 5) + f(y1)= f(x4) + f(y1).

This is again a contradiction.

Case 9: b = 1, c = 1, d = 2, e = 4.
From equation (8)

A1 = {a + f(y1), a + 1 + f(y1), a + 2 + f(y1), a + 4 + f(y1), a + 8 + f(y1)}

A2 = {a + f(y2), a + 1 + f(y2), a + 2 + f(y2), a + 4 + f(y2), a + 8 + f(y2)}

A3 = {a + f(y3), a + 1 + f(y3), a + 2 + f(y3), a + 4 + f(y3), a + 8 + f(y3)}

. . . . . . . . . . . .

An = {a + f(yn), a + 1 + f(yn), a + 2 + f(yn), a + 4 + f(yn), a + 8 + f(yn)}

Then, one can easily observe that
a + f(y2) = a + 4 + f(y1) and a + f(y3) = a + 8 + f(y1)

⇒ f(y2) = 5 + f(y1) and f(y3) = 9 + f(y1).

But f(x1) + f(y3) = a + 9 + f(y2)= (a + 4) + (5 + f(y1))= f(x4) + f(y2).

This is again a contradiction.

Case 10: b = 1, c = 1, d = 2, e = 3.
From equation (8)

A1 = {a + f(y1), a + 1 + f(y1), a + 2 + f(y1), a + 4 + f(y1), a + 7 + f(y1)}

A2 = {a + f(y2), a + 1 + f(y2), a + 2 + f(y2), a + 4 + f(y2), a + 7 + f(y2)}

A3 = {a + f(y3), a + 1 + f(y3), a + 2 + f(y3), a + 4 + f(y3), a + 7 + f(y3)}

. . . . . . . . . . . .

An = {a + f(yn), a + 1 + f(yn), a + 2 + f(yn), a + 4 + f(yn), a + 7 + f(yn)}

Then, one can easily observe that
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a + f(y2) = a + 4 + f(y1) and a + f(y3) = a + 7 + f(y1)

⇒ f(y2) = 5 + f(y1) and f(y3) = 8 + f(y1).

But f(x3) + f(y2) = a + 2 + 5 + f(y2)= (a + 7) + f(y1)= f(x5) + f(y1).

This is again a contradiction.

Case 11: b = 2, c = 2, d = 2, e = 2.
From equation (8)

A1 = {a + f(y1), a + 2 + f(y1), a + 4 + f(y1), a + 6 + f(y1), a + 8 + f(y1)}

A2 = {a + f(y2), a + 2 + f(y2), a + 4 + f(y2), a + 6 + f(y2), a + 8 + f(y2)}

A3 = {a + f(y3), a + 2 + f(y3), a + 4 + f(y3), a + 6 + f(y3), a + 8 + f(y3)}

. . . . . . . . . . . .

An = {a + f(yn), a + 2 + f(yn), a + 4 + f(yn), a + 6 + f(yn), a + 8 + f(yn)}

Then, one can easily observe that

a + 2 + f(y1) = a + f(y2) and a + 8 + f(y1) = a + f(y3)

⇒ f(y2) = 3 + f(y1) and f(y3) = 9 + f(y1).

But f(x1) + f(y3) = a + 9 + f(y1) = (a + 6) + (3 + f(y1)) = f(x4) + f(y2).

This is again a contradiction.

Case 12: b = 1, c = 1, d = 1, e = 1.
Then

k = a + f(y1)

k + 1 = a + 1 + f(y1)

k + 2 = a + 2 + f(y1)

k + 3 = a + 3 + f(y1)

k + 4 = a + 4 + f(y1)

k + 5 = a + f(y2)
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k + 6 = a + 1 + f(y2)

. . . . . .

k + 5n − 1 = a + 4 + f(yn) (9)

From equation (9), we get

f(y2) = 5 + f(y1)

f(y3) = 10 + f(y1)

f(y4) = 15 + f(y1)

. . . . . .

f(yn) = 5(n − 1) + f(y1) (10)

From equation (9),

f(yn) = k + 5n − 1 − a − 4
= k + 5n − 5 − (k − f(y1)
= 5n − 5 + f(y1

≤ 5n − j (since 5n − j is the maximum vertex value)
⇒ f(y1) ≤ 5 − j

Butf(y1) ≥ 0 ⇒ 5 − j ≥ 0
⇒ j ∈ {1, 2, 3, 4, 5}.
Note that f(A) = {a, a + 1, a + 2, a + 3, a + 4},
f(B) = {f(y1), 5 + f(y1), 10 + f(y1), . . . , 5(n − 1) + f(y1)},
f(C) = {f(z1), f(z2), . . . , f(z(4n−4−j))}.
Let F = {f(y1) + 1, f(y1) + 2, f(y1) + 3, f(y1) + 4, f(y1) + 6, f(y1) + 7, f(y1) + 8, f(y1) +
9, . . . , f(y1) + 5n − 6}.
Clearly F ⊆ f(K5,n∪(4n−4−j)K1) and F contains 4(n−1) vertex values. Also F ∩f(B) = ∅.
We have three sub cases.
Case 12.1: j = 1.

Then, f(C) contains 4n− 5 vertex values and hence one element of F must be in f(A). Let
f(y1) + 5m − 7 ∈ f(A) for some positive integer m, 2 ≤ m ≤ n. Then a = f(y1) + 5m − 7

⇒ a + 2 ∈ f(B), a contradiction.

a + 1 = f(y1) + 5m − 7 ⇒ a + 3 ∈ f(B)- a contradiction

a + 2 = f(y1) + 5m − 7 ⇒ a + 4 ∈ f(B)- a contradiction
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a + 3 = f(y1) + 5m − 7 ⇒ a + 4 ∈ f(B)- a contradiction

a + 4 = f(y1) + 5m − 7 ⇒ a + 1 ∈ f(B)- a contradiction

Let f(y1) + 5r − 6 ∈ f(A) for some integer r, 2 ≤ r ≤ n. Then,

a = f(y1) + 5r − 6 ⇒ a + 1 ∈ f(B)- a contradiction

a + 1 = f(y1) + 5r − 6 ⇒ a + 2 ∈ f(B)- a contradiction

a + 2 = f(y1) + 5r − 6 ⇒ a + 3 ∈ f(B)- a contradiction

a + 3 = f(y1) + 5r − 6 ⇒ a + 4 ∈ f(B)- a contradiction

a + 4 = f(y1) + 5r − 6 ⇒ a + 3 ∈ f(B)- a contradiction

Therefore j 6= 1.
Case 12.2: j = 2.

Then, f(C) contains 4n− 6 vertex values and therefore two elements of F must be in f(A).
Let f(y1) + 5t − 4, f(y1) + 5t − 6 ∈ f(A) for some positive integer t, 1 ≤ t ≤ n. Then, a + 1 =
f(y1)+5t−5 = f(y1)+5(t−1) ∈ f(B)- a contradiction. Let f(y1)+5w−7, f(y1)+5w−6 ∈ f(A)
for some positive integer w, 1 ≤ w ≤ n. Since these two values are consecutive, either a ∈ f(B)
or a + 2 ∈ f(B)- a contradiction. Therefore, j 6= 2.
Case 12.3: j = 3.

Then, f(C) contains 4n − 7 vertex values and therefore three elements of F must be in
f(A). This is impossible because elements of f(A) are consecutive. Clearly j 6= 3.

Proceeding on similar lines to case 12.3 above, we get contradictions when j = 4, 5. Thus
for j ≥ 1, K5,n ∪ (4n − 4 − j)K1 is not strongly k-indexable. Hence from equation (7), we get
dc(K5,n) = 4(n − 1). This completes the proof. �

Remark 1. In strongly k-indexable labelings it is enough to consider only vertex labelings(as
vertex labelings induces edge labelings) whereas in super edge-magic labelings one has to deal
with two functions. From the proof of theorem 1.7 mentioned in Figueroa-Conteno et.al., one
can see that it is easier to prove the results on super edge-magic deficiency of graphs using the
concept of strongly k-indexable labelings rather than super edge-magic labelings.
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