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Abstract

Acharya and Hegde have introduced the notion of strongly k-indexable graphs: A
(p, q)-graph G is said to be strongly k-indexable if its vertices can be assigned distinct
integers 0,1,2,...,p — 1 so that the values of the edges, obtained as the sums of the
numbers assigned to their end vertices can be arranged as an arithmetic progression k, k +
1,k+2,...k+ (¢ — 1). Such an assignment is called a strongly k-indexable labeling of
G. Figueroa-Centeno et.al, have introduced the concept of super edge-magic deficiency
of graphs: Super edge-magic deficiency of graph G is the minimum number of isolated
vertices added to G so that the resulting graph is super edge-magic. They conjectured
that super edge-magic deficiency of complete bipartite graph K, ,, is (m —1)(n — 1) and
proved it for the case m = 2. In this paper we prove that the conjuctre is true for m = 3,
4 and 5, using the concept of strongly k-indexable labelings .

1 Introduction

For all terminology and notation in graph theory we follow Harary [6] and West [7].

Graph labelings, where the vertices and edges are assigned real values or subsets of a set
are subject to certain conditions, have often been motivated by their utility to various applied
fields and their intrinsic mathematical interest (logico-mathematical). An enormous body of
literature has grown around the subject, especially in the last forty years or so, and is still
getting embellished due to increasing number of application driven concepts [5].

Acharya and Hegde [1, 2] have introduced the the concept of strongly k-indexable graphs.

Given a graph G = (V, E), the set N of nonnegative integers, a finite subset A of A/ and a
commutative binary operation + : N' x N' — N, every vertex function f : V(G) — A induces
an edge function f* : E(G) — N such that f*(uv) = f(u) + f(v),V uv € E(G). Such vertex
functions are called additive vertex functions. An additive labeling of a graph G is an
injective additive vertex function f such that the induced edge function f7 is injective.

For the given (p, q)-graph G = (V, E).

L f(V) ={f(u) - ueV(G)}.
2. f[H(E)=A{f"(e) : e € E(G)}.

Definition 1.1 An indezable labeling of a (p,q)-graph G with f*(E) ={k, k+d, ..., k+ (¢ —
1)d} is called strongly (k, d)-indexable labeling of G.
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Definition 1.2 A strongly (k,d)-indezxable labeling of a (p,q) graph G with d = 1 is called a
strongly k-indexable labeling. A graph which admits such a labeling for atleast one value
of k is called strongly k-indexable graph.

Enomoto et.al.,[3] have introduced the the concept of super edge-magic graph.

Definition 1.3 A graph G is said to be super edge-magic if it admits a bijection f : V U
E — {1,2,...,p+ q} with f(V) ={1,2,....,p} and f(E) = {p+ 1,p+2,....,p+ q} such that
f(u) + f(v) + f(uww) = c(f), uv € V where ¢(f) is a constant.

From the above definition one can see that a graph is super edge-magic if and only if it is
strongly k-indexable for some k.

R. M. Figueroa-Centenoa et.al.,[4] have introduced the concept of super edge-magic defi-
ciency of graphs.

Definition 1.4 Super edge-magic deficiency of a graph G is the minimum number of isolated
vertices added to G so that the resulting graph is super edge-magic. and is denoted by ps(G).

From the above definitions one can see that 0 < uy(G) < 0.

As, a graph is super edge-magic if and only if it is strongly k-indexable, super edge-magic
deficiency can be equvialently defined as the minimum number of isolated vertices added to
a graph G so that the resulting graph is strongly k-indexable for some k. For the sake of
convenience we call this parameter as vertex dependent characteristic and is denote it by
d.(G). Figueroa-Centenoa et.al.,[4] have proved that

Theorem 1.5 : The vertexr dependent characteristic of complete bipartite graph K,,, is at
most < (m —1)(n—1).

They conjuctured that

Conjecture 1.6 : The vertex dependent characteristic of complete bipartite graph K,,, 1s
equal to (m —1)(n —1).

Also, they proved that

Theorem 1.7 The vertex dependent characteristic of complete bipartite graph Ko, is (n —1).

2 Results

In this section we prove the above mentioned conjucture for m = 3, 4 and 5, using the concept
of strongly k-indexable labelings.

Theorem 2.1 : The vertex dependent characteristic of complete bipartite graph K, is 2(n—1).
Proof: From Theorem 1.5, clearly
de(K3,,) <2(n—1). (1)

From Theorem 1.7, d.(K32)= 2.
Suppose d.(K3,,) < 2(n — 1) for some integer n > 3 then there exists a strongly k-indexable
labeling f: V(K;5,, U (2n —2 — j)K;) — {0, 1,....,3n — j} for some integer j > 1 such that

f+(K3’n) = f+(K3’n U (271 —2- ])Kl) = {k?, k + 2, ceey k+ 3n — 1}
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Let A={z;:2;, € V(Kj;,), deg(x;) =n and f(x;) < f(zi41), 1 =1, 2}.
B = {yi Y € V(K?;,n), deg(?/z’) = 3 and f(yz) < f(yz-+1);1 <i:<n-— 1}-

C={z:2¢€V((2n—-2—-7)K;), deg(z;) =0, 1 <i<2n—2—j}.

Let f(z1) = a then f(x2) =a+ b and f(x3) = a+ b+ ¢ where b, ¢ are positive integers.

Consider the following mutually exclusive subsets of f(K3,,).

Av=A{a+ fy), a+b+ f(n), a+b+c+ f(y)}
Ay ={a+ f(y2), a+b+ f(y2), a+b+c+ f(y2)}
As={a+ f(ys), a+b+ f(ys), a+b+c+ f(ys)}
Aw={at flu), atb+ flu), a+b+ et f(ya)
Since f is strongly k-indexable,
JT(Ks,) =AiUAUA3U..UA,.

Therefore a + f(y1) = k and a + b+ ¢+ f(y,) = k + 3n — 1. There are (b - 1) edge values
between each a+ f(y;) and a+b+ f(y;), 1 <i<nin f*(Kj; ,) and (c- 1) edge values between
each a+b+ f(y;) anda+b+c+ f(y;), 1 <i<nin fT(Kjs ,). As there are only 3n elements

in f*(K3, ,), we must have (b — 1)n+ (¢ — 1)n 4+ 2 < 3n which implies
b—1n+(c—1)n<3n—-2<3n=>b+c<b5.

Therefore possible values of b and ¢ are one among the following.
(1). b=1and ¢ = 3.
(2). b=3and ¢ = 1.
(3). b=1and ¢ = 2.
(4). b=2and c = 1.
(5). b=2and ¢ = 2.
(6). b=1and ¢ = 1.
Case 1: b =1 and ¢ = 3.

From equation (2)
A ={a+ f(y1), a+1+ f(y1), a+4+ f(n)}
Ay ={a+ f(y2), a+ 1+ f(y2), a+4+ f(y2)}
As={a+ f(ys), a+1+ f(ys), a+4+ f(ys)}
Ay ={at f) at 1+ f(u), at 4+ f(u)}
One can observe that , the increasing order of edge values of Ks , are
a+ f(n), a+1+ f(y), a+ f(ya),

a+ 1+ f(y2), a+4+ f(y1), a+ f(ys), -e..



From this increasing order we get,
fy2) =24 f(y1) and f(ys) =5+ f(y1)
But then
fl2) + flys) =a+1+5+f(y)
=a+6+ f(y1)
= f(z3) + f(y2) — a contradiction (because f¥ is injective).
Case 2: b=3 and ¢ = 1.

By similar arguments as in Case 1, we get a contradiction.
Case 3: b =1 and c = 2.

From equation (2)
Ay ={a+ fly), a+ 1+ f(y1), a+3+ f(n)}
Ay ={a+ f(y2), a+1+ f(y2), a+3+ f(y2)}
As={a+ f(y3), a+1+ f(ys), a+3+ f(ys)}
A, = {a_l'f(yn)a a+1+f(yn)> a+3+f<yn)}
One can easily observe that
f(x2) + f(y2) =a+ 1+ f(y2)
=a+3+ f(y1)
= f(z3) + f(y1) — a contradiction.
Case 4: b=2and ¢c = 1.
By similar arguments as in Case 3, we get a contradiction.
Case 5: b=1and ¢c = 1.

If b =c=1 and then
k=a+ f(y)

k+1l=a+1+ f(y1)

k+2=a+2+ f(y) (3)

k+3n—1=a+2+ f(yn)



From equation (3) we get,

f(y2) =3+ f(n)
fys) =6+ f(y1)

f(yn) = 3(n = 1) + f(y1)

From equation (3),
flyn) =k+3n—1-2—a
=k+3n=3— (k- f(y))
=3n—3+ f(y))
<3n—j (. 3n—jis the maximum vertex value. )
= fyn) <3-1.

But f(ya) >0 =3-35>0 =j€{l, 2, 3}

Note that
flA) = {a, a+1, a+2}.
fFB) = {Fn), fly) +3, fly1) +6,..., f(yr) +3(n— 1)} ( From (4))
F(C) = {f(z1), f(22), [(23), s fz2n-2-5)}-

Let F = {f(yl) + 17 f(yl) + 27 f(yl) + 47 f(yl) + 57 f(yl) + 77 ) f(yl) +3n — 4}
Clearly F' C f(Kj3 ,U(2n —2 — j)K;) and F contains 2(n-1) vertex values. Also note that

FNf(B) = ¢.
Sub Case (5.1): j = 1.
Then f(C) contains 2n — 3 vertex values and therefore one element of F' must be in f(A).
Let f(y1) +3s — 5 € f(A) for some integer s, 2 < s < n. Then
a =f(y1)+3s—5 =a+1€ f(B) —a contradiction.
a+1 =f(y1))+3s—5 =ac f(B) —a contradiction.
a+2 = f(y1)+3s—5 =a+1€ f(B) —a contradiction.
Let f(y1) +3r —4 € f(A) for some integer s, 2 < r < n. Then
a =f(p)+3r—4 =a+1e€ f(B) —a contradiction.
a+1 =f(y1)+3r—4 =a+2¢€ f(B) —a contradiction.

a+2 =f(y1))+3r—4 =ac f(B) —a contradiction.
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Therefore j # 1.

Sub Case (5.2): j = 2.

Then f(C) contains 2n — 4 vertex values and therefore two elements of F' must be in f(A).
Let f(y1) +3t—2, f(y1) +3t —4 € f(A) for some integer ¢, 1 < ¢t < n. Then, a +1 =
f(y1) +3t—3= f(y1) +3(t — 1) € f(B)-a contradiction.

Let f(y1) +3m —5, f(y1) +3m —4 € f(A) for some integer m, 1 < m < n. Since these two
values are consecutive, either a € f(B) or a + 2 € f(B)-a contradiction.

Therefore j # 2.

Sub Case (5.3): j = 3.

Then f(C') contains 2n — 5 elements and therefore three elements of F' must be in f(A), which
is impossible because elements of f(A) are consecutive. Clearly j # 3. Thus for j > 1,
(K5 ) U (2n — 2 — j)K; is not strongly k-indexable.

Case 6: b = 2 and ¢ = 2.

From equation (2)
Ar={a+ f(y), a+2+ f(y1), a+4+ f(y1)}
As ={a+ f(y2), a+2+ f(y2), a+4+ f(y2)}
Ap=Ha+ f(yn), a+2+ f(yn), a+4+ f(ya)}
Then the increasing order of edge values of K3 ,, are
a+f(y1), a+f(y2)a a+2+f<yl)> a+2+f(y2)a
a+4+ f(y), a+4+ f(y2), a+ fys), ...
= f(y2) =1+ f(y1), [(ys) =6+ f(y1) and f(ya) =T+ f(y).
If n is odd, that is n = 2r 4+ 1 then there are 47 vertex values which are not used between f(y;)

and f(ya-41). Therefore 2n —2 — j = 4r — j > 4r — j < 0 -a contradiction to j > 1.
If n is even integer then,

fyn) =3n =5+ f(1), f(yn—1) = f(ya) — 1.
k=a+ f(y1),k+3n—1=a+4+ f(yn)
= f(y,) =k+3n—-5—a

— f(yn) =k +3n—=5—(k— f(y))

= f(yn) =3n =5+ f(y)) <3n—j

— j€{1,2,,3,4,5}



Threrefore

f(A) = {a, a+2, a+4}.
f(B): {f(yl)a f(yl)+1v f(yl)+6v f(yl)+77vf(yl)+3n_5}
f(C) = {f(zl)> f(ZQ)a f(Zg), ) f(z2n—2—j)}-

Again, let R = {f(y1) +2, f(y1) +3, f(y1) +4, f(y1) +5, fly1) +8, ..., }.

Clearly R C f(K3 ,U(2n—2—j)K;) and R contains (2n-4) vertex values and RN f(B) =
¢. Similar to the arguments used for Sub Cases (5.1), (5.2) and (5.3) we can show that
Jj#1,2,,3,4,5. Hence from (1) d.(K5 ,) =2(n—1). &

Theorem 2.2 : The vertex dependent characteristic of complete bipartite graph K4 ,, is 3(n—1).
Proof: From Theorem 1.5, clearly
de(Ky, n) <3(n—1). (5)

From Theorem 1.7 and 2.1, d.(K4 2) = 3 and d.(K4 3) = 6. Assume that d.(K, ,) < 3(n — 1)
for some integer n > 4 then there exists a strongly k-indexable labeling f : V(K4 , U (3n —3 —
J)K1) — {0, 1,....,4n — j} for some integer j > 1 such that

f+(K4,n) = f+(K4,n U (3n -3 —])Kl) = {]C, k + 2, ,k+4n - 1}
Let A={z;:2; € V(Ky ), deg(x;) =n and f(x;) < f(zi41), i =1, 2, 3}
B={y;:y; € V(Ky ), deg(y;) =4 and f(y;) < f(yiz1);1 <i<n—1},

C={z:2€V((Bn—-3—-7)K;), deg(z;) =0, 1 <i<3n—-3—j}.

Let f(z1) = a then f(z2) =a+0b, f(x3) =a+b+cand f(z3) =a+ b+ c+d where b, ¢, d are
positive integers.

Similar to pevious theorems consider the mutually exclusive subsets of f(Ky ,).

Ai={a+ fy1), a+b+ f(y1), a+b+c+ f(y1), a+b+c+d+ f(y)}

As={a+ f(y2), a+b+ f(y2), a+b+c+ f(y2), a+b+c+d+ f(y2)}
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As={a+ f(ys), a+b+ f(ys), a+b+c+ f(ys), a+b+c+d+ f(ys)} ©)

Ay =1{at fya)s atbt flg) atbtet flya) atbretdt fum)

There are (b - 1), (¢ - 1) and (d - 1) distinct edge values between each a + f(y;) and
a+b+f(yi) , a+b+ f(y;) and a+b+c+ f(y;) and a+b+c+ f(y;) and a+b+c+d+ f(y;), 1 <
i < nin fH(Ky ,) respectively. As there are only 4n elements in f*(Ky ,), we must have
(b—1n+(c—1)n+ (d—1)n+ 2 < 4n. Therefore we get b+c+d < 7.

There are many possible values of b, ¢ and d but it is enough if we consider the following seven
cases.

(1). b=1,c=1and d = 2.



(2). b=1,c=1and d = 3.

(3).b=1,c=1and d = 4.

(4). b=2,c=1and d = 2.

(5). b=2,c=1andd = 3.

(6). b=1,c=1andd = 1.

(7). b=2,c=2and d = 2.

Casel: b=1,c =1 and d = 2.

In this case, note that f(y2) =3+ f(y1) and therefore we get

f(xg) + fy1) = f(x2) + f(y2) — a contradiction (because f¥ is injective).

Case 2: b=1,c =1 and d = 3.
In this case also, note that f(y2) =3 + f(y1) and therefore we get

f(xs) + f(y1) = f(xs)+ f(y2) — a contradiction.

Case 3: b=1,c=1and d = 4.
Similarly, in this case f(y3) =4+ f(y2). Therefore,

f(zs)+ f(ys) = f(xy) + f(y2) — a contradiction.

Case 4: b=2,c=1and d = 2.
Note that f(y2) =1+ f(y1)

f(zs)+ f(y1) = f(x2) + f(y2) — a contradiction.

Case 5: b=2,c=1 and d = 3.
Note that in this case also f(y2) = 1+ f(y1)

f(zs)+ f(y1) = f(x2) + f(y2) — a contradiction.

Case 6: b=1,c=1and d = 1. and

Case 7: b = 2, c = 2 and d = 2. also arrive at contradiction using analogous arguments
of Theorem 2.1 Case-5 and Case-6. Therefore from all these seven cases, clearly j ? 1. Hence
from (5) d.(Ky ) =3(n—1). &

Theorem 2.3 . The vertex dependent characteristic of a complete bipartite graph Ks,, is
4(n—1).

Proof. Consider the complete bipartite graph Kj,. From Theorem 1.5, we have
de(Ks,) < 4(n—1) (7)

Also, we see that d.(K52) = 4, d.(K53) = 8 and d.(K54) = 12. Assume that d.(K;,) <
4(n — 1) for some positive integer n > 5. Then, there exists a strongly k-indexable labeling
[ V(KspU(dn—4—j)Ky) — {0,1,2,...,5n — j} for some positive integer j > 1 such that
JTH(Ksn) = f[T(KsnU(4n—4—j)Ky) ={k,k+2,...,k+5n—1}.



A={z; 2, € V(Ks5,),deg(x;) =n, f(x;) < f(zi41),1=1,2,3,4}

B={yi:yi € V(Ksn),deg(ys) =5, f(yi) < f(yig1), 1 <1 <n—1}

C={z:2z€V((4n—-4—j)Ky),deg(z) =0,1<i<4n—4 — j}.

f(z1) = a, then f(z2) = a+b, f(x3) = a+b+c, f(x4) = at+b+c+d and f(x5) = a+b+ct+d+e,
where b, c,d,e are positive integers. Consider the following mutually exclusive subsets of

fH(Ksn).
Ay :5{a+f(y1),a+b+f(yl),a+b+c+f(yl),a+b+c+d+f(y1),a+b+c+d+e+f(yl)}

Ay ={a+ f(y2),a+b+ f(y2),a+b+c+ f(y2),a+b+c+d+ f(y2),a+b+c+d+e+ f(y2)}

As ={a+ f(ys),a+b+ f(ys3),a+b+c+ f(y3),a+b+c+d+ f(ys),a+b+c+d+e+ f(ys)}

A, ={a+ f(yn),a+b+ f(yn),a+b+c+ f(yn),a+b+c+d+ f(yn),a+b+c+d+e+ f(y.)} (8)
Since f is strongly k-indexable,

JH(Ksn) =A1UAU---UA,.

Therefore, a + f(y1) = k and a + +b+c+d+ e+ f(y,) = k+ 5n — 1. Note that there are
(b — 1) edge values between a + f(y;) and a + b+ f(y;),1 <i <mn, (¢c—1) edge values between
a+b+ f(y) and a+b+c+ f(y;),1 <i<mn, (d—1) edge values between a + b+ ¢ + f(y;)
and a +b+c+d+ f(y;),1 < i < n, (e —1) edge values between a + b+ c +d + f(y;)
and a +b+c+d+e+ f(y;),l <i < nin fF(Ks5,). As there are only 5n elements in
fT(K5,), we must have (b—1)n+ (¢ —1)n+ (d — 1)n + (e — 1)n + 2 < 5n, from which we
get,(b—1)n+(c—=1)n+(d—1n+(e—1)n<d5n—2<5n
= bt+c+d+e<H.

Even though there are many possible values of b, ¢, d, e satisfying b+ c+d+e < 9, it is
enough to consider the following twelve cases.

Case I: b=1,c=1,d=1,e =5.
From equation (8)
Av={a+ f(y1),a+1+ f(y1),a+2+ f(y1),a+3+ f(y1),a+ 8+ f(y1)}

Ay ={a+ f(y2),a+ 1+ f(y2),a+2+ f(y2),a+ 3+ f(y2),a +8+ f(y2)}

Az ={a+ f(ys),a+ 1+ f(ys),a+2+ f(ys),a+ 3+ f(ys),a+8+ f(ys)}

An ={a+ fyn),a+14 f(yn),a+ 24 f(yn),a+3+ fyn),a + 8+ f(yn)}



Then, the increasing order of edge values of K5, are a+ f(y1),a+1+ f(y1),a+2+ f(y1),a+

3+f(y1>7 a+f(y2), a+1+f(y2)7 a+2+f(y2>7 a+3—|—f(y2), a+8+f<y1)7 a+f(y3)7 R a+8+f<yn)
From this increasing order, we get

a+ f(y2) =a+3+ f(y1) and a + 8+ f(y1) = a+ f(y3)

= f(ys) =9+ f(y1) and f(y2) =4+ f(11).

But f(z4) + f(ys) = a+3+9+ f(y)= (a+8) + (4 + f(y1))= f(ws) + f(v2).

This is a contradiction as f is injective.

Case 2: b=1,c=1,d=1,e =4.
From equation (8)
Av={a+ f(y1),a+1+ f(y1),a+2+ f(y1),a+3+ fly1),a+ 7+ f(yr)}

Ay ={a+ f(y2),a+ 1+ f(y2),a+2+ f(y2),a+ 3+ f(y2),a+ 7+ f(y2)}

Az ={a+ f(ys),a+ 1+ f(ys),a+2+ f(ys),a+ 3+ f(ys),a+ 7+ f(ys3)}

Ay ={a+t f)at 1+ f)at 2+ f)at3+ fmatT+ )}

Then, one can easily observe that
a+3+ f(y1) =a+ f(y2) and a+ 7+ f(y1) = a+ f(y3)

= f(y2) =4+ f(y1) and f(y3) =8+ f(y1).

But f(z4) + fy2) = a + 3+ f(y2)= (a +3) + (4 + fy1)= [(2s) + f())-

This is again a contradiction.

Case 3: b=1,c=1,d=1,e =3.

From equation (8)

Ar={a+ f(y),a+1+ f(y1),a+2+ f(y1),a+3+ f(y1),a+6+ f(y1)}

Ay =A{a+ f(y2),a+ 1+ f(y2),a+2+ f(y2),a+ 3+ f(y2),a + 6+ f(y2)}

Az ={a+ f(ys),a+ 1+ f(ys),a+2+ f(ys),a+ 3+ f(ys),a+6+ f(ys)}

An:{a+f<yn)>a+1‘l'f(yn)aa+2+f(yn)>a+3+f(yn)aa+6+f(yn)}

Then, one can easily observe that
a+3+ f(y1) =a+ f(y2) and a+ 6+ f(y1) = a + f(y3)
= f(y2) =4+ f(y1) and f(ys) =7+ f(y1).

But f(z3) + f(y2) =a+2+4+ f(y2)= (a+6) + f(y1)= flxs) + f(y1)-
This is again a contradiction.
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Case 4: b=1,c=1,d=1,e=2.
From equation (8)
Ar={a+ f(y1),a+1+ f(y1),a+2+ f(y1),a+3+ f(y1),a+5+ f(y1)}

Ay ={a+ fy2),a+ 1+ f(y2),a+2+ f(y2),a+ 3+ f(y2),a + 5+ f(y2)}

Az =A{a+ f(ys),a+ 1+ f(ys),a+2+ f(ys),a+ 3+ f(ys),a+5+ f(ys3)}

Ay ={a+t f)a+ 1+ f)at2+ fu)at3+ fum)ats+ )}

Then, one can easily observe that
a+3+ f(y1) =a+ f(y2) and a+5+ f(y1) = a+ f(ys)
= [f(y2) =4+ f(y1) and f(ys) =6+ f(y1)-

But f(x2) + f(y2) = a+ 1+4+ f(y1)= (a+5) + fly1)= f2s) + (1)

This is again a contradiction.

Case 5: b=3,c=3,d=1,e=1.
From equation (8)
A ={a+ fly1),a+3+ f(pn),a+6+ f(y1),a+ 7+ f(y1),a+8+ f(y1)}

Ay ={a+ f(y2),a+3+ f(y2),a+6+ f(y2),a+ 7+ f(y2),a +8+ f(y2)}

As={a+ f(ys),a+3+ f(ys),a+6+ f(ys),a+ 7+ f(ys),a +8+ f(ys)}

Ay ={a+ f(yn),a+3+ f(yn)a+6+ f(yn)sa+ 7+ f(ya),a+8+ f(yn)}
Then, one can easily observe that

a+3+fn) =a+ f(y) and a + 8+ f(v1) = a + f(ys)

= f(y2) =4+ f(y1) and f(y3) =9+ f(v1).

But f(z2) + f(y2) =a+3+4+ f(y1)= (a+7)+ f(yr)= f(xa) + f(11).

This is again a contradiction.

Case 6: b=2,c=2,d=2,e=1.
From equation (8)
Ar={a+ f(y),a+2+ f(yr),a+4+ f(y1),a+6+ f(y1),a+ T+ f(y1)}

Ay ={a+ f(y2),a+2+ f(y2),a+4+ f(y2),a+ 6+ f(y2),a + 7+ f(y2)}

As={a+ f(ys),a+2+ f(ys),a+4+ f(ys),a+6+ f(ys),a+ 7+ f(y3)}

11



Ay ={at f)a+ 2+ f)atat fu)at6+ fum)atT+ ()}

Then, one can easily observe that
a+ f(y2) :a+2+f(y1) and a + f(y3) :a+7+f(y1)

= f(y2) =3+ f(y1) and f(y3) =8+ f(v1).

But f(z3) + f(y2) = a+ 443+ f(y2)= (a+7) + f(y1)= fla5) + f(y1).

This is again a contradiction.
Case 7: b=2,c=2,d=1,e=1.

From equation (8)
Av={a+ f(y),a+2+ f(y1),a+4+ f(y1),a+5+ f(y1),a+6+ f(y1)}

Ay =A{a+ f(y2),a+2+ f(y2),a+ 4+ f(y2),a+5+ f(y2),a + 6+ f(y2)}

Az ={a+ f(ys),a+2+ f(ys),a+ 4+ f(ys),a+5+ f(ys),a+6+ f(ys)}

Apn=Aa+ f(yn),a+2+ f(yn),a+ 44 f(yn),a+5+ f(Yn),a+ 6+ fyn)}
Then, one can easily observe that

a+ f(y2) =a+2+ f(y1) and a + f(y3) =a+ 6+ f(y1)

= f(y2) =3+ f(y1) and f(ys) =7+ f(y).
But f(z2) + f(y2) =a+2+3+ f(y2)= (a+5) + f(y1)= f(z1) + f(y1)-

This is again a contradiction.

Case 8: b=1,c=2,d=2,e =3.
From equation (8)

Ay ={a+ f(y),a+ 1+ f(y1),a+ 3+ f(y1),a+5+ f(y1),a+8+ f(y1)}
A2:{a+f(y2),a—|—1+f(y2),a+3—|—f(y2),a+5+f(y2),a+8+f(y2)}

Az ={a+ f(ys),a+ 1+ f(ys),a+ 3+ f(ys),a+5+ f(ys),a+ 8+ f(ys)}

A ={a+ f(yn),a+ 14 f(yn),a+3+ f(yn),a+5+ f(yn), a+ 8+ f(yn)}

Then, one can easily observe that
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a+ f(y2) =a+3+ f(y1) and a + f(y3) =a+ 8+ f(y1)
= f(y2) =4+ f(y1) and f(yz) =9+ f(v1).
But f(z2) + f(y2) =a+1+4+ f(y1)= (a+5) + f(y1)= f(xa) + f(31).

This is again a contradiction.

Case 9: b=1,c=1,d=2,e =4.
From equation (8)

Ay ={a+ f(y),a+ 1+ f(y1),a+2+ f(yr),a+4+ f(y1),a+8+ f(y1)}
A2:{a+f(y2),a—|—1+f(yg),a+2—|—f(y2),a+4+f(y2),a+8+f(yg)}

Az ={a+ f(ys),a+ 1+ f(ys),a+2+ f(ys),a+4+ f(ys),a + 8+ f(ys)}

An ={a+ fyn),a+14 f(yn),a+ 2+ f(yn),a+4+ fyn),a + 8+ fyn)}

Then, one can easily observe that
a+ f(y2) =a+4+ f(y1) and a+ f(y3) =a+ 8+ f(y1)

= f(y2) =5+ f(y1) and f(y3) =9+ f(v1).

But f(z1) + f(ys) = a+ 9+ f(y2)= (a +4) + (5+ f(v1))= f(za) + f(y2).

This is again a contradiction.

Case 10: b=1,c=1,d=2,e = 3.
From equation (8)

Ay ={a+ f(y),a+ 1+ f(y1),a+2+ f(yr),a+4+ f(y1),a+ 7+ f(y1)}
A2:{a+f(y2),a—|—1+f(y2),a+2—|—f(yg),a+4+f(yg),a+7+f(y2)}

Az ={a+ f(ys),a+ 1+ f(ys),a+2+ f(ys),a+4+ f(ys),a+ 7+ f(ys)}

An ={a+ fyn),a+ 14 f(yn),a+ 24 f(yn)a+4+ fyn),a + 7+ fyn)}

Then, one can easily observe that
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a+ f(y2) =a+4+ f(y1) and a+ f(y3) =a+ 7+ f(1)
= f(y2) =5+ f(y1) and f(y3) =8+ f(y1)
But f(zs3) + f(y2) =a+2+5+ f(y2)= (a+7) + f(y1)= f(xs) + f(y1)-

This is again a contradiction.

Case 11: b=2,c=2,d=2,e=2.
From equation (8)

Av={a+ f(y),a+2+ f(y),a+4+ f(y1),a+6+ f(y1),a+8+ f(y1)}
A2:{a—l—f(yg),a—l—2+f(y2),a+4+f(yg),a—l—6—|—f(y2),a+8+f(y2)}

Az ={a+ f(ys),a+2+ f(ys),a+4+ f(ys),a+6+ f(ys),a+8+ f(ys)}

Ap=A{a+ flyn),a+2+ f(yn),a+ 4+ f(yn),a+ 6+ f(yn), a+8+ f(ya)}
Then, one can easily observe that
a+2+ f(y1) =a+ f(y2) and a + 8+ f(y1) = a+ f(y3)
= f(y2) =3+ f(y) and f(ys) =9+ f(y1).
But f(z1) + f(ys) =a+9+ f(y1) = (a+6) + B+ fy1) = f2a) + f(y2).
This is again a contradiction.

Case 12: b=1,c=1,d=1,e=1.
Then

k=a+f(y)

E+1l=a+1+ f(y1)
E+2=a+2+ f(y)
k+3=a+3+ f(y1)
k+d=a+4+ f(y)

kE+5=a+ f(ya)
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k+6=a+1+ f(y2)

k+5n—1=a+4+ f(yn) 9)

From equation (9), we get

fy2) =5+ f(y1)
f(ys) =10+ f(y1)
f(ya) =15+ f(y1)

f(yn) = 5(n = 1) + f(y1) (10)

From equation (9),

flyn) =k+5n—1—a—4
=k+5n—5—(k— f(y)
=51 -5+ f(y
< 5n — j (since 5n — j is the maximum vertex value)
= fy1) <5-J
Butf(y;) >0=5-3j2>0
= je{1,2,3,4,5).
Note that f(A) ={a,a+1,a+2,a+ 3,a+ 4},
f(B> = {f(y1>75 + f(yl)v 10+ f(y1>7 c ,5(71 - 1) + f(yl)}u
f(C> = {f(21>7 f(z2)7 R f(z(4n—4—j)>}‘
Clearly F C f(K5,U(4n—4—7)K;) and F contains 4(n— 1) vertex values. Also FNf(B) = 0.
We have three sub cases.
Case 12.1: 7 = 1.

Then, f(C') contains 4n — 5 vertex values and hence one element of F' must be in f(A). Let
f(y1) +5m — 7 € f(A) for some positive integer m, 2 < m <n. Then a = f(y;) +5m —7

= a+ 2 € f(B), a contradiction.
a+1=f(y1)+5m—T7=a+3 € f(B)- a contradiction

a+2=f(y)+5m—T7=a+4 € f(B)- a contradiction
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a+3=f(y1)+5m—T7=a+4 € f(B)- a contradiction
a+4=f(y1)+5m—T7=a+1¢€ f(B)- a contradiction
Let f(y1) + 5r — 6 € f(A) for some integer 7,2 < r < n. Then,
a= f(y1)+5r—6=a+1¢€ f(B)- a contradiction
a+1=f(y1)+5r—6=a+2e¢e f(B)- a contradiction
a+2=f(y1)+ 5" —6=a+3 € f(B)- a contradiction
a+3=f(y1)+5r—6=a+4¢€ f(B)- a contradiction
a+4=f(y1)+5r—6=a+3 € f(B)- a contradiction

Therefore j # 1.
Case 12.2: j = 2.

Then, f(C') contains 4n — 6 vertex values and therefore two elements of F' must be in f(A).
Let f(y1) + 5t — 4, f(y1) + 5t — 6 € f(A) for some positive integer t,1 <t <n. Then, a+ 1=
f(y1)+5t—5= f(y1)+5(t—1) € f(B)- a contradiction. Let f(y;)+5w—7, f(y1)+dw—6 € f(A)
for some positive integer w, 1 < w < n. Since these two values are consecutive, either a € f(B)
or a + 2 € f(B)- a contradiction. Therefore, j # 2.

Case 12.3: 7 = 3.

Then, f(C) contains 4n — 7 vertex values and therefore three elements of F' must be in
f(A). This is impossible because elements of f(A) are consecutive. Clearly j # 3.

Proceeding on similar lines to case 12.3 above, we get contradictions when j = 4,5. Thus
for j > 1, K5, U (4n — 4 — j)K; is not strongly k-indexable. Hence from equation (7), we get
d.(Ks,) = 4(n —1). This completes the proof. ¢

Remark 1. In strongly k-indexable labelings it is enough to consider only vertex labelings(as
vertex labelings induces edge labelings) whereas in super edge-magic labelings one has to deal
with two functions. From the proof of theorem 1.7 mentioned in Figueroa-Conteno et.al., one
can see that it is easier to prove the results on super edge-magic deficiency of graphs using the
concept of strongly k-indexable labelings rather than super edge-magic labelings.
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