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IMPROVED LOCAL CONVERGENCE ANALYSIS FOR A

THREE POINT METHOD OF CONVERGENCE ORDER

1.839. . .

Ioannis K. Argyros, Yeol Je Cho, and Santhosh George

Abstract. In this paper, we present a local convergence analysis of a
three point method with convergence order 1.839. . . for approximating

a locally unique solution of a nonlinear operator equation in setting of

Banach spaces. Using weaker hypotheses than in earlier studies, we ob-
tain: larger radius of convergence and more precise error estimates on

the distances involved. Finally, numerical examples are used to show the
advantages of the main results over earlier results.

1. Introduction

In this paper, we are concerned with the problem of approximating a solution
x∗ of the nonlinear equation:

(1) F (x) = 0,

where F is a Fréchet-differentiable operator defined on a subset D of a Banach
space X with values in a Banach space Y.

Using mathematical modeling [3], many problems in computational sciences
and other disciplines can be brought in a form like the problem (1). In general,
the solutions of the equation (1) can not be found in closed form. Therefore,
iterative methods are used for obtaining approximate solutions of the problem
(1). In particular, the practice of Numerical Functional Analysis for finding
such solution is essentially connected to Newton-like methods [1–26].

The study about convergence matter of iterative procedures is usually based
on two types: semi-local and local convergence analysis. The semi-local conver-
gence matter is, based on the information around an initial point, to give some
conditions ensuring the convergence of the iterative procedure, while the local
one is, based on the information around a solution, to find estimates of the
radii of convergence balls. There exist many studies which deal with the local
and semi-local convergence analysis of Newton-like methods such as [1–26].
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In this paper, we study the local convergence of the method defined as
follows: for each n ≥ 0,

(2) xn+1 = xn −A−1
n F (xn),

where x−2, x−1, x0 ∈ D are initial points,

An = [xn, xn−1;F ] + [xn−2, xn;F ]− [xn−2, xn−1;F ],

[x, y;F ] ∈ L(X,Y ) denotes a divided difference of order one for operator F at
the point x, y ∈ D and [x, y, x;F ] denotes a divided difference of order two (see
[3, 4, 9, 22]).

The local as well as the semi-local convergence of the method (2) was given
in [25]. Studies on this and similar methods were given in [6, 7, 10, 21]. The
convergence order is 1.839 . . . and the method (2) is a useful alternative to
higher order methods such as the method of tangent hyperbolas (Halley) or the
method of tangent parabolas (Euler-Chebysheff) [3,4,9,11,12,15,25]. However,
these methods are very expensive since they require the evaluation of the second
Fréchet-derivative at each step. Discretized versions of these methods such as
Ulm’s method use divided differences of order two [3, 9, 22]. That is why the
method (2) is very useful.

Let U(x, ρ) and U(x, ρ) stand, respectively, for the open and closed ball in
X with center x ∈ X and radius ρ > 0. The local convergence of method (2)
was studied in [25] under the conditions (C):

(C1) There exists x∗ ∈ D such that F ′(x∗) = 0 and F ′(x∗)−1 ∈ L(Y,X);
(C2) There exist constants p ≥ 0 and q ≥ 0 such that, for each x, y, u, v ∈ D,

‖F ′(x∗)−1([x, y;F ]− [u, v;F ])‖ ≤ p(‖x− u‖+ ‖y − v‖);
(C3) ‖F ′(x∗)−1([u, x, y;F ]− [v, x, y;F ])‖ ≤ q‖u− v‖;
(C4) Ū(x∗, r) ⊆ D, where r is the radius of the convergence ball given by

(3) r =
2

3p+
√

9p2 + 24q
.

Example 1.1. Let X = Y = R, D = [− 5
2 ,

1
2 ]. Define a function F on D by

F (x) = x3 log x2 + x5 − x4

for all x ∈ D. Then

F ′(x) = 3x2 log x2 + 5x4 − 4x3 + 2x2,

F ′′(x) = 6x log x2 + 20x3 − 12x2 + 10x,

F ′′′(x) = 6 log x2 + 60x2 = 24x+ 22.

Now, we are interested in enlarging the radius of convergence for the method
(2) under weaker hypotheses.

The advantages denoted by (A) will be: more initial guesses; less computa-
tional steps in order to achieve a desired accuracy and application of the method
(2) in cases not covered in earlier studies. Below, we list our conditions (H):
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(H1) (H1)=(C1);
(H2) There exist constants c1 ≥ 0, c2 ≥ 0, c3 ≥ 0 and q ≥ 0 such that, for

each x, y, u, v ∈ D,

‖F ′(x∗)−1([x, x∗;F ]− [x, x;F ])‖ ≤ c1‖x− x∗‖,
‖F ′(x∗)−1([x∗, x∗;F ]− [x, x∗;F ])‖ ≤ c2‖x− x∗‖,
‖F ′(x∗)−1([x, x∗;F ]− [x, y;F ])‖ ≤ c3‖y − x∗‖;

(H3) (H3)=(C3);
(H4)

Ū(x∗, R) ⊆ D,
where

(4) R =
2

c1 + c2 + c3 +
√

(c1 + c2 + c3)2 + 24q
.

It turns out (see the proof of the main local convergence result Theorem 2.1
in Section 2) that the (H) and not the (C) conditions are really needed in the
proof of Theorem 4.1 in [25, p. 87]. In other words, the condition (C2) is never
used at this general form. Moreover, notice that

(5) c1 ≤ p, c2 ≤ p, c3 ≤ p, c1 ≤ c3, c2 ≤ c3
hold in general and p

c1
, p
c2
, p
c3
, c3c1 and c2

c2
can be arbitrarily large [3,4,8]. In view

of (3), (4) and (5), we have

(6) r ≤ R.

Moreover, the strict inequality may hold in (6) if c1 < p or c2 < p or c3 < p.
The rest of the paper is organized as follows: In Section 2, we present the

local convergence analysis of the method (2) under the (H) conditions, whereas,
in the concluding Section 3, we present some numerical examples.

2. Local convergence

In this section, we present the local convergence of the method (2) under
the (H) conditions in this Section.

Theorem 2.1. Suppose that the (H) conditions hold. Then the sequence {xn}
generated by the method (2) for x−2, x−1, x0 ∈ U(x∗, R) is well defined, re-
mains in U(x∗, R) for each n ≥ 0 and converges to x∗. Moreover, the following
estimates hold: for each n ≥ 0,

(7) ‖xn+1 − x∗‖ ≤ en < R,

where en = Γn

Θn
with

Γn = [c1‖xn − x∗‖+ q(‖xn − x∗‖+ ‖xn−2 − x∗‖)
× (‖xn − x∗‖+ ‖xn−1 − x∗‖)]‖xn − x∗‖
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and

Θn = 1− [(c2 + c3)‖xn − x∗‖+ q(‖xn − x∗‖+ ‖xn−2 − x∗‖)
× ‖xn−1 − x∗‖].

Furthermore, x∗ is the unique solution of the equation (1) in U(x∗, 1
c2

) (for

c2 6= 0) which is bigger than U(x∗, R).

Proof. Let x, y, z ∈ U(x∗, R). Define the operator T by

(8) A = [x, y;F ] + [z, x;F ]− [z, y;F ].

Using the condition (H3), (8), the second and third hypotheses in (H2), we
have in turn

‖F ′(x∗)−1(A− F ′(x∗))‖
= ‖F ′(x∗)−1([x∗, x∗;F ]− [x, x∗;F ] + [z, x∗;F ]− [z, x;F ] + [x, x∗;F ]

− [x, y;F ]− [z, x∗;F ] + [z, y;F ])‖
≤ |F ′(x∗)−1([x∗, x∗;F ]− [x, x∗;F ])‖+ ‖F ′(x∗)−1([z, x∗;F ]− [z, x;F ])‖

+ ‖F ′(x∗)−1([x, x∗, y;F ]− [z, x∗, y;F ])(x∗ − y)‖
≤ (c2 + c3)‖x− x∗‖+ q‖x− z‖‖x∗ − y‖
< (c2 + c3)R+ q(‖x− x∗‖+ ‖x∗ − z‖)‖x∗ − y‖
< (c2 + c3)R+ 2qR2 < 1(9)

by the choice of R. It follows from (9) and the Banach Lemma on invertible
operators [3,9,18,22] that A−1 ∈ L(Y,X) and, for x = xn, z = xn−2, y = xn−1,

‖A−1F ′(x∗)‖

≤ 1

1− [(c2 + c3)‖xn − x∗‖+ q(‖xn − x∗‖+ ‖xn−2 − x∗‖)‖xn−1 − x∗‖]
.(10)

Suppose that xk, xk−1, xk−2 ∈ U(x∗, R) for each k ≤ n. Then it follows that
Ak = A(xk, xk−1, xk−2) is invertible. Therefore, using the method (2) and the
condition (H1), it follows that

‖xk+1 − x∗‖
= ‖xk − x∗ −A−1

k (F (xk)− F (x∗))‖
= ‖ −A−1

k ([xn, x
∗;F ]−Ak)(xk − x∗)‖

≤ ‖A−1
k F ′(x∗)‖‖F ′(x∗)−1([xk, x

∗;F ]−Ak)‖‖xk − x∗‖.(11)

Next, using (11), the first condition in (H2) and (H3), we have in turn

‖F ′(x∗)−1([xk, x
∗;F ]−Ak)‖

= ‖F ′(x∗)−1([xk, x
∗;F ]− [xk, xk;F ]

+ [xk, xk;F ]− [xk, xk−1;F ]− [xk−2, xk;F ] + [xk−2, xk−1;F ])‖
= ‖F ′(x∗)−1 (([xk, x

∗;F ]− [xk, xk;F ])
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+ ([xk, xk, xk−1;F ]− [xk−2, xk, xk−1;F ])(xk − xk−1)) ‖
≤ ‖F ′(x∗)−1([xk, x

∗;F ]− [xk, xk;F ])‖
+ ‖F ′(x∗)−1([xk, xk, xk−1;F ]− [xk−2, xk, xk−1;F ])‖‖xk − xk−1‖

≤ c1‖xk − x∗‖+ q‖xk − xk−2‖‖xk − xk−1‖
≤ c1‖xk − x∗‖+ q(‖xk − x∗‖+ ‖xk−2 − x∗‖)
× (‖xk − x∗‖+ ‖xk−1 − x∗‖).(12)

In view of (10)-(12), we arrive at

‖xk+1 − x∗‖ ≤ ek <
c1R+ 4qR2

1− ((c2 + c3)R+ 2qR2)
R = R

by the choice of R which shows (7). It follows from (7) that

‖xk+1 − x∗‖ < ‖xk − x∗‖ < R,

which shows xk+1 ∈ U(x∗, R) and limk→∞ xk = x∗.
Finally, to show the uniqueness part, let y∗ ∈ U(x∗, 1

c2
) be a solution of the

equation F (x) = 0. Then, using the second hypotheses in (H2), we have

(13) ‖F ′(x∗)−1(F ′(x∗)− [y∗, x∗;F ])‖ ≤ c2‖y∗ − x∗‖ < 1.

It follows from (13) and the Banach Lemma on invertible operators that the
operator [y∗, x∗;F ] is invertible. Then, from the identity

[y∗, x∗;F ](y∗ − x∗) = F (y∗)− F (x∗) = 0,

we deduce that x∗ = y∗. It follows from (4) that R ≤ 1
c2
. This completes the

proof. �

Remark 2.2. (1) It follows from (C2) that

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ 2p‖x− y‖
for each x, y ∈ D. Then, the radius of convergence r is smaller that the radius
of convergence rN [3, 8, 9, 22] for Newton’s method defined as follows: for each
n ≥ 0,

(14) xn+1 = xn − F ′(xn)−1F (xn),

where x0 is an initial point,

(15) rN =
1

3p
, r ≤ rN .

Notice that, if q = 0, then r = rN .
(2) The corresponding error bounds in [25] are:

(16) ‖xn − x∗‖ ≤ ēn < r,

where

ēn =
p(‖xn − x∗‖+ q(‖xn−2 − x∗‖+ ‖xn − x∗‖)(‖xn−1 − x∗‖+ ‖xn − x∗‖)

[1− (2p‖xn − x∗‖+ q(‖xn−1 − x∗‖+ ‖xn−2 − x∗‖)‖xn−1 − x∗‖
.
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Notice that

(17) en ≤ ēN .
Moreover, the strict inequality holds if c1 < p or c2 < p or c3 < p. In this case
we may also have rN < r < R (see also the numerical examples).

(3) The ideas of this paper can also be used to improve the semi-local con-
vergence analysis given in [25]. However, we leave this task to the motivated
reader.

3. Numerical examples

We present a numerical example in this section.

Example 3.1. Let X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define a
function F on D for w = (x, y, z)T by

F (w) =
(
ex − 1,

e− 1

2
y2 + y, z

)T
.

Then the Fréchet-derivative is defined by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Define the divided differences [x, y;F ] and [x, y, z;F ] by

[x, y;F ] =
1

2
(F ′(x) + F ′(y))

and
[x, y, z;F ](y − z) = [x, y;F ]− [x, z;F ].

Then the conditions (C1), (H1), (C2), (H2), (C3), (H3) are satisfied for x∗ = 0,
F ′(x∗) = F ′(x∗)−1 = 1, p = e

2 , q = 0 and c1 = c2 = c3 = e−1
2 . Notice that

c1 < p, c2 < p, c3 < p

and

rN = r =
2

3e
= 0.24525296

< 0.387984471 = R =
2

3(e− 1)

< 1− 163953414 =
1

c1
.

Therefore, x∗ is unique in D.
Next, we compare the error bounds en (see (7) with ēn (see (16)). Choose

x−2 = (0.244, 0.244, 0.244)T , x−1 = (0.242, 0.242, 0.242)T ,

x0 = (0.24, 0.24, 0.24)T .

Then we obtain the following table.
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Table 1. Comparison table

n (7) (16)
2 7.6744e-04 0.0276

It follows from Table 1 that our error estimates are more precise than the
corresponding ones in [25].

Example 3.2. Returning back to the motivational example at the introduction
of this study, we have

c1 = c2 = c3 = p =
96.662907

2
, q =

146.6629073

2
.

Then we have

r = R = 0.006896819962870 < rN = 0.0081432042892163.

Notice that r = R in this case by (3) and (4).

Example 3.3. Let X = Y = C[0, 1] (the space of continuous functions defined
on [0, 1]) be equipped with the max norm. Let D = U(0, 1) and define a
function F on D by

(18) F (ϕ)(x) = ϕ(x)− 5

∫ 1

0

xθϕ(θ)3dθ.

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ

for each ξ ∈ D. Then it follows that x∗ = 0, c1 = c2 = c3 = 7.5
2 , p = q = 7.5.

So, we have

rN = 0.0444444444444

< r = 0.0485479622541332

< R = 0.06954362549881253.
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