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Abstract-A finite difference method assuming parabolic variation of contact pressure distribution is 
presented to obtain the influence lines for bending moments in beams on an elastic foundation. These 
influence lines can conveniently be used to find moments in beams on elastic foundations due to any type 
of loads. The computational procedure presented is simple. Accurate results are obtained with only 10 
elements. 

1. INTRODUCTION 

The continuous beam-slab type of foundation system 

is generally analysed as a beam on elastic foun- 

dations. Such a structural system for foundations 
ensures flexural behaviour while avoiding punching 
failure. 

In general, to analyse, soil-structure interaction 
problems, the following two soil models with a large 
area of practical utility are considered. The Winkler 
model or local deformation hypothesis, in which the 
soil is considered as an elastic spring field and contin- 
uum model, and is also considered as a homogeneous, 
isotropic, linearly deformable elastic half space. 

Soil is rarely homogeneous, generally layered and 
anisotropic, and never perfectly elastic. The defor- 
mations are time dependant and partly irreversible. 
For such a complex material, numerical methods with 
good approximations provide equally reliable results 
as the rigorous classical methods and have the advan- 
tage of being easily programmable for the computers. 

Of the many solutions of beams on elastic foun- 
dations, Hetenyi [l] provided the classical solution of 
a fourth-order governing differential equation for the 
beam of uniform section on Winkler medium. Bar- 
den [2] computed the contact pressure distribution 
based on displacement compatibility between the 
beam and soil assuming a stepped variation of con- 
tact pressure. Popov [3] presented a method of succes- 
sive approximations of contact pressure distribution 
until1 the convergence. The elastic line of the beam 
is determined using the moment-area method. 
Bowles [4] provided a finite difference method assum- 
ing a stepped variation of contact pressure and a 
finite element method combining a conventional 
beam element with descrete springs at the ends of the 
beam. Lee and Harrison [5] derived a stiffness matrix 
for a beam on an elastic foundation using a 
slope-deflection method. The finite element method 

for a beam on elastic foundations is provided by 
many authors. Three-dimensional finite elements 
were also used for the soil-structure interaction prob- 
lems. These require large computational time and 
effort, hence the requirement for a simpler numerical 
method without loss of accuracy. 

The finite difference method described in this paper 
is applicable for beams of varying sections (i.e. mo- 
ment of inertia) and varying subgrade modulus. The 
method presented assumes a very realistic contact 
pressure distribution, namely parabolic distribution, 
while most of the numerical methods assume a 
stepped distribution. 

2. COMPUTATIONAL PROCEDURE 

The governing differential equation for the beam 
(Fig. 1) is 

(d2y/dx2) = (MJEZ) (1) 

The bending moment M,, at any point n is pro- 
duced by the loads together with the contact pressure. 
The contact pressure may be represented by equival- 
ent concentrated reactions, R,, at the nodal points. 

Assuming a parabolic distribution of contact press- 
ure, equivalent concentrated reactions (Fig. 2) are 

Ri = -(@/24)(7~, - 6~2-Y,) 

Rm= -(k,h/24)(7y,+6y,-,-y,-2) 

at the ends and 

at any intermediate point, where the deflections, y in 
the upward direction are positive. 
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Fig. 1. Beam on elastic foundation with loading. 

Fig. 2. Contact pressure distribution 

Writing the differential eqn (1) in the finite differ- 
ence form, 

Y,, ~1 - %,, + I’,, + , = (h2/EWf,,, (2) 

e.g. at node 2, 

yI = 2y2+~, = (h’IEO[(R,h) - (P,h) + (M, + Ml)1 

=( -k,h4/24EI)[7y, + 6~1~ - y3] 

+(h2/-wK-P,h) + CM, + M2)l. 

Similar equations are written up to the (m - 1)th 
node, and the same may be written in the matrix form 
as 

[CY][y] = -f14[CM][y]+ (h’/EI)([EMP] +[EMM]) 

[CY]+~4[CM][Y]=(h2/Ez)[EM] 

where 

[CYM][Y] = (h2/EI)[EM]. (3) 

Thus eqn (3) is a matrix of (m - 2) equations. The 
remaining two equations are obtained from equil- 
librium. Hence m equations to solve for m deflections. 

Summing up the vertical forces, i.e. 

(R, + R, +. . . R,,,) - (P, + P, +. . P,) = 0 

and summing up the moments of forces about the last 
node, i.e. 

[R,(m-I)h+R2(m-2)h+...+R,_,h] 

The equilibrium equations are also written in the 
matrix form as 

and appended to eqn (3). 
The set of equations (3) are solved, to obtained the 

deflections as 

[_Y] = [CYM]-1[EM](/72/EZ) 

and the reactions 

[RI = (-k,h/24)[~~1[y,i(h2/~1) 

= -@4/~)[cw[Yd. 

The moments are obtained from 

[Ml = (-k,hV4)[CMl[y] + [EM] 

(4) 

(5) 

= -s4[c~lbol + b=fl (6) 

Influence lines for bending moments are obtained 
for different values of /I (a non-dimensional par- 
ameter, combining modulus of subgrade reaction 
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and rigidity of foundation), considering the unit 
length of the beam and unit loads and moments at 
the nodal points. These influence lines can be used 
to find the moments at the nodal points due to any 
type of load at any point (not necessarily at the 
nodes). 

The above procedure can be conveniently used for 
beams of varying cross-sections and varying subgrade 
modulus by imposing appropriate /? values at nodal 
points in eqn (3). 

It is noticed that the moments obtained with only 
10 elements are in good agreement with Hetenyi’s 
classical solution. 

3. NUMERICAL EXAMPLES 

A computer program is written to get the influence 
coefficients for the moments, for unit load (or mo- 
ment) and for unit length dividing the beam into 10 
elements. The following examples are considered to 
explain the use of influence lines and to compare 
Hetenyi’s solution [I] and the solution using influence 
lines. 

3.1. Solution to example 1 (Fig. 3) 

Non-dimensional parameter (/?) = 4,/m 
= 0.2 from the influence lines for /I = 0.2 (Fig. 9). 

1tIlOkN 

A C 0 D 11 B 
I I I I I I I I I 

1 2 3 4 5 6 7 8 9 10 11 

b 1.2m A- 3.6m + 12m 4 

Datafarthebcam,L=6m,b=15m,t=05m 

E=22xl~kN/~,h=(Ul0)=0.6m 

Forthesoil,ks=lOOldkN~ 

Dataforthebeamandlciadingissamebutks=sOOldkNM 

Fig. 3. Examples 1 and 2. 

lOOkN/m 

f tttttttttttt 
I I I I 

+ 1.2m --/-- 3.6m -l_ 12m 4 

Example 3. Dataforthebeamandsoilissameasexamplel. 

Fig. 4. Example 3. 

1000 kN/m 1000 kN/m 

n c 0 D n 

I-_ 1.2m 4- 3.6m + 1.2m -+ 

Example 4. Datafarthebeamandsoilissameasexamplel. 

Fig. 5. Example 4. 

C 500 kN/m XlOkN/m 

1 I 1 I I I 1 
I 2 3 4 5 6 7 8 9 10 I1 

b- 2m -+ 2m + 2m -D/ 

Example% Dataforthebeamandsoilissameasexamplel. 

Fig. 6. Example 5. 
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Moment at C 

= [(Zm )3.3 x p, x Ll+ [(Zm )3.9 x pg x Ll 

=(0.0512 x 1000 x 6) + (-0.0077 x 1000 x 6) 

=261 kN m. 

Moment at 0 

= [(Zm),,, x p, x t1 + K~mh.9 x p9 x Ll 

=[-0.0188 x 1000 x 6]+ [-0.0188 x 1000 x 61 

= - 225.6 kN m. 

700 
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4cu 

300 

ma 

loo 

0 

-100 

3.2. Solution to example 2 (Fig. 3) 

Non-dimensional parameter, /I = 0.3. From the 
influence line diagrams for p = 0.3 (Fig. lo), moment 
at C 

M, = Bending moment diagram due to external loads. 

M, = Bending moment diagram due to external moments. 

M = Resultant bending moment diagram. 

Fig. 7. Bending moment diagram. 

=KZm),,, x p, x Ll$- KImh.9 x p, x Ll 

=[0.0466 x 1000 x 6]+ [-0.00314 x 1000 x 61 

=260.76 kN m. 

=[(0.747 x 1000) + (-0.0155)(- lOWI 

= 762.5 kN m. 

Moment at 0 Moment at 0 

= [(Zm),,, x p, x Lit- We),, x p9 x Ll 

=[-0.0125 x 1000 x 6]+ [-0.0125 x 1000 x 61 

= - 150.0 kN m. 

=Kzmh,., x M, + (fmhl x Ml,1 

=[(0.221 x 1000) + (-0.221)(- IOOO)] 

=442.0 kN m. 

3.3. Solution to example 3 (Fig. 4) 

From the influence lines for p = 0.2 (Fig. 9) 
moment at 0 

3.5. Solution to example 5 (Fig. 6) 

=(Areat under influence line (ZWZ)~.,) 

x Intensity of load x Z. 

= (h/2) [(Zm )6.3 + 2((Zm),,, + (Zm )6.5 + (Zm )6.6 

+(Zm)e., + (Zm),,,) + (~~),,I x 100 x 6 

Non-dimensional parameter b = 0.2. Using the 
influence lines (Figs 9 and 12) the bending moments 
are computed at the nodal points and the bending 
moment diagram is drawn (Fig. 7). 

From the influence coefficients, the bending mo- 
ments are computed as 

M, = Kzm),.,, x Pm + Um)i,n x PA 

+ Kfm),,, x Mm + Vn),.,, x Mm1 

=0.6/2[-0.0188 + 2(0.00785 + 0.0416 where P, = P, = 1000 kN and M, = 500 kN m and 
A4,, = 500 kN m. 

+0.00857+0.0416+0.00785)-O.O188]x 100 x 6 3.6. Comparison of results 

= 59.69 kn m. 

3.4. Solution to example 4 (Fig. 5) 

From the influence lines for /3 = 0.2 (Fig. 12), 
moment at C 

A comparison of the author’s results and Hetenyi’s 
classical solution is presented in Table 2. 

From Table 2 it is evident that the author’s results 
agree well with Hetenyi’s classical solution. 

Hetenyi’s classical solution is not available for 
example 5 and therefore could not be compared. 

=](Zm),,, x MI + (Zm),,,, x Ml11 
4. CONCLUSIONS 

f Area is computed using the trapezoidal rule with influ- (1) The computational procedure described in this 
ence ordinates at every nodal point (O.lL). paper to obtain the influence lines for bending 
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Table 1. Influence coefficients for example 5 

Nodal 
points (i) 

1 
3 
4 
5 
6 
7 
8 
9 

10 

Influence coefficients (Fig. 9) Influence coefficients (Fig. 12) 

for Pm for Pn for Mm for Mn 

(Im ),., (rm ),., (Im ),,, (Zm ),,, 

0.0055 - 0.002 -0.05 -0.01 
0.025 -0.004 -0.17 -0.06 
0.0615 - 0.00425 -0.35 -0.15 
0.051 0.003 0.45 -0.23 
0.02 0.02 0.29 -0.37 
0.003 0.05 I 0.15 -0.53 

-0.00425 0.0615 0.08 0.28 
- 0.004 0.025 0.03 0.14 
- 0.002 0.0055 0.0 0.04 

0.16 
r 

i= 1 2 3 _ _._._._.___.________.. ___.._ _____ 11 

-0.16 L Mij = moment at i due to load at j 

Fig. 8. Influence coefficients for moments due to external loads (for /I = 0.1). 
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Fig. 9. Influence coefficients for moments due to external loads (for /3 = 0.2). 

Influence coefficients for moments (Im) 

Mtj=(Im)ijxPjxL 
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Table 2. Comparison of results 

1 2 3 4 

Moments at C/D 0 CD 0 0 C/D 0 
Author 261.0 - 225.6 260.8 - 150.0 59.69 443.1 166. I 
Hetenyi’s (1) 262.5 -225.5 260. I - 148.1 60.30 442.0 762.5 

0.06 t (Im)c; ._ IfIn\,- 

Influence coefficients for moments (Im) 

-O.OH J-. 
i= I 2 3 4 5 6 7 8 9 1011 

VLF 

Fig. 10. Influence coefficients for moments due to external loads (for p = 0.3). 
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-0.1 
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-0.3 

-0.4 Influence coeftici 

-0.5 for moments (Im) 

-0.6 

-0.7 ,f-+j , , , , , , 

-0.8 
I 

3 4 6 7 8 9 IO 11 ‘5 

-0.9 _L_ 

Fig. 11. Influence coefficients for moments due to external moments (for fi = 0.1). 

moments in beams on elastic foundations is very ence lines can easily be used to compute the bending 
simple and is easily comprehensible. moments in beams on elastic foundations, for 

(2) Influence lines are presented for the unit any combination of load acting anywhere on the beam. 
load and unit length of a beam for the non-dimen- (3) Examples l-5 demonstrate that a single influ- 
sional parameters, /l = 0.1, 0.2 and 0.3. These influ- ence line diagram can provide solutions for any type 
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Fig 13. Influence coefficients for moments due to external moments (for fl = 0.3). 
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for moments (Im) 

Mij = (Im)ij x Mj 

11 1 

Mi 
i= IfhI 

I 
1111 I 
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VLL 
I 

12. Influence coefficients for moments due to external moments (for /j’ = 0.2) 

1 
$ = 0.3 

Influence coefficients for moments (Im) 

4-l 
Mij = (Im)ij x Ml 

% 
i=’ ’ ’ In1 ’ ’ ’ ’ ’ ’ 

12 3 43 6 7 8 9 1011 

of load at any position, whereas, Hetenyi has pro- 
vided separate solutions for each of these problems. 
The author’s results are compared with Hetenyi’s 
solutions (for those problems for which Hetenyi’s 
solutions are available) and they agree well. 

(4) The computational procedure presented can 
also be used for beams of varying cross-sections and 
soils of varying modulus of subgrade reaction, by 
imposing appropriate values of p in the set of finite 
difference equations. 
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