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Abstract--Isometric designs are those that carry the same linear dimensions. Unique specification of the motion 
requirements of a mechanism between skew axes, with the help of a suitable set of conventions, removes all alternative 
designs isometric to the original mechanism, with one exception: an isometric design satisfying exactly the same 
motion requirements is available but with the algebraic sign of the axis distance changed. The transformation is one of 
reflection and is called an opposite isometry. Extending the use of unique specification of motion requirements to the 
special case of two-position design with identical specification of motion derivatives at the two positions (as in the case 
of a crank-rocker design), one is left with an alternative isometric design, without change of sign of axis distance. The 
device consists of a change of direction of motion of the mechanism, coupled with an interchange of mechanism 
positions that correspond to the two distinct positions on the curve of motion relationship. There is, in this case, what is 
called a direct isometry. The two transformations are shown to be useful: (i) in reducing the extent of design 
cataloguing, and (ii) in reducing the area of search for suitable mechanism designs. 

1. INTRODUCTION 

Let us suppose that a mechanism has been designed to 
provide a certain motion conversion between two non- 
parallel and non-intersecting shafts. The question can 
then be asked if it is possible to have alternative solu- 
tions that have the same linear dimensions. Such alter- 
natives may be referred to as isometric mechanisms. 
These are obviously of considerable practical 
significance since they can be expected to be arrived at 
without further calculation or construction. 

2. GEOMETRIC PRELIMINARY 

A geometric transformation that preserves all dis- 
tances is referred to as an isometry[1]. Any rigid body 
motion represents what is called a direct isometry (or 
proper isometry). The only other form of isometry is the 
opposite isometry (or improper isometry), obtained by 
reflection of the geometric configuration about any 
plane.t 

Opposite isometry is used in Section 4 of this paper 
and direct isometry in Section 5. 

3. UNIQUE SPECIFICATION OF THE DESIGN REQUIREMENT 

The following conventions are introduced. 
(a) The positive direction of the input shaft axis is the 

direction in which the input shaft is seen rotating clock- 
wise. 

The positive direction of the output shaft axis is the 
direction in which the output shaft is seen rotating 
clockwise. 

tReflection about a point is also valid for the three-dimensional 
case but not for the two-dimensional case. 
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These positive directions will be referred to as the 
input and output axis vectors. 

(b) The axis angle ~ is the true angle-< 180 ° between 
the input and output axis vectors. This is considered 
positive. ~ is thus restricted to be between 0 and + 180 °. 

(c) The axis distance d is measured from the input 
axis to the output axis. Consider the rotation of the input 
axis vector into coincidence with the output axis vector 
through the axis angle 3, already defined. The direction 
along the common perpendicular to the axes in which 
this rotation appears clockwise is the positive direction 
of the axis distance d. The quantity d may thus be 
positive or negative. The case where d is positive is 
illustrated in Fig. 1. 

If there is choice in the direction of rotation of the 
output (~), keeping input rotation direction same, this is 
to be treated as an alternative specification of design 
requirements. 

The importance of the unique specification of design 
requirements lies in the elimination of unnecessary cal- 
culation that leads to repeated designs. Consider, for 
example, the question of determining designs to generate 

"~ B* output axis 
,~, vector 

vector , . ~ , ~  

O ' J  

Fig. 1. 
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the same given function d)= f(O) at various axis angles 
6. The conventions given above enable us to limit our- 
selves to varying ,5 between 0 and + 180 :' and eliminate 
the range of 180--360 ° . 

The conventions, on the other hand, allow the axis 
distance d to have both positive and negative values. 
This raises a different problem, considered in the next 
section. 

4. ISOMETRIC CONVERSION OF A MECHANISM TO ALTERNATIVE 
SIGN OF AXIS DISTANCE d 

The device put forward in this section is valid for any 
mechanism and motion, between two skew shafts. 

The conventions that may be followed in describing 
shaft rotations, axis angle and axis distance are, strictly 
speaking, immaterial for the present section as well as 
Section 5. 

It is supposed that a mechanism design for the given 
specifications is already at hand (e.g. from a catalogue of 
designs), except that the axis distance d does not have 
the appropriate algebraic sign. In other words, the output 
shaft axis may be "above" the input shaft axis while it is 
desired to be "below". 

To convert the mechanism to one that satisfies this 
requirement too, it is merely necessary to reflect every 
pointt of the mechanism (including the input and output 
shafts and the frame) about a plane. The result is essen- 
tially the same (an opposite .isometry), whatever 
reflecting plane is made use of. The opposite isometry 
may be described in the following way. In any position 
of the mechanism consider any four points A, B, C, D of 
the mechanism, not lying in a plane before and after the 
transformation: the sense of running through A, B, C in 
that order, as viewed, from D, changes from a clockwise 
one to a counter-clockwise one or vice versa. 

For the purpose of further discussion, it is convenient 
to introduce a definite co-ordinate system. The foot of 
the common perpendicular on the input axis is taken as 
the origin. This is the point A* in Fig. 1. The Ox axis 
coincides with the input axis vector. The Oz axis coin- 
cides with the positive direction of the axis distance d (it 
may thus be in the direction A'B* or B'A*). The Oy 
axis is then decided by the right-handedness of the 
co-ordinate system (see Fig. 2). 

Reverting back to the transformation trader con- 

sideration, the plane xOy can be chosen as the plane of 
reflection, for convenience of illustration. Both the input 
axis vector and the output axis vector reverse their 
directions:~, so that the axis angle remains the same. x 
and y axes reverse their directios while z does not. The 
axis distance d thus changes sign. 

Suppose further that arbitrary vectors AoA and BoB 
on the input and output shafts (perpendicular to the 
respective shaft axes) are used to define the angular 
positions of the input and output links. Let A, and Bo be 
on the respective axes (Fig. 2). Let the vector AoA make 
the angle c~' with the Oy direction: positive clockwise 
when viewed along Ox. An identical definition of the 
angle/3' made by BoB is obtained by rotating the output 
axis vector back through 6 into coincidence with the 
input axis vector. The distances A*Ao and B*Bo will be 
denoted ao and bo respectively, positive in the direction 
of the axis vectors. 

The further effects of the transformation can now be 
described as follows: (a) c~' and/3'  change by 180 °, and 
(b) ao and bo change their signs. Other dimensions of the 
mechanism are maintained in magnitude, but ap- 
propriately adjust in sign where needed. 

If we wish to describe the transformation without 
permitting any ctmnge in the co-ordinate system, we may 
proceed as follows: (a) reflect on the xOy plane, and 
(b) rotate about z-axis through 180 °. Alternatively, we 
may simply reflect about the origin O. The result is what 
is sometimes called a central inversion[l]. The trans- 
formation is illustrated in Fig. 3 for the RSSR 
mechanism, where A is chosen at the centre of the input 
side spheric pair and B at the centre of the output side 
spheric pair. The coupler length AB does not change. 

Table I summarizes the transformation. If the trans- 
formation is repeated once, we are clearly back with the 
original design. 

If the original mechanism represents an optimal design 
in some way, the question arises whether the trans- 

Table 1. 

(1) Original d ao bo a '  /3' 
(2) Reflection of l - d  - a o  - b o  180°+a ' 180°+fl ' 

Z tThis reflection should be considered carried out in every 
position of the mechanism, so that the motion itself is reflected. 

~lt may be remembered that the motion itself is reflected, 
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formed design is again an optimal one. We note that not 
only the design but also the specification of motion 
requirements undergo the same transformation. Thus the 
query may be answered in the affirmative. 

In conclusion of this section, it may be emphasized 
that the result is quite general and applicable to gears, 
three-dimensional cams and linkages on skew axes. The 
method is applicable to motion transfer between parallel 
axes too, but the result may be ragarded as trivial. Figure 
4 gives the example of a planar four-bar mechanism. 

It may be noted in passing that the problem of unique 
description of a given mechanism, considered admirably 
by Savage and HaU[2], is different from the present one 
since we are actually considering conversion of one 
mechanism design to another. The content of the pre- 
vious section is however in the same line. It may further 
be pointed out that opposite isometry is also significant 
in a different context[3]: two single universal joints 
which are oppositely isometric produce a double joint 
with uniform motion transmission. 

5. DUPLICATE MODE OF OPERATION OR POSITION INTERCHANGE 

The device of this section is valid for any mechanism 
between two skew shafts, under the following con- 
ditions: 

(a) The motion requirement refers only to two posi- 
tions of the mechanism, and 

(b) The motion derivative requirements at these two 
positions are identical. Even derivatives change sign. 

Figure 5 illustrates the conditions. The derivatives at 1 
and 2 must be the same upto the required order. For 
example, if the first order derivatives are being pres- 
cribed at I and 2, they should be the same. The most 
important case of this nature arises when both the 
derivatives are zero: the design of a crank-rocker 
mechanism for prescribed oscillation angle 4~o and quick 
return ratio 0o/(360 o-  0o). 

The broken lines in Fig. 5 indicate the method of 
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Fig. 4. 
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obtaining an alternative solution: reverse the direction of 
rotation of the input and output links. 

The discussion will be carried out in relation to the 
crank-rocker design, in view of its importance. 

Limit positions 1 and 2: These are the positions where 
the output rocker comes to rest before reversing its 
direction of motion while the input crank continues to 
rotate in the same direction. (The intermediate stationary 
positions obtainable from the more complex linkages are 
left out of consideration). The numbering of these two 
limit positions 1 and 2 follows the following convention: 

(a) Half-oscillation 1~2 is faster than half-oscillation 
2-ol. 

(b) The corresponding positions of the input crank are 
also accordingly numbered 1, 2. 

In defining the output axis vector, the rotation of the 
output rocker from position-1 to 2 is considered. This is 
the rocker oscillation angle 60, lying between 0 and 
+ 360 °. 

The crank rotation angle 0o is from position-I 
to 2 and thus 0o lies between 0 ° and + 180 °, in view of 
the particular numbering of the limit positions. 

It is supposed that a mechanism design for the given 
specifications is already at hand. We now proceed to: 

(i) Name position 1 of the mechanism as position 2 
and vice-versa. 

(ii) Reverse the direction of motion of the mechanism. 
This process of position interchange coupled with rever- 
sal of motion direction is successful because the two 
positions are indistinguishable as far as motion require- 
ments at these two positions are concerned (see Figs. 5 
and 6). 

It will be noticed that we are dealing with the same 
"mechanism" but with a different way of utilizing it to 
satisfy the same specifications. The input axis vector and 
the output axis vector have both reversed their direc- 
tions, so that the axis angle ~ is unaltered. The sign of 
axis distance d is also unaltered. The distances ao and 
bo, defined in the previous section, change sign. 

The values of the input and output position variables 
a '  and /3' in position 1 are represented as a and /3 
respectively. They change respectively to [a] = 
180°- (a + 0o) and [/3] = 180°-(/3 + tbo). 

The results of this transformation are summarized in 
Table 2. This amounts to "refitting" the mechanism on the 
diametrically opposite side of the common perpendicular 
to the input and output shaft axes and redefining position 1. 
It can also be interpreted as rotation of the original 
mechanism about z-axis through 180 o and changing the 
direction of rotation. 

-~--/~ 

~Vl 0~2 

Duplicate mode of 
operation of 

36o*- o o 

Fig. 5. Fig. 6. 
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(a) Original d ~, ho ~ 13 
(b) position interchange d - a o  h,, 18(/ t,~ ~o,,) 180 ~ (/3~h,,) 

in (a) 
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The transformation is illustrated in Fig. 7 for the RSSR 
mechanism and in Fig. 8 for planar four-bar mechanism. 

6. COMBINATION OF THE TWO TRANSFORMATIONS 

If the conditions mentioned in the previous section are 
valid, we may apply the transformation of Section 4 
(reflection) and that of Section 5 (position interchange) in 
succession. Table 3 is the result. 

It will now be shown that there are no other pos- 
sibilities beyond these four, when the two transfor- 
mations are applied. A second successive application of 
the same transformation merely nullifies the first ap- 
plication. But the solution 4 in Table 3 was obtained in 

the two ways indicated, so that application of either 
transformation to it will merely lead us back to either 
solution 2 or 3, as the case may be. 

7. AN APPLICATION OF TABLE I 

Let us suppose that the input and output link position 
variables ~' and /3' are design parameters that can be 
varied to obtain different designs of a mechanism (e.g. 
the RSSR mechanism) satisfying a specified motion rela- 
tionship. Table 1 enables us to restrict the range of 
variation of (c~', /3'), even when the sign of the axis 
distance d is specified (along with the value of the axis 
angle 8). This is because we can use the table later to 
convert the obtained design to satisfy the appropriate 
sign of d. 

Table 1 changes a '  and /3' to 180°+a ' and 180°+/3 ' 
respectively. The latter angles can be replaced by , ' -  
180 ° and /3 ' -  180 o respectively, as needed, by subtracting 
360 ° . It is thus possible to consider the four alternatives 
(180°+ a' ,  180°+/3'), (a '  180 °, 180°+/3'), (180°+ a ' , / 3 ' -  
180 °) and ( a ' -  180 ° , /3 ' -  180°). These changes are applied 
successively to the square region defined by a'  = 0°-360 °, 
/3' = 0°-360 ° (Fig. 9a). 

Overlapping areas are eliminated at each stage before 
the next alternative is considered. Use of the first alter- 
native (180°+ a' ,  180°+/3') transforms the region ABCD 
to the broken line square indicated in Fig. 9(a). The 
overlapping area KECH can be eliminated and the 
remaining region is shown in Fig. 9(b). (Actually there is 
the choice to eliminate AGKF instead.) 

Use of the second alternative ( a ' - 1 8 0  °, 180°+/3 ') 
transforms the region ABEKHD to the broken line 
region indicated in Fig. 9(b). Elimination of the area 
FKHD retains the rectangle shown in Fig. 9(c). 

It is easy to see that no further reduction is possible by 
the application of the remaining alternatives. 

It is thus necessary to consider variation of a' from 0 
to +360 ° and [3' from 0 to +180 ° only. (one can 
alternatively restrict ~' to 180 ° instead of /3'. It is also 
evident that the lower limit of either variable need not be 
0°). 

The above fact was taken advantage of in the genera- 
tion of optimal designs of RSSR crank-rocker 

Table 3. 

(1) Original d ao 
(2) Reflection of 1 - d - a,, 
(3) Position interchange 

in I d - a,~ 
(4) Position interchange 

in 2 OR - d ao 
Reflection of 3. 

bo ot /3 

- b~  180°+ a 180°+/3 

-b , ,  180°-(a+0, ,)  180°-(/3+6o) 

bo - (a + 0,,) - (/3 + ~,,) 
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mechanisms (in a work of the authors, yet to be pub- 
lished). 

8. AN APPLICATION OF TABLE 3 

Let us consider, for illustration, the case of 0o = 1600 
(i.e. a time ratio of 160/200 = 0.8) and an angle of oscil- 
lation ~o = 70 °. (It may be remembered in passing that 
0o> 1800 need not be considered, in view of the con- 
vention adopted in Section 5). The relevant part of Table 
3 takes the following shape: 

(1) a /3 

(2) 180°+ a 180°+/3 
a - 180 ° /3 - 1800 

(3) 20 ° - a 110 ° - /3 
3800 - ~ 4700 -/3 

(4) - 160 ° - a - 700 - /3 
200 ° - c~ 290 ° - /3 
560 ° - c~ 6500 - /3 

Additional alternatives have been added under each 
transformation, as was done in the previous section. 
How far such alternatives should be added will become 
clear in the current example. 

Transformation 2 has already been considered in the 
previous section and we are left with the rectangular 
region shown in Fig. 10(a) after its application. 

We proceed to transformation 3. Consider suc- 
cessively the alternatives (20 ° -  a, 110 ° - /3)  and (380 ° -  
a, 110°-/3). It will become clear shortly that 470°-/3 
need not be considered. Transformation (20 ° -  a) has the 
effect of reflecting the rectangular region ABEF about a 
line distant 20/2 = + 10 ° from the /3-axis (Fig. 10a). 
Transformation (110°-/3) has the effect of reflecting the 
rectangular region ABEF about a line distant 110/2= 

+55 ° from the a-axis (Fig. 10a). The region ALMN can 
thus be eliminated. Transformation (380 ° - a) reflects the 
remaining region about a line + 190 ° from the /3-axis 
(Fig. 10a). The region BPQR can thus be eliminated. 

A similar application of transformation-4 eliminates 
the regions FSTU and EVWX. The alternatives - 1600- 
a, - 7 0 ° - / 3  and 650 °- /3,  entered in the table, involve 
reflection about lines outside the rectangular region 
ABEF and thus create no overlaps. 

The reduced region of (a,/3) variation finally obtained 
is indicated in Fig. 10(b). 

9. CONCLUSION 

The paper has shown how an isometric alternative of a 
designed mechanism can be obtained, for motion be- 
tween skew shafts, if the axis distance can be reversed in 
sign. A catalogue or design chart need contain only one 
of the two mechanisms, the other being obtained easily 
from Table 1 when needed. 

The alternatives increase to three when appropriate 
two-position designs are considered, including crank- 
rocker design. One of these has the same sign of axis 
distance as the original. A catalogue or design chart need 
contain only one of the four mechanisms, the others 
being obtained easily from Table 3 when needed. 

Further application of the information to reduce the 
region of variation of the input and output link position 
variables as free design parameters has also been shown. 
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1301~ET~(I~ IN DLk~ GETklEBESyrNTHESE 

K. La~:sh~-inarayana und L. V. Balaji Rao 

Ku~zfassun~ - Isomebrische Konstruktionen haben gleiche lineage Dimensionen. 

Einheibliche Angabe der Bewegungsbedingungen eines Getriebes zwischen zwei sich k~euzenden 

Achsen Tit Hilfe zweckm~Biger Konventionen l~Bt alle alternative Konstruktionen, die zum 

ursprNnglichen Oetriebe isometrisch sind, entfernen. Es gibt abet eine Ausn~me: ein iso- 

metrisches Getriebe, das seDau die gleiche Bewegung erfNll~, ist vorha~den, aber mit ver- 

~nderten algebraischen Zeichen des Achsabstandes. Die Tramsformation ist eine Reflektion 

und wird eime u~eigentliche oder gegens~tzliche Isometrie genaant. 

Die einheitliche Angabe der Bewegungsbedinguagen l~Bt sich ~ber den Sonderfall yon der 

Zwei-Lagen-Konstruktion, mit idemtisohen Bewegungsablei~ungen in den zwei Lagen, ex~vei- 

~ern. Damit verbleibt ausschlieBlich eine alternative isome~rische I{onstru~ion mi~ un- 

ver~ndertem Zeichen des Achsabstsmdes. Die Einrichtung besteht aus einer ~nderung der Ge- 

triebebewegumgsrichtung, verbunden mit eimem Austausch der zwei Getriebelagen. Hier fin- 

det man eine direkte oder eigentliche Isometrie. 

Die iTansformationen lassen sich verschiedenartig zur Ver~inderung der Zahl von katalo- 

gisierten L6sumgen und zur Ver~inderung des Suchgebietes benutzen. 


