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ABSTRACT
The convergence set for Newton’s method is small in general
using Lipschitz-type conditions. A center-Lipschitz-type condi-
tion is used to determine a subset of the convergence set
containing the Newton iterates. The rest of the Lipschitz
parameters and functions are then defined based on this sub-
set instead of the usual convergence set. This way the result-
ing parameters and functions are more accurate than in
earlier works leading to weaker sufficient semi-local conver-
gence criteria. The novelty of the paper lies in the observation
that the new Lipschitz-type functions are special cases of the
ones given in earlier works. Therefore, no additional computa-
tional effort is required to obtain the new results. The results
are applied to solve Hammerstein nonlinear integral equations
of Chandrasekhar type in cases not covered by earlier works.
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1. Introduction

We are seeking solutions x� of equation
F xð Þ ¼ 0; (1.1)

where : X � B1 ! B2: is a differentiable operator in the sense of Fr�echet,
B1, B2 are Banach spaces and X is a convex set.
A plethora of problems in optimization, control theory, signal and image

processing, inverse and ill-posed, least squares, mathematical physics, math-
ematical chemistry, mathematical biology, mathematical economics and
also problems in engineering can be written like Equation (1.1) using
mathematical modeling [1–9, 13, 15, 16]. The solution methods for solving
(1.1) are usually iterative since closed form solutions although desirable can
be derived only in some cases. The celebrated Newton’s method

xnþ1 ¼ xn�F xnð Þ�1F xnð Þ (1.2)

has been utilized by numerous authors to generate a sequence fxng
approximating x� [1–27]. Here F0ðxÞ 2 ‘ðB1;B2Þ stands for the space of all
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bounded linear operators from B1 to B2 and F0ðxÞ denotes the derivative of
operator F(x) in the sense of Fr�eche [4, 7, 16, 21].
Using Kantorovich-like conditions, Rheinboldt [23] presented a convergence

theorem for Newton’s method. Later an improved result was given by Dennis
in [12], Deuflhard and Heindl in [14], Potra in [20, 21].
Miel [17, 18] improved the error estimates given by Rheinboldt [23].

Under stronger conditions than those of Rheinboldt, Moret [19] not only
obtained a convergence theorem and error estimates for Newton’s method
but also, using a numerical example showed that his estimates are sharper
than those of Miel. But, no proof was given in [19]. Yamamoto in [26] pre-
sented a method for finding error estimates under Dennis conditions and
showed that the estimates obtained extend those of Rheinboldt, Dennis and
Miel and reduce to Moret’s estimates if we replace the conditions by his
strong conditions. It was also shown that Moret’s results can be derived
from Rheinboldt’s. Related works can be found in Zabrejko and Nguen
[27]; Amat et al. [1], Hernandez et al. [15] Proinov [22], Nashed [27], Chen
[10], Chen and Yamamoto [11] where the method of recurrent relations
was used. Argyros et al. [2–7] using the technique of recurrent functions
presented a unified convergence theory with the following improvements
denoted by (A): weaker sufficient semi-local convergence conditions, more
precise error estimates on the distances jjxnþ1�xnjj; jjxn�x�jj; ðn � 0Þ;
and an at least as tight information on the location of the solution. The
above improvements are obtained while using the needed center-Lipschitz
instead of the Lipschitz condition commonly used for the derivation of the
upper estimates on the norms jjFðxnÞ�1F0ðx0Þjj ðn � 0Þ: This modification
leads to more precise majorizing sequences, which in turn result
weaker sufficient convergence conditions in most interesting cases (see also
Section 4).
The Kantorovich theory is a powerful tool for studying equations. Many

papers have been written in this area providing local and semi-local con-
vergence results for Newton-type methods. The convergence criteria are
sufficient but not necessary and the convergence domain is small in gen-
eral. Therefore, it is important to extend the convergence domain without
additional conditions and also provide new insight into iterative methods.
In particular, in the present paper, we extend the applicability of Newton’s
method even further than in the preceding works using more precise
domains containing the iterates xn leading to smaller Lipschitz conditions
which finally lead to a finer convergence analysis for this method. The nov-
elty of the paper lies in the fact that the improved results are obtained
under the same computational effort as in the preceding studies. Indeed, in
practice we utilize Lipschitz functions which are tighter and special cases of
the functions appeared in the works mentioned previously (see also the
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Remarks and the Examples). This approach can be utilized to extend the
applicability of other iterative methods using inverses
The rest of the paper is structured as follows: Sections 2 and 3 contain

the semi-local convergence of Newton’s method. Special cases and applica-
tions are given in Section 4 to show that our results can apply to solve
equations, where earlier ones cannot.

2. Semi-local convergence analysis

Let Uðv; qÞ; �Uðv;qÞ stand, respectively for the open and closed balls in B1
with center v 2 B1 and of radius q> 0: Let also x0 2 D;R> 0 and K :
½0;R� ! R�0; L : ½0;R� ! R�0; L1 : ½0;R� ! R�0 be continuous non-
negative and non-decreasing functions. Suppose that F0ðx0Þ�1 2 ‘ðB2;B1Þ:
Moreover, suppose that there exists g � 0 such that

jjF0 x0ð Þ�1F x0ð Þjj � g: (2.1)

Furthermore, we define functions u;w and w1 on the interval ½0;R� by

u tð Þ ¼ g�t þ
ðt
0
K sð Þ t�sð Þds

w tð Þ ¼ g�t þ
ðt
0
L sð Þ t�sð Þds

and

w1 tð Þ ¼ g�t þ
ðt
0
L1 sð Þ t�sð Þds:

Define

R0 :¼ sup t 2 0;R½ Þ : u0 tð Þ< 1
� �

: (2.2)

Suppose that: the center-Lipschitzian condition holds for each
r 2 ½0;R�; u 2 U :¼ �Uðx0; rÞ \ D

jjF0 x0ð Þ�1 F0 uð Þ�F0 x0ð Þ
� �jj � K rð Þjju�x0jj; (2.3)

the Lipschitzian condition holds for each r 2 ½0;R�; u; v 2 U0 ¼
�Uð0; rÞ \ Uðx0;R0Þ \ D

jjF0 x0ð Þ�1 F0 uð Þ�F0 vð Þ� �jj � L rð Þjju�vjj (2.4)

and the Lipschitzian condition holds for each r 2 ½0;R�; u; v 2 U:

jjF0 x0ð Þ�1 F0 uð Þ�F0 vð Þ� �jj � L1 rð Þjju�vjj: (2.5)

We have by (2.3) and (2.5) that
K rð Þ � L1 rð Þ (2.6)

and by (2.4) and (2.5)
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L rð Þ � L1 rð Þ; (2.7)

since U0 � U: Moreover the ratio L1
K can be arbitrarily large [2–7].

The semi-local convergence results for Newton’s method in the literature
(with the exception of our works that are based on (2.3) and (2.5)) have
used only (2.5) [8–27]. Notice that (2.5) implies (2.3) or (2.4) but not
necessarily vice versa. In the present study we use (2.3) and (2.4). This way
we obtain smaller than L1 functions K and L leading to the advantages (A)
of the new semi-local convergence analysis for Newton’s method.
Define scalar sequences frng; fsng and ftng by

r0 ¼ 0; r1 ¼ g;

r2 ¼ r1�
u r1ð Þ�u r0ð Þ�u0 r0ð Þ r1�r0ð Þ

u0 r1ð Þ ;

rnþ1 ¼ rn�
w rnð Þ�w rn�1ð Þ�w0 rn�1ð Þ rn�rn�1ð Þ

u0 rnð Þ
s0 ¼ 0; snþ1 ¼ sn�

w snð Þ
w0 snð Þ

t0 ¼ 0; tnþ1 ¼ tn�w1 tnð Þ
w0
1 tnð Þ : (2.8)

Suppose that sequences frng; fsng and ftng are convergent under some
conditions and

�w bð Þ�w að Þ�w0 að Þ b�að Þ
u0 bð Þ � � w cð Þ

w0 cð Þ (2.9)

for each a;b; c 2 ½0;R0� with a � b � c and

� w cð Þ
w0 cð Þ � �w1 dð Þ

w0
1 dð Þ (2.10)

for each c; d 2 ½0;R0� with c � d: Then, a simple inductive argument shows
that:

rn � sn; (2.11)
rnþ1�rn � snþ1�sn; and r� :¼ lim

n!1 rn � s� :¼ lim
n!1 sn (2.12)

if (2.9) holds and

sn � tn; (2.13)
snþ1�sn � tnþ1�tn; and s� :¼ lim

n!1 sn � t� :¼ lim
n!1 tn; (2.14)

if (2.10) holds. Inequalities (2.11), (2.13) are strict for n ¼ 2; 3; ::: and first
inequalities in (2.12) and (2.14) for n ¼ 1; 2; :::: These results indicate that,
if sequence frng or sequence fsng is found to be majorizing for Newton’s
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method, then the earlier results using ftng as majorizing sequence are
improved under the same computational cost, since in practice the compu-
tation of function L1 requires the computation of K or L as special cases.
Let F : D ! B2 be m� times differentiable in the sense of Fr�echet. Then,

for any u; v 2 D and any integer k ¼ 0; 1; 2; :::;m; we can write

Tk F; u; vð Þ ¼ F vð Þ�
Xk
k¼0

DkF uð Þ v�uð Þk
k!

for the remainder of the Taylor expansion of F to order k; centered at x
and evaluated at v. It is well known that, if kþ 1 � m and, if the segment
½u; v� � D; then

Tk F; u; vð Þ ¼
ð
u;v½ �

F kþ1ð Þ wð Þ v�wð Þk
k!

dw:

Next, we state the main semi-local convergence result for Newton’s
method using the preceding notation.

Theorem 2.1. Let F : D � B1 ! B2 be a differentiable operator in the sense
of Fr�echet, and let x0 2 D be such that F0ðx0Þ�1 2 ‘ðB2;B1Þ: Suppose: func-
tion w defined by (2.1) has a unique zero s� in the interval ½0;R0Þ;
Uðx0;R0Þ � D; wðR0Þ � 0; KðtÞ � LðtÞ; t 2 ½0;R0�; where R0 is defined in
(2.2); conditions (2.2) and (2.3) hold. Then, the following assertions hold.

(a) The scalar sequence fsng generated by (2.8) is well defined, remains in
½0; s�� and nondecreasingly convergent to s�:

(b) The sequence fxng generated by Newton’s method is well defined,
remains in �Uðx0; s�Þ and converges to a unique solution x� of equation
F(x) ¼ 0 in Uðx0;R0Þ: Moreover, the following error bounds hold

jjxnþ1�xnjj � snþ1�sn (2.15)

and

jjxn�x�jj � s��sn: (2.16)

Proof.
(a) Notice that w00 � 0: Then, the proof is standard [27].
(b) We shall show using induction that (2.15) holds. If n ¼ 0; (2.15) holds

by (2.1), since

jjx1�x0jj ¼ jjF0 x0ð Þ�1F x0ð Þjj � g ¼ s1�s0:

Suppose that (2.15) holds for all integers k smaller or equal to n. Using
the induction hypothesis, we get that
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jjxk�x0jj ¼
Xk�1

i¼0

jjxiþ1�xijj �
Xk�1

i¼0

siþ1 � sið Þ ¼ sk�s0 ¼ sk � s�:

Then, by (2.3) we get that
jjF0 x0ð Þ�1 F0 xkð Þ�F0 x0ð Þ

� �jj � 1þ u0 jjxk�x0jjð Þ
� 1þ u0 skð Þ< 1:

(2.17)

It follows from (2.17) and the Banach lemma on invertible operators [7,
16, 20, 21] that F0ðxkÞ�1 2 ‘ðB2;B1Þ and

jjF0 xkð Þ�1F0 x0ð Þjj � 1

1� jjF0 x0ð Þ�1 F0 xkð Þ � F0 x0ð Þ� �jj
� � 1

u0 jjxk � x0jjð Þ � � 1
u0 skð Þ

� � 1

w0 skð Þ :

(2.18)

Hence, xkþ1 is well defined. Using the Taylor expansion of F at xk�1 and
the definition of xk we can write

F xkð Þ ¼ F xkþ1ð Þ þ F0 xk�1ð Þ xk�xk�1ð Þ þ T1 F; xk�1; xkð Þ ¼ T1 F; xk�1; xkð Þ:
(2.19)

Then, by (2.19) the first Lemma in [27], the definition of sk and the
induction hypothesis estimate jjxk�xk�1jj � sk�sk�1; we have in turn

jjF1 F0 x0ð Þ�1F; xk�1; xk
� �

jj � T1 w; sk�1; skð Þ
¼ w skð Þ�w sk�1ð Þ
�w0 sk�1ð Þ sk�sk�1ð Þ
¼ w skð Þ:

(2.20)

That is we have

jjF0 x0ð Þ�1F xkð Þjj � w skð Þ: (2.21)

Then, in view of (2.18) and (2.21) we get that
jjxkþ1�xkjj � jjF0 xkð Þ�1F0 x0ð ÞjjjjF0 x0ð Þ�1F xkð Þjj

� � w skð Þ
w0 skð Þ ¼ skþ1�sk:

(2.22)

The induction for estimate (2.15) is complete. It follows from (2.22) that
fxkg is a complete sequence in a Banach space B1 and such it converges to
some x� 2 �Uðx0; s�Þ (�Uðx0; s�Þ is a closed). If k ! 1 in (2.21), we deduce
that Fðx�Þ ¼ 0: Estimate (2.16) follows from (2.15) by using standard majo-
rizing techniques [2, 4, 7, 16, 23]. Finally, to show the uniqueness part, let
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y� be a solution of equation F(x) ¼ 0 in Uðx0;R0Þ and let q ¼ jjy��x0jj
R0

< 1:
Using induction we shall show

jjxn�y�jj � q2
n
R0�skð Þ (2.23)

leading to x� ¼ y�; since we showed limk!1 xk ¼ x�: Estimate (2.23) is true
for n ¼ 0: Suppose that it holds for all integer up to k. We get in turn as
in (2.20) that (since w00 ¼ L)

jjT1 F0 x0ð Þ�1F; xk; x
�

� �
jj � T1 w; sk; sk þ jjx��xkjjð Þ

¼
ðskþjjxk�y�jj

sk

w00 sð Þ sk þ jjxk�y�jj�s
� �

ds

� q2
kþ1

ðR0

sk

w00 sð Þ R0�sð Þds

¼ q2
kþ1

w R0ð Þ�w skð Þ�w0 skð Þ R0�skð Þ� �
: (2.24)

Using (2.18) and (2.24), we conclude that

jjxnþ1�y�jj � �q2
kþ1 w R0ð Þ�w skð Þ�w0 skð Þ R0�skð Þ

w0 skð Þ : (2.25)

But, by hypothesis wðR0Þ � 0; (2.25) yields (2.23). w

The uniqueness part can be extended as follows:

Proposition 2.2. Under the hypotheses of Theorem 2.1 further assume that
there exists R1 2 ½0;R0� such thatð1

0
u R0 þ 1�tð ÞR1ð Þdt< 1; and �U x0;R1ð Þ � D; (2.26)

then, the point x� is the unique solution of equation F(x) ¼ 0 in �Uðx0;R1Þ:

Proof. Let y� be a solution of equation F(x) ¼ 0 in �Uðx0;R1Þ: Define M ¼Ð 1
0 F

0ðx� þ hðy��x�ÞÞdh: Then, as in (2.17), we get by (2.26) that

jjF0 x0ð Þ�1 M�F0 x0ð Þ
� �jj �

ð1
0
u R0 þ 1�tð ÞR1ð Þdt< 1: (2.27)

It follows from (2.27) that M�1 2 ‘ðB2;B1Þ: Then, by the identity 0 ¼
Fðy�Þ�Fðx�Þ ¼ Mðy��x�Þ; we conclude that x� ¼ y�: w

Remark 2.3.
(a) If K ¼ L ¼ L1; then Theorem 2.1 reduces to the corresponding one in

[27]. Moreover, if L0 � L1; then Theorem 2.1 reduces to our earlier
results [2–7]. However, if
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K � L � L1; (2.28)

then the new results improve the older ones. In particular, under the
hypotheses of Theorem 2.1: if (2.9) holds then sequence frng can replace
sequence fsng in Theorem 2.1 (see also (2.13) and (2.14)). If (2.10)
holds and the hypotheses of Theorem 2.1 hold with R; L1 replacing
R0; L; respectively (i.e., the hypotheses of Theorem 2.4 in [27]) in
Theorem 2.1, then we have the advantages (A) and (2.11)–(2.14).
Notice, however, that a direct study of the convergence of scalar sequen-
ces frng and fsng can lead to even weaker convergence criteria (see
Section 4.). Concluding and in view of the estimate uðt�Þ � wðt�Þ �
w1ðt�Þ ¼ 0; we see that the results in [27] always imply our results but
not necessarily vice versa.

(b) The radius R can be chosen such that R¼R0 or by R ¼ supft � 0 :

Uðx0; tÞ � Dg or some other way.

3. Semi-local convergence for m � 2

We suppose again that condition (2.3) holds in this section, so we can
define R0 and keep the Newton iterates fxng in U. Moreover, suppose that
for each i ¼ 2; 3; :::;m there exist

ci � jjF0 x0ð Þ�1F ið Þ x0ð Þjj (3.1)

and a continuous non-negative and non-decreasing function Lm : ½0;R� !
R�0 satisfying

jjF0 x0ð Þ�1 F mð Þ uð Þ�F mð Þ vð Þ
� �

jj �Lm rð Þjju�vjj
for each r 2 0;R½ � and u; v 2 U0: (3.2)

Furthermore, define function gm on the interval ½0;R� by

gm tð Þ ¼ g�t þ c2
t2

2!
þ :::þ cm

tm

m!
þ
ðt
0
Lm sð Þ t�sð Þm

m!
ds:

Finally, suppose that

� 1
u0 tð Þ � � 1

g0m tð Þ for each t 2 0;R0½ �: (3.3)

Define, scalar sequence fsng by

s0 ¼ 0; snþ1 ¼ sn�
gm snð Þ
g0m snð Þ : (3.4)

Then, we can show the following semi-local convergence result for
Newton’s method.
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Theorem 3.1. Let F : D � B1 ! B2 be a m�times differentiable operator in
the sense of Fr�echet for m � 2; and let x0 2 D be such that F0ðx0Þ�1 2
‘ðB2;B1Þ: Suppose that: hypotheses (2.3), (3.1), (3.2) and (3.3) hold; function
gm has a unique zero s� in the interval ½0;R0Þ;Uðx0;R0Þ � D and gmðR0Þ �
0: Then, the following assertions hold.

(a) The scalar sequence fsng defined by (3.4) is non-decreasingly convergent
to s�:

(b) The sequence fxng generated by Newton’s method is well defined,
remains in �Uðx0; s�Þ for each n ¼ 0; 1; 2; . . . and converges to a unique
solution x� of equation F(x) ¼ 0 in Uðx0;RÞ: Moreover, the following
error bounds hold

jjxnþ1�xnjj � snþ1�sn

and

jjxn�x�jj � s��sn:

Proof. Define function L by

L tð Þ ¼ g0m0 tð Þ ¼ c2 þ :::þ cm
tm�2

m!
þ
ð1
0
Lm sð Þ t�sð Þm�2

m� 2ð Þ! ds

and tu ¼ jju�x0jj: We shall show that the hypotheses of Theorem 2.1 are
satisfied with wðtÞ ¼ gmðtÞ. We have again by the first Lemma in [27]
applied to Fðm�1Þ that

jjF0 x0ð Þ�1 F mð Þ uð Þ�F mð Þ x0ð Þ
� �

jj �
ðtu
0
Lm sð Þds:

� Case m ¼ 2: We have

Tm�2 F0 x0ð Þ�1F00; x0; u
� �

¼ F0 x0ð Þ�1 F00 uð Þ�F00 x0ð Þ
� �

:

Then, its norm is bounded above by
Ð tu
0 LmðsÞds ¼ Tm�2ðg0m0; 0; tuÞ:

� Case m � 3: The integral form of the Taylor remainder of F00 to order
m – 3 yields to

Tm�2 F0 x0ð Þ�1F00; x0; u
� �

¼ Tm�3 F0 x0ð Þ�1F00; x0; u
� �

�F mð Þ x0ð Þ u�x0ð Þm�2

m� 2ð Þ!
¼

ð
x0;u½ �

F mð Þ wð Þ�F mð Þ x0ð Þ
� � u�wð Þm�3

m� 3ð Þ! dw;
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so

jjTm�2 F0 x0ð Þ�1F00; x0; u
� �jj � Ð tu

0

Ð t
0 Lm sð Þ tx�tð Þm�3

m� 3ð Þ! dtds
¼ Tm�2 g0m0; 0; tu

� �
leading to

jjTm�2ðF0ðx0Þ�1F00; x0; uÞjj �
Xm
i¼2

ci
tði�2
x

ði� 2Þ!
þ Tm�2ðg00m; 0; txÞ ¼ g00mðtuÞ:

w

If we take the limit of the previous result when m approaches infinity, we
obtain the following result.

Proposition 3.2. Let F : D � B1 ! B2 be a 1�times differentiable operator
in the sense of Fr�echet and let x0 2 D be such that F0ðx0Þ�1 2 ‘ðB2;B1Þ:
Define function g1 : ½0;R0� ! R�0 by

g1 tð Þ ¼ g�t þ
X1
i¼2

ci
ti

i!
:

Suppose that (2.3), (3.1), (3.2), (3.3) hold (with gm replaced by g1), func-
tion g1 is well defined and has a unique zero s� in the interval
½0;R0Þ;Uðx0;R0Þ � D and g1ðR0Þ � 0: Then, the following assertions hold.

(a) The scalar sequence fsng defined by

s0 ¼ 0; snþ1 ¼ sn�
g1 snð Þ
g01 snð Þ ;

is well defined, remains in ½0; s�� and is nondecreasingly convergent
to s�:

(b) The sequence fxng generated by Newton’s method is well defined,
remains in �Uðx0; s�Þ for each n ¼ 0; 1; 2; . . . and converges to a unique
solution x� of equation F(x) ¼ 0 in Uðx0;RÞ: Moreover, the following
error bounds hold

jjxnþ1�xnjj � snþ1�sn

and
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jjxn�x�jj � s��sn:

Proof. Define again function L by LðtÞ ¼ g010ðtÞ: Using the Taylor expan-
sion of F00 at x0, we get for each x 2 U0

jjF0 x0ð Þ�1F00 xð Þjj � L jjx�x0jjð Þ: (3.5)

Hence, the hypotheses of Theorem 2.1 hold with wðtÞ ¼ g1ðtÞ: w

Remarks analogous to Remark 2.3 can be made for the results of this
section (see also Section 4).

4. Special cases and examples

Case 4.1 m5 2 (a) Let K, L and L1 be constant functions. Then, the con-
vergence conditions of Theorem 2.1 become:

h ¼ Lg � 1
2

(4.1)

which is weaker than the celebrated Newton-Kantorovich condition [12]

h1 ¼ L1g � 1
2
: (4.2)

Notice that

h1 � 1
2
¼) h � 1

2
: (4.3)

The convergence is not true unless, if L ¼ L1: The corresponding majo-
rizing sequences are:

r0 ¼ 0; r1 ¼ g; r2 ¼ r1 þ
L r1�r0ð Þ2
2 1� Kr1ð Þ ;

rnþ2 ¼ rnþ1 þ
L rnþ1�rnð Þ2
2 1� Krnþ1ð Þ

s0 ¼ 0; snþ1 ¼ sn þ
L sn�sn�1ð Þ2
2 1� Lsnð Þ

and

t0 ¼ 0; tnþ1 ¼ tn þ L1 tn�tn�1ð Þ2
2 1� L1tnð Þ :

Notice that frng is a majorizing sequence provided that (4.1) holds and
L � K; whereas the other two are majorizing sequences provided that (4.1)
and (4.2) hold, respectively. Then, the analogous to (2.9) and (2.10) condi-
tions for (2.11)–(2.14) to hold are respectively
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L � K (4.4)

and

L � L1 (4.5)

(see also the numerical examples). Finally, notice that a direct study for the
convergence of these sequences yields even weaker sufficient semi-local
convergence conditions in this case (see [5–7]).

� Case m ¼ 1 Let g1 be a rational function with numerator of degree 2
and denominator of degree 1. Suppose there exists c0 > 0 such that

c0 � jj F
0 x0ð Þ�1F ið Þ x0ð Þ

i!
jj 1

i�1

for each i � 2 and let ci ¼ i!ci�1
0 ; so that g1ðtÞ ¼ g�t þ c0t

2

1�c0t
: Set a0 ¼

gc0: Then, according to Proposition 3.2 we should have

R0<
1
c0

and

a0 ¼ gc0 � 3�2
ffiffiffi
2

p
: (4.6)

The corresponding a� conditions given by Smale [24] are:

R<
1
c0

and (4.6). Therefore, the new conditions are weaker, since R0<R:
� Case m5 2 (b) Wang’s condition [25] is given by

jjF0 x0ð Þ�1F00 uð Þjj � 2c1
1�c1jju�x0jjð Þ3 foreach u 2 U

and some c1> 0: But in our case the condition is

jjF0 x0ð Þ�1F00 uð Þjj � 2c

1�cjju�x0jjð Þ3 for each u 2 U

and some c> 0: Then, again we have:

c � c1;

whereas the corresponding a� convergence criteria are

a ¼ cg � 3�2
ffiffiffi
2

p

a ¼ c1g � 3�2
ffiffiffi
2

p
:

314 I. K. ARGYROS AND S. GEORGE



Notice that:

a1 � 3�2
ffiffiffi
2

p
¼) a � 3�2

ffiffiffi
2

p
:

The convergence is not true unless, if c ¼ c1: Let us define sequence
fung by

un ¼ sn�s�
sn ¼ sþ

:

Then, it is simple algebra to show that

unþ1 ¼
sn�s�� g1 snð Þ

g01 snð Þ
sn � s� þ g1 snð Þ

g01 snð Þ
¼ 1�csþ

1� cs�
u2n:

Hence, sequence fsng can be expressed explicitly in terms of a; g and c:

Example 4.1. Let B1 ¼ B2 ¼ R; x0 ¼ 1;X ¼ fx : jx�x0j � 1�hg; h 2 ½0; 12Þ;
R ¼ 1�h;R0 ¼ 1

L : Define function F on X by

F xð Þ ¼ x3�h:

By the hypotheses of Theorem 2.1 we get:

g ¼ 1
3

1�hð Þ; K ¼ 3�h; L1 ¼ 2 2�hð Þ and L ¼ 2 1þ 1
K

	 

;

so
K< L< L1; and R0<R;

(4.4) and (4.5) hold as strict inequalities. The Newton-Kantorovich condition
(4.2) is not satisfied, since

4
3

1�hð Þ 2�hð Þ> 1 and h 2 0;
1
2

� 

: (4.7)

Hence, there is no assurance that Newton’s method (1.2) converges to x� ¼ffiffiffiffiffi
h3

p
; for x0 ¼ 1: However, our condition (4.1) is satisfied for all h 2 I ¼

½0:4619832; 12Þ: Hence, the conclusions of our Theorem 2.1 can apply to solve
equation F(x) ¼ 0 for all h 2 I:

Example 4.2. Assume B1 ¼ B2 ¼ C½0; 1�: Let X ¼ fz 2 C½0; 1�; jjzjj � Rg,
such that R> 0; where jj:jj stands for the norm max. Define F on X by [14]:

F zð Þ sð Þ ¼ z sð Þ�1 sð Þ�s
ð1
0
G s; tð Þz tð Þ3dt; z 2 C 0; 1½ �; s 2 0; 1½ �:

Here, 1 2 C½0; 1� is a given function, s is a real constant and the kernel G
is the Green’s function

G s; tð Þ ¼ 1�sð Þt; t � s;
s 1�tð Þ; s � t:

�
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Notice that nonlinear integral equation FðzÞðsÞ ¼ 0 is of Chandrasekhar
type [9]. Then, F0ðzÞ is a linear operator given for each z 2 X, by

F0 zð Þ vð Þ
 �
sð Þ ¼ v sð Þ�3s

ð1
0
G s; tð Þz tð Þ2v tð Þdt; v 2 C 0; 1½ �; s 2 0; 1½ �:

Let us choose x0ðsÞ ¼ 1ðsÞ ¼ 1 to obtain that jjI�F0ðx0Þjj � 3jsj=8; so, if
jsj< 8=3; F0ðx0Þ�1 exists and

jjF0 x0ð Þ�1jj � 8
8� 3jsj :

Notice that

jjF x0ð Þjj � jsj
8
;

so

g ¼ jjF0 x0ð Þ�1F x0ð Þjj � jsj
8� 3jsj :

Moreover, for u; v 2 X we get

jjF0 uð Þ�F0 vð Þjj � jju�vjj 1þ 3jsj jjuþ vjjð Þ
8

� jju�vjj 1þ 6Rjsj
8

:

and

jjF0 uð Þ�F0 1ð Þjj � jju�1jj 1þ 3jsj jjujj þ 1ð Þ
8

� jju�1jj 1þ 3 1þ Rð Þjsj
8

:

Let s ¼ 1:175 and R ¼ 2: Then,we get g ¼ 0:26257:::; L1 ¼ 2:76875:::;K ¼
1:8875:::; 1K ¼ 0:529801:::; L ¼ 1:47314:::: Notice that (4.4) and (4.5) are
satisfied as strict inequalities. Finally, we conclude that condition (4.2) is not
satisfied:

�h
1 ¼ 1:02688::: > 1;

whereas condition (4.1) is satisfied: h1A ¼ 0:986217::: < 1: Therefore, the
convergence of the Newton’s method is assured by Theorem 2.1.
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