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LOCAL CONVERGENCE FOR A FAMILY OF SIXTH ORDER
CHEBYSHEV-HALLEY -TYPE METHODS IN BANACH SPACE

UNDER WEAK CONDITIONS

IOANNIS K. ARGYROS1 AND SANTHOSH GEORGE2∗

Communicated by J. Brzdȩk

Abstract. We present a local convergence analysis for a family of super-
Halley methods of high convergence order in order to approximate a solution
of a nonlinear equation in a Banach space. Our sufficient convergence con-
ditions involve only hypotheses on the first and second Fréchet-derivative of
the operator involved. Earlier studies use hypotheses up to the third Fréchet
derivative. Numerical examples are also provided in this study.

1. Introduction

Many problems in computational sciences and other disciplines can be brought
in a form of equation

F (x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a subset D of a Banach
space X with values in a Banach space Y. The solutions of these equation (1.1)
can rarely be found in closed form. Therefore solutions of these equations (1.1)
are approximated by Newton-like iterative methods [1–28]. The study about con-
vergence matter of iterative procedures is usually based on two types: semi-local
and local convergence analysis. The semi-local convergence matter is, based on
the information around an initial point, to give conditions ensuring the conver-
gence of the iterative procedure; while the local one is, based on the information
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around a solution, to find estimates of the radii of convergence balls. There ex-
ist many studies which deal with the local and semilocal convergence analysis of
Newton-like methods such as [1–28].

We present a local convergence analysis for the family of Chebyshev-Halley-
type methods defined for each n = 0, 1, 2, · · · by

yn = xn − F ′(xn)−1F (xn),

un = xn −
β

2
F ′(xn)−1F (xn), (1.2)

zn = yn − AnF ′(xn)−1F (xn),

xn+1 = zn −B−1n F ′(xn)−1F (zn),

where x0 is an initial point, α, β ∈ (−∞,∞),

An =
1

2
G(xn)4−1α,n, 4α,n = I − αG(xn),

G(xn) = F ′(xn)−1F ′′(un)F ′(xn)−1F (xn),

and Bn = I + F ′(xn)−1F ′′(un)(zn − xn). A semilocal convergence analysis was
presented in [28] for the special case when β = 1 under the following conditions
(C ′)( in non affine invariant form): Let F : D ⊆ X → Y be a thrice differentiable
operator.

(C ′1): There exists F ′(x0)
−1 ∈ L(Y,X) and ‖F ′(x0)−1‖ ≤ β;

(C ′2):
‖F ′(x0)−1F (x0)‖ ≤ β1;

(C ′3):
‖F ′(x0)−1F ′′(x)‖ ≤ β2 for each x ∈ D;

(C ′4):
‖F ′(x0)−1F ′′′(x)‖ ≤ β3 for each x ∈ D;

(C ′5):

‖F ′(x0)−1(F ′′′(x)− F ′′′(y))‖ ≤ β4‖x− y‖q for each x, y ∈ D and q ∈ [0, 1].

The R−order of convergence was shown to be 5 + q (i.e., 6 if q = 1). Notice
that in [28] α ∈ [0, 1], whereas in the present paper α ∈ (−∞,∞). Hence, the
applicability of method (1.2) is extended.

It is worth noting that if F ′′(x) = Q where Q is a bilinear operator, then
method (1.2) finds applications especially, when F is a quadratic operator [2].

Similar conditions have been used by other authors [1–28], on other high con-
vergence order methods. The corresponding conditions for the local convergence
analysis are given by simply replacing x0 by x∗ in the preceding (C ′) conditions.
These conditions however are very restrictive. As a motivational example, let us
define function f on D = [−1

2
, 5
2
] by

f(x) =

{
x3 lnx2 + x5 − x4, x 6= 0
0, x = 0
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Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, obviously, e.g, function f cannot satisfy condition (C ′4), say for q = 1, since
function f ′′′ is unbounded on D. In the present paper we only use hypotheses on
the first Fréchet derivative. In particular, we weaken the (C ′) hypotheses. We
suppose instead (in affine invariant form) the conditions (C): Let F : D ⊆ X → Y
be a twice differentiable operator.

(C1): There exists x∗ ∈ D such that F ′(x∗) = 0 and F ′(x∗)−1 ∈ L(Y,X).
There exist L0 > 0, L > 0, M > 0 and N > 0 such that for each x ∈ D

(C2):

‖F ′(x∗)−1(F (x)− F (x∗)− F ′(x))(x− x∗)‖ ≤ L

2
‖x− x∗‖2;

(C3):
‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖;

(C4):
‖F ′(x∗)−1F ′(x)‖ ≤M ;

and
(C5):

‖F ′(x∗)−1F ′′(x)‖ ≤ N.

This way we expand the applicability of method (1.2). It is worth noticing
that the sixth order of convergence was obtained under the (C ′) conditions. Here,
under the (C) conditions and since we are using the same method (1.2) (at least for
β = 1), we use instead the computational order of convergence or the approximate
computational order of convergence to arrive at the convergence order six (see
Remark 2.2). Another advantage of our approach is that our results are obtained
in affine invariant form. The advantages of obtaining results in affine invariant
form over non affine invariant form are well known in the literature [3, 16].

The rest of the paper is organized as follows. The local convergence of method
(1.2) is given in Section 2, whereas the numerical examples are given in the
concluding Section 3.

2. Local convergence

We present the local convergence analysis of method (1.2) in this section.
Let α, β ∈ (−∞,∞), L0 > 0, L > 0,M > 0 and N > 0 be parameters

with L0 ≤ L. It is convenient for the local convergence analysis that follows to
introduce some functions g1 and g2 on the interval [0, 1

L0
) by

g1(r) =
Lr

2(1− L0r)
,
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and

g2(r) = g1(r) +
|2− β|M

2(1− L0r)

=
Lr +M |2− β|

2(1− L0r)
.

It follows from the definition of function g1 that for

rA :=
2

L+ 2L0

(2.1)

we have

0 ≤ g1(r) < 1 for each r ∈ [0, rA).

Notice that

rR :=
2

3L
≤ 2

L+ 2L0

<
1

L0

.

Set

r2 =
2− |2− β|M

2L0 + L
. (2.2)

Suppose that

|2− β|M < 2. (2.3)

Then, we have that

0 ≤ g2(r) < 1 for each r ∈ [0, r2).

We also have that

r2 ≤ rA.

Define quadratic polynomial p3 by

p3(r) = |α|MNr − (1− L0r)
2.

We have that

p3(0) = −1 < 0 and p3(
1

L0

) =
|α|MN

L0

> 0,

for α 6= 0. It follows from the intermediate value theorem that polynomial p3 has
roots in the interval (0, 1

L0
). Denote by r3 the smallest such root. Define function

g3 on the interval [0, 1
L0

) by

g3(r) =
|α|MNr

(1− L0r)2
.

Then it follows from the definition of function g3 and polynomial p3 that

0 ≤ g3(r) < 1 for each r ∈ [0, r3).

Define function g4 on [0, r3) by

g4(r) =
MNr

2[(1− L0r)2 − |α|MNr]
.

Then, we have that

g4(r) ≥ 0 for each r ∈ [0, r3).
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Similarly, we show that function h5(r) = g5(r)− 1 defined by

g5(r) = g1(r) +
g4(r)Mr

1− L0r
=

(L+ 2g4(r)M)r

2(1− L0r)

has a minimal zero r5 such that

0 ≤ g5(r) < 1 for each r ∈ [0, r5).

Indeed, we have that h5(0) = −1 < 0 and h5(t) → ∞ as t → ( 1
L0

)−. Similarly,

functions h6(r) = g6(r)−1, h7(r) = g7(r)−1 and h8(r) = g8(r)−1 have minimal
zeros r6, r7 and r8 such that

0 ≤ g6(r) < 1 for each r ∈ [0, r6),

0 ≤ g7(r) < 1 for each r ∈ [0, r7),

and

0 ≤ g8(r) < 1 for each r ∈ [0, r8),

where

g6(r) = [(N + L0) +Ng5(r)]r,

g7(r) =

(
1 +

M

1− [(N + L0) +Ng5(r)]r

)
g5(r),

and

g8(r) = 1− [N + L0 +Ng5(r)]r,

since we have that h6(0) = −1 < 0, h6(t) → ∞, h7(0) = −1 < 0, h7(t) → ∞,
h8(0) = −1 < 0 and h8(t) → ∞ as t → ( 1

L0
)−. It follows from the definition of

functions g1, g5, g7, g8 and parameters rA, r5, r7 and r8 that

r7 ≤ r5 ≤ rA.

Set

r∗ = min{r2, r3, r6, r7, r8}. (2.4)

Then it follows from (2.3) and (2.4) that

0 ≤ g1(r) < 1, (2.5)

0 ≤ g2(r) < 1, (2.6)

0 ≤ g3(r) < 1, (2.7)

g8(r) > 0, g4(r) > 0, (2.8)

0 ≤ g5(r) < 1, (2.9)

0 ≤ g6(r) < 1, (2.10)

and

0 ≤ g7(r) < 1, (2.11)

for each r ∈ [0, r∗).
We shall denote by U(q, R), Ū(q, R) the open and closed balls in X, respec-

tively, with center q ∈ X and of radius R > 0.
Next, we present the local convergence analysis of method (1.2) under the (C)

conditions.
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Theorem 2.1. Let F : D ⊆ X → Y be a twice Fréchet-differentiable operator.
Suppose that the (C) conditions, |2− β|M < 2 and

Ū(x∗, r∗) ⊆ D (2.12)

hold, where r∗ is defined by (2.4). Then, sequence {xn} generated by method
(1.2) for x0 ∈ U(x∗, r∗) is well defined, remains in U(x∗, r∗) and converges to x∗.
Moreover, the following estimates hold for each n = 0, 1, 2, · · · ,

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r∗, (2.13)

‖un − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (2.14)

|α|‖G(xn)‖ ≤ g3(‖xn − x∗‖) < 1, (2.15)

‖An‖ ≤ g4(‖xn − x∗‖), (2.16)

‖zn − x∗‖ ≤ g5(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (2.17)

0 < g6(‖xn − x∗‖) < 1 (2.18)

and

‖xn+1 − x∗‖ ≤ g7(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖, (2.19)

where the “g” functions are defined above Theorem 2.1. Furthermore, suppose
that there exists R ∈ [r∗, 2

L0
) such that Ū(x∗, R) ⊂ D, then the limit point x∗ is

the only solution of equation F (x) = 0 in Ū(x∗, R).

Proof. Using (C3), the definition of r∗ and the hypothesis x0 ∈ U(x∗, r∗) we get
that

‖F ′(x∗)−1(F (x0)− F (x∗))‖ ≤ L0‖x0 − x∗‖ < L0r
∗ < 1. (2.20)

It follows from (2.20) and the Banach Lemma on invertible operators [3,16] that
F ′(x0)

−1 ∈ L(Y,X) and

‖F ′(x0)−1F ′(x∗)‖ ≤
1

1− L0‖x0 − x∗‖
<

1

1− L0r∗
. (2.21)

Hence, from the first two substeps of method (1.2) for n = 0, y0 and u0 are well
defined. Using the first substep of method (1.2) for n = 0, and (C1) we first get
the identity

y0 − x∗

= x0 − x∗ − F ′(x0)−1F (x0)

= −F ′(x0)−1F ′(x∗)F ′(x∗)−1[F (x0)− F (x∗)− F ′(x0)(x0 − x∗)]. (2.22)

Then, by (C2), (2.21), (2.22), the definition of r∗ and (2.5) we get in turn that

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1[F (x0)− F (x∗)− F ′(x0)(x0 − x∗)]‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r∗,
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which shows (2.13) for n = 0. Using the second substep of method (1.2) for n = 0,
(2.13), (C4), (2.21) and (2.6), we get that

‖u0 − x∗‖ ≤ ‖y0 − x∗‖+
|2− α|

2
‖F ′(x0)−1F ′(x∗)‖

×‖F ′(x∗)−1F ′(x0)‖

≤ g1(‖x0 − x∗‖)‖x0 − x∗‖+
|2− β|

2(1− L0‖x0 − x∗‖)

×‖
∫ 1

0

F ′(x∗)−1F ′(x∗ + t(x0 − x∗))dt‖‖x0 − x∗‖

= (g1(‖x0 − x∗‖) +
|2− β|M

2(1− L0‖x0 − x∗‖)
)‖x0 − x∗‖

≤ g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r∗,

which shows (2.14) for n = 0. Notice also that x∗ + t(x0 − x∗) ∈ U(x∗, r∗), since

‖x∗ + t(x0 − x∗)− x∗‖ = |t|‖x0 − x∗‖ < r∗

for each t ∈ [0, 1]. We also have shown that y0, u0 ∈ U(x∗, r∗). We need estimates
on ‖G(x0)‖, ‖A0‖, ‖4−1α,0‖ and ‖B−10 ‖. Using (C5), (2.21) and (2.7), we get that

|α|‖G(x0)‖ ≤ |α|‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F ′′(u0)‖
‖F ′(x0)−1F ′(x∗)‖‖F ′(x∗)−1F ′(x0)‖

≤ |α|MN‖x0 − x∗‖
(1− L0‖x0 − x∗‖)2

= g3(‖x0 − x∗‖) < 1, (2.23)

which shows (2.15) for n = 0. It follows from (2.23) and the Banach lemma on
invertible operators that 4−1α,0 exists and

‖4−1α,0‖ ≤
1

1− |α|MN‖x0−x∗‖
(1−L0‖x0−x∗‖)2

. (2.24)

Then, using (2.23) and (2.26), we obtain that

‖A0‖ ≤
MN‖x0 − x∗‖

2[(1− L0‖x0 − x∗‖)2 − |α|MN‖x0 − x∗‖]
= g4(‖x0 − x∗‖),

which shows (2.16) for n = 0. Then, using the third substep in method (1.2) for
n = 0, we see that z0 is well defined. Moreover, from (2.13), (2.21), (2.9) and
(2.16), we get that

‖z0 − x∗‖ ≤ ‖x0 − F ′(x0)−1F ′(x∗)− x∗‖
+‖A0‖‖F ′(x∗)−1F ′(x∗)‖‖F ′(x∗)−1F ′(x0)‖

≤ (g1(‖x0 − x∗‖) +
g4(‖x0 − x∗‖)M
1− L0‖x0 − x∗‖

)‖x0 − x∗‖

= g5(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r∗,
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which shows (2.17) for n = 0. We have by (2.10) and (2.17) that

N‖z0 − x0‖+ L0‖x0 − x∗‖ ≤ N(‖z0 − x∗‖+ ‖x0 − x∗‖) + L0‖x0 − x∗‖
≤ (N + L0)‖x0 − x∗‖+Ng5(‖x0 − x∗‖)‖x0 − x∗‖
= g6(‖x0 − x∗‖) < 1, (2.25)

which shows (2.18) for n = 0. We also have from (2.25) and the Banach lemma
on invertible operators that B−10 exists and

‖B−10 ‖ ≤
1

1− (L0‖x0 − x∗‖+N‖x0 − x∗‖)
≤ 1

1− g6(‖x0 − x∗‖)
, (2.26)

since by the definition of B0

‖F ′(x0)−1F ′(x∗)F ′(x∗)−1F ′′(u0)(z0 − x0)‖ ≤ ‖F ′(x0)−1F ′(x∗)‖
×‖F ′(x∗)−1F ′′(u0)‖‖z0 − x0‖

≤ N‖z0 − x0‖
1− L0‖x0 − x∗‖

≤ N(‖z0 − x∗‖+ ‖x0 − x∗‖)
1− L0‖x0 − x∗‖

< 1 (by (2.25)).

Then, using the last substep of method (1.2) for n = 0, (2.11), (2.21) and (2.26),
we get since x1 is well defined that

‖x1 − x∗‖ ≤ g5(‖x0 − x∗‖)‖x0 − x∗‖

+‖B−10 ‖‖F ′(x0)−1F ′(x∗)‖‖
∫ 1

0

F ′(x∗)−1F ′(x∗ + t(z0 − x∗))(z0 − x∗)dt‖

≤ g5(‖x0 − x∗‖)‖x0 − x∗‖

+
M‖z0 − x∗‖

(1− L0‖x0 − x∗‖)[1− N‖z0−x0‖
1−L0‖x0−x∗‖ ]

≤ (1 +
M

1− (L0‖x0 − x∗‖+N‖z0 − x∗‖)
)g5(‖x0 − x∗‖)‖x0 − x∗‖

≤ g7(‖x0 − x∗‖)‖x0 − x∗‖
< ‖x0 − x∗‖ < r∗,

which shows (2.19) for n = 0.
By simply replacing y0, u0, z0, x1 by yk, uk, zk, xk+1 in the preceding estimates

we arrive at (2.13)-(2.19). Moreover, from the estimate ‖xk+1− x∗‖ < ‖xk− x∗‖,
we deduce that limk→∞ xk = x∗.
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Finally, to show the uniqueness part, let T =
∫ 1

0
F ′(y∗+ t(x∗− y∗))dt for some

y∗ ∈ Ū(x∗, R) with F (y∗) = 0. In view of (C3) and the estimate

‖F ′(x∗)−1(T − F ′(x∗))‖ ≤
∫ 1

0

L0‖y∗ + t(x∗ − y∗)− x∗‖dt

≤
∫ 1

0

L0(1− t)‖x∗ − y∗‖dt ≤
L0

2
R < 1,

it follows that T−1 exists. Then, from the identity 0 = F (x∗)−F (y∗) = T (x∗−y∗),
we deduce that x∗ = y∗. �

Remark 2.2.

1. In view of (C3) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + L0‖x− x∗‖

condition (C4) can be dropped and M can be replaced by

M(r) = 1 + L0r.

Moreover, condition (C2) can be replaced by the popular but stronger
conditions

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖, for each x, y ∈ D (2.27)

or

‖F ′(x∗)−1(F ′(x∗ + t(x− x∗))− F ′(x))‖ ≤ L(1− t)‖x− x∗‖,
for each x, y ∈ D and t ∈ [0, 1].

2. The results obtained here can be used for operators F satisfying au-
tonomous differential equations [3, 16] of the form

F ′(x) = T (F (x))

where T is a continuous operator. Then, since F ′(x∗) = T (F (x∗)) = T (0),
we can apply the results without actually knowing x∗. For example, let
F (x) = ex − 1. Then, we can choose: T (x) = x+ 1.

3. The local results obtained here can be used for projection methods such
as the Arnoldi’s method, the generalized minimum residual method (GM-
RES), the generalized conjugate method(GCR) for combined Newton/finite
projection methods and in connection to the mesh independence principle
can be used to develop the cheapest and most efficient mesh refinement
strategies [3, 4].

4. The parameter rA given by (2.1) was shown by us to be the convergence
radius of Newton’s method [3, 4]

xn+1 = xn − F ′(xn)−1F (xn) for each n = 0, 1, 2, · · · (2.28)

under the conditions (2.27) and (C3). It follows from (2.4) that the con-
vergence radius r∗ of method (1.2) cannot be larger than the convergence
radius rA of the second order Newton’s method (2.28). As already noted
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in [3, 4] rA is at least as large as the convergence ball given by Rhein-
boldt [3, 4]

rR =
2

3L
.

In particular, for L0 < L we have that

rR < rA

and
rR
rA
→ 1

3
as

L0

L
→ 0.

That is our convergence ball rA is at most three times larger than Rhein-
boldt’s. The same value for rR was given by Traub [3,4].

5. It is worth noticing that method (1.2) is not changing when we use the
conditions of Theorem 2.1 instead of the stronger (C ′) conditions used
in [28]. Moreover, we can compute the computational order of convergence
(COC) defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)
/ ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)
/ ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence in a way that
avoids the bounds given in [28] involving estimates up to the third Fréchet
derivative of operator F.

3. Numerical Examples

We present two numerical examples in this section.

Example 3.1. Let X = Y = R2, D = Ū(0, 1), x∗ = 0 and define function F on
D for z = (x, y)T by

F (z) = (sin x,
1

4
(ey + 3y − 1))T . (3.1)

Then, using the (C) conditions, we get L0 = L = 1, M = 1
4
(e+ 3), N = e

4
. Then,

we have r2 = 1.000, r3 = 0.5048, r5 = 0.3267, r6 = 0.3325, r7 = 0.1261, r8 =
0.3212, α = 0.5, β = 2.6995,

r∗ = 0.1261 < rR = rA = 0.6667

and
ξ1 = 4.9590.

Example 3.2. Returning back to the motivational example at the introduction
of this study, we have L0 = L = N = 146.6629073, M = 101.5578008. Then
we have r2 = 0.0068, r3 = 0.0008, r5 = 0.0005, r6 = 0.0007, r7 = 0.0236, r8 =
0.0010, α = 0.1, β = 2.0098,

r∗ = 0.0005 < rR = rA = 0.0045



LOCAL CONVERGENCE FOR A FAMILY OF SIXTH ORDER METHODS 11

and

ξ1 = 3.8657.
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