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Abstract. We present a local convergence analysis of an at least sixth-
order family of methods to approximate a locally unique solution of
nonlinear equations in a Banach space setting. The semilocal conver-
gence analysis of this method was studied by Amat et al. in (Appl
Math Comput 206:164–174, 2008; Appl Numer Math 62:833–841, 2012).
This work provides computable convergence ball and computable error
bounds. Numerical examples are also provided in this study.
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1. Introduction

In this study, we are concerned with the problem of approximating a solution
x� of the nonlinear equation

F(x) = 0, (1.1)
where F is a Fréchet-differentiable operator defined on a subset D of a
Banach space X with values in a Banach space Y. Using mathematical mod-
eling, many problems in computational sciences and other disciplines can be
expressed as a nonlinear equation (1.1) [2,3,6,9,17–19,22]. Closed-form solu-
tions of these nonlinear equations exist only for few special cases which may
not be of much practical value. Therefore, solutions of these nonlinear equa-
tions (1.1) are approximated by iterative methods. In particular, the practice
of Numerical Functional Analysis for approximating solutions iteratively is
essentially connected to Newton-like methods [1–23]. The study about con-
vergence of iterative procedures is normally divided into two categories—
semilocal and local convergence analysis. The semilocal convergence analysis
is based on the information around an initial point to give criteria ensuring
the convergence of iterative procedures. While, the local analysis is based on
the information around a solution to find estimates of the radii of convergence
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balls. There exist many studies which deal with the local and the semilocal
convergence analysis of Newton-like methods such as [1–22].

Amat, Hernández and Romero in [1,2] studied the semilocal convergence
of the at least sixth-order method defined for each n = 0, 1, 2, 3, . . . by

yn = xn − F ′(xn)−1F(xn),

zn = yn − 1
2
LnF ′(xn)−1F(xn),

xn+1 = zn − HnF ′(xn)−1F(zn),

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(1.2)

where x0 is an initial point,

Ln = F ′(xn)−1F ′′(xn)F ′(xn)−1F(xn)

and

Hn = I + Ln +
3
2
L2

n − 1
2
F ′(xn)−1F ′′′(xn)(F ′(xn)−1F(xn))2.

The semilocal convergence analysis was based on the conditions
∥
∥F ′(x0)−1F(x0)

∥
∥ ≤ η,

∥
∥F ′(x0)−1F ′′(x)

∥
∥ ≤ β,

∥
∥F ′(x0)−1F ′′′(x)

∥
∥ ≤ γ.

Method (1.2) finds applications (see [1,2]) especially when F ′′(x) = B,
where B is a bilinear constant operator. Notice that this way one avoids the
computation of F ′′′(xn) and the method (1.2) reduces to

yn = xn − F ′(xn)−1F(xn),

zn = yn − 1
2
LnF ′(xn)−1F(xn),

xn+1 = zn − (I + Ln +
3
2
L2

n)F ′(xn)−1F(zn).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1.3)

The efficiency index as defined by Traub [23] was also studied in [1,2].
In this paper, we study the local convergence of method (1.2).

The rest of the paper is organized as follows. Section 2 presents the local
convergence of the method (1.2). The numerical examples are presented in
the concluding Sect. 3.

2. Local convergence

In this section, we develop a local convergence analysis of the method (1.2).
Let U(w,R) and U(w,R) stand, respectively, for the open and closed balls
in X centered at w ∈ X and of radius R > 0.

Let l0 > 0, l > 0, M1 > 0, M2 > 0 and M3 ≥ 0 be given parameters.
It is convenient for the local convergence analysis of method (1.2) to define
on the interval [0, 1/l0), functions g1, g2, g3 and h by

g1(r) =
lr

2(1 − l0r)
,
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g2(r) =
r

2(1 − l0r)

(
l +

M2
1M2

(1 − l0r)2
)
,

h(r) = 1 +
M1M2r

(1 − l0r)2
+

3
2

M2
1M2

2r
2

(1 − l0r)4
+

1
2

M3M2
1r

2

(1 − l0r)3

and

g3(r) =
(
1 +

M1h(r)
1 − l0r

)
g2(r)r.

Moreover, define polynomial g on the interval [0, 1/l0] by

g(r) = g3(r) − 1. (2.1)

We have that g(0) = −1 < 0 and g(r) −→ +∞ as t −→ 1
l0

−
. Then,

it follows from the intermediate mean value theorem that polynomial g has
roots in the interval (0, 1/l0). Denote by r0 the smallest root of polynomial
g on the interval (1, 1/l0). It follows from the definition of the functions
g1, g2, g3, h, polynomial g and point r0 that for each r ∈ (0, r0)

0 < g1(r) < 1,

0 < g2(r) < 1,

1 < h(r)

and

0 < g3(r) < 1.

Next, using the preceding notations and definitions, we can show the following
local convergence result for the method (1.2).

Theorem 2.1. Let F : D ⊆ X −→ Y be a thrice Fréchet-differentiable oper-
ator. Suppose that there exist x� ∈ D, l0 > 0, l > 0, M1 > 0 and M3 ≥ 0
such that for each x ∈ D

F(x�) = 0, F ′(x�)−1 ∈ L(Y,X), (2.2)
∥
∥F ′(x�)−1(F ′(x) − F ′(x�))

∥
∥ ≤ l0 ‖x − x�‖ , (2.3)

Let D0 = D ∩ U(x∗, 1
l0

) and for each x ∈ D0

∥
∥F ′(x�)−1(F(x) − F(x�) − F ′(x)(x − x�))

∥
∥ ≤ l

2
‖x − x�‖ , (2.4)

∥
∥F ′(x�)−1F ′(x)

∥
∥ ≤ M1, (2.5)

∥
∥F ′(x�)−1F ′′(x)

∥
∥ ≤ M2, (2.6)

∥
∥F ′(x�)−1F ′′′(x)

∥
∥ ≤ M3, (2.7)

and

U(x�, r0) ⊆ X. (2.8)

Then, sequence {xn} generated by the method (1.2) for x0 ∈ U(x�, r0) is
well defined, remains in U(x�, r0) for each n = 0, 1, 2, 3, . . . and converges to
the solution x� of the equation F(x) = 0. Moreover, the following estimates
hold for each n = 0, 1, 2, . . .

‖yn − x�‖ ≤ g1(‖xn − x�‖) ‖xn − x�‖ , (2.9)
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‖zn − x�‖ ≤ g2(‖xn − x�‖) ‖xn − x�‖ (2.10)

and

‖xn+1 − x�‖ ≤ g3(‖xn − x�‖) ‖xn − x�‖ . (2.11)

Proof. By hypothesis x0 ∈ U(x�, r0). Using (2.3), we get that
∥
∥F ′(x�)−1(F ′(x) − F ′(x�))

∥
∥ ≤ l0 ‖x0 − x�‖ < l0r0 < 1. (2.12)

It follows from (2.12) and the Banach lemma on invertible operators
[3,6,16] that

F ′(x0)−1 ∈ L(Y,X),
∥
∥F ′(x0)−1F ′(x�)

∥
∥ ≤ 1

1 − l0 ‖x0 − x�‖ . (2.13)

Then, in view of the first substep in (1.2) for n = 0, we have the identity

y0 − x� = x0 − x� − F ′(x0)−1F(x0)

= −[F ′(x0)−1F ′(x�)][F ′(x�)−1(F(x0) − F(x�) − F ′(x0)(x0 − x�))].
(2.14)

Using (2.4), (2.13), (2.14) and the properties of the function g1, we get
in turn that

‖y0 − x�‖ ≤ ∥
∥F ′(x0)−1F ′(x�)

∥
∥

∥
∥F ′(x�)−1(F(x0)−F(x�)−F ′(x0)(x0−x�))

∥
∥

≤ l ‖x0 − x�‖2
2(1 − l0 ‖x0 − x�‖)

=g1(‖x0 − x�‖) ‖x0 − x�‖ < ‖x0 − x�‖ < r0.

(2.15)

Hence, y0 ∈ U(x�, r0) and (2.9) holds for n = 0. Using the definition of
operator L0, (2.5), (2.6), (2.13) and the properties of function g2, we get that

‖L0‖ ≤ ∥
∥F ′(x0)−1F ′(x�)

∥
∥

∥
∥F ′(x�)−1F ′′(x0)

∥
∥

∥
∥F ′(x0)−1F ′(x�)

∥
∥

∥
∥
∥
∥

∫ 1

0

F ′(x�)−1F ′(x� + t(x0 − x�))(x0 − x�)dt
∥
∥
∥
∥

≤ M1M2 ‖x0 − x�‖
(1 − l0 ‖x0 − x�‖)2

(2.16)

so, by the second substep in (1.2), (2.20) and (2.16), we have

‖z0 − x�‖ ≤ ‖y0 − x�‖ +
1
2

M2
1M2 ‖x0 − x�‖2

(1 − l0 ‖x0 − x�‖)3

≤ 1
2

(
l +

M2
1M2

(1 − l0 ‖x0 − x�‖)2
) ‖x0 − x�‖2

1 − l0 ‖x0 − x�‖
= g2(‖x0 − x�‖) ‖x0 − x�‖ < ‖x0 − x�‖ < r0. (2.17)

Hence, we deduce that z0 ∈ U(x�, r0) and (2.10) holds for n = 0. Using the
definition of operator H0, (2.5), (2.6), (2.7), (2.13) and h we get in turn that

‖H0‖ ≤ 1 + ‖L(x0)‖ +
3
2

‖L(x0)‖2

+
1
2

∥
∥F ′(x0)−1F ′(x�)

∥
∥

∥
∥F ′(x�)−1F ′′(x0)

∥
∥

∥
∥F ′(x0)−1F ′(x�)

∥
∥2
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∥
∥
∥
∥

∫ 1

0

F ′(x�)−1[F ′(x� + t(x0 − x�))(x0 − x�)]dt
∥
∥
∥
∥

2

≤ 1 +
M1M2 ‖x0 − x�‖
(1 − l0 ‖x0 − x�‖)2

+
3
2

M2
1M2

2 ‖x0 − x�‖2
(1 − l0 ‖x0 − x�‖)4

+
1
2

M3M2
1 ‖x0 − x�‖2

(1 − l0 ‖x0 − x�‖)3

= h(‖x0 − x�‖) (2.18)

so, by (2.22), the last substep in (1.2) and the definition of functions g3, we
get that

‖x1 − x�‖ ≤ ‖z0 − x�‖ +
‖H0‖ M1 ‖z0 − x�‖

1 − l0 ‖x0 − x�‖

≤ 1
2

(
1+

M1h(‖x0−x�‖)
1−l0 ‖x0−x�‖

)(
l+

M2
1M2

(1−l0 ‖x0 − x�‖)2
) ‖x0−x�‖2

1 − l0 ‖x0 − x�‖
= g3(‖x0 − x�‖) ‖x0 − x�‖ < ‖x0 − x�‖ < r0. (2.19)

Hence, x1 ∈ U(x�, r0) and (2.11) holds for n = 1. If we simply replace
x0, y0, z0, x1 by xk, yk, zk, xk+1 in the preceding estimates, we arrive at the
estimates (2.9)–(2.11) and through these estimates to xk, yk, zk, xk+1 ∈
U(x�, r0). Finally, it follows from the estimate

‖xk+1 − x�‖ < ‖xk − x�‖
that

lim
k→∞

xk = x�.

�

Remark 2.2. 1. In view of (2.3) and the estimate
∥
∥F ′(x�)−1F ′(x)

∥
∥ =

∥
∥F ′(x�)−1(F ′(x) − F ′(x�)) + I∥

∥

≤ 1 +
∥
∥F ′(x�)−1(F ′(x) − F ′(x�)

∥
∥ ≤ 1 + l0 ‖x − x�‖

(2.20)

condition (2.5) can be dropped and can be replaced by

M1(r) = 1 + l0r.

2. It is worth noticing that the earlier results [1,2] use hypotheses in non-
affine invariant form. In this study, we use hypotheses in affine invari-
ant form. In the earlier works, neither the local case is covered nor
these studies provide a computable convergence ball or computable error
bounds based on Lipschitz or other constants.

3. The results obtained here can be used for operators F satisfying
autonomous differential equations [3,6,12,17] of the form

F ′(x) = P(F(x)),

where P is a continuous operator. Then, since F ′(x�) = P(F(x�)) =
P(0), we can apply the results without actually knowing x�. For exam-
ple, let F(x) = ex − 1. Then, we can choose: P(x) = x + 1.
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4. The local results obtained here can be used for projection methods
such as the Arnoldi’s method, the generalized minimum residual method
(GMRES), the generalized conjugate method (GCR) for combined New-
ton/finite projection methods and in connection to the mesh indepen-
dence principle can be used to develop the cheapest and most efficient
mesh refinement strategies [2,6,12,17].

5. In view of (2.8) the radius r is such that

r ≤ rA =
1

l0 +
l

2

. (2.21)

The parameter rA was shown by us to be the convergence radius of
Newton’s method [2,6]

xn+1 = xn − F ′(xn)−1F(xn) for each n = 0, 1, 2, . . . (2.22)

under the conditions (2.4) and (2.5). It follows from (2.20) that the con-
vergence radius r of the three-step method (1.2) cannot be larger than
the convergence radius rA of the second-order Newton’s method (2.12).
As already noted in [2,4,6] rA is at least as large as the convergence
ball given by Rheinboldt [21]

rR =
2
3 l

.

In particular, for l0 < l we have that

rR < rA

and
rR
rA

−→ 1
3

as
l0
l

−→ 0.

That is, our convergence ball rA is at most three times larger than
Rheinboldt’s. The same value for rR was also given by Traub [22].

3. Numerical examples

It is worth noticing that method (1.2) is not changing when we use the
conditions of Theorem 2.1 instead of the stronger (C) conditions used in [1].
Moreover, we can compute the computational order of convergence (COC)
by the equation

ξ =
ln ‖xn+1−x�‖

‖xn−x�‖
ln ‖xn−x�‖

‖xn−1−x�‖
(3.1)

or approximate the computational order of convergence by the equation

ξ1 =
ln ‖xn+1−xn‖

‖xn−xn−1‖
ln ‖xn−xn−1‖

‖xn−1−xn−2‖
. (3.2)
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This way we obtain in practice the order of convergence. For solving F(x) = 0
in R

m, the method (1.2) yields

F ′(xn)cn = −F(xn),

F ′(xn)dn = −F(xn) − 1
2
F ′′(xn) c2n,

zn = xn + dn

F ′(xn)mn = −F(zn),

F ′(xn)pn = −F ′′(xn)cnmn,

F ′(xn)gn = −F (zn) − F ′′(xn)cnmn − 3
2
F ′′(xn)cnpn − 1

2
F ′′′(xn)c2nmn,

xn+1 = zn + gn.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

We present two numerical examples in this section.

Example 3.1. Let X = Y = R
3, D = U(0, 1) and x� = (0, 0, 0)T . We define

function F on D as

F(x, y, z) =
(
ex − 1,

e − 1
2

y2 + y, z
)T

. (3.3)

Then, the Fréchet derivative of F is given by

F ′(x, y, z) =

⎛

⎝
ex 0 0
0 (e − 1) y + 1 0
0 0 1

⎞

⎠ .

Notice that we have:
F(x�) = 0, F ′(x�) = F ′(x�)−1 = diag {1, 1, 1}

l = M1 = M2 = M3 = e
1

e−1 , l0 = e − 1.

}

Now, we perform the local convergence analysis as stated in the Sect. 2. For
the function g(r), the smallest positive root is

r0 = 0.064170054328851366953756496513961

For the functions g1, g2, g3 and h, we obtain the Fig. 1.

Figure 1. Functions g1(r), g2(r), g3(r) and h(r) for Exam-
ple 3.1 on the interval r ∈ (0, r0)
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Table 1. Solving (3.4) by the method (1.2) for x0 = 1.0

n ‖xn‖ ‖xn − xn−1‖ ‖F(xn)‖2 COC

0 1.000000 × 10+00 3.768260 × 10−01 5.000000 × 10+00 –
1 1.376826 × 10+00 1.159603 × 10−02 1.925800 × 10−01 6.598731 × 10+00

2 1.365230 × 10+00 1.505609 × 10−12 2.486272 × 10−11 5.997595 × 10+00

3 1.365230 × 10+00 7.619151 × 10−72 1.258181 × 10−70 6.000000 × 10+00

4 1.365230 × 10+00 1.279596 × 10−427 2.113048 × 10−426 6.000000 × 10+00

5 1.365230 × 10+00 0.000000 × 10+00 2.697484 × 10−2008 6.000000 × 10+00

6 1.365230 × 10+00 0.000000 × 10+00 2.697484 × 10−2008 6.000000 × 10+00

7 1.365230 × 10+00 0.000000 × 10+00 2.697484 × 10−2008 6.000000 × 10+00

8 1.365230 × 10+00 0.000000 × 10+00 2.697484 × 10−2008 6.000000 × 10+00

9 1.365230 × 10+00 0.000000 × 10+00 2.697484 × 10−2008 6.000000 × 10+00

In the Fig. 1, we observe that for r ∈ (0, r0)

0 < g1(r) < 1, 0 < g2(r) < 1, 0 < g3(r) and 1 < h(r).

Now we evaluate convergence balls (see Remark 2.2)

rA = 0.38269191223238574472986783803208 and
rR = 0.37252846984183135559121069491084.

We notice that r0 < rR < rA.

Example 3.2. Let X = Y = R, D = U(−2, 2) and x� ≈ 1.36523001341409684
576080682898. On the domain D, the function F is given as

F(x) = x3 + 4x2 − 10. (3.4)

Notice that we have:

M1 = M2 = M3 = 2.0, l0 = 0.8, l = 1.2.

To verify estimates (2.9)–(2.11) of the Theorem 2.1, we solve (3.4) by
the method (1.2). We implement the method (1.2) with the help of high-
performance package ARPREC and solve the Eq. (3.4) to very high precision.
Results of numerical work are reported in the Tables 1, 2 and 3.

The Table 1 reports performance of the method (1.2) for the problem
(3.4). In the Table 1, we notice that the computational order of convergence of
the method is 6. For evaluating COC, we use the Eq. (3.1). In this equation,
x� is replaced by the 20th-iteration produced by the method (1.2). In the
Tables 2 and 3, we observe that the estimates (2.9), (2.10) and (2.11) of the
Theorem 2.1 hold.
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Table 2. Verification of estimates (2.9) and (2.10) of the Theorem 2.1

n ‖yn − x�‖ g1(‖xn − x�‖)
‖xn − x�‖

‖zn − x�‖ g2(‖xn − x�‖)
‖xn − x�‖

0 8.931544 × 10−02 1.130743 × 10−01 4.216465 × 10−02 3.051819 × 10+00

1 6.536686 × 10−05 8.143617 × 10−05 6.425571 × 10−07 1.161754 × 10−03

2 1.111327 × 10−24 1.360115 × 10−24 1.433914 × 10−36 1.906995 × 10−23

3 2.845972× 10−143 3.483088× 10−143 1.858259× 10−214 4.883580× 10−142

4 8.027184× 10−855 9.824198× 10−855 8.802486 ×
10−1282

1.377434× 10−853

5 0.000000 × 10+00 0.000000 × 10+00 0.000000 × 10+00 0.000000 × 10+00

6 0.000000 × 10+00 0.000000 × 10+00 0.000000 × 10+00 0.000000 × 10+00

7 0.000000 × 10+00 0.000000 × 10+00 0.000000 × 10+00 0.000000 × 10+00

8 0.000000 × 10+00 0.000000 × 10+00 0.000000 × 10+00 0.000000 × 10+00

9 0.000000 × 10+00 0.000000 × 10+00 0.000000 × 10+00 0.000000 × 10+00

Table 3. Verification of estimate (2.11) of the Theorem 2.1

n ‖xn+1 − x�‖ g3(‖xn − x�‖) ‖xn − x�‖
0 1.159603 × 10−02 1.597793 × 10+02

1 1.505609 × 10−12 3.627001 × 10−03

2 7.619151 × 10−72 5.720984 × 10−23

3 1.279596 × 10−427 1.465074 × 10−141

4 0.000000 × 10+00 4.132303 × 10−853

5 0.000000 × 10+00 0.000000 × 10+00

6 0.000000 × 10+00 0.000000 × 10+00

7 0.000000 × 10+00 0.000000 × 10+00

8 0.000000 × 10+00 0.000000 × 10+00

9 0.000000 × 10+00 0.000000 × 10+00
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