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We present a unified local convergence analysis for deformed Euler–Halley-type methods
in order to approximate a solution of a nonlinear equation in a Banach space setting.
Our methods include the Euler, Halley and other high order methods. The convergence
ball and error estimates are given for these methods under hypotheses up to the first
Fréchet derivative in contrast to earlier studies using hypotheses up to the second Fréchet
derivative. Numerical examples are also provided in this study.
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1. Introduction

In this study, we are concerned with the problem of approximating a solution x∗ of
the equation

F (x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a
Banach space X with values in a Banach space Y.

Many problems in computational sciences and other disciplines can be brought
in a form like (1.1) using mathematical modeling [2–4, 6, 10, 14, 16]. The solutions
of these equations can rarely be found in closed form. That is why most solution
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methods for these equations are iterative. The study about convergence matter of
iterative procedures is usually based on two types: semi-local and local convergence
analysis. The semi-local convergence matter is, based on the information around an
initial point, to give conditions ensuring the convergence of the iterative procedure;
while the local one is, based on the information around a solution, to find estimates
of the radii of convergence balls. In particular, the practice of Numerical Functional
Analysis for finding solution x∗ of Eq. (1.1) is essentially connected to variants of
Newton’s method. This method converges quadratically to x∗ if the initial guess is
close enough to the solution. Iterative methods of convergence order higher than
two such as Euler–Halley-type methods [1, 4, 6, 7–16] require the evaluation of
the second Fréchet-derivative, which is very expensive in general. However, there
are integral equations, where the second Fréchet-derivative is diagonal by blocks
and inexpensive [10–13] or for quadratic equations the second Fréchet-derivative
is constant [2, 13]. Moreover, in some applications involving stiff systems [3, 6, 9],
high order methods are useful. That is why in a unified way we study the local
convergence of deformed Euler–Halley-type methods (DEHTMs) defined for each
n = 0, 1, 2, . . . by

yn = xn − F ′(xn)−1F (xn),

xn+1 = yn + Qn(yn − xn),
(1.2)

where x0 is an initial point and Hn = 1
λF ′(xn)−1(F ′(xn + λ(yn − xn)) − F ′(xn)),

Qn = − 1
2 (I + αHn), α ∈ R − {0} and λ ∈ (0, 1]. DEHTM was introduced in [15].

This method is motivated by earlier Euler–Halley methods such as [8–11, 13]

xµ,n+1 = xµ,n −
[
I +

1
2
LF (xµ,n)(I − µLF (xµ,n))

]
F ′(xµ,n)−1F (xµ,n), (1.3)

where x0 is an initial point, µ ∈ [0, 1] and

LF (x) = F ′(x)−1F ′′(x)F ′(x)−1F (x).

Notice that if µ = 0, µ = 1
2 , µ = 1, method (1.3) reduces to the Chebyshev, Halley

and super-Halley methods, respectively. The usual conditions for the semi-local
convergence of these methods are (C) [8–15]: There exist constants β, β1, β2 such
that:

(C1) There exist Γ0 = F ′(x0)−1 and ‖Γ0‖ ≤ β;
(C2)

‖Γ0F (x0)‖ ≤ η;

(C3)

‖Γ0F
′′(x0)‖ ≤ β1 for each x ∈ D;

(C4)

‖Γ0[F ′′(x) − F ′′(y)]‖ ≤ β2‖x − y‖p for each x, y ∈ D, p ∈ (0, 1].
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The local convergence conditions are similar but x0 is x∗ in (C1)–(C4). There is
a plethora of local and semi-local convergence results based on the (C) conditions
[1–16]. As a motivational example, let us define function f on D = [− 1

2 , 5
2 ] by

f(x) =

{
x3 ln x2 + x5 − x4, x �= 0,

0, x = 0.

Choose x∗ = 1. We have that

f ′(x) = 3x2 ln x2 + 5x4 − 4x3 + 2x2,

f ′′(x) = 6x ln x2 + 20x3 − 12x2 + 10x,

f ′′′(x) = 6 lnx2 + 60x2 − 24x + 22.

Notice that condition (C4) is not satisfied. Hence, the results depending on (C4) can-
not apply in this case. In this study, we expand the applicability of DEHTM using
hypotheses only up to the first Fréchet-derivative (see (2.8), (2.9) and Example 3.3).

The rest of the paper is organized as follows: In Sec. 2, we present the local
convergence of these methods. The numerical examples are given in Sec. 3.

2. Local Convergence

In this section, we present the local convergence of DEHTM. Let L > 0, L0 > 0, α ∈
R − {0}, λ ∈ (0, 1] be given parameters. It is convenient for the local convergence
analysis that follows to introduce some functions and parameters. Define functions
on the interval [0, 1

L0
) by

g1(t) =
Lt

2(1 − L0t)
,

g2(t) =
L(1 + g1(t))

1 − L0t
,

g3(t) = |α|g2(t)t,

g4(t) =
g2(t)t

2(1 − g3(t))
,

g5(t) = g1(t) + g4(t)(1 + g1(t))

and parameter rA by

rA =
2

2L0 + L
<

1
L0

. (2.1)

We have by the definition of functions g1, g2 and (2.1) that

0 ≤ g1(t) ≤ 1

and

g2(t) ≥ 0 for each t ∈ [0, rA].
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Using the definition of functions g1, g2 and g3 we have that function ḡ3(t) =
g3(t) − 1 is such that ḡ3(0) = −1 and for s → 1

L0

−

ḡ3(s) =
|α|L(1 + g1(s))

1 − L0s
− 1 → ∞.

It follows from the intermediate value theorem that function ḡ3 has zeros in the
interval (0, 1

L0 ). Denote by r3 the smallest such zero. Then, we have that

0 ≤ g3(t) ≤ 1 for each t ∈ [0, r3].

It also follows

0 ≤ g4(t) for each t ∈ [0, r3).

Moreover, define function ḡ5 by ḡ5(t) = g5(t) − 1. Then, we have

ḡ5(0) = g5(0) − 1 = −1 < 0

and for s → 1
L0

−

ḡ5(s) → ∞.

It follows that function ḡ5 has zeros in the interval (0, 1
L0 ). Denote by r the smallest

such zero. Then, we have that

0 ≤ g1(t) < 1, (2.2)

g2(t) ≥ 0, (2.3)

0 ≤ g3(t) < 1, (2.4)

g4(t) ≥ 0, (2.5)

and

0 ≤ g5(t) < 1 for each t ∈ [0, r). (2.6)

In the rest of this study, U(w, q) and U(w, q) stand, respectively, for the open
and closed ball in X with center w ∈ X and of radius q > 0. Next, we present the
local convergence result for DEHTM.

Theorem 2.1. Let F : D ⊆ X → Y be a Fréchet-differentiable operator. Suppose
that there exist x∗ ∈ D, L0 > 0, L > 0, α ∈ R − {0}, λ ∈ (0, 1], such that for each
x, y ∈ D

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y, X), (2.7)

‖F ′(x∗)−1(F ′(x) − F ′(x∗))‖ ≤ L0‖x − x∗‖, (2.8)

‖F ′(x∗)−1(F ′(x) − F ′(y))‖ ≤ L‖x − y‖, (2.9)

and

Ū(x∗, r) ⊆ D, (2.10)

where r is defined above Theorem 2.1. Then, sequence {xn} generated by DEHTM
for x0 ∈ U(x∗, r) is well defined, remains in U(x∗, r) for each n = 0, 1, 2, . . . and
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converges to x∗. Moreover, the following estimates hold for each n = 0, 1, 2, . . .

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r, (2.11)

‖Hn‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖, (2.12)

‖αHn‖ ≤ g3(‖xn − x∗‖) < 1, (2.13)

‖Qn‖ ≤ g4(‖xn − x∗‖) (2.14)

and

‖xn+1 − x∗‖ ≤ g5(‖xn − x∗‖)‖xn − x∗‖, (2.15)

where the “g” functions are given above Theorem 2.1.

Proof. By hypothesis x0 ∈ U(x∗, r). Using (2.8), the definition of function g1 and
the definition of radius r, we get that

‖F ′(x∗)−1(F ′(x0) − F ′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1. (2.16)

It follows from (2.16) and the Banach Lemma on invertible operators [3, 6, 14] that
F ′(x0)−1 ∈ L(Y, X) and

‖F ′(x0)−1F ′(x∗)‖ ≤ 1
1 − L0‖x0 − x∗‖ <

1
1 − L0r

. (2.17)

Hence, y0, Q0, H0 are well defined. Using the first substep of DEHTM we get that

y0 − x∗ = x0 − x∗ − F ′(x0)−1F (x0)

= [F ′(x0)−1F ′(x∗)]
[∫ 1

0

[F ′(x∗ + θ(x0 − x∗)) − F ′(x0)](x0 − x∗)dθ

]
.

(2.18)

Then, in view of (2.17), (2.9), the definition of function g1, radius r and (2.2), we
get that

‖y0 − x∗‖ ≤ ‖F ′(x0)−1F ′(x∗)‖
∥∥∥∥
∫ 1

0

[F ′(x∗ + θ(x0 − x∗)) − F ′(x0)]dθ

∥∥∥∥ ‖x0 − x∗‖

≤ L‖x0 − x∗‖2

2(1 − L0‖x0 − x∗‖)
= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.11) for n = 0.

Notice that

‖x0 + λ(y0 − x0) − x∗‖ ≤ |λ|‖x0 − x∗‖ + |1 − λ|‖y0 − x∗‖
≤ (|λ| + |1 − λ|)r < r,
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which shows that x0 + λ(y0 − x0) ∈ U(x∗, r). We need upper bound on ‖H0‖ and
‖Q0‖. We have by the definition of H0, g2, (2.3), (2.17) and (2.9) that

‖H0‖ ≤ 1
|λ| ‖F

′(x0)−1F ′(x∗)‖‖F ′(x∗)−1[F ′(x0 + λ(y0 − x0)) − F ′(x0)]‖

≤ 1
|λ|

L|λ|‖y0 − x0‖
1 − L0‖x0 − x∗‖ ≤ L(‖y0 − x∗‖ + ‖x0 − x∗‖)

1 − L0‖x0 − x∗‖

≤ L(1 + g1(‖x0 − x∗‖)‖x0 − x∗‖)
1 − L0‖x0 − x∗‖ = g2(‖x0 − x∗‖)‖x0 − x∗‖,

which shows (2.12) for n = 0. Then, we have that

‖αH0‖ ≤ |α|‖H0‖ ≤ |α|g2(‖x0 − x∗‖)‖x0 − x∗‖
= g3(‖x0 − x∗‖) < g3(r) < 1, by (2.4). (2.19)

It follows from (2.19) and the Banach Lemma on invertible operators that (I +
αH0)−1 ∈ L(Y, X) and

‖(I + αH0)−1‖ ≤ 1
1 − g3(‖x0 − x∗‖) ≤ 1

1 − g3(r)
. (2.20)

Using the definition of Q0, g4, (2.12) (for n = 0), (2.15), we obtain that

‖Q0‖ ≤ 1
2

g2(‖x0 − x∗‖)‖x0 − x∗‖
1 − g3(‖x0 − x∗‖) = g4(‖x0 − x∗‖),

which shows (2.15) for n = 0. Then, using the last substep of DEHTM for n = 0,

(2.6), (2.11), (2.15), we get that

‖x1 − x∗‖ ≤ ‖y0 − x∗‖ + ‖Q0‖‖y0 − x0‖
≤ g1(‖x0 − x∗‖)‖x0 − x∗‖ + g4(‖x0 − x∗‖)(‖y0 − x∗‖ + ‖x0 − x∗‖)
≤ [g1(‖x0 − x∗‖) + g4(‖x0 − x∗‖)(1 + g1(‖x0 − x∗‖))]‖x0 − x∗‖
= g5(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.14) for n = 0. By simply replacing x0, y0, x1 by xk, yk, xk+1 in the
preceding estimates we arrive at (2.11)–(2.15). Finally, using the estimate ‖xk+1 −
x∗‖ < ‖xk − x∗‖ we deduce that xk+1 ∈ U(x∗, r) and limk→∞ xk = x∗.

Remark 2.2. (a) Condition (2.8) can be dropped, since this condition follows
from (2.9). Notice, however, that

L0 ≤ L (2.21)

holds in general and L
L0

can be arbitrarily large [2–6].
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(b) It is worth noticing that it follows from the first term in (2.17) that r is such
that

r < rA =
2

2L0 + L
. (2.22)

The convergence ball of radius rA was given by us in [3, 4, 6] for Newton’s
method under conditions (2.7)–(2.9). Estimate (2.22) shows that the conver-
gence ball of higher than two DEHTMs is smaller than the convergence ball of
the quadratically convergent Newton’s method. The convergence ball given by
Rheinboldt [16] for Newton’s method is

rR =
2

3L
< rA (2.23)

if L0 < L and rR

rA
→ 1

3 as L0
L → 0.

(c) The local results can be used for projection methods such as Arnoldi’s method,
the generalized minimum residual method (GMREM), the generalized conju-
gate method (GCM) for combined Newton/finite projection methods and in
connection to the mesh independence principle in order to develop the cheap-
est and most efficient mesh refinement strategy [2–4, 6, 14, 15].

(d) The results can also be used to solve equations where the operator F ′ satisfies
the autonomous differential equation [2–4, 6, 14, 15]:

F ′(x) = T (F (x)),

where T is a known continuous operator. Since F ′(x∗) = T (F (x∗)) =
T (0), F ′′(x∗) = F ′(x∗)T ′(F (x∗)) = T (0)T ′(0), we can apply the results with-
out actually knowing the solution x∗. Let us consider an example F (x) = ex−1.

Then, we can choose T (x) = x + 1 and x∗ = 0.

(e) We can compute the computational order of convergence (COC) defined by

ξ = ln
(‖xn+1 − x∗‖

‖xn − x∗‖
)/

ln
( ‖xn − x∗‖
‖xn−1 − x∗‖

)

or the approximate COC

ξ1 = ln
(‖xn+1 − xn‖
‖xn − xn−1‖

)/
ln

( ‖xn − xn−1‖
‖xn−1 − xn−2‖

)
,

since the bounds given in Theorem 2.1 may be very pessimistic.
(f) The restriction λ ∈ (0, 1] can be dropped, if λ ∈ R−{0} and (2.10) is replaced

by

U1 = Ū(x∗, (|λ| + |1 − λ|)r) ⊆ D. (2.24)

Indeed, we will then have

‖xn + λ(yn − xn) − x∗‖ ≤ |λ|‖xn − x∗‖ + |1 − λ|‖yn − x∗‖
≤ (|λ| + |1 − λ|)r ⇒ xn + λ(yn − xn) ∈ U1.
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3. Numerical Examples

We present numerical examples where we compute the radii of the convergence
balls.

Example 3.1. Let X = Y = R
3, D = U(0, 1) and B(x) = F ′′(x) for each x ∈ D.

Define F on D for v = (x, y, z)T by

F (v) =
(

ex − 1,
e − 1

2
y2 + y, z

)T

. (3.1)

Then, the Fréchet-derivative is given by

F ′(v) =



ex 0 0

0 (e − 1)y + 1 0

0 0 1


 .

Notice that x∗ = (0, 0, 0)T , F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, L0 = e − 1 < L =
e, α = 0.1. Then we have

r = 0.1547 < rR = 0.2453 < rA = 0.3249.

Example 3.2. Let X = Y = C[0, 1], the space of continuous functions defined on
[0, 1] and be equipped with the max norm. Let D = U(0, 1) and B(x) = F ′′(x) for
each x ∈ D. Define function F on D by

F (ϕ)(x) = ϕ(x) − 5
∫ 1

0

xθϕ(θ)3dθ. (3.2)

We have that

F ′(ϕ(ξ))(x) = ξ(x) − 15
∫ 1

0

xθϕ(θ)2ξ(θ)dθ for each ξ ∈ D.

Then, we get that x∗ = 0, L0 = 7.5, L = 15, α = 0.1 and

r = 0.0310 < rR = 0.0444 < rA = 0.0667.

Example 3.3. Returning back to the motivational example at the introduction of
this study, we have L0 = L = 146.6629073, α = 0.1. Then we have

r = 0.0022 < rR = 0.0045 ≤ rA = 0.0045.
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