Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627

Contents lists available at SciVerse ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

Artificial
Intelligence

MPI-based parallel synchronous vector evaluated particle swarm
optimization for multi-objective design optimization of composite structures

S.N. Omkar **, Akshay Venkatesh®, Mrunmaya Mudigere ?

2 Department of Aerospace Engineering, Indian Institute of Science, Bangalore-560012, India
P National Institute of Technology Karnataka, Surathkal-575025, India

ARTICLE INFO

ABSTRACT

Article history:

Received 1 July 2011
Received in revised form

31 March 2012

Accepted 27 May 2012
Available online 10 July 2012

Keywords:

Multi-objective optimization

Vector evaluated particle swarm
optimization (VEPSO)

Message passing interface (MPI)
Composite laminated plates

Peer-to-peer communication

Vector evaluated genetic algorithm (VEGA)

This paper presents a decentralized/peer-to-peer architecture-based parallel version of the vector
evaluated particle swarm optimization (VEPSO) algorithm for multi-objective design optimization of
laminated composite plates using message passing interface (MPI). The design optimization of
laminated composite plates being a combinatorially explosive constrained non-linear optimization
problem (CNOP), with many design variables and a vast solution space, warrants the use of non-
parametric and heuristic optimization algorithms like PSO. Optimization requires minimizing both the
weight and cost of these composite plates, simultaneously, which renders the problem multi-objective.
Hence VEPSO, a multi-objective variant of the PSO algorithm, is used. Despite the use of such a
heuristic, the application problem, being computationally intensive, suffers from long execution times
due to sequential computation. Hence, a parallel version of the PSO algorithm for the problem has been
developed to run on several nodes of an IBM P720 cluster. The proposed parallel algorithm, using MPI's
collective communication directives, establishes a peer-to-peer relationship between the constituent
parallel processes, deviating from the more common master-slave approach, in achieving reduction of
computation time by factor of up to 10. Finally we show the effectiveness of the proposed parallel
algorithm by comparing it with a serial implementation of VEPSO and a parallel implementation of the
vector evaluated genetic algorithm (VEGA) for the same design problem.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Material history has traversed through the stone, the bronze
and the iron ages and at present we are in the “composite age”.
Superior mechanical characteristics of composite materials such
as high stiffness to weight ratio compared to conventional metals
and their inherent amenability towards the tailoring of their proper-
ties have made them indispensable. With their low cost and weight
benefits, composite laminated plates, a class of composite materials,
are extensively used in mechanical, automobile, aerospace, marine,
biomedical, civil and other branches of engineering. Composite
laminates are a series of lamina or plies of varying thicknesses and
various fiber orientations stacked in a certain order to obtain desired
directional stiffness and strength properties as required for an
acceptable design. Diverse material behaviors, tailored to specific
structural needs, can be obtained by slightly altering the properties
of these composites. With such characteristics at dispense the choice

* Corresponding author. Tel.: +91 080 229 32873: fax: +91 080 236 00134.
E-mail addresses: omkar@aero.iisc.ernet.in (S.N. Omkar),
akshaydirefloyd@gmail.com (A. Venkatesh).

0952-1976/$ - see front matter © 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.engappai.2012.05.019

or the configuration of such materials is left to the manufacturer and
is influenced by the application of the composite.

Composite design optimization typically involves identifying
the optimal laminate stacking sequence, ply thickness and the
optimal number of plies. Such design variables generally have
very vast ranges which contribute to the enormity of the number
of solutions offered. Hence manufacturers are often burdened
with the laborious process of selecting the right combination of
elements from the many choices available to them. Hence,
optimization of the available solutions becomes necessary.

Composite design optimization involves tackling combinator-
ial problems determined by their design variables with very vast
solution spaces, rendering the problem under the class of con-
strained non-linear optimization problems (CNOP). Of these
solutions those with the least weight and cost are preferred over
the rest. Specifically in aerospace applications, weight minimiza-
tion and reducing manufacturing cost has always been a priority
in the manufacturing industry owing to benefits such as reduced
fuel consumption and an increased payload. Therefore, the focus
is on combined minimization of manufacturing cost and struc-
tural weight. This multi-objective nature of the problem and the
difficulty in selecting the right values out of a large range of
constrained design variables makes mathematical optimization a

www.elsevier.com/locate/engappai
www.elsevier.com/locate/engappai
dx.doi.org/10.1016/j.engappai.2012.05.019
dx.doi.org/10.1016/j.engappai.2012.05.019
dx.doi.org/10.1016/j.engappai.2012.05.019
mailto:omkar@aero.iisc.ernet.in
mailto:akshaydirefloyd@gmail.com
dx.doi.org/10.1016/j.engappai.2012.05.019

1612 S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627

natural tool for the design of laminated composite structures
(Gurdal et al., 1999).

Optimum fiber orientations of laminated composite plates, for the
maximum strength taken as the objective function, using state space
based methods under multiple in-plane loading conditions with Tsai-
Wau failure criterion for several test problems are carried out by Kim
et al. (1997)). Adali et al. (1996) have discussed the weighted average
method of multi-objective design of symmetrically laminated plates
for different criteria like maximum strength, stiffness and minimum
mass. Topal and Uzmana (2010) have developed a modified feasible
direction (MFD) method for the multi-objective optimization of
symmetrical angle-ply, square laminated plates subjected to biaxial
compressive and uniform thermal loads in order to maximize the
buckling load.

The emergence of heuristics such as Genetic Algorithm, Ant
colony Optimization, Tabu Search, etc in solving functional
optimization problems has brought in its wake the possibility of
solving many problems like Traveling Salesman Problem, Quad-
ratic Assignment and Graph problems, network routing, cluster-
ing, data mining, job scheduling and problems of NP-complete
nature (Garey and Johnson, 1979) and proves to be a viable
alternative to traditional mathematical tools which suffer from
drawbacks such as local minimum trapping and single-path
searching among others. The multi-objective design optimization
of composite laminated structures, also being an NP-complete
natured problem, has been solved using various nature-inspired
algorithms (Ghasemi and Ehsani, 2007; Pelletier and Senthil, 2006;
Deka, 2005; Boyang et al,, 2000; Luersen and Holdorf Lopez, 2009).
Many researchers have developed different approaches to minimize
the weight and cost of laminated composite structures. Of the many
heuristic techniques available PSO has become increasingly popular
and has found many applications.

Particle swarm optimization (PSO) developed and introduced by
Kennedy and Eberhart (1995), is an effective stochastic, non-
gradient based global optimization algorithm derived by simulating
social behavior depicted by a flock of birds, where each individual
gleans from its own as well as the whole flock’s discoveries. It is
applicable for a wide range of non-linear function optimization
problems. PSO’s global search capability and insensitivity to scaling
design variables (Schutte et al., 2005) makes it particularly suitable
for problems (Kovacs et al., 2004) similar to that considered in this
paper. PSO supersedes Genetic algorithm (Hassan et al., 2005) in the
context of ease of implementation and proves computationally
superior to traditional gradient-based algorithms (Snyman, 2004).

Vector evaluated particle swarm optimization (VEPSO)
(Parsopoulos and Vrahatis, 2002), a multi-swarm variant of the
PSO, an algorithm that adopts and modifies the main ideas of
vector evaluated genetic algorithm (VEGA) (Schaffer, 1985) is
particularly suited for multi-objective (MO) optimization pro-
blems (Goel et al., 2007; Deb, 2001) where often the objectives
are competing, incommensurable and need simultaneous optimi-
zation. VEPSO algorithm is based on the principle where each
swarm is exclusively evaluated with one of the objective func-
tions, but, information coming from other swarm(s) is used to
influence its motion in the search space. The best position
attained by each particle separately and the global best positions
from a different swarm are the main guidance mechanisms of the
swarm. The information exchange among swarms enables opti-
mizing all the objective functions involved.

In the proposed case of the composite design optimization
problem, because the minimization of weight does not necessarily
ensure the minimization of the corresponding cost, because of the
disparate nature of the objective functions, VEPSO has been adopted
and fitness evaluations based on the objectives of minimizing the
weight and cost are carried out by two separate swarms deployed in
a vast solution space where mutual exchange of information between

swarms governs them towards a convergence point—indicating
movement of the swarms towards a near optimal solution.

Despite its applicability and simplicity, PSO and its variant
VEPSO take long durations for the completion of the optimization
process due to the application problem’s complexity and the
nature of algorithms adopted which look to simulate socio-
cognitive behavior by pursuing a sequential approach to phenom-
ena that are innately parallel in nature.

Since the inception of computer science as a discipline, computer
scientists and engineers have realized that a possible route to
accelerating the execution of a computational task is to exploit the
parallelism inherent in its program flow. Recent advancements in
scientific computing techniques and the emergence of parallel
programming platforms have helped in achieving quicker execution
of complex problems through parallelization of serial algorithms.
Such related work can be seen in literature (Oh et al,, 2009; Yua
et al., 2007; Parsopoulos et al., 2004).

Of the many available paradigms, Message-passing on cluster
computers is one of the main programming paradigms used for high
performance scientific computing these days. Message passing
interface (MPI) is a specification standard defined by a broadly
based group of parallel computer vendors, library writers, and
applications specialists (William Gropp et al, 1996; The MPI
Forum, 1995). MPI is a de-facto standard for message-passing used
for developing high-performance portable parallel applications
(Matsuda et al., 2008; Hempela and Walkerb, 1999). MPI standard
defines a library of routines that implement the message-passing
model (Gropp et al., 1994). The function of MP], as the name implies,
is to help several concurrently computing processes communicate
by passing messages between them (William Gropp et al., 1996).
Many researchers have carried out master-slave paradigm based
parallel implementations using the message passing model (Coello
Coello and Sierra, 2004; Schutte et al., 2004; Dubreuil et al., 2006).

Long execution time owing to the computational complexity of
the problem, despite the use of popular heuristics like PSO and its
variant VEPSO, and the availability of parallel programming
environments, and the need to test the suitability of the relatively
unused peer-to-peer paradigm for this line of research, were the
driving forces behind the present work leading to parallelization
of the VEPSO algorithm for the composite design optimization
problem. The novelty of this parallelization lies in the use of MPI's
collective operations, such as bcast and allreduce (Bova and Carey,
2000), which enable the development of a decentralized/peer-to-
peer relationship between communicating nodes to solve the
composite problem, as opposed to point-to point operations such
as send and receive (Houzeaux and Codina, 2003), which support
master-slave architecture (Gorlatch, 2002).

To summarize, for this work, a novel parallel VEPSO algorithm
is presented, based on decentralized/peer-to-peer paradigm, to
optimize the design of composite plates, based on the principles
of classical laminate plate theory (CLPT)—to determine the
stresses at each layer subjected to Uniformly Distributed Load
and Point load. To check for failure two failure criteria are
used—Maximum Stress (Narayana Naik et al., 2011) failure
criterion and Tsai-Wu (Narayana Naik et al., 2011) failure criter-
ion. This computation problem has been decomposed into paral-
lelizable parts and run concurrently on a Linux-based IBM P720
cluster computer in tandem with MPICH v.1.2.7, a high perfor-
mance portable implementation of MPL. The decomposition is
such that the computation roles of individual particles of the
swarms, which solve the optimization problem, are assumed by
the different nodes of the cluster computer and to enable com-
munication among these particles/nodes, emulating swarm com-
munication behavior, MPI's collective communication primitives
are made use of. Thus particles configured on different nodes,
initialized with stochastically generated design configurations,

S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627 1613

perform calculations iteratively and in parallel to finally arrive at
an optimum or near optimum design configuration. The results
show a considerable decrease in the execution time of the parallel
algorithm compared to the serial one. To further compare this
parallel approach with a more commonly used heuristic for this
problem domain, a parallel vector evaluated genetic algorithm
has been implemented using MPI and executed on the same
platform. Effective execution time comparisons of the algorithms
are presented in the results and discussion sections. Execution
time of the present parallel approach for VEPSO is found to be
comparatively less than its GA counterpart. This approach, at the
time of writing the paper, is the first to use MPI's collective
communication to develop a peer-to-peer based parallel VEPSO
for composite plate optimization. This work is primarily a follow-
up to a previous work (Omkar et al., 2008) in our efforts to find
faster ways of solving the composite optimization problem and
confirming the efficacy of new methods (such as peer-to-peer
parallelization) for the problem domain, starting with a smaller
problem used here. The scalability and the speedup that this
novel decentralized parallel technique offers shows promise in
application to problems of higher complexity in the field and
hence our future efforts will consider longer execution problems.

The paper is organized as follows. Section 2 includes the brief
explanation of basics of the multi-objective problems. Section 3
discusses the emergence of PSO and VEPSO. Section 4 elucidates
the details of the problem and its formulation and outlines the
optimization process. Section 6 explains the necessity of VEPSO.
Section 7 explains MPI's role in the parallelization used for the
algorithms and its implementation to the optimization problem.
Sections 8 and 9 includes the results, discussion, comparisons,
and conclusions, respectively.

2. Multi-objective optimization (MO)

Let S< R be an n-dimensional search space and
fi):S-Rji=1,...,k
be objective k functions defined over S. Let,
gix<0j=1,.,m

be m inequality constraints, then MO problem is nothing but
finding the vector xT = (x],....xT) e Swhich satisfies the m con-
straints and optimizes the function

FO) = [f1(X),. . .fr)] : R" > R*

In most cases the objective functions may be in conflict, thus,
it is not possible to obtain the global minimum at the same point
for all the objectives. The goal of such multi-objective optimiza-
tion problems is to provide a set of Pareto optimal solutions (Goel
et al., 2007; Deb, 2001).

If u=(uy,...,ux) and if v=(vy,...,v), then u dominates v if and
only if u;<v;i=1, u;<v;, i=1,....k (in the case where optimiza-
tion means finding the global minimum) and u; < v; for at least
one component. This property is known as Pareto dominance and
it is used to define the Pareto optimal points. Thus, a solution x of
the MO problem is said to be Pareto optimal if and only if there
does not exist another solution y, such that F(y) dominates F(x).

The set of all Pareto optimal solutions of an MO problem is
called Pareto optimal set and it is denoted as P’ and PF' =
(F1(%),. . frX)|x e PT is called Pareto front.

3. Particle swarm optimization (PSO)

Particle swarm optimization (PSO) is an evolutionary optimi-
zation algorithm proposed by Eberhart and Kennedy while

attempting to simulate the motion of bird flocks as part of a
socio-cognitive study investigating the phenomenon of ‘collective
intelligence’ in biological populations. In Particle swarm optimi-
zation (PSO) each swarm unit/particle explores a possible solution
depending on the point in the search space where it exists. Its
trajectory is influenced by its own as well as the entire swarm'’s
learning. The personal best position is the best solution that is
found by the particle in the course of flight. The best position of
the whole flock is the global best solution. The former and latter
are called personal best and global best, respectively. Every unit/
particle of the swarm continuously updates itself through the
aforementioned best solutions. Thus, particles move in the defined
solution space to finally converge at a possible optimal point. In
practice, the fitness function, which is determined by the optimiza-
tion problem, determines the quality of solutions at various points
in the search space of the problem at hand.

If the population of swarm is N, then the current position of
the ith, (vi=1,2,3,...,N) particle is expressed as Xj(t). The current
best position discovered by the ith particle is expressed as
pBest;(t). The global best position of the whole swarm is expressed
as gBest(t). Therefore, the ith swarm particle updates its own
speed and position according to the following equations:

Vi(f—l—]) =W X Vi(t)+{Cp X T X (pBesti(t)—Xi(t))}
+{Cg x 13 x (gBest(t)—X;(t))} (1)

Xi(t+1)=Xi(O)+Vi(t+1) 2)

where Cp is the Cognitive learning rate and Cg is the Social
learning rate. The factors r; and r, are randomly generated within
the range {0, 1} and w is the inertia factor. Eq. (2) updates the
position of the particle while Eq. (1) updates the velocity and is
composed of three components. The first component is the former
speed, Vi(t)of the swarm particle, which shows its present state;
the second component is the cognition modal, which expresses
the thought of the individual swarm particle itself; the third
component is the social modal. These three parts together determine
the solution space searching ability. The first component balances the
whole and searches local region. The second component empowers
the swarm particle to search the whole search space and avoid local
minimum. The third component is a reflection of the global influence
on the particle. Under the influence of these three components, the
swarm has good coverage and tends to converge at globally optimum
positions. There are numerous methods for solving multiple objective
problems using the PSO algorithm (Parsopoulos and Vrahatis, 2002;
Hu and Eberhart, 2002; Hu et al., 2003; Coello Coello and Lechuga,
2002; Pulido and Coello Coello, 2004). One of the most common
approaches is to aggregate all the objective functions with appro-
priate weights into a single objective function (Parsopoulos and
Vrahatis, 2002). This requires problem analysis to assign appropriate
weights for each of the objective functions. The nature of the current
problem and the objectives being considered compels separate
evaluation of these objectives. Hence, we've used Vector Evaluated
PSO proposed by Parsopoulos and Vrahatis, 2002.

3.1. Vector evaluated PSO (VEPSO)

VEPSO is a multi-swarm variant of PSO, is an approach to multi-
objective optimization (Reyes-Sierra and Coello Coello, 2006), which
is inspired by the vector evaluated genetic algorithm (VEGA)
(Schaffer, 1985). In VEPSO, two or more swarms are employed to
probe the search space and information is exchanged among them
(Parsopoulos and Vrahatis, 2002). The key issue in these co-evolu-
tionary algorithms is that the fitness of an individual in a population
depends on the individuals of a different population. Searching
capabilities of the algorithm using co-evaluation techniques enhance
the capability of the VEPSO algorithm to better explore the search

1614 S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627

space (Parsopoulos and Vrahatis, 2002; Shang-Jeng Tsai et al., 2010).
The salient features of VEPSO are explained in detail below:

The VEPSO method assumes that M swarms Sy,...,Sy each of
size N aim to optimize simultaneously M-objective functions.
Each swarm is exclusively evaluated according to one of the
objective functions. Let UIS{(t+1) be the new updated position,
Uly(t+1) the new updated velocity, /P, the current personal
best position, UlS;y and UV,(t) the previous position and velocity
of the ith particle in the jth swarm, respectively, at a given time t.
Let (K, (t) be the global best position of the kth swarm at the
same time t. Then the VEPSO swarms are updated according to
Egs. (3) and (4)

DVt 4+1) =k x [U]wi x W) +9Cy x 1 x {UPy(0)-U1S;(6))

+UCq x 2 x {MPgy(6)-UIS;(8)] 3)

USi(t+1) =USi(6) + V(e +1) @)

where the superscripts represent the PSO parameters for the jth
swarm. Cp is the Cognitive learning rate and Cg is the Social
learning rate. The factors ry and r, are randomly generated within
the range {0, 1} and w; is the inertia factor. The VEPSO assumes
that the search behavior of a swarm is affected by a neighbouring
swarm—kth swarm. The parameter k is determined by the
information migration scheme between the multiple swarms.

4. Application of VEPSO for design optimization

In the present work, the design of a composite plate, simply
supported on all four edges, subjected to uniformly distributed load
and point load is considered. The design is governed by the
arrangement of constituent plies that make up the composite plate,
the stacking sequence, and the stresses and strains developed on
each ply of the composite plate are obtained from classical laminate
plate theory (CLPT). Using these stresses and strains, failure of a
particular design configuration is checked using Maximum Stress
and Tsai-Wu failure criteria. The solution to the application problem
involves selecting that stacking sequence which minimizes both the
weight and cost of the designed composite plate and at the same
time passes the above mentioned failure check. This design config-
uration being composed of many variables with wide ranges renders
the solution space enormous. To reduce the time taken to find the
optimum or near optimum solution, VEPSO is made use of. Two
different swarms, with objectives of minimizing weight and cost,
respectively, are deployed in the search space. Initially, the particles
of both the swarms are assigned a randomly generated design
configuration. With this, the particles communicate with other
particles of their own swarm as well as certain particles from the
other swarm, progressively exploring the solution space, until all of
them converge at a point which coincides with the globally
optimum solution. In the remaining part of this section the experi-
mental setup, how the CLPT, in tandem with failure criteria, is used
to check for the feasibility of designing composite plates and how
VEPSO benefits the process of selecting a cost and weight effective
plate configuration among many feasible configurations has been
discussed.

4.1. The composite laminate plate design

The Composite laminate plate considered in the present work
is composed of a Carbon/Epoxy FRP. The material properties of
which are listed inTable 2.

The mathematical model, similar to the one used in Omkar et al.
(2008), for a plate simply supported on all four edges is discussed in
Section 4.1.1 with a detailed description of the structural analysis in

Section 4.1.2. From this mathematical formulation we obtain the
deflections for different types of loading conditions from which we
get the stresses required to evaluate if the design satisfies various
failure criteria.

4.1.1. Simply supported rectangular plate

A thin rectangular composite laminated plate of length a in
x-direction, width b in the y-direction, and thickness h in the
z-direction as shown in Fig. 1 is considered in the present work.

The plate is assumed to be constructed of arbitrary number, n,
of linearly elastic orthotropic layers. Each layer consists of
homogeneous fiber reinforced composite material and the plate
is simply supported on all four edges. A rectangular Cartesian
coordinate system x, y and z is used to describe the infinitesimal
deformations of an n-layer laminated composite plate. The
laminate consists of n plies with the individual thicknesses h;
for the layer orientation angles 0y(i=1,2,3...,n) as shown in Fig. 1.
Total thickness of the plate is h and bottom and top surfaces are
located at z= —h/2 and z=h/2, respectively. We assume that the
middle surface of the undeformed plate coincides with the xy-
plane. The principal fibre direction is oriented at an angle 6 to the
X-axis.

4.1.2. Composite plate structural analysis

Classical lamination plate theory (CLPT) is used to develop an
analytical solution for a specially orthotropic carbon/epoxy compo-
site laminate plate with Stress Strain relations for a symmetric angle
ply laminate. Navier methods are employed for designing of rectan-
gular composite plate with all four edges of the plate as simply
supported. The mathematical model and the equations governing
static bending in absence of in-plane and thermal forces are

2 1

y A \z

\

b
/ [
/ \ /
a
X
n
h/2
2
h/2
1

Fig. 1. Geometry of a simply supported thin laminated plate.

S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627 1615

elaborately discussed in Robert Millard (1999) and relations between
mechanical properties of the plates (for example—fibre orientation)
and the stresses and strains induced in them are established.

4.2. Types of loading

The Rectangular composite laminate plate used design for this
work is subjected to two types of transverse loading conditions;
uniformly distributed and point load and the deflections it under-
goes under these loads yield the stresses that are need to evaluate
their feasibility through failure criteria.

4.2.1. Uniformly distributed load

As show in Fig. 2 under this type of setting, the load is
uniformly distributed over the surface are of the composite plate
and is defined by the function q(x, y). The deflections which the
plate undergoes is again discussed in[Robert Jones, Mechanics of
composite materials (Section 5.3.1)].

4.2.2. Point load

For a setup shown in Fig. 3 the load is concentrated at a single
point on the surface and is given by the point load function q(x, y).
The deflections which the plate undergoes is discussed in Robert
Millard, (1999).

4.3. Failure criteria

The Laminate stress analysis of Sections 4.2 combined with
lamina failure criteria predicts failure in the laminate. Laminate
failure is the eventual result of progressive failure processes
taking place in the constituent laminas under loading. Failure
envelopes are predicted by linear laminate analysis, providing an
extremity for the solution, and defining a specified boundary and
solution space ensuring a failsafe design. Various failure criteria
proposed by different researchers have been used as an effective
tool in evaluation of stress strain behavior and design of compo-
site laminates (Shi and Eberhart, 1998) and for this work’s
analysis Maximum Stress and Tsai-Wu failure criteria are used.

A
\

X

Fig. 2. Orthotropic composite plate subjected to uniformly distributed load (UDL).

SS

Ss

NN

SS

A
\

Fig. 3. Orthotropic composite plate subjected to point load (PL)

4.3.1. Maximum stress failure criteria
The composite plate ply fails when one of the following
conditions is violated (Omkar et al., 2008).

Xezo <Xt,Ye=0yy <Y,—S>0x <S (5)

where X1, X¢, Y1, Yc are strengths of the lamina in X-Y directions.
S-shear strength of the lamina and oy, 6y, and oy, are the stresses
induced in the principal direction. Eq. (5) stipulates the condition
for non-failure for any particular ply of composite laminated
plate.

4.3.2. Tsai-Wu failure criterion

Tsai-Wu brings in more complexity from a computational
perspective and further reinforces Maximum Stress Failure criter-
ion’s evaluation. This failure theory is based on the total strain
energy failure theory of Beltrami. This is a generic model
proposed by Tsai-Wu et al. Narayana Naik et al., 2011. The failure
theory states that the lamina failure occurs when the following
condition is satisfied.

FLLO',%+FTTG%-+2F]_TO'LGT+FLO']_—I—FTGT—FFssO'%T >1 (6)
1 1 1
sFrr = FL= ;
XX T VYT (Xr—Xo)

1 1
~——~: Fss=—; Fir=-05(FyFr)*°
Vr—vo fs=2 Lt (FriFrr)

Fi =
Fr =

where, Fy;, Fr, Fip, Fi, Fr, Fss are the strength parameters. X, X, Y.
and Y; are the laminate compressive and tensile strengths in X, Y
directions, respectively. S is the shear strength of the component
in the X-Y plane. This criterion predicts the immanency of failure
but not the failure modes.

4.4. Optimization problem

Once the failsafe set of design configurations are obtained the
problem progresses into finding those configurations that yield
minimum weight and cost for the composite plate. To do so the
design variables which make up the solution space, the con-
straints imposed on these sets of variables, the objective functions
the govern the selection of a set of values for these variables, the

1616 S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627

algorithm that dictates the selection and progression of design
configurations are discussed in following sections.

4.4.1. Design variables

The Design Variables in the present problem are the number of
plies in each orientation, the number of layers, and thickness of
each layer. The number of plies placed at different orientation
angles with specific order of arrangement is known as stacking
sequence. In our problem, a variable stacking sequence consisting
of fiber orientation angles within the range of (—90°, +907] in
steps of 15 is considered, leading to 12 different possible values
of orientation angle 6

0=[-75°/—60°/—45°/-30°/—15°/0°/15°/30°/45° /60°/75° /90°]

Here, the number of layers present at each of the different fiber
orientation angles are considered as the actual design variables for
the optimization process. The thickness of the lamina, a control
variable in the plate optimization is also considered, within the
range of 0.05 mm to 0.5 mm. In this paper, it is assumed that each
layer is of the same thickness ¢, retaining the practicality of the
solution. The number of plies in each orientation generally varies
between 1 and 200 which effectively translates to well over 2002
different possible configurations rendering a huge search space.

4.4.2. Objective functions

Multi-objective optimization indicates the use of two objective
functions for the current problem as minimization of weight and
total cost of the composite laminate. A conflict of objectives may
arise where variation in one may affect the other owing to the
formulation of these objective functions. This nature is purely to
be based on the parameters used in the governing equations of
the objectives. The design variables considered are number of
plies, thickness of plies and orientation of the plies.

4.4.2.1. The weight function. The Weight of the laminate is
found out by Eq. (7) with the total weight of the laminate
being directly proportional to the number of layers and layer
thickness t. Total height h of the composite plate of thickness t
mm is given by:

12
h:HZn@i}xt} Weight,Wt:pxhanb (7)

i=1

where, p—density of the material of the composite plate

4.4.2.2. The cost function. The composite plate is optimized with
respect cost function ‘g’, which is formulated using the cost function
developed by Kovacs et al., (2004) for carbon-fiber-reinforced plastic
(CFRP) sandwich-like structure with aluminum (Al). The cost in the
design optimization of a composite structure is of major importance
attributed to the high costs of the composite materials available in
the market. The material cost attributes to the raw materials used
for the composite plates. The manufacturing cost is a direct function
of time associated with manufacturing of the composite plate, which
includes the time lost in press form preparation, layer cutting, layer
sequencing and final working. The various costs incurred in the
manufacture of a composite laminate in reality are to be considered.
The total cost of the laminate is given by Eq. (8) below,

Total cost = Material Cost +Manufacturing Cost
& = &Ematl +gmanufact

EX) = [Emaat Wil +8mar (O o, x 200+(>_ng, x 120)+140})] (8)

Considering cost due to manufacturing costs associated with
non standard orientation ply angles then the total manufacturing

cost is given by,

Manufacturing cost = u x (standard orientation plies)+7y
x (non—standard orientation plies)

The indices gman and gmamyacr are determined based on the
material being used and the type of manufacturing process employed.
For our work we have used y/u=6. This large fraction is deliberately
used to make sure that during optimization the heuristic shows
reduced inclination towards selecting non-standard plies.

4.5. Mathematical representation

Let the set of permutations in the search space be represented by,
P =(ngy,,ng,,....ny,,)

For different values of n, from the search space such that
0 < ng, <200.

If W(p) and C(p) are the weight and cost objective functions of
permutation peP, then in summary, the problem can be seen
mathematically as finding that permutation S, such that

SeP
W(S) < W(p)vpeP.
C(S)<(p)vpeP.

And the strength of S is greater than the minimum allowed,
i.e., the conditions mentioned in Section 4.3 are not violated.

5. The need for VEPSO

The problem at hand looks to obtain a composite laminate
which satisfies certain physical constraints such that it bears an
applied load without failure. While doing so we deploy a heuristic
that looks to minimize the weight and corresponding cost of
laminate obtained. These objective functions can in simple terms
be summarized as follows:

1. Weight function (W=h* x a* x b* x p where p=density
h=>"0;"t and t=thickness of each of the plies)

a. weight oc number of plies.

b. weight oc thickness of plies.

2. Cost Function (C=(cost of each ply) x number of plies+
constant x (weight of material))

a. cost oc number of plies.

b. cost oc net weight of the composite laminate.

The results obtained by using PSO, assuming that cost gets
minimized when weight gets minimized, to optimize weight of
the composite laminate shows the following observations for two
trials as seen in Table 1.

Overall for the many trials we conducted, we observed that the
optimum weight obtained for the problem ranges between approx.
81-85 units while corresponding costs ranges between approx.
700,000-400,000 units. This large variation in cost can be explained
by the variation of the number of the plies, required to withstand
the same applied load, of varying thicknesses, varying between
0.05 mm to 0.5 mm (Table 2).

Table 1
Optimum weights and corresponding costs for PSO.

Trial number Optimum weight Corresponding cost Thickness
1 81.046 673,909 0.05
80.985 450,418 0.30

S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627 1617

Table 2
Carbon/Epoxy FRP material properties.

Elastic moduli of Lamina poisson’s

Rigidity moduli of

laminate in (GPa) ratio laminate (GPa)
Exx E,, E. Vi Vi Vyz Gy G, Gy
Longitudinal Transverse Normal Xz direction xy direction yz direction xy direction yz direction xz direction
126 11 11 0.28 0.28 3.93 6.6
85.5 These results are the impetus behind us choosing VEPSO to
Weight separately evaluate the cost and weight functions and minimize
85 A them. Results have shown that choosing VEPSO has worked well
845 i because we have obtained minimized cost and minimized weight
with certainty for the trials conducted.
84t 1
< 835}]
.J':‘;D el] 6. The optimization process using VEPSO
o
= 8251 i Vector evaluated particle swarm optimization in the current
/’ work has been modified for constrained non-linear optimization
82 ///\\ /\/ 1 problems with discrete design variables unlike previous works
- carried out for optimizing systems with continuous variables (Gies
8154 i and Rahmat-Samii, 2004; Vlachogiannis and Lee, 2005). The key
. . point in the constrained optimization process is dealing with the

02 025 03 035 04 045 0S5
Thickness (mm)

81 .
0.05 0.1 0.15

Fig. 4. Variation of cost (corresponding to optimum weight) with thickness.

700000

650000

600000

Cost

550000

500000

450000

400000 :

005 01 015 02 025 03 035 04 045 05

Thickness (mm)

Fig. 5. Variation of optimum weight with thickness.

To observe the variation of cost on thickness basis, we have
conducted trials keeping the thickness constant for each trial. The
results of these trials for different thicknesses have been show in
Figs. 4 and 5:

As one can see from these plots, the variation of the cost
corresponding to optimum weight can vary quite drastically
depending on the thickness of the plates. This essentially means
that minimizing weight does not necessarily minimize weight. In
fact there is a likelihood that any of the cost values in the range of
400,000-700,000 units may accompany the optimum weight
obtained. This can be explained by cost being composed of the
material component and the manufacturing component and this
manufacturing component depends on the number of plies. As
thickness decreases, the number of plies required to bear the
applied load increase, which increases the manufacturing com-
ponent of the cost function thus increasing the total cost.

constraints associated with decision variables. In the current work,
the constraints are effectively handled to preserve the feasibility of
the solutions evolved. In order to constrain the optimum solution to
the failure criteria constrained solution space, each particle is made
to search the solution space keeping track of only the feasible
solutions. Further, to increase the likelihood of finding more of such
feasible solutions the particles are initialized within the feasible
solution space. This process, however, does consume quite some
time. The design variables involved in the current optimization
problem are discrete in nature. The twelve variables corresponding
to the number of layers at each of the twelve different fiber
orientation angles are integers specified range making them discrete
and finite in nature. Further, the layer thickness (t) is also considered
to be a discrete variable, capable of taking values between the
specified ceiling and floor limits with a least count of 0.001 mm. This
consideration has been taken in view of retaining the practicality of
the evolved solution in terms of limitations posed on fabrication.

VEPSO employs two swarms to probe the search space and
information is exchanged among them. Each swarm is exclusively
evaluated with one of the objective functions, but, information
coming from other swarm(s) is used to influence its motion in the
solution space. Specifically, in this case since there are two
objective functions, two swarms (X, X;) of N particles each are
used. X; evaluates the weight objective function and X» evaluates
the cost objective function. There is no necessity for a complicated
information migration scheme between the swarms as only two
swarms are employed. Each swarm is exclusively evaluated
according the respective objective function. The best particle of
the second swarm (X5) is used for calculation of the new velocities
of the first swarm'’s (X;) particles and accordingly the best particle
of the first swarm (X;) is used for calculation of the new velocities
of the second swarm (X;). The particles’ velocity and position
update Egs. (9) and (10) for the first swarm—X;

[Xl]V,-(t—i— 1= Xilge
x [Kdw; x [Xllvi(t)+[X1]CP x 11 x {KIpy(6)=X1ls(6))

+ G, x 1y x {2y ()—Si(0))])

Bils;(t+1) =P1Isi(6) +XIVi(e +1) (10)

1618 S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627

The particles’ velocity and position update Egs. (11) and (12)
for the first swarm—X5

[XZ]V[(t+]) — Xl « [[XZ]Wi % [XZ]Vi(t)-i-[XZ]Cp x T
x (PRIPy(0)~P1S;(1)) + P Caeryss(1Py (0)-P215; (D))
an

RISt +1) =I5 + XVt +1) (12)

The particles of both the swarms (X;, X;) move in solution
space according to the above mentioned equations. After an
empirically derived maximum number of iterations or upon
convergence at a point or small region in the solution space by
a majority of the swarm, the optimization process is terminated
and the results of the best particles of both swarms are reported.
This maximum number is dependent on the number of particles
employed for optimization process. The greater the number of
particles the fewer iterations required for them to converge.

The performance of the PSO is very sensitive to the control
parameter choices (Shi and Eberhart, 1998; Engelbrecht, 2005). For
our work, which uses VEPSO, we have tried different variations of
these parameters and we have used those values which produces
better convergence in terms of speed and quality. The number of
swarm particles is decided empirically based on the limiting number
of particles that make a difference in the quality of the solution
obtained. The increase in the number of particles deployed is stopped
when the increase makes no difference to the solution. Twice the
number of dimensions of the problem is taken as the number of
particles for each swarm. As the current problem is 13-Dimensional,
26 swarm particles are used for both the swarms as this number has
been empirically found to be sufficient in effectively converging on
the near optimum solution, found thus far in the trials conducted, in
a relatively short time. During initialization, it is ensured that all the
particles are within the failure criteria constrained solution space. So
initialization itself may take a longer time if the population size is too
large. Hence a lower population size significantly lowers the com-
putational time. Further the remaining parameters; the inertia
weight w, cognition learning rate Cp and the social learning rate Cg
are also fixed based various trials which allow better convergence
rate and greater coverage of solution space. The same PSO para-
meters as in (Shi and Eberhart, 1998) have been the used for each
swarm and for all simulation runs in this VEPSO work too. Here, the
inertia weight parameter w; is adjusted dynamically during the
optimization, as suggested by Shi and Eberhart (1998). A starting
value of w;=1 is used to initially accommodate a more global search
and is dynamically reduced to w;=0.4. The idea behind this approach
is to terminate the PSO algorithm with a more local search. The w;
value is adaptively allocated as per Eq. (13).

Wmax—Wmin

Wi = Wmax— [{ } xi (13)

imax
where Wy, is the initial weight factor, wy,;, is the final weight factor,
‘" is the current iteration number and i,,,4 is the maximum number

Table 3
The VEPSO parameters.

Individualistic factor
Socialistic factor
Inertia factor

p_incr=1.5

g incr=1.5

w;=[1,...,0.4], adaptively allocated
(decreasing from 1 to 0.4 with each
iteration)

N=26

Max_it=100 iterations

Number of Swarm Particles

Maximum number of iterations

End condition

(Number of iterations without
update in the best values)

20 iterations

of iterations. The initial higher value may result in greater population
diversity in the beginning of the optimization, whereas at a later
stage lower values are favoured, causing a more focused exploration
of the search space.

The parameters shown in Table 3 have been used for the same
reasons as in Omkar et al. (2008).

7. Message passing interface (MPI) and parallelization

MPI (message passing interface) is a specification for a stan-
dard library which is used for message passing between con-
current processes on distributed systems. The MPI standard
defines only one API (or three to be more precise, one each for
FORTRAN, C, G+ and C#). Every super-computer manufacturer
offers its own implementation, optimized for its own hardware.
MPI forms the basis of a standard high level communication
environment featuring collective communication, point-to-point
communication.

The current work involves decomposing the serial computa-
tion, which mainly consists of running computations of particles
of the swarm one after another in a serial fashion, into paralle-
lized chunks on basis of particles of the swarm. Hence the
computations pertaining to each particle is run in parallel on
different nodes of cluster computer. To enable communication
and synchronization among them made particles/nodes MPI's
collective communication calls are made use of.

7.1. Synchronization

Particle swarm optimization algorithm requires results from
different particles to be assessed and decisions for the ensuing
calculations are based on them. To allow results from calculations
performed different particles on different nodes of the cluster of a
particular iteration to be completed and to allow temporary
cessation of calculations until certain results are obtained some
means of synchronization is required. Essentially, this ensures
that before the swarm moves to the updating phase the fitness
evaluations of all the particles are completed and assessed.
This is taken care by the MPI collective routine MPI_ALLREDUCE
which temporarily stops the coordinating node from proceeding
with the next swarm iteration until all of the computational
nodes have responded with a fitness value. This, however,
implies that the time required for a single parallel swarm fitness
evaluation will be dictated by the slowest fitness evaluation in
the swarm.

7.1.1. Use of MPI_ALLREDUCE for synchronization and broadcast of
global best

MPI_ALLREDUCE combines multiple values from all processes
and distributes the result of the operation on all these values
specified in the call back to all processes. When the personal best
of all the particles of the swarms are computed, we need to
calculate the global best and this global best value should be
made available to all. This is possible through the use of
MPI_ALLREDUCE with a minimization operator to help find the
minimum of the personal bests and distribute this value to all the
processes. To make available the entire configuration of the global
best position, by distributing all the co-ordinates of that position
the following procedure has been employed.

1. Agree on the global best within the swarm using MPI_REDUCE
(If used with a minimization operator, this function call allows
each process to receive a single, minimum of all data sent by
different processes).

2. Obtain this global best and compare with particle’s current
best.

S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627 1619

3. If global best does not match the particle’s current best then
change all values of the particle’s copy of global to a very large
value else retain values.

4. Now perform MPI_ALLREDUCE on this set of global bests of the
particles.

5. The end result is that every particle is left with a copy of the
current iteration’s global best.

7.2. Summary of the algorithms

Outline of the VEPSO Algorithm used for the composite design
optimization problem

1. For each particle of the weight and cost swarms assign random
values sequentially for the number of plies each of the 12
orientations and a fractional random value (between 0.05 and
0.5) for the thickness.

2. Modify these values until all the particles of both swarms have
all been initialized with a configuration that meets design
constraints and satisfy failure criteria.

. Perform fitness evaluations on the particles of both swarms.

4. Update particle’s personal best on comparison with current
evaluation.

5. From the above set, extract the best results of the personal
bests of all particles of both swarms and disseminate this
information among all particles of its peer swarm.

6. Each particle updates its positions on obtaining best values
from neighboring swarms after the mutual exchange of infor-
mation between swarms.

7. If termination conditions are met then go to step 8 else step 3.

8. Report and exit.

w

7.2.1. Serial implementation

[Initialization

1. i=1 where '1" is the particle index.

2. j=1 where ’j’ is the dimension index.

3. Randomly initialize particle positions (x;;eX; and y;eXz|xi,

yiieN) for the weight and cost variables, respectively.

4. Randomly initialize thickness for each particle (x;jeX; and

yij€X2 ‘X,‘j, Yije [005,05]) lf_]:]?J

5. if j < 14 increment j and go to step 3.

6. if i <M (particle population) increment i and go to step 2.

II Meeting design constraints

1. i=1.

2. Evaluate fitness of particle at x; and y;. If f and g, the the cost
and weight fitness at these points is such that strength of the
configuration < minimum allowable strength then go to step 3
else step 6.

Lj=1
. Increment x;; and y;; suitably.
. If j < 14 then increment j and go to 4.
. If i <M then increment i and go to step 2.
Il Optimization
1. j=1 (iteration index), i=1 (particle index)
2. Evaluate fitness of f;j and gj; for positions x; and y;, respectively.
3. Ifj=1 then evaluate f;; and g;; and fipest and Zipese are fi; and g,
respectively else it is the minimum of the best and current
evaluations, i.e., if fij < fipest then pi=x; and if gjj < Zipes: then g;=y;
where p and q personal bests of weight and cost swarm particles.

4. If i < N then increment i and go to step 2.

Li=1.

6. Update x; and y; from the best information of neighboring
swarm.

7. If i <N then increment i and go to step 6.

[<2 IS I N VN]

8]

8. If termination conditions not met then increment j and go to
step 2.
IV Report results and terminate

7.2.2. Parallel implementation

IIl. Initialization
1. '7" is the particle index so concurrently for i=1,2,...,.M
do

2. j=1 where 'j’ is the dimension index.
3. Randomly initialize particle positions (x;eX; and y;e Xz |xy,
y;jeN) for the weight and cost variables, respectively
4. Randomly initialize thickness for each particle (x;eX; and
ViieXa|xy, ¥;€[0.05,0.5]) if j=13
5. If j < 14 increment j and go to step 2
}
IIl. Meeting design constraints
1. Concurrently for i=1,2,...,M evaluate fitness of particle at
x; and y;. If f and g, the fitness at these points is such that
strength of the configuration< minimum allowable
strength then go to step 2 else go to step 5
do
{
2. j=1
3. increment x;; and y;; suitably
4. if j <14 then increment j and go to 3
}
5. Synchronize
IIl. Optimization
1. j=1(iteration index)
2. Concurrently for i=1,2,...,M evaluate fitness of f; and g;; for
positions x; and y;, respectively
do

3. if j=1 then evaluate f;; and g;; and fipes: and gipes are f;; and
gi1, respectively else it is the minimum of the best and
current evaluations, i.e., if fjj<firese then p;=x; and if
8ij < Zives: then g;=y; where p and q personal bests of
weight and cost swarm particles
}

4. Synchronize

5. Concurrently for i=1,2,..., M update x; and y; from the best
information of neighboring swarm.

6. If termination conditions not met then increment j and go
to step 2.

IIl. Report Results and terminate
The flow diagrams of the serial and parallel algorithms have
been shown in Figs. 6 and 7.

8. Results and discussion

This work is primarily concerned with design of a parallel
VEPSO algorithm for the multi-objective design optimization of
laminated composite plates problem and to test its efficacy, in
terms of execution time and coherence, it has been compared
with sequential VEPSO. To further test how our work fares against
other popular parallel heuristics we have compared it with
parallel vector evaluated genetic algorithm (PVEGA) designed
for the same problem. The structural problem for our work is
similar to a previous work (Omkar et al., 2008) but has two
different variations, which is in the use of uniform distributed
load and point load.

1620

S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627

v

v v

Initialize random position
co-ordinates for weight swarm

Initialize random position
co-ordinates for weight swarm

y

Y

Initialize random position
co-ordinates for weight swarm

Initialize random position
co-ordinates for weight swarm

y

both the swarms

y

for both the swarms

v

Update weight swarm
co-ordinates

v

Update cost swarm
co-ordinates

Termination
ondition met?

— Global termination=1

Global termination=0 |«

Global
termination =1?

Evaluate fitness for
-

Obtain global best Obtain global best
g > > g

Y

Evaluate fitness for
-
both the swarms

Y

for both the swarms

v

Update weight swarm
co-ordinates

v

Update cost swarm
co-ordinates

Termination
ondition met?

— Global termination=1

Global termination=0 |«

Global
termination =1?

Fig. 6. Parallel implementation of the optimization problem.

8.1. Experimental platform

To obtain these results, the parallel algorithm described in
Section 7 has been executed on an IBM 720 Cluster with the
following specifications:

i. Sixty four 4-way SMP nodes (256 processors) P720 open
power systems.
ii. IBM Power-5 systems operating at 1.65 GHz.
iii. 4-GB main memory per node with a total of 256 GB for the
cluster.

iv. Dual Gigabit network with Nortel 5510 gigabit switches.
v. SUSE Enterprise Linux 9.0 operating system.

In tandem with the hardware mentioned above, MPICH v.1.2.7,
a high performance portable implementation of MPI (Coello
Coello and Sierra, 2004), has been used as the software platform
to implement our parallel algorithm. As a metric of comparison
we have exclusively used speedup. The speedup s is defined as the
ratio of the serial execution time to the parallel execution time
which gives us an indication of how much faster the parallel is
than the serial approach.

S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627 1621

Seti=1, j=1

Y

Initialize random position
co-ordinates to all particles

Y

Evaluate fitness of the jth
particle for both the swarms, j++

,v

Obtain best fitness positions
for both the swarms

L/

=1

Y

Update position for the jth
particle of both swarms, j++

—>

i++

Termination
condition met?

Yes

Fig. 7. Serial implementation of the optimization problem.

S= TSerial/TParallelA
Where, T, iq is the time taken for serial execution.

Traratier is the time taken for parallel execution.
8.2. Comparison of parallel VEPSO and sequential VEPSO

We would like to emphasize that, despite the relatively short
execution time of the serial algorithm, the intent of this work is
primarily to seek further improvement in execution time by
parallelization and to explore the suitability of the peer-to-peer
paradigm with MPI collectives. This paradigm is relatively unused

for the problem domain and the results show its efficacy by
showing how the model scales with particle size which motivates
its application for more expensive problems in the domain.

For the serial version of the multi-objective design optimiza-
tion of laminated composite plates using VEPSO we have used the
same hardware platform as the parallel one but the program is
run on a single node on a single processor whereas the parallel
algorithm has used all of the available processors when necessary.
The codes developed for both the algorithms use the same
governing mathematical equations and models to optimize the
solution. On the software front, however, we have used an xIc
compiler for the serial version and mpcc compiler, for the parallel
program.

The key strategy employed by the sequential approach is that the
computations pertaining to each particle of the swarm, involved in
the optimization process, in executed one after another obviating
the needs of set synchronization points. This is in stark contrast to
the strategy employed by the parallel approach which leverages on
the available parallel processors as described in Section 7. As
expected we found marked reduction in the time taken for
the parallel algorithm and have managed speedups of up to 10x.
Figs. 8-11 show coherence results and Figs. 12-20 show the plots
for execution times and speedup curves for comparison of parallel

475

470 - '

COST($)

-+-PARALLEL WEIGHT

SWARM
435 { —=-SERIAL WEIGHT
SWARM
43 0 T T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10
TRIAL NUMBER

Fig. 8. Optimum cost obtained by serial and parallel versions of the weight
swarm.

475

470

455

COST (8)

450

4454 —s -PARALLEL COST
SWARM

4401 —=—SERIAL COST
SWARM

435 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10

TRIAL NUMBER

Fig. 9. Optimum cost obtained by serial and parallel versions of the cost swarm.

1622 S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627

-+ -PARALLEL WEIGHT

80.8 - SWARM
—=—SERIAL WEIGHT
SWARM
80.6 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10
TRIAL NUMBER

Fig. 10. Optimum weight obtained by serial and parallel versions of the weight
swarm.

82

81.8 1

00

=

o
f

-]

=

FS
f

WEIGHT IN KGS
oo
oo =
iy [}

80.8 1 —+-PARALLEL COST

SWARM

80.6 | —=—SERIAL COST

SWARM

80.4 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10

TRIAL NUMBER

Fig. 11. Optimum weight obtained by serial and parallel versions of the cost
swarm.

VEPSO with sequential vector evaluated approaches, respectively.
The cases have been briefly discussed below with an emphasis on
coherence first and then on speedup.

8.2.1. Coherence

MPI is an API which is defined in C and standard C libraries are
compatible for use with MPI libraries. The essence of this is that
instruction sets and accuracies of operations remain the same.
The serial version also being written in C makes it furthermore
feasible to achieve absolute coherence. Although the parallel
algorithm does not parallelize serial algorithm verbatim owing
to programming paradigm shifting from the procedural with the
introduction of MPI, the essence of the algorithm logic is pre-
served and parallel results show nearly complete coherence with
serial version.

Figs. 8-11 depicts the variation in optimum cost and the
weight values of the serial and parallel implementations for a
test case of the composite laminate problem subjected to uni-
formly distributed load evaluated with maximum stress failure
criterion, respectively. The curves in the figures represent the
values obtained for parallel and the serial implementations,

respectively. The curve profile indicates small variations in both
the optimal weight values and cost values obtained for both serial
and parallel implementations. In the cost evaluation there is a
maximum variation of approximately 4.25% between the parallel
and serial results for the trials conducted for both cost and weight
swarms. In evaluating weight there is an even smaller variation of
approximately1.25% between the parallel and serial results. This
variation can be considered negligible for all practical purposes
and they become insignificant when a mix of large number of
trials are considered as the parallel and serials results become
more coherent on an average.

8.2.2. Performance measurements

Case 1. Uniformly distributed load with maximum stress failure
criterion.

Fig. 12 show both the execution times of serial and parallel
implementation for the composite laminate problem subjected to
a Uniformly Distributed Load (UDL) of 0.5 N/mm? with maximum
stress failure criterion. The variation of the serial and the parallel
running time plots indicate the latter’s execution time reduction
and Fig. 13 speedup curve verifies the same.

Case 2. Point load with maximum stress failure criterion.

Fig. 14 show the execution time of both serial and parallel
implementation for the composite laminate plate problem subjected
to a Point Load (PL) of 3000 N/mm? with maximum stress failure
criterion. We observe results almost similar to the previous case
with the parallel outperforming the serial in almost all cases. The
corresponding speedup can be seen in Fig. 15.

Case 3. Uniformly distributed load with Tsai-Wu failure criterion.

Fig. 16 show the comparison of the serial and parallel execu-
tion times for the optimization of composite laminate plate
subjected to Uniformly Distributed Load (UDL) with Tsai-wu
failure criterion. Similar results have been obtained with excep-
tion of the actual computation times, which has generally
increased owing to increased computational complexity brought
in by Tsai-Wu failure criterion. The speedup is shown in Fig. 17.

Case 4. Point load with Tsai-Wu failure criterion.

Figs. 18 and 19 show the execution times of serial and parallel
implementation for the composite laminate plate subjected to a
Point Load (PL) with Tsai-wu failure criterion and the correspond-
ing speedup curve.

8.3. Comparison of parallel VEPSO with parallel VEGA

Comparison of the serial versions of both the nature inspired
optimization techniques—VEPSO and VEGA along with the com-
parison of different failure criteria evaluated for different loading
conditions for multi-objective design optimization of composite
laminated structures evaluated using different failure criteria is
presented by Narayana Naik et al. (2011) and Omkar et al. (2008).
An effective comparison of serial versions of PSO and GA is carried
out by Eberhart and Shi (1998). PSO has proven a flexible and
well-balanced mechanism to enhance and adapt to the global and
local exploration and exploitation abilities within a short calcula-
tion time (Eberhart and Shi, 1998). Our previous work regarding
the comparison between serial PSO and GA (Narayana Naik et al.,
2011) prompted the comparison of their parallel counterparts for
this application and hence in this section, the proposed parallel
approach of VEPSO is compared with a parallel version of Vector
Evaluated Variant of the GA employed to solve the composite
laminate problem under uniformly distributed load conditions

S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627 1623

120
=+ SERIAL RUNNING
100 TIME
—=—PARALLEL RUNNING ’a\ \ ;- -
/
TIME ,‘ ; Pk p
/
— . '
g A) ‘\ /
T 60 A - /
2 SN A
= , v ! |
!
40] o\ .
-~ < \ \'
v \

(]
(o)}
(]
(o]
(Y]
e
(2
(]
(F¥]

4 306 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Swarm Particles

Fig. 12. Serial and parallel running time for uniformly distributed load with maximum stress failure criterion.

==SPEEDUP

Speedup
wn

26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Swarm Particles

Fig. 13. Speedup for uniformly distributed load with maximum stress failure
criterion.

evaluated with Maximum Stress Failure criterion. The parameters
that govern the nature of the VEGA are consistent with those used
in Narayana Naik et al. (2011). Again the logical aspects of GA are
perfectly preserved but some modifications have been made to
accommodate MPI's programming model.

8.3.1. Outline of the parallel vector evaluated genetic algorithm
The parallel VEGA algorithm developed for this application
behaves for most part like a traditional genetic algorithm except
that two populations are deployed to minimize the weight and
cost. Hence, at the end of each generation, there is a high
probability of choosing the design configurations of the two
candidates with best fitness of particular population are used by

60
-+ ~SERIAL RUNNING
TIME .
50| —%— PARALLEL RUNNING .
TIME] K4
40

Time (sec)
3

b
=

10

0
26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Swarm Particles

Fig. 14. Serial and parallel running time for point load with maximum stress
failure criterion.

the other population for ensuing generation and vice versa. This
process is repeated until sufficient convergence is observed.
MPI's MPI_Allgather collective communication primitive has
been used instead of MPI_ALLREDUCE. This is because in genetic
algorithm there is a chance that even the design configuration of
the worst candidate may be chosen as the parent for a particular
offspring of the next generation, however unlikely such an event
is although be it a highly improbable event. Hence design
configurations of the whole population are important in VEGA
as opposed to just the best candidate, as in the case of VEPSO.
MPI_Allgather enables synchronization and dissemination of
information of all candidates to each process and hence each pair
of processes uses the same two distinct parents from the whole
population using the information available locally to generate

1624

12

—+—SPEEDUP
10

Speedup
-

0 ¥
26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Swarm Particles

Fig. 15. Speedup for point load with maximum stress failure criterion.

120
=+ SERIAL RUNNING
100 TIME
———PARALLEL RUNNING :
TIME '
Fd [
80 F e | F A
o - V1 4 \
» »
g, /’\ » oy : ! \ ,0’ b
= 60 £ \ 'l \; *
E / N v
[7 ~ /
L
04 ~4
: //_\/\/_/\/\
0

26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 062 64
Swarm Particles

Fig. 16. Serial and parallel running time for uniformly distributed load with Tsai-
Wau failure criterion.

—+—SPEEDUP

Speedup
&

0
26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64

Swarm Particles

Fig. 17. Speedup for uniformly distributed load with Tsai-Wu failure criterion.

offspring of the next generation. Fig. 20 presents this idea more
clearly. For convenience we will refer to each individual in a
population as particle. The algorithm’s flowchart is presented in

Fig. 20.

Time (sec)

Fig.

S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627

70
=+ SERIAL RUNNING ’
60 TIME N
—#— PARALLEL RUNNING \
TIME H
50 [
)\
FON A \
LY 1
10 A LT N N
A r e\ N 8 ¢
-~
SN v
L O
. ¥
20
o W\“_‘A

0
26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Swarm Particles

18. Serial and parallel running time for point load with Tsai-Wu failure

criterion.

Speedup

—_—

I

=

11

—+—SPEEDUP

0
26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Swarm Particles

Fig. 19. Speedup for point load with Tsai-wu failure criterion.

Initialization

1. i’ is the particle index so concurrently for i=1,2,....M
do
{

2. j=1 where ’j’ is the dimension index.
3. Randomly initialize particle positions (xij X1 and yij Xz |xij, yij
N) for the weight and cost variables, respectively.
4. Randomly initialize thickness for each particle (xij X; and yij
Xz |xij, yij [0.05,0.5]) ifj=13.
5. If j < 14 increment j and go to step 2
{
Meeting design constraints
Concurrently for i=1,2,...,M evaluate fitness of par-
ticle at x; and y;. If f and g, the fitness at these points
is such that strength of the configuration < mini-
mum allowable strength then go to step 2 else go to
step 5
do
{
1. j=1
2. increment x;; and yj; suitably
3. if j < 14 then increment j and go to 3
}
4. Synchronize
Optimization
1. j=1(iteration index)
2. Concurrently for i=1,2....,M evaluate fitness of f; and g for
positions x; and y;, respectively

S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627 1625

¢ ¢

Initialize random position Initialize random position

co-ordinates for weight and cost swarms co-ordinates for weight and cost swarms
Evaluate fitness for Evaluate fitness for
both the swarms both the swarms Sync
vr i'
Gather fitness of all Gather fitness of all
other particles P other particles - >
rank==even?
No
Yes ¢ Yes ¢
Select parents Select parents
Parent selection dissemination ‘- P Parent selection dissemination -
¥_ ' Sync
Generate offspring + assume Generate offspring + assume
offspring's role for the offspring's role for the
next iteration next iteration

Convergent?

Fig. 20. Parallel implementation of VEGA.

do 5. Gather fitness and design configuration data of each particle
{ (using MPI_Allgather)
3. if j=1 then evaluate f;; and giy and fipese and Zipest are fi; and 6. If the rank of the particle is even then choose parents from the

gi1, respectively else it is the minimum of the best and current other swarm with the probability of choosing parents influ-

evaluations, i.e., if fij < fipest then pi=x; and if gij < Sipest then
qi=Yy; where p and q personal bests of weight and cost swarm
particles

}

4, Synchronize

enced by their fitness values. (Odd ranked nodes do nothing
here).

. Disseminate parent selections using MPI_Allgather (This lets

each particle know their parents’ design configurations).
(Alternatively each even rank can send patent information to

1626 S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627

45
%
40« » - "\ 7y
\) ~ - 7’ N/ \
35 » 4
AN \
30
g 25
e
E 3
]
15
=+ PARALLEL
10 GA
—=—PARALLEL
5 VEPSO

0
26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64
Swarm Particles

Fig. 21. Comparison of parallel VEGA and parallel VEPSO for uniformly distributed
load with maximum stress failure criterion.

corresponding odd rank but this has to be followed by a
barrier. There is little difference in the two methods in terms of
execution time).

8. Use these parent configurations and generate offspring with a
degree of mutation. (Here the two ranks transform from being
parents to being the next generation’s offspring).

9. if termination conditions (number of iterations) not met then
increment j and go to step 2.

IV Report Results and terminate

Fig. 21 depicts the execution times for both parallel VEPSO and
VEGA, respectively. The curve profile of both the parallel VEPSO and
parallel VEGA indicates that in most cases parallel VEPSO fares
slightly better than VEGA in terms of their execution times which is
explained by the simplicity in the nature of VEPSO algorithm. The
GA employing fairly heavier communication, which involves each
particle getting to know about every other particle’s fitness and
parent selections, results in fairly significant difference in execution
times when smaller populations are used but as the population size
is increased the communication overhead becomes the dominating
factor in execution time of both algorithms and the execution time
of the two algorithms seem to converge.

9. Conclusions

In our work we have developed a novel parallel approach to
VEPSO algorithm, which captures the essence of the peer-to-peer
paradigm model of communication and synchronous evaluations, for
the design optimization of composite structures using MPI parallel
programming platform. MPI being widely available allows its collec-
tive communication protocol to be used for a range of problems
where peer-to-peer paradigm is intended to be used. The results
show reduction in the running time by a considerable extent,
achieving speedups of up to 10x while maintaining the same quality
of solutions that the sequential approach yields. Our approach has
also shown reduced execution time compared to a parallel approach
Vector evaluated GA for a single case of the composite problem.
Parallel VEPSO has fared better than sequential VEPSO and parallel
VEGA in the cases we have investigated. The approach provides for
faster selection of optimum stacking sequence corresponding to the
design of composite laminates with the objectives of minimizing
weight and cost. The parallel approach clearly indicates the increase
in speedup for adequate numbers of processors allocated. The parallel
algorithm developed has shown to be scalable for increased particle
sizes and populations. From the results obtained, we can conclude

that, if each particle of the swarm is allocated to a dedicated processor
then the parallel program’s execution time remains nearly invariant.
For increased swarm populations, the parallel algorithm remained
almost invariant in execution time while the serial approach tended
to linearly increase indicating the algorithm’s scalability. Our future
attempts will be in the direction of trying out parallel algorithms
which incorporate higher degrees of parallelism enabling paralleliza-
tion of each particle of the swarm using NVIDIA’s Compute Unified
Device Architecture (CUDA) platform and also adopting this work’s
methods for longer execution problems in the domain.

References

Adali, S., Walker, M., Verijenko, V.E., 1996. Multi-objective optimization of
laminated plates for maximum pre-buckling, buckling and post-buckling
strength using continuous and discrete ply angles. Compos. Struct. 35 (1),
117-130.

Bin Yua, Zhongzhen Yang, Chuntian, Cheng, 2007. Optimizing the distribution of
shopping centers with parallel genetic algorithm. Eng. Appl. Artif. Intell. 20 (2),
215-223.

Bova, S.W., Carey, G.F., 2000. A distributed memory parallel element-by-element
scheme for semiconductor device simulation. Comput. Meth. Appl. Mech. Eng.
181 (4), 403-423.

Boyang, Liu, Haftka, Raphael T., Akgiin, Mehmet A, Akira, Todoroki, 2000.
Permutation genetic algorithm for stacking sequence design of composite
laminates. Comput. Meth. Appl. Mech. Eng. 186 (2-4), 357-372.

Coello Coello C.A., Lechuga M.S., 2002. MOPSO: a proposal for multiple objective
particle swarm optimization. In: Proceedings of the IEEE Congress on Evolu-
tionary Computation (CEC); pp. 1051-1056.

Coello Coello, C.A., Sierra, M.R., 2004. A study of the parallelization of a
coevolutionary multiobjective evolutionary algorithm. In: Ranroy, Gustavo
Arroyo-Figueroa, Luis Enrique Sucar, Humberto Sossa (Eds.), Proceedings of
the Third Mexican International Conference on Artificial Intelligence
(MICAI'2004), Lecture Notes in Artificial Intelligence, vol. 2972, pp. 688-697.

Deb, K., 2001. Multi-objective Optimization Using Evolutionary Algorithms. John
Wiley and Sons Ltd.

Deka, D.J., 2005. Multiobjective optimization of laminated composites using finite
element method and genetic algorithm. J. Reinf. Plast. Compos. 24, 273-285.

Dubreuil, Marc, Gagn, Christian, Parizeau, Marc, 2006. Analysis of a master-slave
architecture for distributed evolutionary computations. IEEE Trans. Syst. Man
Cybern. Part B 36 (1), 229-235.

Eberhart R.C., Shi Y., 1998. Comparison between genetic algorithms and particle
swarm optimization, in Proc. IEEE Int. Conf. Evol. Comput., 611-616.

Engelbrecht, A.P., 2005. Fundamentals of Computational Swarm Intelligence. John
Wiley and Sons.

Garey, M.R,, Johnson, D.S., 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco.

Ghasemi, M.R,, Ehsani., A., 2007. A hybrid radial-based Neuro-GA multiobjective
design of laminated composite plates under moisture and thermal actions.
World Acad. Sci. Eng. Technol. (28), 356-364.

Gies D., Rahmat-Samii. Y., 2004. Vector evaluated particle swarm optimization
(VEPSO): optimization of a radiometer array antenna. In the proceedings of
Antennas and Propagation Society—IEEE International Symposium, (3),
pp. 2297-2300.

Goel, Tushar, Vaidyanathan, Rajkumar, Haftka, Raphael.T, Shyy, Wei, Queipo,
Nestor.V., 2007. Response surface approximation of Pareto optimal front in
multi-objective optimization. Comput. Meth. Appl. Mech. Eng. 196 (4-6),
879-893.

Gorlatch., Sergei, 2002. Message passing without send-receive. Future Gener
Comp. Syst. 18, 797-805.

Gropp, W., Lusk, E., Skjellum, A., 1994. Using MPI: Portable Parallel Programming
with the Message-Passing Interface. MIT Press, Cambridge, MA.

Gurdal, Z., Haftka, R.T., Hajela, P., 1999. Design and Optimization of Laminated
Composite Materials. Wiley-Interscience.

Hassan R., Cohanim B.K., Weck 0.D., Venter G., 2005. A comparison of particle
swarm optimization and the genetic algorithm. Proceedings of the 46th AIAA/
ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Confer-
ence, Austin, TX.

Hempela, Rolf, Walkerb, David W., 1999. The emergence of the MPI message
passing standard for parallel computing. Comp. Stand. Interfaces 21 (1),
51-62.

Houzeaux, Guillaume, Codina., Ramon, 2003. A Chimera method based on a
Dirichlet/Neumann(Robin) coupling for the Navier-Stokes equations. Comput.
Meth. Appl. Mech. Eng. 192 (31-32), 3343-3377.

The MPI Forum, 1995. The MPI Message-Passing Interface Standard. ¢ http://www.
mcs.anl.gov/mpi/mpi-report/mpi-report.html).

Hu, X., Eberhart, R.C., 2002. Multi-objective optimization using dynamic neigh-
bourhood particle swarm optimization. In: Proceedings of the IEEE Congress
on Evolutionary Computation (CEC), pp. 1677-1681.

Hu, X., Eberhart, R.C,, Shi, Y., 2003. Particle swarm with extended memory for
multi-objective optimization. In: Proceedings of the IEEE Swarm Intelligence
Symposium; pp. 193-197.

http://www.mcs.anl.gov/mpi/mpi-report/mpi-report.html
http://www.mcs.anl.gov/mpi/mpi-report/mpi-report.html

S.N. Omkar et al. / Engineering Applications of Artificial Intelligence 25 (2012) 1611-1627 1627

Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. IEEE International
Conference on Neural Networks, Perth, WA, Australia, pp. 1942-1948.

Kim, CW., Hwang, W., Park, H.C., Han, K.S., 1997. Stacking sequence optimization
of laminated plates. Compos. Struct. 39 (3-4), 283-288.

Kovacs, G., Groenwold, A.A., Jarmai, K., Farkas, J., 2004. Analysis and optimum
design of fibre-reinforced composite structures. Struct. Multidiscip. Optim. 28
(2-3), 170-179.

Luersen, M.A., Holdorf, Lopez, R., 2009. Optimization of laminated composite
materials using a genetic algorithm”. Workshop on Computational Approaches
to Material Modeling and Optimization—WCAMMO 2009 Joinville.

Matsuda, Motohiko, Kudoh, Tomohiro, Kodama, Yuetsu, Takano, Ryousei, Ishi-
kawa, Yutaka, 2008. The design and implementation of MPI collective opera-
tions for clusters in long-and-fast networks. Cluster Comput. 11 (1), 45-55.

Narayana Naik, G., Omkar, S.N., Dheevatsa, Mudigere, Gopalakrishnan, S. 2011.
Nature inspired optimization techniques for the design optimization of laminated
composite structures using failure criteria. Expert Syst. Appl., 2489-2499.

Omkar, S.N., Mudigere, Dheevatsa, Narayana Naik, G., Gopalakrishnan, S., 2008.
Vector evaluated particle swarm optimization (VEPSO) for multi-objective
design optimization of composite structures. Comput. Struct. 86, 1-14.

Parsopoulos, K.E., Vrahatis, M.N., 2002. Recent approaches to global optimization
problems through particle swarm optimization. Nat. Comput. 1, 235-306.

Parsopoulos, K.E., Vrahatis, M.N., Particle swarm optimization method in multi-
objective problems. Proceedings of the ACM 2002 Symposium on Applied
Computing (SAC 2002), pp. 603-607.

Parsopoulos, K.E., Tasoulis, D.K., Vrahatis, M.N.,2004. Multiobjective optimization
using parallel vector evaluated particle swarm optimization. In Proceedings
the TASTED International Conference on Artificial Intelligence and Applica-
tions, as Part of the 22nd IASTED International Multi-Conference on Applied
Informatics, Innsbruck Austria.

Pelletier, Jacob L. Senthil, S.Vel, 2006. Multi-objective optimization of fiber
reinforced composite laminates for strength, stiffness and minimal mass.
Comput. Struct. 84, 2065-2080.

Pulido, G.T., Coello Coello C.A., 2004. Using clustering techniques to improve the
performance of a multi-objective particle swarm optimizer. In: Proceedings of
the Genetic and Evolutionary Computation Conference, Seattle.

Reyes-Sierra, Margarita, Coello Coello, Carlos A., 2006. Multi-objective particle
swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2
(3), 287-308.

Robert Millard, Jones, 1999. Mechanics of Composite Materials, second ed., pp.
279-301.

Schaffer,].D., 1985. Multiple objective optimization with vector evaluated genetic
algorithms. In Genetic Algorithms and their Applications: Proc. Int. Conf. on
Genetic Algorithms, pp. 93-100.

Schutte, J.F., Reinbolt, J.A., Fregly, B.J., Haftka, R.T., George, A.D., 2004. Parallel
global optimization with the particle swarm algorithm. Int. J. Numer. Methods
Eng. 61 (13), 2296-2315.

Schutte, Jaco F., Koh, Byung-I, Reinbolt, Jeffrey A., Fregly, Benjamin J., Haftka,
Raphael T., George, Alan D., 2005. Evaluation of a particle swarm algorithm for
biomechanical optimization.]. Biomech. Eng. 127 (3), 465-475.

Shang-Jeng, Tsai, Tsung-Ying, Sun, Chan-Cheng, Liu, Sheng-Ta, Hsieh, Wun-Ci, Wu,
Shih-Yuan, Chiu, 2010. An improved multi-objective particle swarm optimizer
for multi-objective problems. Expert Syst. Appl. 37 (8), 5872-5886.

Shi, Y.H., Eberhart, R.C., 1998. Parameter selection in particle swarm optimization.
Evolut. Prog. VII, Lecture Notes Comput. Sci., 591-600.

Snyman, J.A., 2004. Practical Mathematical Optimization: An Introduction to Basic
Optimization Theory and Classical and New Gradient-based Algorithms.
Kluwer Academic Publishers, Dordrect, The Netherlands.

Sung-Kwun, Oh, Han-Jong, Jang, Witold, Pedrycz, 2009. The design of a fuzzy
cascade controller for ball and beam system: A study in optimization with the
use of parallel genetic algorithms. Eng. Appl. Artif. Intell. 22 (2), 261-271.

Topal, Umut, Uzmana, Umit, 2010. Multiobjective optimization of angle-ply
laminated plates for maximum buckling load. Finite Elem. Anal Des. 46 (3),
273-279.

Vlachogiannis, J.G., Lee, K.Y., 2005. Determining generator contributions to
transmission system using parallel vector evaluated particle swarm optimiza-
tion. Power Syst. IEEE Trans. 204, 1765-1774.

William Gropp, Ewing, Lusk, Nathan, Doss, Anthony Skjellum, 1996. A high-
performance, portable implementation of the MPI message passing interface
standard. Parallel Comput. 22, 789-828.

	MPI-based parallel synchronous vector evaluated particle swarm optimization for multi-objective design optimization of...
	Introduction
	Multi-objective optimization (MO)
	Particle swarm optimization (PSO)
	Vector evaluated PSO (VEPSO)

	Application of VEPSO for design optimization
	The composite laminate plate design
	Simply supported rectangular plate
	Composite plate structural analysis

	Types of loading
	Uniformly distributed load
	Point load

	Failure criteria
	Maximum stress failure criteria
	Tsai-Wu failure criterion

	Optimization problem
	Design variables
	Objective functions
	The weight function
	The cost function

	Mathematical representation

	The need for VEPSO
	The optimization process using VEPSO
	Message passing interface (MPI) and parallelization
	Synchronization
	Use of MPIALLREDUCE for synchronization and broadcast of global best

	Summary of the algorithms
	Serial implementation
	Parallel implementation

	Results and discussion
	Experimental platform
	Comparison of parallel VEPSO and sequential VEPSO
	Coherence
	Performance measurements

	Comparison of parallel VEPSO with parallel VEGA
	Outline of the parallel vector evaluated genetic algorithm

	Conclusions
	References

