
Neurocomputing 74 (2011) 1696–1709
Contents lists available at ScienceDirect
Neurocomputing
0925-23

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/neucom
Nonlinear system identification using memetic differential evolution trained
neural networks
Bidyadhar Subudhi a,n, Debashisha Jena b

a Center for Industrial Electronics & Robotics, Department of Electrical Engineering, National Institute of Technology, Rourkela 769008, India
b Department of Electrical & Electronics Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
a r t i c l e i n f o

Article history:

Received 18 June 2010

Received in revised form

23 November 2010

Accepted 7 February 2011
Communicated by A. Konar
algorithm based approach for training the multilayer perceptron NN applied to nonlinear system
Available online 17 March 2011

Keywords:

Back propagation

Differential evolution

Evolutionary computation

Nonlinear system identification

Particle swarm optimization
12/$ - see front matter & 2011 Elsevier B.V. A

016/j.neucom.2011.02.006

esponding author.

ail address: bidyadharnitrkl@gmail.com (B. Su
a b s t r a c t

Several gradient-based approaches such as back propagation (BP) and Levenberg Marquardt (LM)

methods have been developed for training the neural network (NN) based systems. But, for multimodal

cost functions these procedures may lead to local minima, therefore, the evolutionary algorithms (EAs)

based procedures are considered as promising alternatives. In this paper we focus on a memetic

identification. The proposed memetic algorithm is an alternative to gradient search methods, such as

back-propagation and back-propagation with momentum which has inherent limitations of many local

optima. Here we have proposed the identification of a nonlinear system using memetic differential

evolution (DE) algorithm and compared the results with other six algorithms such as Back-propagation

(BP), Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Genetic

Algorithm Back-propagation (GABP), Particle Swarm Optimization combined with Back-propagation

(PSOBP). In the proposed system identification scheme, we have exploited DE to be hybridized with the

back propagation algorithm, i.e. differential evolution back-propagation (DEBP) where the local search

BP algorithm is used as an operator to DE. These algorithms have been tested on a standard benchmark

problem for nonlinear system identification to prove their efficacy. First examples shows the

comparison of different algorithms which proves that the proposed DEBP is having better identification

capability in comparison to other. In example 2 good behavior of the identification method is tested on

an one degree of freedom (1DOF) experimental aerodynamic test rig, a twin rotor multi-input–multi-output

system (TRMS), finally it is applied to Box and Jenkins Gas furnace benchmark identification problem and

its efficacy has been tested through correlation analysis.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

SYSTEM identification using neural networks has been consid-
ered as a promising approach due to its function approximation
properties [1] and for modeling nonlinear system dynamics. How-
ever, a lot more research is needed to achieve its faster convergence
and obtaining global minima. Hence there has been a great interest
in combining training and evolution with neural networks in recent
years. The major disadvantage of the EANN [2] approach is that it is
computationally expensive and has slow convergence. With a view
to speed up the convergence of the search process, a number of
different gradient methods such as LM and BP are combined with
evolutionary algorithms. These new classes of hybrid algorithms, i.e.
global evolutionary search supplemented by local search techniques
are commonly known as memetic algorithms (MAs). It may be
noted that the local search methods when used alone there may be
ll rights reserved.

budhi).
problem for getting trapped in local minima. The hybridization of
this local search with evolutionary techniques is useful to either
accelerate the discovery of good solutions, for which evolution alone
would take too long to discover, or to reach solutions that would
otherwise be unreachable by evolution or a local method alone.
It is assumed that the evolutionary search provides for a wide
exploration of the search space while the local search can somehow
zoom-in on the basin of attraction of promising solutions. MAs have
been proven very successful across a wide range of problem
domains such as combinatorial optimization [3], optimization of
non-stationary functions [4], multi-objective optimization [5], bioin-
formatics [6], etc.

A good number of research investigations are directed in the
automated design of the architecture of interconnection among
neurons, which is regarded as a combinatorial optimization
problem whilst in a continuous optimization problem the adjust-
ment of the weights associated to the links between neurons,
which is a continuous optimization problem. During the early
1990s, NNs were mostly trained using back-propagation, conju-
gate gradients or related methods. At the same time, work by

www.elsevier.com/locate/neucom
dx.doi.org/10.1016/j.neucom.2011.02.006
mailto:bidyadharnitrkl@gmail.com
dx.doi.org/10.1016/j.neucom.2011.02.006


B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–1709 1697
Hinton and Nowlan [7] in the late 1980s provided much insight
into the interplay between evolution and learning. Other works
[8–11] followed similar trends, which reinforced the perception
that, in order to distill an evolutionary algorithm that could
achieve maximum performance on a real-world application,
much domain knowledge needs to be incorporated. Domain
knowledge is very often encoded by means of problem specific
local search.

Research on Memetic Algorithms has progressed substantially,
and several Ph.D. dissertations have been written analyzing this
search framework and proposing various extensions to it [3,12,
13,14].

A variant of evolutionary computing namely the Differential
Evolution [15–19] is a population based stochastic optimization
method similar to genetic algorithm [4] that finds an increasing
interest in the recent year as an optimization technique in the
identification of nonlinear systems due to its achievement of a
global minimum. However, a little work has been reported on
memetic differential evolution learning of neural network. There-
fore, it attracts the attention of the present work for neural
network training. In this work, a differential evolution hybridized
with back propagation has been applied as an optimization
method for feed-forward neural network. Differential Evolution
(DE) is an effective, efficient and robust optimization method
capable of handling nonlinear and multimodal objective func-
tions. The beauty of DE is its simple and compact structure which
uses a stochastic direct search approach and utilizes common
concepts of EAs. Furthermore, DE uses few easily chosen para-
meters and provides excellent results for a wide set of benchmark
and real-world problems. Experimental results have shown that
DE has good convergence properties and outperforms other well
known EAs [19]. Therefore, there is scope of using DE approach to
neural weight optimization. In comparison to a gradient based
method differential evolution seems to provide advantage in
terms convergence speed and finding global optimum.

A nonlinear system as considered in [20–22] has been chosen
in this work for demonstrating the efficacy of the proposed hybrid
evolutionary system identification. In this work, the authors
propose a hybrid approach in which the local search methods
(BP) acts as an operator in the global search algorithm in view
of achieving global minimum with good convergence speed. In
this work, memetic genetic algorithm and particle swarm opti-
mization are compared with differential evolution, which are
individually combined with BP for training a feed-forward neural
network. First two examples shows the comparison of different
algorithms which proves that the proposed DEBP is having better
identification capability in comparison to other. In the last
example the proposed DEBP is applied to a Box–Jenkin’s real time
problem and its efficacy has been proved from the correlation
analysis.

The main contributions of the paper are as follows:
�
 The paper proposed a new training paradigm of neural net-
works combining an evolutionary algorithm, i.e. DE with a
local search algorithm, i.e. BP for getting faster convergence in
comparison to only evolutionary computation and to avoid the
possibility of the search process being trapped in local minima
which is the greatest disadvantage of local search optimization.

�
 BP has been integrated as an operator in global searches for

optimizing the weights of the neural network training enabling
faster convergence of the EANN employed for nonlinear system
identification.

�
 The identification performance of the proposed DEBP scheme

has been compared with other EANN and BPNN approaches to
nonlinear system identification and found to be better in terms
of identification performance and convergence speed.
2. A brief review on differential evolution strategy

In a population of potential solutions to an optimization problem
within an n-dimensional search space, a fixed number of vectors are
randomly initialized, and then new populations are evolved over
time to explore the search space and locate the minima of the
objective function. Differential evolutionary (DE) strategy uses a
greedy and less stochastic approach in problem solving rather than
the other evolutionary algorithms. DE combines simple arithmetical
operators with the classical operators of recombination, mutation
and selection to evolve from a randomly generated starting popula-
tion to a final solution. The fundamental idea behind DE is a scheme
whereby it generates the trial parameter vectors. In each step, the
DE mutates vectors by adding weighted, random vector differentials
to them. If the fitness of the trial vector is better than that of the
target, the target vector is replaced by the trial vector in the next
generation. There are many different variants of DE, which differ
from each other as follows: the variants are DE/best/1/exp, DE/rand/
1/exp, DE/rand-to-best/1/exp, DE/best/2/exp, DE/rand/2/exp, etc.
Now we explain the working steps involved in employing a DE
cycle.

Step 1: Parameter setup

Choose the parameters of population size, the boundary con-
straints of optimization variables, the mutation factor (F), the
crossover rate (C), and the stopping criterion of the maximum
number of generations (g).
Step 2: Initialization of the population

Set generation g¼0. Initialize a population of i¼ 1,2,. . .,P
individuals (real-valued d-dimensional solution vectors) with
random values generated according to a uniform probability
distribution in the d-dimensional problem space. These initial
values are chosen randomly within user’s defined bounds.
Step 3: Evaluation of the population

Evaluate the fitness value of each individual of the population.
If the fitness satisfies a predefined criterion save the result and
stop, otherwise go to step 4.
Step 4: Mutation operation (or differential operation)
Mutation is an operation that adds a vector differential to a
population vector of individuals. For each target vector xi,g a
mutant vector is produced using the following relation:

vi,g ¼ xr1 ,gþFðxr2 ,g�xr3 ,gÞ ð1Þ

In Eq. (1), F is the mutation factor, which provides the
amplification to the difference between two individuals
(xr2,g�xr3,g ) so as to avoid search stagnation and it is usually
taken in the range of [0,1]. Where r1,r2,r3Af1,2,. . .,Pg are
randomly chosen numbers but they must be different from
each other. P is the number of population.
Step 5: Recombination operation

Following the mutation operation, recombination is applied to
the population. Recombination is employed to generate a trial
vector by replacing certain parameters of the target vector
with the corresponding parameters of a randomly generated
donor (mutant) vector. There are two methods of recombina-
tion in DE, namely, binomial recombination and exponential
recombination.
In binomial recombination, a series of binomial experiments
are conducted to determine which parent contributes which
parameter to the offspring. Each experiment is mediated by a
crossover constant, C, (0rCo1). Starting at a randomly
selected parameter, the source of each parameter is deter-
mined by comparing C to a uniformly distributed random
number from the interval [0, 1) which indicates the value of C

can exceed the value 1. If the random number is greater than C,



Fig. 1. Block diagram for DE algorithm.

Fig. 2. Minimization in a two dimensional objective function.

B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–17091698
the offspring gets its parameter from the target individual;
otherwise, the parameter comes from the mutant individual.
In exponential recombination, a single contiguous block of
parameters of random size and location is copied from the
mutant individual to a copy of the target individual to produce
an offspring. A vector of solutions are selected randomly from
the mutant individuals when randj (randjA[0,1], is a random
number) is less than C.

tj,i,g ¼
vj,i,g if ðrandjrCÞ or j¼ jrand

xj,i,g otherwise

(
ð2Þ

j¼ 1,2,. . .,d, where d is the number of parameters to be
optimized.
Step 6: Selection operation

Selection is the procedure of producing better offspring. If the
trial vector ti,g has an equal or lower value than that of its
target vector, xi,g it replaces the target vector in the next
generation; otherwise the target retains its place in the
population for at least one more generation.

xi,gþ1 ¼
ti,g if f ðti,gÞr f ðxi,gÞ

xi,g otherwise

(
ð3Þ

Once new population is installed, the process of mutation,
recombination and selection is replaced until the optimum is
located, or a specified termination criterion is satisfied, e.g., the
number of generations reaches a preset maximum gmax.
At each generation, new vectors are generated by the combination

of vectors randomly chosen from the current population (mutation).
The upcoming vectors are then mixed with a predetermined target
vector. This operation is called recombination and produces the trial
vector. Finally, the trial vector is accepted for the next generation if it
yields a reduction in the value of the objective function. This last
operator is referred to as a selection. Fig. 1 shows a two dimensional
objective function that illustrates the different vectors, xi on which
differential evolution is applied. It shows the process of generating



B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–1709 1699
trial vector for the scheme explained in Eq. (1). Fig. 2 shows a pseudo-
code for Differential Evolution algorithm. The most commonly used
method for validation is to utilize the sum-squared error and mean-
squared error between the actual output y(n) of the system and the
predicted output ŷðnÞ. In this work we have taken the cost function as
mean squared error, i.e.E¼ ð1=NÞ

PN
k ¼ 1 ½y�f ðx,wÞ�2, where N is the

number of data considered. The above procedure of DE strategy is
explained in Fig. 1 for clarity.
3. Memetic algorithm

Memetic algorithms have received various names throughout
the literature and scientist not always agree what is and what is
not an MA due to the large variety of implementations available.
Some of the alternative names used for this search framework are
hybrid GAs, Baldwinian EAs, Lamarckian EAs, genetic local search
algorithms, etc. to cover a wide range of techniques where
evolutionary-based search is augmented by the addition of one
or more phases of local search Fig. 3.

The natural analogies between human evolution and learning,
i.e. EAs and artificial neural networks (ANNs) prompted a great
deal of research into the use of MAs to evolve the design of ANNs.
Some research concentrated mainly in the automated design of
the architecture of interconnection among neurons, which is a
combinatorial optimization problem, and others on the adjust-
ment of the weights associated to the links between neurons,
which is a continuous optimization problem. During the 1980s
and early 1990s, ANNs were trained using, for example, back-
propagation, conjugate gradients or related methods. At the same
time, seminal work by Hinton and Nowlan in the late 1980s [20]
provided much insights into the interplay between evolution and
learning. Other researchers [23–26] followed similar trends,
which reinforced the perception that, in order to distill an
evolutionary algorithm that could achieve maximum perfor-
mance on a real world application, much domain knowledge
Fig. 3. Pseudo-code of the di
needs to be incorporated. Domain knowledge was oftentimes
encoded by means of problem specific local searchers.

Research in Memetic Algorithms has progressed substantially,
and several Ph.D. dissertations have been written analyzing this
search framework and proposing various extensions to it [12–14].

In [27] the authors have proposed an effective particle swarm
optimization (PSO) based memetic algorithm for designing arti-
ficial neural network where an effective adaptive Meta-Lamarck-
ian learning strategy is employed to decide which local search
method to be used so as to prevent the premature convergence
and concentrate computing effort on promising neighbor solu-
tions. Delgado et al. [28] propose two hybrid evolutionary algo-
rithms as an alternative to improve the training of dynamic
recurrent neural networks.
3.1. Evolutionary algorithmsþ local search¼memetic algorithms

There are a number of benefits that can be gained by combin-
ing the global search of EAs with local search or other methods for
improving and refining an individual’s solution. However, as there
are no free lunches these benefits must be balanced against an
increase in the complexity in the design of the algorithm. That is,
a careful consideration must be place on exactly how the
hybridization will be done. Consider for example the memetic
algorithm template in figure given below. This a particular
structure of memetic algorithm that has been considered in our
work. The hybridization could be done in many ways of applying
the local search inside the global algorithm. For example, the
initial population could be seeded with solutions arising from
sophisticated problem specific heuristics, the crossover (mutation)
operator could be enhanced with domain specific and representa-
tion specific constrains as to provide better search ability to the
EA. Moreover, local search could be applied to any or all of the
intermediate sets of solutions. However, the most popular form of
hybridization is to apply one or more phases of local search, based
fferential evolution (DE).



B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–17091700
on some probability parameter, to individual members of the
population in each generation. In our work as shown we have
applied the local search the selection method, i.e. a fine search is
applied to the offspring’s before entering to the next generation.

3.2. Lamarckianism and Baldwinian effect

When integrating local search with evolutionary search we are
faced with the dilemma of what to do with the improved solution
that is produced by the local search. That is, suppose that
individual i belongs to the population P in generation g and that
the fitness of i is f(i). Furthermore, suppose that the local search
produces a new individual inew with f(inew)o f(i) for a minimiza-
tion problem. The designer of the algorithm must now choose
between two alternative options.
(1)
 Repacing i with inew, in which case P¼P�{i}þ{inew} and the
genetic information in i is lost and replaced with that of i0.
(2)
 The genetic information of i is kept but its fitness altered:
f(i)¼ f(inew).
Fig. 4. Scheme of the memetic algorithm..

Fig. 5. Pseudo-code of the proposed memetic algorithm.
The first option is commonly known as Lamarckian learning
while the second option is referred to as Baldwinian Learning. It is
a priori difficult to decide what method is best, and probably no
one is better in all cases. In our study we have considered the
Lamarckianism which tends to substantially accelerate the evolu-
tionary process.

In the sequel we describe a novel memetic algorithm for the
training of neural networks together with its main characteristics.
Let us now discuss the hybrid scheme. Different approaches can
be followed when combining a global optimizer and a local search
(LS). In a hybrid algorithm, LS allows to efficiently explore the
region of the fitness landscape in an individual’s neighborhood.

To describe this mechanism with more details, we will
introduce the following formal framework. Let us first introduce
the population cardinality P and the population at the gth
generation, Pg ¼ fc1,g

,. . .,c
P,g
g. Let H be the operator may be

mutation/crossover/reproduction defined as

H9Pg ARd�P-xðx1,. . .,xPÞARP

which associate to each population the fitness vector of its
elements.

Let R, M be the recombination and the mutation operators
respectively. These operators are called the reproduction opera-
tors as well and are defined as

R9PARd
�RP-P0ARd

�RP

M9P0ARd
�RP-P00ARd

�RP

Let us denote with LS the local search operator, i.e., the
operator which produces a new population by applying the LS

with starting points equal to the individuals in the current
population:

LS9P00ARd
�RP-P00 0ARd

�RP

where d is the number of parameters and P is the number of
population. Then applying the selection operator the next gen-
eration population can be determined.

Pgþ1 ¼ selectionfRðM½LSðPgÞ�Þg

In a Hybrid Evolutionary Algorithm, the role of the Evolution-
ary Algorithm is essentially to explore the searching space and
locate the more promising regions. Fig. 4 shows how to produce
next generation of the proposed algorithm whereas the Pseudo-
code is given in Fig.5.
4. Proposed differential evolution back-propagation training
algorithm for nonlinear system identification

In the sequel, we describe how a memetic differential evolu-
tion (DE) is applied for training neural network in the framework
of system identification (see Algorithm 1). DE [30–36] can be
applied to global searches within the weight space of a typical
feed-forward neural network. Output of a feed-forward neural
network is a function of synaptic weights w and input values x,
i.e. y¼ f(x,w). The role of BP in the proposed algorithm has been
described in Section 1. In the training process, both the input
vector x and the output vector y are known and the synaptic
weights in w are adapted to obtain appropriate functional map-
pings from the input x to the output y. Generally, the adaptation
can be carried out by minimizing the network error function E
which is of the form E(y,f(x,w)). In this work we have taken E as
mean squared error, i.e.E¼ ð1=NÞ

PN
k ¼ 1 ½y�f ðx,wÞ�2, where N is

the number of data considered. The optimization goal is to
minimize the objective function E by optimizing the values of
the network weights, w ¼ ðw1,. . .,wdÞ.



Fig. 6. Neural network based identification scheme.

B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–1709 1701
Algorithm 1. Differential Evolution Back-Propagation (DEBP)
Identification Algorithm:

Step 1:
Initialize population pop: Create a population from randomly
chosen object vectors with dimension P, where P is the
number of population

Pg ¼ ðw1,g ,. . .,wP,gÞ
T , g ¼ 1,. . .,gmax

wi,g ¼ ðw1,i,g ,. . .,wd,i,gÞ, i¼ 1,. . .,P

where d is the number of weights in the weight vector. In wi,g, i

is index to the population and g is the generation to which the
population belongs.
Step 2:
Evaluate all the candidate solutions inside the pop for a
specified number of iterations.
Step 3:
For each ith candidate in pop, select the random population
members, r1,r2,r3Af1,2,. . .,Pg
Step 4:
Apply a mutation operator to each candidate in a population to
yield a mutant vector, i.e.

vj,i,gþ1 ¼wj,r1 ,gþFðwj,r2 ,g�wj,r3 ,gÞ for j¼ 1,. . .,d

ðiar1ar2ar3ÞAf1,. . .,Pg and FAð0,1þ�

where ‘‘F’’ denotes the scale factor.
Step 5:
Apply crossover, i.e. each vector in the current population is
recombined with a mutant vector to produce trial vector.

tj,i,gþ1 ¼
vj,i,gþ1 if randj½0,1ÞrC

wj,i,g otherwise
where CA ½0,1�

(

Step 6:
Apply Local Search (back propagation algorithm), i.e. each trial
vector will produce a lst-trial vector lstj,i,gþ1¼bp(tj,i,gþ1)
Step 7.
Apply selection, i.e. between the local search trial (lst-trial) vector
and the target vector. If the lst-trial vector has an equal or lower
objective function value than that of its target vector, it replaces
the target vector in the next generation; otherwise, the target
retains its place in the population for at least one more generation

wi,gþ1 ¼
lsti,gþ1 if Eðy,f ðx,wi,gþ1ÞÞrEðy,f ðx,wi,gÞÞ

wi,g otherwise

(

Step 8:
Repeat steps 1–7 until stopping criteria (i.e. maximum number
of generation) is reached
Fig. 7. NN identifier with external dynamics.
5. Results and discussion

In this section we present the performance of the proposed
Differential Evolution Back-Propagation (DEBP) Identification Algo-
rithm using the simulation studies on a benchmark problem for the
identification of a nonlinear discrete system [16] expressed by

ypðkþ1Þ ¼
ypðkÞ½ypðk�1Þþ2�½ypðkÞþ2:5�

8:5þ½ypðkÞ�
2þ½ypðk�1Þ�2

þuðkÞ ð4Þ

where yp(k) is the output of the system at the kth time step and u(k)
is the plant input which is uniformly bounded function of time. The
plant is stable for u(k)A[�2 2].

For the identification of the plant described in Eq. (4), let the
neural model be in the form of

ŷðkþ1Þ ¼ f ðypðkÞ,ypðk�1ÞÞþuðkÞ ð5Þ
where f(yp(k),yp(k�1)) is the nonlinear function of yp(k) and
yp(k�1). The inputs to the neural network are u(k), yp(k) and
yp(k�1).The output from neural network is ŷðkþ1Þ. The goal is to
train the neural network such that when an input u(k) is simulta-
neously presented to the nonlinear system (4) as well as to neural
network (5), the neural network outputs ŷðkþ1Þwill finally approach
the nonlinear system output yp(kþ1) as close as possible. In the
following discussions, we will present our observation on nonlinear
system identification schemes using seven different identification
algorithms with comparison of their identification performances.

Fig. 6 shows the neural network based system identification
scheme for the given plant employing the proposed memetic
algorithm. The role of MA here is to train the weights of the neural
network optimally.

In case of MLPNN architecture one hidden layer is sufficient to
guarantee the universal approximation feature. Fig. 7 illustrates
this kind of network.

The two-layer feed-forward neural network with sigmoid activa-
tion function in the hidden layer and linear activation function in
output layer has the ability to approximate nonlinear function if the
number of neurons in the hidden layer is sufficiently large. The
Feed-forward neural network (FNN) used in this work is shown
in Fig. 7. The inputs u(k�1), u(k�2), y, u(k�nu) and outputs
yðk�1Þ,yðk�2Þ,. . .,yðk�nyÞ are multiplied with the weights wu(i,j) and
wy(i,j), respectively, and summed at each hidden node. Then the
summed signal at a node activates a nonlinear function (sigmoid
function). Thus, the output ŷðkÞ at a linear output node can be



0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

Time step

E
rr

or
 (

B
P)

Fig. 9. Error in modeling (BP identification).

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

10

Time step

O
ut

pu
t 

GA

Actual

Fig. 10. GA identification performance.

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

Time step

E
rr

or
 (

G
A

)

Fig. 11. Error in modeling (GA identification).

B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–17091702
calculated from its inputs as follows:

ŷðkÞ ¼
XnH

i ¼ 1

wk,i
1

1þe
�
Pnu

j ¼ 1
uðk�jÞwuði,jÞ þ

Pny

j ¼ 1
yðk�jÞwyði,jÞ þbi

� � þb ð6Þ

where nuþny is the number of inputs nH is the number of hidden
neurons, wu(i,j) is the first layer weight between the input u (k� j)
and the ith hidden neuron, wy(i,j) is the first layer weight between
the input y (k� j) and the ith hidden neuron, wi is the second layer
weight between the ith hidden neuron and output neuron, bi is a
biased weight for the ith hidden neuron and b is a biased weight for
the output neuron. It can be seen from Fig. 7 that the FNN is a
realization of the Nonlinear Auto Regressive Exogenous (NARX)
model. The difference between the output of the plant yp(k) and
the output of the network ŷðkÞ is called the prediction error:
eiðkÞ ¼ ypðkÞ�ŷðkÞ . This error is used to adjust the weights and
biases in the network via the minimization of the error function

E¼ 1
2 ypðkÞ�ŷðkÞ
� �

: ð7Þ

In applying different system identification techniques to non-
linear systems considered in Eq. (4) we conducted several sets of
simulation experiments with different number of hidden units.
During these experiments we observed a MLP neural network
model of 3�21�1 configuration has been used for identifying
the given nonlinear system. In other words, the NN-based model
has 3 inputs, 21 neurons in hidden layer and 1 neuron in output
layer. To find a suitable configuration it is common to start from a
simple configuration, usually only one hidden layer, and then
increase the number of neurons and even the number of layers if
necessary. After 100 epochs the training of the neural identifier
has been stopped. During training period, input u(k) was a
random white noise signal, but after the training is over, its
prediction capability were tested for input given by

uðkÞ ¼
2cosð2pk=100Þ if kr200

1:2sinð2pk=20Þ if 200okr500

(
ð8Þ

5.1. Identification using back-propagation algorithm (BP)

(Figs. 8 and 9)

Fig. 8 shows the system identification results obtained using
the back propagation algorithm for training the feed-forward
neural network. Fig. 9 shows the identification error plot obtained
with BP identification.

5.2. Identification using genetic algorithm (GA) (Figs. 10 and 11)

Fig. 10 shows the identification performance of the system
using genetic algorithm as learning algorithm for the given neural
network. The same neural network configuration, i.e. twenty one
0 50 100 150 200 250 300 350 400 450 500
-5

0

5

10

Time steps

O
ut

pu
t 

BP
Actual

Fig. 8. BP identification performance.
neurons are taken into account. After 100 epochs it was found
that the squared error is more than conventional back propaga-
tion also taking more time to converge. Fig. 11 shows the error
between actual and GA identification.
5.3. Genetic algorithm back-propagation (GABP) identification

(Figs. 12 and 13)

Fig. 12 shows the comparison of identification performance
between the GABP identification scheme and the actual plant
output. The identification error is shown in Fig. 13.
5.4. Identification using particle swarm optimization (PSO) (Figs. 14

and 15)

Fig. 14 shows the identification performance between the
particle swarm optimization and the actual output. The identifi-
cation error between the actual output and the PSO output is
shown in Fig. 15.



0 50 100 150 200 250 300 350 400 450 500
-5

0

5

10

Time steps

O
ut

pu
t 

GABP
Actual

Fig. 12. GABP identification. performance.

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

Time step

E
rr

or
 (

G
A

B
P)

Fig. 13. Error in modeling (GABP identification).

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

10

Time steps

O
ut

pu
t 

PSO
Actual

Fig. 14. PSO identification performance.

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

Time step

E
rr

or
 (

PS
O

)

Fig. 15. Error in modeling (PSO identification).

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

10

Time step

O
ut

pu
t 

PSOBP

Actual

Fig. 16. PSOBP identification performance.

0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

Time step
E

rr
or

 (
PS

O
B

P)

Fig. 17. Error in modeling (PSOBP identification).

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

10

Time steps

O
ut

pu
t 

DE
Actual

Fig. 18. DE identification performance.

B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–1709 1703
5.5. Particle swarm optimization combined with back-propagation

(PSOBP) identification (Figs. 16 and 17)

Fig. 16 shows the result of memetic scheme (PSOBP) where
particle swarm optimization is hybridized with back propagation.
The result clearly indicates even if the above scheme gives less
sum squared error than PSO at the moment of testing, but does
not give better identification of nonlinear system at validation
stage. Fig. 17 shows its identification error curve between actual
and GABP system identification.

5.6. Differential evolution (DE) identification (Figs. 18 and 19)

Fig. 18 shows the identification performance between the
differential evolution and the actual output. It was found that
the performance is better than GA and PSO but worst than GABP.
The identification error between the actual output and the DE
output is shown in Fig. 19.

5.7. Differential evolution plus the back-propagation (DEBP)

identification (Figs. 20 and 21)

From Fig. 20 it is clear that the proposed method, i.e. DEBP
identification is more effective than other mentioned approaches
as per as identification performance and speed of convergence is
concerned. Fig. 21 shows the error between the plant output and
NN identified model output.

5.8. Performance comparison of all the seven identification methods

cited in this paper

Fig. 22 depicts the mean square error (MSE) profiles for all the
seven different identification methods (BP, GA, GABP, PSO, PSOBP,



B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–17091704
DE and DEBP). In these seven methods, we have proposed a new
identification scheme, namely the Differential Evolution plus the
Back-propagation (DEBP) identification approach. From this figure
0 50 100 150 200 250 300 350 400 450 500
-4

-2

0

2

4

Time step

E
rr

or
 (

D
E

)

Fig. 19. Error in modeling (DE identification).

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

10

Time steps

O
ut

pu
t 

DEBP
Actual

Fig. 20. DEBP identification performance.

0 100 200 300 400 500
-4

-2

0

2

4

Time step

E
rr

or
 (

D
E

B
P)

Fig. 21. Error in modeling (DEBP identification).

0 10 20 30 40
0

100

200

300

No of

M
ea

n 
sq

ua
re

d 
er

ro
r

Fig. 22. A comparisons on the convergence on the me
it is clear that the SSE with the proposed method DEBP converges
to zero very fast taking only about 20th iteration while the error
curves with the other system identification methods (BP,
GA,GABP, PSO, PSOBP and DE) converges to zero taking over
70th iterations. Hence it is important to note that the proposed
DEBP system identification exhibits better convergence charac-
teristics Fig. 23.

All the simulations have been performed in an Intels core
(TM) DUO CPU with 3 GHz speed 3 GB RAM and 32 bit operating
system. The programming language used is MATLAB with same
set of parameters, i.e. population size, number of generations,
upper and lower bounds of weights and number of hidden layer
neurons.

Table 1 gives the value of parameters used in all the seven
identification schemes. Table 2 gives the comparison of perfor-
mance of all the seven methods in terms of mean squared error
(MSE). From the results it is clear that for a particular number of
generations, i.e. 100, the proposed DEBP algorithm has a mean
squared error (MSE) of 0.0625. It is found that out of all the seven
methods the memetic approaches, i.e. GABP, DEBP, and PSOBP are
having faster convergence in comparison to other local search and
evolutionary computing approaches. Finally it is concluded that
the proposed memetic DEBP is having better identification per-
formance and faster convergence in comparison to memetic GABP
and PSOBP algorithm which indicates DE is outperforming than
its counterpart GA and PSO.
50 60 70 80 90 100

 iteration

BP

DEBP

DE

GABP

GA

PSO

PSOBP

an squared error (MSE) for all the seven methods.

Fig. 23. The laboratory setup: TRMS system.



Table 1
Parameters used in simulation studies.

Total sampling period, T 500

Population size, P 50

Number of generations 100

Upper and lower bound of weights [�1, 1]

BP learning parameter, Z 0.55

Number of hidden layer neurons 21

Parameters for DE and DEBP algorithms

Mutation constant factor, F 0.6

Cross over constatnt, C 0.5

Bp learning parameter, Z 0.55

Parameters for GA and GABP algorithms 0.002

Mutation probability, pm 1

BP learning parameter, Z 0.55

Parameters for PSO and PSOBP algorithms

Learning factor, C1 1.9

Learning factor, C2 1.9

BP learning parameter, Z 0.55

Table 2
Comparison of performances of seven methods.

SL

no.

Identification

method

Computation

time in seconds

(s)

MSE Number of

generation

at which the MSE

converges to 0.05

1 BP 4.76 2.6086 4100

2 GA 40.42 11.4156 4100

3 GABP 131.42 0.2852 70

4 PSO 42.15 5.49 4100

5 PSOBP 142.79 0.2074 50

6 DE 42.19 3.9645 4100

7 DEBP 136.73 0.0625 20

0 50 100 150 200 250 300 350 400 450 500
-0.5

0

0.5

1

1.5

Time step

O
ut

pu
t

actual
DEBP
DE

Fig. 24. DE and DEBP identification performance.

actual
DEBP
DE

86 88 90 92 94 96 98 100 102

0.79

0.8

0.81

0.82

0.83

Time step
O

ut
pu

t

Fig. 25. DE and DEBP identification performance.

0 50 100 150 200 250 300 350 400 450 500
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Time step

E
rr

or
 D

E
B

P

Fig. 26. Error in modeling (DEBP identification).

0 50 100 150 200 250 300 350 400 450 500
-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Time step

E
rr

or
 D

E

Fig. 27. Error in modeling (DE identification).

B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–1709 1705
Example 2: The TRMS used in this work is supplied by
Feedback Instruments designed for control experiments. This
TRMS setup serves as a model of a helicopter. It consists of two
rotors placed on a beam with a counterbalance. These two rotors
are driven by two d.c motors. The main rotor produces a lifting
force allowing the beam to rise vertically making the rotation
around the pitch axis. The tail rotor which is smaller than the
main rotor is used to make the beam turn left or right around the
yaw axis. Both the axis of either or both axis of rotation can be
locked by means of two locking screws provided for physically
restricting the horizontal and or vertical plane of the TRMS
rotation. Thus, the system permits both 1 and 2 DOF experiments.
In this work we have taken only the 1 DOF around the pitch axis
and identified the system using proposed method. The model has
three inputs and eleven neurons in the hidden layer. The inputs
are the main rotor voltage at the present time v(t), main rotor
voltage at previous time v(t�1) and the pitch angle of the beam
at previous time instant’s(t�1).

5.9. Differential evolution (DE) and differential evolution back

propagation (DEBP) identification

Figs. 24–28 shows the identification performance of 1 degree
of freedom (DOF) vertical DE and DEBP based model. Fig. 24
compares the actual output, y(t) and identified plant output ŷðtÞ

within the time step of 0–500. As the identification performances
shown in Fig. 24 are overlapping each other, in Fig. 25 we have
shown the results within the time step of 88–96. From this it is
clear that the proposed DEBP exhibits better identification ability
compared to DE approach. Figs. 26 and 27 shows the error
between the actual and identified model. Fig. 28 gives the sum
squared error (SSE) where it is found that the value of SSE for
DEBP is 0.0036 whereas for DE identification is 0.0110.

5.10. Genetic algorithm (GA) and genetic algorithm back

propagation (GABP) identification

Figs. 29–33 shows the identification performance of 1 degree
of freedom (DOF) vertical GA and GABP based model. Fig. 18



0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

No of iteration

su
m

 s
qu

ar
ed

 e
rr

or

DE
DEBP

Fig. 28. A comparisons on the convergence on the sum squared error (SSE) (DE, DEBP).

0 50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time step

O
ut

pu
t

actual
GA
GABP

Fig. 29. GA and GABP identification performance.

210 212 214 216 218 220 222
0.575

0.58

0.585

0.59

0.595

Time step

O
ut

pu
t

actual
GA
GABP

Fig. 30. GA and GABP identification performance.

0 200 400 600 800 1000 1200
0

1

2

3

4

Number of iteration

Su
m

 s
qu

ar
ed

 e
rr

or

GA
GABP

Fig. 31. A comparisons on the convergence on the sum squared error (SSE) (GA, GABP).

0 50 100 150 200 250 300 350 400 450 500
-0.06

-0.04

-0.02

0

0.02

0.04

Time step

E
rr

or
 G

A

Fig. 32. Error in modeling (GA identification).

0 50 100 150 200 250 300 350 400 450 500
-0.04

-0.02

0

0.02

0.04

Time step

E
rr

or
 G

A
B

P

Fig. 33. Error in modeling (GABP identification).

0 50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time step

O
ut

pu
t

actual
PSO
PSOBP

Fig. 34. PSO and PSOBP identification performance.

B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–17091706
compares the actual output, y(t) and identified plant output ŷðtÞ

within the time step of 0–500. As the identification performances
shown in Fig. 29 are overlapping each other, in Fig. 30 we have
shown the results within the time step of 208–218. From this it is
clear that the GABP identification approach exhibits better iden-
tification ability compared to GA approach. Fig. 31 gives the sum
squared error (SSE) where it is found that the value of SSE for
GABP is 0.0.0197 whereas for GA identification is 0.0327. Figs. 32
and 33 shows the error between the actual and identified model
for both the identification scheme.

5.11. Particle swarm optimization (PSO) and particle swarm

optimization (PSOBP) identification

Fig. 34–38 shows the identification performance of 1 degree of
freedom (DOF) vertical PSO and PSOBP based model. Fig. 34
compares the actual output, y(t) and identified plant output ŷðtÞ

within the time step of 0–500. As the identification performances
shown in Fig. 34 are overlapping each other, in Fig. 35 we have
shown the results within the time step of 87–96. From this it is
clear that the PSOBP approach exhibits better identification
ability compared to PSO approach. Fig. 36 gives the sum squared
error (SSE) where it is found that the value of SSE for PSOBP is
0.0235 whereas for PSO identification is 0.0505. Figs. 37 and 38
shows the error between the actual and identified model for both
the identification scheme.

Finally it has been seen that among all the methods the
proposed DEBP method is having lowest SSE, i.e. 0.0036 amongst
all the methods disused.



85 90 95 100 105 110

0.76

0.78

0.8

0.82

0.84

Time step

O
ut

pu
t

actual
PSO
PSOBP

Fig. 35. PSO and PSOBP identification performance.

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

Number of iteration

Su
m

 s
qu

ar
ed

 e
rr

or

PSO
PSOBP

Fig. 36. A comparisons on the convergence on the sum squared error (SSE) (PSO,

PSOBP).

0 50 100 150 200 250 300 350 400 450 500
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time step

E
rr

or
 P

SO
B

P

Fig. 37. Error in modeling (PSOBP identification).

0 50 100 150 200 250 300 350 400 450 500
-0.06

-0.04

-0.02

0

0.02

0.04

Time step

E
rr

or
 P

SO

Fig. 38. Error in modeling (PSO identification).

0 50 100 150 200 250 300
45

50

55

60

65

Time step

O
ut

pu
t

Estimated
Actual

Fig. 39. Identification performance.

B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–1709 1707
Example 3 (Box Jenkin’s Gas Furnace Modeling): The time series
data set for a gas furnace consists of 296 input–output samples
recorded with a sampling period of 9 s. The instantaneous values of
output y(t) have been regarded as being influenced by ten variables
mainly the past values of y(t) for past four sampling times and u(t) for
past six sampling times, i.e. y(t�1), y(t�2), y(t�3), y(t�4), u(t�1),
u(t�2), u(t�3), u(t�4), u(t�5), u(t�6). The original data set con-
tains 296 [u(t), y(t)] data pairs. But, by converting the data set to
previous sampling instants so that each training data consists of
½yðt�1,Þ,. . .,yðt�4Þ,uðt�1Þ,. . .,uðt�6Þ�reduces the number of data
points to effectively 290 data pairs. The number of training data
was taken as 100 for the three identification schemes (DE-NN, OBDE-
NN and NF) and the rest 190 data pairs were considered as the test
data. It may be noted that, for dynamic system modeling, the inputs
selected must contain elements from both set of historical furnace
outputs {yðt�1,Þ,. . .,yðt�4Þ} and the set of historical furnace inputs
{uðt�1Þ,. . .,uðt�6Þ}. In this study we assumed six inputs are fed to
the neural networks namely, y(t�1), y(t�2), y(t�3), u(t�1), u(t�2),
u(t�3). During the experiment, we observed the pattern of estima-
tion errors corresponding to the number of hidden nodes taken. By
this process we end up with choice of eleven numbers of hidden
units, leading to the lowest estimation error. For all the methods
eleven number of hidden layer neurons were taken and the results
obtained after 1000 epochs. We have tried for more number of
neurons for the same problem which took more computational time
without achieving appreciable amount of accuracy.

5.11.1. Correlation test

A more convincing method of the identification model valida-
tion is to use correlation tests. If the model of a system is
adequate then the residuals should be unpredictable from (uncor-
related with) all linear and nonlinear combinations of past inputs
and outputs. A number of auto-correlation and cross-correlation
tests given below has been recommended by the authors in [29]

xee ¼ E½eðt�tÞeðtÞ� ¼ dðtÞ
xue ¼ E½uðt�tÞeðtÞ� ¼ 0 8t
xu2e2 ¼ E½u2ðt�tÞ�u2e2ðtÞ� ¼ 0 8t
xeðeuÞ ¼ E½eðtÞeðt�1�tÞuðt�1�tÞ� ¼ 0 tZ0

where xue indicates the cross-correlation between u(t) and e(t)
and d(t) is an impulse function. The test results are given below.
In general, if the correlation functions are within the 95%
confidence intervals, 71.96/N, where N is the total number of
data points, the model is regarded as adequate.

From Fig. 39 a close match, perceived from physical observation,
between the neural model and the actual system response reveals
that the obtained model represents the system adequately. The
identification error is shown in Fig. 40. However, the effectiveness
of the model is further tested by carrying the above mentioned
correlation tests. It is found that all four correlation functions; cross-
correlation of input and residuals (Fig. 41), auto-correlation of
residuals (Fig. 42), cross-correlation of input square and residuals
square (Fig. 43), cross-correlation of residuals and (input� residuals)
(Fig. 44) are within 95% of the confidence band indicating that the
model is adequate, i.e. the model behavior is closed to the real system
performance.



0 50 100 150 200 250 300
-2

-1.5

-1

-0.5

0

0.5

1

Time step

E
rr

or

Fig. 40. Identification error.

-300 -200 -100 0 100 200 300
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

lag

C
ro

ss
-c

or
re

la
tio

n 
(i

np
ut

 &
 r

es
id

ua
l)

Fig. 41. Cross-correlation of input and residuals.

-300 -200 -100 0 100 200 300
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

lag

C
ro

ss
-c

or
re

la
tio

n
(r

es
id

ua
l &

 in
pu

t*
re

si
du

al
)

Fig. 42. Auto-correlation of residuals.

-300 -200 -100 0 100 200 300
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

lag

C
ro

ss
-c

or
re

la
tio

n
(i

np
ut

 s
qu

ar
e 

&
 r

es
id

ua
l s

qu
ar

e)

Fig. 43. Cross-correlation of input square and residuals square.

-300 -200 -100 0 100 200 300
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

lag

A
ut

o-
co

rr
el

at
io

n 
(r

es
id

ua
ls

)

Fig. 44. Cross-correlation of residuals and input residuals.

B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–17091708
6. Conclusions

In this paper we have provided an extensive study of memetic
algorithms (MAs) applied to nonlinear system identification. From
the results presented in this paper it has been found that the
proposed DEBP memetic algorithm applied to neural network
learning exhibits better result in terms of faster convergence and
lowest mean squared error (MSE) amongst all the seven methods (i.e.
BP, GA, GABP, PSO, PSOBP, DE, and DEBP). The proposed method
DEBP exploits the advantages of both the local search and global
search. It is interesting to note that the local search pursued after the
mutation and crossover operation that helps in intensifying the
region of search space which leads to faster convergence. We
investigated the performance of the proposed version of the DEBP
algorithm using a benchmark nonlinear system identification pro-
blem, a real time Box–Jenkin’s time series model and a multi-input
multi-output highly nonlinear TRMS system. The simulation studies
showed that the proposed algorithm of DEBP outperforms in terms
of convergence velocity among all the seven discussed algorithms.
The overall performance of the DEBP scheme was better than the
other approaches and the overall performance of the newly proposed
DEBP algorithm was superior to other methods, i.e. GABP and PSOBP.
This shows it is advantageous to use DEBP over other evolutionary
computation such as GA and PSO in nonlinear system identification.
References

[1] K.S. Narendra, K. Parthaasarathy, Identification and control of dynamical
systems using neural networks, IEEE Trans. Neural Networks 1 (1990) 4–27.

[2] X. Yao, Evolutionary artificial neural networks, Int. J. Neural Systems 4 (1993)
203–222.

[3] P. Merz, Memetic Algorithms for Combinatorial Optimization Problems:
Fitness Landscapes and Effective Search Strategies, Ph.D. Thesis, Department
of Electrical Engineering and Computer Science, University of Siegen, Ger-
many, 2000.

[4] F. Vavak, T. Fogarty, K. Jukes, A genetic algorithm with variable range of local
search for tracking changing environments, in: Proceedings of the Fourth
Conference on Parallel Problem Solving from Nature, 1996.

[5] J. Knowles, D. Corne, A comparative assessment of memetic, evolutionary and
constructive algorithms for the multi-objective d-msat problem, in: Genetic
and Evolutionary Computation Workshop Proceeding, 2001.

[6] N. Krasnogor, Self-generating metaheuristics in bioinformatics: the protein
structure comparison case, in: Genetic Programming and Evolvable
Machines, Kluwer Academic Publishers, vol. 5, 2004, pp 181–201.

[7] G. Hinton, S. Nowland, How learning can guide evolution, Complex Systems 1
(1987) 495–502.

[8] L. Whitley, S. Gordon, K. Mathias, Lamarkian evolution, the Baldwin effect,
and function optimization, in: Proceedings of the Third Conference on
Parallel Problem Solving from Nature, 1994.

[9] G. Mayaley, Landscapes, learning costs and genetic assimilation, Evol.
Comput. 4 (1996) 213–234.

[10] P. Turney, How to shift bias: lessons from the Baldwin effect, Evol. Comput. 4
(1996) 271–295.

[11] C. Houck, J. Joines, M. Kay, J. Wilson, Empirical investigation of the benefits of
partial Lamarckianism, Evol. Comput. 5 (1997) 31–60.

[12] W. Hart, Adaptive Global Optimization with Local Search, Ph.D. Thesis,
University of California, San Diego, USA, 1994.

[13] M. Land, Evolutionary Algorithms with Local Search for Combinatorial
Optimization, Ph.D. Thesis, University of California, San Diego, USA, 1998.

[14] N., Krasnogor, Studies in the Theory and Design Space of Memetic Algo-
rithms, Ph.D. Thesis, University of the West of England, Bristol, UK, 2002.

[15] R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for
global optimization over continuous spaces, Journal of Global Optimization
11 (1997) 341–359.



B. Subudhi, D. Jena / Neurocomputing 74 (2011) 1696–1709 1709
[16] R. Storn, System design by constraint adaptation and differential evolution,
IEEE Trans. Evol. Comput. 3 (1999) 22–34.

[17] J. Ilonen, J.K. Kamarainen, J. Lampinen, Differential evolution training algo-
rithm for feed forward neural networks, Neurol. Proc. Lett. 17 (2003) 93–105.

[18] H.-K. Kim, J.-K. Chong, K.-Y. Park, Differential evolution strategy for con-
strained global optimization and application to practical engineering pro-
blems, IEEE Trans. Magn. 43 (3) (2007) 1565–1568.

[19] N. Noman, H. Iba, Accelerating differential evolution using an adaptive local
search, IEEE Trans. Evol. Comput. 12 (1) (2008) 107–125.

[20] C.-T. Lin, C.S. George Lee, Neural Fuzzy Systems: A Neuro-fuzzy Synergism to
Intelligent Systems, Prentice Hall International, Inc., New Jersey, 1996.

[21] G.E.P. Box, G.M. Jenkins, Time Series Analysis, Forecasting and Control,
Holden Day, San Francisco, 1970.

[22] S.M. Ahmad, M.H. Shaheed, A.J. Chipperfield, M.O. Tokhi, Nonlinear modelling
of a twin rotor MIMO system using radial basis function networks, in:
Proceedings of the 2000 IEEE International Conference on National Aerospace
and Electronics, 2000, pp. 313–320.

[23] L. Whitley, S. Gordon, K. Mathias, Lamarkian evolution, the Baldwin effect,
and function optimization, in: Y. Davidor, H.P. Schwefel, R. Manner (Eds.),
Proceedings of the Third Conference on Parallel Problem Solving from Nature,
Lecture Notes in Computer Science, vol. 866, Springer, , 1994.

[24] G. Mayaley, Landscapes, learning costs and genetic assimilation, Evol.
Comput. 4 (1996) 213–234.

[25] P. Turney, How to shift bias: lessons from the Baldwin effect, Evol. Comput. 4
(1996) 271–295.

[26] C. Houck, J. Joines, M. Kay, J. Wilson, Empirical investigation of the benefits of
partial Lamarckianism, Evol. Comput. 5 (1997) 31–60.

[27] B. Liu, L. Wang, Y. Jin, D. Huang, Designing neural networks using PSO based
memetic algorithm, Adv. Neural Networks (2007) 219–224.

[28] M. Delgado, M.C. Pegalajar, M.P. Cuéllar, Memetic evolutionary training for
recurrent neural networks: an application to time-series prediction, Expert
Systems 23 (2) (2006) 99–115.

[29] S.A. Billings, W.S.F. Voon, Correlation based validity tests for nonlinear
models, Int. J. Control 44 (1) (1986) 235–244.

[30] S. Das , A. Konar, U.K. Chakraborty, Two improved differential evolution
schemes for faster global search, ACM-SIGEVO Proceedings of GECCO,
Washington, DC, June 2005, pp. 991–998.

[31] S. Das, A. Abraham, U.K. Chakraborty, A. Konar, Differential evolution using a
neighborhood based mutation operator, IEEE Trans. Evol. Comput. 13 (3)
(2009) 526–553.

[32] S. Das, A. Konar, U.K. Chakraborty, Annealed differential evolution, IEEE
Congr. Evol. Comput (2007).

[33] S. Dasgupta, S. Das, A. Biswas, A. Abraham, On stability and convergence of the
population-dynamics in differential evolution, AI Commun. 22 (1) (2009) 1–20.

[34] S. Das, A. Abraham, A. Konar, Automatic clustering using an improved
differential evolution algorithm, IEEE Trans. Systems Man Cybern.—Part A
38 (1) (2008) 218–236.
[35] A. Biswas, S. Das, A. Abraham, S. Dasgupta, Design of fractional-order PI
/lambdaSD/muS controllers with an improved differential evolution, Eng.
Appl. Artif. Intell. 22 (2) (2009) 343–350.

[36] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art,
IEEE Trans. Evol. Comput. 15 (1) (2011) 4–31 doi:10.1109/TEVC.2010.
2059031.
Bidyadhar Subudhi has received a Bachelor Degree
in Electrical Engineering from Regional Engineering
College Rourkela (presently National Institute of
Technology Rourkela, India), Master of Technology in
Control & Instrumentation from Indian Institute of
Technology, Delhi in 1994 and Ph.D. degree in Control
System Engineering from University of Sheffield,
United Kingdom in 2003. He worked as a Post Doctoral
Research Fellow in the Department of Electrical &
Computer Engineering, NUS, Singapore, during May–
November 2005. Currently he is working as Professor
and Head of the Department, Electrical Engineering

in the National Institute of Technology, Rourkela,
India. He is serving as the Coordinator of Centre for

Industrial Electronics & Robotics, in the National Institute of Technology, Rourkela.
His research interests include System Identification, Intelligent Control, Net-
worked Control System and Photovoltaic System. He is a Fellow of the Institution
of Engineers (India), Life Member of Systems Society of India and Senior
Member IEEE.
Debashisha Jena has received a Bachelor of Electrical
Engineering degree from University College of Engi-
neering, Burla, India, in 1996 and Master of Technology
in Electrical Engineering in 2004 and Ph.D. degree in
Control System Engineering from the Department of
Electrical Engineering, National Institute of Technol-
ogy, Rourkela, India 2010. He was awarded a GSEP
fellowship in 2008 from Canada for research in control
and automation. Currently he is an Assistant Professor
in the Department of Electrical & Electronics Engineer-
ing in the National Institute of Technology Karnataka,
Surathkal, Mangalore, India. His research interests

include Evolutionary Computation, System Identifica-
tion and Neuro-evolutionary computation.

dx.doi.org/10.1109/TEVC.2010.2059031
dx.doi.org/10.1109/TEVC.2010.2059031

	Nonlinear system identification using memetic differential evolution trained neural networks
	Introduction
	A brief review on differential evolution strategy
	Memetic algorithm
	Evolutionary algorithmspluslocal searchequalmemetic algorithms
	Lamarckianism and Baldwinian effect

	Proposed differential evolution back-propagation training algorithm for nonlinear system identification
	Results and discussion
	Identification using back-propagation algorithm (BP) (Figs. 8 and 9)
	Identification using genetic algorithm (GA) (Figs. 10 and 11)
	Genetic algorithm back-propagation (GABP) identification (Figs. 12 and 13)
	Identification using particle swarm optimization (PSO) (Figs. 14 and 15)
	Particle swarm optimization combined with back-propagation (PSOBP) identification (Figs. 16 and 17)
	Differential evolution (DE) identification (Figs. 18 and 19)
	Differential evolution plus the back-propagation (DEBP) identification (Figs. 20 and 21)
	Performance comparison of all the seven identification methods cited in this paper
	Differential evolution (DE) and differential evolution back propagation (DEBP) identification
	Genetic algorithm (GA) and genetic algorithm back propagation (GABP) identification
	Particle swarm optimization (PSO) and particle swarm optimization (PSOBP) identification
	Correlation test


	Conclusions
	References




