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Space-frequency codes (SFC) having error correcting structure can be used to enhance the bit error rate
(BER) performance of modern wireless systems (5G and beyond) employing multiple-input multiple-
output (MIMO) and multi-carrier communication. In this work, the construction of non-orthogonal
space-frequency block codes (NSFBC) from (n, k) cyclic codes has been proposed. In which, n represents
the number of symbols in the codeword and k represents the number of symbols in the information
sequence. The performance of proposed codes has been evaluated in MIMQO systems employing
orthogonal frequency division multiplexing and index modulation (MIMO-OFDM-IM). We initially
obtained (n, k) full rank cyclic codes for any 1 < k < | -] using Galois field Fourier transform (GFFT)
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MIMO‘_OFDM‘IM description of (n, k) cyclic codes over Fgm. Further, NSFBCs are obtained from full rank codes using
CNOOd“E'S"”hOgO“‘“ space—frequency black Rank preserving maps. In a 2 x 2 system and a 10-path MIMO channel, the proposed full rank NSFBC

with rank-preserving IM mapping (FR-NSFBC-IM), over Fs2, provides he similar BER performance when
compared to MIMO-OFDM-IM system with Rate-1 Alamouti code and QPSK. Moreover, it provides an
improvement in spectral efficiency of about 0.9 b/s/Hz. When compared to the MIMO-OFDM-IM with
BPSK, FR-NSFBC-IM codes over F5z provide an asymptotic SNR gain of about 1 dB and also the spectral
efficiency has been improved by about 0.6 b/s/Hz. In the 4 x 4 scenario, full rank NSFBCs over Fzs with
rank deficient IM mapping (RD-NSFBC-IM) provide an improvement in spectral efficiency of about 1.3

Rank deficient codes

b/s/Hz. However, BER performance is similar to that of MIMO-OFDM-IM with BPSK.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Attainment of high data rates with high levels of informa-
tion integrity is the most significant challenge being addressed
by modern multi-carrier wireless communication technologies
such as IEEE 802.11n, IEEE 802.16e, Long Term Evolution (LTE
4G), and 5G and beyond [1]. Though OFDM could not give best
solution while producing the required data rates and informa-
tion integrity levels, due to its requirement of higher degree
levels for synchronization, it is still in contention as one of the
waveform alternatives [2]. Hence, multiple-input multiple-output
orthogonal frequency division multiplexing (MIMO-OFDM) based
communication has been greatly addressed in modern wireless
communications, to attain the high data rates along with high
levels of integrity. Recently, with the intervention of index mod-
ulation in MIMO-OFDM (MIMO-OFDM-IM), similar data rates as
that of MIMO-OFDM have been obtained. Moreover, less number
of carriers are sufficient in the case of MIMO-OFDM-IM when
compared to traditional MIMO-OFDM at any instance of time [1].
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Hence, MIMO-OFDM-IM communication has been considered as
one of the other alternatives to MIMO-OFDM communication
scheme. In MIMO-0OFDM-IM, additional degree of freedom offered
by the choice of subcarriers for modulation (active subcarri-
ers) is exploited for information transmission [3,4]. The infor-
mation is directly modulated onto the chosen subcarriers once
the selection of active subcarriers is done. From the theory of
MIMO communications and MIMO-OFDM communications, one
can understand that the performance (in terms of reliability)
of MIMO-OFDM-IM can be enhanced using space-time block
codes—STBCs (in case of SM-MIMO-OFDM systems) or space-
frequency block codes—SFBCs (in case of MIMO-OFDM-IM sys-
tem) [5]. STBCs and SFBCs based on Rank-1 Alamouti code with
different capabilities have been designed and evaluated in pre-
vious works of MIMO-OFDM [6-9] and Spatial modulation based
MIMO systems [ 10].

The performance of MIMO based communication system is
further improved by using an (n, k) error control code in con-
catenation with the STBC [11]. Where, n is the number of output
symbols, and k is the number of input information symbols of an
encoder. However, it needs an additional error control encoder
and decoder which further increases computational complexity.
Hence, there is a need in achieving better performance in STBC
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or SFBC based MIMO communications without using an external
error control code. This can be solved by introducing STBC or
SFBC based MIMO communications with internal error correcting
structure. A few works have already been proposed [12-15] in
this aspect and the details of the existing approaches are as given
below:

1. STBCs with rank r < Ny, obtained from Bose-Chaudhuri-
Hocquenghem (BCH) and Reed-Solomon (RS) codes, were
used in [12] for Ny x 4 MIMO communications (where,
N7 represents the number of transmit antennas). Here,
performance improvement is obtained by maximizing the
minimum squared Euclidean distance between any two
codewords. Hamming metric (not a rank metric) has been
considered to design STBCs resulting in STBCs with rank
r < Nr. Due to this, at least four receive antennas are
used to satisfy the condition rNg > 4. This limits the usage
of codes to MIMO systems employing Ny > 4 receive
antennas. Hence, there is a need for full rank STBCs for
MIMO systems with N < 4 antennas. The problem of

synthesizing full rank STBCs (rank = Nr) with inher-
ent error correcting structure has been partially addressed
in [13-15].

2. Gabidulin codes over Fyn (along with rank preserving
Gaussian integer map) have been used by [13] as STBCs
for MIMO systems. The codewords of a Gabidulin code
are viewed as m x n matrices over the base field F.
These constructions ensure that n < m. Further, they are
extended to a class of cyclic codes, also called g—cyclic
codes. Because of the maximum rank distance property and
the code structure which ensures that n < m, Gabidulin
codes can be used as STBCs (full rank) if n = mand d = m,
implying k = 1. Thus, (n, 1) Gabidulin codes alone with
n = m are used as STBCs, resulting in obtaining g™ possible
STBC codewords.

3. In[14], (n, 1) full rank codes obtained using discrete Fourier
transform (DFT) description were used as STBCs in MIMO
systems. It has been shown that the proposed STBCs out-
perform their orthogonal counterpart in the case of quasi-
static Rayleigh fading environment. The construction in-
volves DFT description of cyclic codes over Fyn [15]. Unlike
Gabidulin codes, the length n of the code is chosen to be
a divisor of g™ — 1, hence codewords of length n > m
are possible. Similar to Gabidulin codes, the codewords of
these codes can be viewed as m x n matrices over the base
field Fy, with n = m. The separation (in terms of rank
distance) between any two codewords is found to be at
least d, with d < m; and when d = m full rank codes
are obtained. However, as per the analysis given in [15]
rank of the cyclic code remains full (rank = m), if the
code is constructed using only one free transform domain
component (say A;), where the index j is coming from q—
cyclotomic coset of size e; = m, resulting in (n, 1) codes.

The codes presented in [12-15] are (n, 1) codes. However,
from coding theory, we know that the error performance of a
code can be improved with the increase in d (d < n—k+ 1)
by maintaining same code rate k/n. Hence, there is a need to
synthesize full rank codes with higher k and maximum Hamming
distance d. The problem of synthesizing full rank codes for k > 2
has not been addressed in [12-15] and also in earlier literature.
Motivated by the requirement of (n, k) full rank codes with k > 2
for MIMO communications, in this paper, we have explored the
possibility of designing SFBCs from (n = km, k) full rank codes
over Fqm, with k > 2. The concept of Galois field Fourier transform
(GFFT) approach has been used for the following reasons.
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Fig. 1. Block-Diagram of conventional N; x Ny MIMO-OFDM-IM Transmitter [4].

e It allows us to draw direct relationships between the size of
a g—cyclotomic coset and the rank of a cyclic code.

e The choice of free transform components give an additional
degree of freedom, that helps in grouping few full rank
codes into one NSFBC (as shown in Section 3.2.3).

The novelty and major contributions of this paper are as
follows:

1. Analysis of the rank-distance properties of (n, k) cyclic
codes over Fgm and construction of (n, k) full rank codes
with k > 2.

2. The design of non-orthogonal space-frequency block codes
(NSFBC) from full rank codes and their performance evalu-
ation in MIMO-OFDM-IM systems.

3. Derivation of a theoretical upper bound on the BER per-
formance of the proposed NSFBCs over frequency selective
channels.

The rest of the paper is organized as follows: In Section 2,
we have briefly described the MIMO-OFDM-IM system given by
Basar [4]. The proposed NSFBC based MIMO-OFDM-IM system
is discussed in Section 3. In this Section, we first explain the
design of full rank codes from (n, k) cyclic codes, with all the
preliminaries required (Section 3.2). We have stated theorems
that describe the rank distance properties of cyclic codes for
k > 2. Following this, we discuss the rank distance properties of
(n, k) cyclic codes. This is followed by the explanation on the use
of full rank codes as NSFBCs by utilizing rank preserving maps.
Additionally, we have also described the formation of NSFBC
codebook (Section 3.2.3). Section 3.3 discusses the application of
the proposed NSFBCs in MIMO-OFDM-IM systems. Furthermore,
we have provided details of the achievable spectral efficiency and
computational complexity of the receiver. Section 4 provides the
theoretical upper bound on the BER performance of the NSFBC-
MIMO-OFDM-IM system. In Section 5, we provide the simulation
results over time-flat frequency selective channels. The conclu-
sions made out of this work are given in Section 6, with the
summary of the various contributions made. Finally, the proofs
of the proposed constructions are provided in Appendix

Throughout this paper, bold and small letters represent row
vectors; bold and capital letters in italic represent column vectors;
bold and capital letters represent matrices. The list of various
symbols employed in this paper is provided in Table 1.

2. MIMO-OFDM-IM revisited

Index modulation based MIMO-OFDM communication system
(MIMO-OFDM-IM) is proposed by Basar in [4]. The block dia-
gram of MIMO-OFDM-IM transmitter is depicted in Fig. 1 [4].
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Table 1

The symbols used in this article along with proper description.

Fy—finite field of characteristic g.
n—Length of the code (codewords)
m—Smallest integer such that n|g™ — 1
Fgm—mth extension field of I,
a—Primitive (g™ — 1)™ root of unity in Fgm.
¢ —Cyclic code of length n.
c—n-length codeword vector € «
C—m x n matrix corresponding to ¢
X,—NSFBC codeword obtained from C.
X, —NSFBC-IM codeword.

A —NSFBC obtained from <.
S—NSFBC-MIMO-OFDM-IM block .
Rq(-)—Rank of [-].

Ny—Number of transmit antennas.

Ng—Number of receive antennas.

N—Number of orthogonal subcarriers per X,,.

Ng—Total number OFDM carriers

Y —Received column vector corresponding to.
NSFBC-IM codeword

Y—Received Matrix.

H—Channel matrix.

n—Spectral efficiency

H[-]HffFrobemus norm or Ly-norm.

[1n—g-cyclotomic coset mod n.

L£—Number of g-cyclotomic cosets of size m

L—Length of the channel impulse response.

Considering that the system has Ny transmit antennas, a total of
mpNr bits is taken as input for transmission. Corresponding to Ny
transmitter branches, the input myNr bits are further split into
N groups of my, bits each. At each OFDM-IM block, each group of
my, bits are further split into G subgroups. Each subgroup contains
p bits that are further divided into p; data bits and p, selection
bits. The p; data bits are mapped onto complex symbols of M —ary
constellation under consideration, while p, selection bits are used
for index modulation. Thus, the output of each subgroup is an N x
1 index modulated subblock. Such G subblocks (corresponding to
G subgroups) are stacked and interleaved to form OFDM-IM frame
of size 1xNg. The inverse fast Fourier transform (IFFT) block at the
transmitter branch then processes this 1 x Ny OFDM-IM frame. At
each branch of the transmitter, one OFDM-IM frame is generated
and transmitted using corresponding transmit antenna. As there
are Ny transmit antennas, Ny OFDM-IM frames are transmitted
through the channel simultaneously.

In the above system, the information (i.e. data bits) is directly
modulated onto the orthogonal subcarriers. However, from the
theory of MIMO communication, it has been shown that the
performance can be further enhanced using block codes like STBC
or SFBC [5]. In this work, we propose the use of NSFBC which
is derived from (n, k) cyclic codes. The construction process and
usage of NSFBCs with MIMO-OFDM-IM system are detailed in the
subsequent section.

3. NSFBC based MIMO-OFDM-IM system
3.1. General case

The general block diagram of the proposed NSFBC-MIMO-
OFDM-IM system is shown in Fig. 2. Initially, the incoming in-
formation is divided into data bits (Db) and carrier selection
bits (Csbh). Unlike conventional MIMO-OFDM-IM, in the proposed
scheme, the data bits are mapped onto a Ny x ¢; block code. The
carrier selection bits are then used by index modulator to assign
ej subcarriers (out of available N OFDM carriers per codeword) to
each row of NSFBC codeword. It produces Ny x N index modulated
NSFBC (NSFBC-IM) codeword. The Ny x N NSFBC-IM codeword is
then passed through OFDM modulator consisting of Ny N— point
[FFT blocks. Each IFFT block outputs N— point IFFT vector of the
corresponding row of NSFBC-IM codeword. Ny IFFT vectors at the
output modulator are then transmitted using Ny antennas. The
construction of NSFBCs that are obtained from cyclic codes are
explained in next section.

3.2. Design of non-orthogonal SFBCs

This section discusses the rank distance properties of (n, k)
cyclic codes over Fyn along with the usage of full rank cyclic codes
as NSFBCs. Here, we used rank preserving maps for obtaining
NSFBCs. We show that one or more full rank codes can be grouped

together to obtain a composite code containing large number
of codewords. Each codeword is of full rank with respect to
each other. This facilitates the formation of NSFBC codebook. The
details of the MIMO-OFDM-IM system employing the proposed
composite NSFBCs are given in Section 3.3.

3.2.1. Preliminaries of full rank codes

e Cyclotomic Cosets
For any positive integer j € [0, n — 1], the g— cyclotomic
coset of j mod n is defined as
Ul = (g, g eoeda’s o gd g
the cardinality of [j], is denoted as r;.

o Separation of q— Cyclotomic Coset Coefficients
Let [jl, = {j.jg.-...Jq".....jg°.....jg""*. ... .jg" '} be the
gq— cyclotomic coset of integer j. We define the Separation
between two elements jq' and jg'** as the difference in
powers of g associated with the elements i.e. Separation
between jq! and jg'ts,is [ +5— [ =s.

e Reciprocal Polynomial
If f(x) is a minimal polynomial (irreducible) given by f(x) =
ax' +a;_1x' ' + - - + ayx + ag then the polynomial

) =x%f(x 1) = agx' +arx  Fapx A4 ek +ag

is called the reciprocal polynomial of f(x) Note that the
degree of f(x)* is same as that of f(x) with coefficients
positioned in reverse order. Also, if f(x) is irreducible then
f(x)* is also irreducible [16].
o Galois field Fourier transform (GFFT)

In coding theory, Galois field Fourier transform (GFFT) is
defined as DFT over Galois fields, with a primitive element
« [17]. Following [17], for the case n|g™ — 1 the GFFT of a
vector u = {u;, 0 <i<n—1},u; € Fgn is defined as [17].

n—1
U= up
i=0

gm

Here, B = « " is the nth root of unity in Fym. The inverse
GFFT (IGFFT) of U = {U;. 0 <j < n — 1} is given by,

n—1
u; = (nmod q)~! Z up v,

=0

0<j=n-1 (1)

0<i<n—1 (2)

Following usual terminology, u = (ug, Uy, ..., U, 1) iS
called the time domain vector and ¢/ = (Up, Uy, ..., Uy 1)
is called the transform domain vector of u.
In this paper, we use (2) to construct the full rank codes.

e Rank
Let u = (ug,up Uz, ... . Usq) With tj € Fgm, 0 < i <
n — 1. Since each u; can be expressed as m— tuple over F,
the vector u can be written as m x n matrix obtained by
expanding each element of u as an m—tuple along a basis
of Fym over F,. Such a matrix is shown in (3).
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l I 1 —
b NSFBC Index |NpXN-[ OFDM OFDM | VX Np Tndex NSFBC | Db
Encoder| | Modulator Modulator _T T_ Demodulator Demodulator [ | Decoder [
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Ib  Informatnion bits
Db Data bits
Csb Carrier selection bits
Fig. 2. Block-Diagram of NSFBC based Ny x Ny MIMO-OFDM-IM system.
corresponding minimal polynomials y;,. vi,. ..., ¥;. For any code-
Uo.o Ug.1 o2 Uon1 worcli)_vec_tor c eh ¢, the e!lements {cej Cej1. ...,C,,f]]_cilre !’ljngar
Uto U1 U1a Upn-1 combinations of the first e e ements {co, C1, ..., cej,l}, with e; being
(3) the degree of the polynomial y; = lem(y;, . ¥j,. - - - . ¥j, -
Un-1,0 Um-1,1 Um-12 Um—1.n—1 Proof. Refer, Appendix A.1.

Rank of u (Ry(u)) is now defined as the rank of the above
matrix over Fy.

If Rg(a) = m (number of rows), then we call the above matrix
as full rank.

3.2.2. Rank distance properties of (n, k) cyclic codes

In coding theory, GFFT description can be used to design cyclic
codes. Based on reference to (2), each value of U; at particular j
results in a distinct time domain vector u. Since U; € Fgm (0 <
j < n— 1), there are ¢™ time domain vectors corresponding to
g™ possible transform domain vectors.

If % is any linear code with codeword vectors ¢ = u (codeword
matrices C U) having elements in Fym, then rank of ¢ is
defined as the minimum rank of the codeword vectors (codeword
matrices over the base field Fy) of . If Ry(4) = m, then ¢ is said
to be full rank code.

In [15], it has been shown that the rank distance properties
of cyclic code can be analyzed by choosing k free transform
components with indices j, in a particular manner and confining
the other n—k transform components to zero. It is also mentioned
that the (n, 1) codes, over Fgm, having rank m can be constructed.
Further, it is stated that Ry(C) drops to less than m, if more than
one value of j is chosen from the same g— cyclotomic coset [j],. In
specific, the exact rank of (n, 2) codes with the two free transform
component indices that are chosen from the same g— cyclotomic
coset has been determined. However, the approach given in [15]
did not provide a closed form expression for the exact rank of
(n, k) codes that are designed with k > 3. Also, the rank distance
of ¥ obtained by choosing k free transform components, with the
index of each component selected from different g— cyclotomic
coset, is not focused. In this paper, we show that the full rank
codes can be obtained for k > 2 and discuss the rank distance
properties of (n, k > 3) codes.

Now onwards, the notation ¢ will be used to represent code-
word vectors of €.

Lemma 1. If «; is root of a minimal polynomial y, of degree ry and
w5 is a root of minimal polynomial y, of degree r3, then the degree
e; of the minimal polynomial for which both «t; and o are roots is

iy ifyr =y
r+rs iy #F 2

] E’j
[ ] ej =
Proposition 1. Let ¢ be a cyclic code which is obtained using free
transform components {Uj,, Uj,. .... Uy ). Let pUrl, Ul glil
represent conjugacy classes of p'r, pi2™m .. gk respectively with the

Proposition 1 implies that for any vector ¢ € &, n—e; elements
of ¢, starting from index e;, are dependent on first e; elements
(linear combination of previous first ¢; elements). In terms of
codeword matrix C, this implies that the n — ¢; columns starting
from index e; are dependent on the first e; columns. This means
that the rank of any codeword vector ¢ depends on the first e
elements of the vector. We make use of this result to prove the
following Propositions.

Proposition 2. Let ¢ be a cyclic code over Fgn designed using
free transform components U; = {U;,, Uj,. ..., U; ), with indices
J = Urdoe-w i) and jy #ja # -++ # jx (The other transform

domain components are explicitly set to zero)

Case 1: If j1,j2, ..., jn—1 € [j]n, then

Ry(€)=r1i—(k—1)g

Where, 1j is the size of g—cyclotomic coset [j],, and g%, g|
@, ..., g|%. g|m such that: Fg [F 1. Fog |[F o and so on
Here, ¢ = ged(s;, 1j), 1 <i < k.

Case 2:If j; € [j1ln.J2 € lj2ln, - - - . Jn—1 € [Jln, then

Rq([é)) = Min(Tmin, M)

Where, I'yin = mm(rh_. Tigs e i) ;nd 1j, is the size Qf
q— cyclotomic coset [ji]n, 1j, is the size of g— cyclotomic
coset [j»], and so on.

Proof. Refer Appendix A.2.

From Case 2 of Proposition 2, one can see that full rank codes
over Fym can be obtained by choosing free-transform components
such that the index of each free-transform domain component
comes from a different g—cyclotomic coset of size m.

Following Propositions 1 and 2, we see that the value of ¢; =
km for any full rank codes.

3.2.3. Full rank codes

From case 2 of Proposition 2, we see that the full rank codes
over Fgm can be obtained by choosing free-transform components
such that, the index of each free-transform domain component
comes from a different g—cyclotomic coset of size m. Addition-
ally, following Proposition 1, we see that the rank of these codes
is dependent on first ¢; = km columns. Hence, (n, k) full rank
codes can be punctured to (e;, k) full rank codes, without an affect
to the rank. In other words, 1 x n full rank codeword vectors
that are obtained using Proposition 2 can be punctured to yield
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Table 2
Gaussian-Integers fields G, for various values of .
q(mr) G
5(2+1) {0, 1,4, —1, —i}
13 (3 + 2i) {0, L1402, —i,1—10,2, -1, -1 —i, =2i,i, -1 +1, 72]
. 0,1,1+41,2i, —1—2i,i,—1+1,-2,2—1,
17 (4+1) 1201426 i 10,2, -2+
Table 3
Eisenstein-Jacobi Integers fields 77 for various values of I7.
q(IT) Jn
73+p-2) 0,1.14p.p.—1.—1—p, —p}
0,1,14+2p, 14+p, —1+p.p,—2—p,
BEr l—l,—l—20,—17p,1fp.7p,2+p,

a full rank codeword vector of size 1 x e;. Equivalently, the full
rank codeword matrices C of dimension m x n can be reduced to
codeword matrices of dimension m x e;. The punctured codeword
matrix Cg of C is given as,

Co,ej—1

Cle-1

Co,0 Co,1 Co,2
C10 C1,1 C1,2
Cr = )
Cm—1.e~ IJ

Cm—1,1
Where,m<ej <n,0<¢;<q—1,0<i<m-1,0<j<n-—-1
Hence, %z forms an (km, k) full rank punctured code of #¢. The
punctured full rank codeword matrices are used as NSFBCs for
MIMO-OFDM systems with index modulation for the next section.

Cm—1,0 Cm—1,2

(a) Full rank codes as NSFBCs

The m x e; codeword matrices of full rank codes % can be
used in Ny x Ny MIMO systems with Ny = m antennas. However,
the codeword matrices that are obtained cannot be directly used
in MIMO communication due to the presence of error correcting
structure. Hence, they result in non-full rate (rate< Ny) integer
codeword matrices [18]. A rank-preserving map is used to map
symbols of codeword matrices C between symbols from F; and
complex constellations [19]. In [13], the map between Galois
field Fq with ¢ = 4.# + 1, »# > 0 and Gaussian integer field
with ¢ = u + iv is shown to be rank preserving [20]. Where,
u and v are integers. This map is used to construct STBCs from
Gabidulin codes. Based on the analysis given in [13], Puchinger
et al. [21] showed that for ¢ = 6. + 1, .# > 0 the map
between Finite field F, and Eisenstein-Jacobi integer field with
gq=pu+pv, L,v#0,p=(—1+ 1\/§)/2 is rank preserving [22]
and are used to construct STBCs. Tables 2 and 3 gives the Gaussian
and Eisenstein-Jacobi integer fields that are used in this paper.

Space-frequency block codes (SFBC) can be obtained from
codewords C of full rank code ¥ by mapping each symbol of the
codeword matrix € into symbol of Gaussian integer constellation
or Eisenstein-Jacobi integer constellation. The resulting SFBC is

shown below.
((Coej—l)
{(cre-1)

¢(coo)
¢(c10)
LC(Cm'ID) ,C(Cm;n] g(Cm.—IZ) C(Cm.lejl)J

X, =

Where, ¢ is either Gaussian integer map or Eisenstein-Jacobi
integer map based on the value q of the field ;. The obtained
SFBC codewords have columns that are generally having non-
orthogonal nature. Hence, the resultant SFBC can be termed as
non-orthogonal SFBC (NSFBC).

¢(con)
¢(cr2)

¢(cor)
¢lenn)

(b) NSFBC codebook formulation

We have seen that the full rank codes over Fym can be con-
structed by choosing k free transform components, with each
index chosen from a different g—cyclotomic coset of size m. If
there are £ > k g— cyclotomic cosets, each of which are having
size m, then we can have (i‘) possible choices of k g— cyclotomic
cosets that are grouped together. Of which, k free transform
component indices can be chosen at a time with each from
different g— cyclotomic coset. Since the g— cyclotomic cosets are
of same size m, there are m* possible choices of k— free transform
components. Each choice produces a full rank cyclic code %; with
g*™ codewords (matrices).

It can be stated that the rank distance between any two
codewords (rank of difference matrix) of different codes such
as ¢ and € 0 < i,j < (f)mk*‘, i # j may be less than
n. The difference matrix which is obtained may not be a code-
word and due to this, it is clearly understood that the rank goes
down. However, from Case 2 of Proposition 2, one can see that
there exists a few codes whose codewords can be at a rank-
distance m with respect to the codewords within the code and
a few other codes as well (following Case 2 of Proposition 2).
The reason here is that no two indices are chosen from the
same g—cyclotomic coset. Thus, the codewords that belong to
these two component codes of rank m can be grouped to form
a composite code .2° having rank m. The composite code can be
represented by 2 = U;’j‘l%’i. A composite NSFBC code Znssc
corresponding to composite NSFBC code .2 has been obtained
using rank preserving maps. Since all zero codeword is common
for all component codes, the number of codewords in a composite
NSFBC code Zsrsc will be ((5)g"" — 1) + 1.

The working of MIMO-OFDM-IM system employing the pro-
posed composite NSFBCs is detailed in the next subsection.

3.3. Working principle of NSFBC-MIMO-OFDM system

Following the general case given in Section 3.1, we propose
the NSFBC based MIMO-OFDM-IM system with Np = GN-OFDM
carriers. Fig. 3 illustrates the working of proposed NSFBC based
MIMO-OFDM-IM system employing N > N subcarriers. To
facilitate the use of NSFBCs, we consider the MIMO-OFDM system
with Ny = m-number of transmit antennas and Nz-number of
receive antennas. Since there are Nr = GN number of subcarriers
that are available for communication, we use G-NSFBC-IM blocks
at the transmitter, with each block providing Ny x N NSFBC-
IM codeword. Thus, the available Ny carriers are divided among
these G blocks, with N = Ny /G subcarriers per block. The value
of G is selected in such a way that the adjacent subcarriers are
uncorrelated. i.e. B./G is less than subcarrier spacing.

3.3.1. Transmitter
In Section

() (g —

(Iog2 ()G — 1)+ 1) + nw - loga (g)) G-number of input bits
are considered at the input of splitter block. These input bits are
then split into G groups where, each group consisting of my, =
log, ((f)(q"NT — 1)+ 1) +ny,-log, (Zj)—number of information bits
J

(Ib). At each NSFBC-IM block, the m, information bits are further
split into p; = log, ((f) (g™ — 1) + 1)-number of data bits
(Db); and p2 = ny, -Iogz(g)—number of carrier selection bits (Csh).
The p, data bits are processed by the NSFBC encoder to obtain
the corresponding NSFBC codeword. The NSFBC codeword X, is
then considered as input for the index modulator (IM). Based on
the carrier selection bits p;, the index modulator select Ny = ¢;
carriers out of available N subcarriers. The subcarriers that are
chosen can be

323, we have seen that there are
1) + 1 codewords per 2Znsgpc. Since Nt = m, mpG =
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Fig. 3. Block-Diagram of NSFBC based N; x Ny MIMO-OFDM-IM system.

(1) Same for all the rows of NSFBC (full rank mapping).
(2) Different for each row of NSFBC (rank-deficient mapping).

(1) In the first case, at any instance of time, the subcarriers that
are chosen for all the rows of NSFBC codeword X, are same. This
process is to preserve the full rank property. Hence, p» = log, (2)
This process give rise to Nt x N-NSFBC-IM codewords, with
all symbols along each column being either zero (if the carrier
frequency is not chosen) or non-zero (if the carrier frequency
is chosen). An example representation of NSFBC-IM codeword
X, 1S given as.

™ Xo,o Xo,1 Xo.N—1
X10 X1.1 XiN-1
Xom = | P P
L XNy—1.0 Xnp—1.1 XN-,——],N—lJ
[ ¢lcoo) O ¢(coe-1)
¢(cro) 0 ¢(cre-1)
= . : . (4)
| ¢(enp—10) O C(Cny—1.6-1)

Thus, the symbols along each column of X, are either 0 or
flagr), with 0 < k < m—-1, 0 < | < ¢ — 1. The
codewords obtained are termed as full rank NSFBC-IM code-
words and corresponding codes as full rank NSFBC-IM codes (FR
NSFBC-IM).

(2) In the second case, the index modulator selects different
subcarriers for different rows of NSFBC codeword. Hence, in this
case pp = mlogs (g) This process gives rise to Ny x N NSFBC-IM
codewords, with each symbol along each row being either zero
(if the carrier frequency is not chosen) or non-zero (if the carrier
frequency is chosen). An example representation of NSFBC-IM

179
iy,
NSFBC-IM| i/
Decoder i
Emb
NSFBC-IM | | s ~
Decoder | |: myG
1 . bits,
: F>{ Combiner —
‘G
NSEBC-IM ||},
“ b
Decoder | it
(1X Ny) H
EDetector
"""""""""""""""""" no
bits 7, H
bits :
% % 4 :
M Index »_| NSFBC | bits '
Demodulator Decoder H
NSFBC-IM Decoder E
codeword X,y is given below:
" Xo.0 Xo.1 XoN-1
X1.0 X1 Xin-1
Xoum = : : }
LXN;—1.0 XNp—1.1 XNTl.NlJ
r ¢(con) ¢(co1) 0
0 ¢(c10) g(C1,e-1)
= ) (5)
L(eny—10)  Clenp—11) - 0

From (5), based on the carrier selection bits, it is observed that
theelement X;; (0 <i<Nr—1, 0=<j<N-—-1)of X,m
is either ¢(cy)) (0 <k <Nr—1, 0<l<e— 1) or 0. Hence,
the codewords obtained are termed as rank deficient NSFBC-IM
codewords and corresponding codes are termed rank deficient
NSFBC-IM codes (RD NSFBC-IM).

In this work, we have considered FR-NSFBC-IMs for MIMO-
OFDM-IM system with N < 4 antennas and RD-NSFBC-IMs for
MIMO-OFDM-IM system with N; > 4 antennas. In any case, the
output of index modulator, X, i, is given by either (4) or (5). For
convenience, let X, ;v be represented as

Xom = {Xo. X1. Xz ..., Xy},

where, X, is the pth column of the NSFBC-IM codeword X, i

At the transmitter, each NSFBC-IM block gives rise to one
NSFBC-IM codeword. Since there are G NSFBC-IM blocks, G
NSFBC-IM codewords are available at the input of interleaver (/7).
The interleaver stacks G = Ng/N such NSFBC-IM codewords to
form one NSFBC-OFDM-IM block S, given by

S ={X0 - X X )
={Xg. X0 Xy X XL
Xy o Xo X7 Xy (6)



180 Raghavendra M.A.N.S and U.S. Acharya / Physical Communication 34 (2019) 174-187

Where, ij’m is the Gth, 0 < G < G—1, NSFBC-IM codeword of S.
Xg is the pth column of the Gth NSFBC-IM codeword XLJM, given
by

S _[vS y9 y@ g T,
X = [Xo,stLp-Xz,p .. -!XNTpr] ;
0=p=N-1,0=6=GC-1

The terms G and p can be related as G = Lﬁj. Here, G = Ng/N,
is number of NSFBC-IM codewords with N carriers per NSFBC-IM
codeword.

Since the interleaving is in the frequency dimension, the num-
ber of rows of S remain same as that of X, ;y, i.e. equal to Nr.
Each row of the NSFBC-IM-OFDM block S is then sent to the
corresponding IFFT block. Further, the IFFT block computes 1 x Ng
time domain vector. The obtained Ny-point time domain vector
is then padded with a cyclic prefix (CP) and then modulated
onto Nr + N¢p carriers. Since, the IFFT computation occurs at
each transmit antenna (corresponding to each row of S), Nr-IFFT
vectors are available at the output of transmitter. These Ny-IFFT
vectors are transmitted simultaneously over MIMO channel. For
better resilience to inter-symbol interference (ISI), the length of
cyclic prefix L, is chosen to be greater than the channel length L.

Spectral efficiency

The spectral efficiency is defined as the number of bits trans-
mitted per channel usage per carrier frequency and is given
by

G. (!og2 ((i)(quT -1+ 1) + Ny - Iogz(g))

N + Nep
) 1 FR— NSFBC —IM
M~ \Ny RD — NSFBC — IM

n:

3.3.2. Channel

The channel is considered to be frequency selective and time-
flat with L < L (length of cyclic prefix)-number of taps. Fading
between each transmitting and receiving antenna is considered
to be independent and identically distributed (LID) with the
Rayleigh distribution at a particular carrier frequency p. The
channel coefficients among various subcarriers are also consid-
ered to be identically distributed. Further assumption has been
made that the wireless channels remain constant during the
transmission of a MIMO-OFDM-IM frame.

3.3.3. Receiver

After removing the CP of length L per OFDM symbol and
applying FFT at each branch of the receiver, the received Ny x Np
matrix at the input of deinterleaver is given by,

Y={Yo. vy ...y}
L4 G I 20 SO Sl R S Aty

with each column Yf representing the Ny x 1 received vector at
particular frequency p (after FFT), given by
H?':‘qu xép
H}iNT—l X{’p

y}) Hl‘(] Hi,

A R e I T e

o : B : .
L’NR—IJ LHﬁﬂl,o HSRLerJ Lxérl,pJ

p

w%
w !
+ 1w

1
L

P
Her,l

0<p<Ne—1 (7)
P L1 —1(2—’7)10 .

Where, H,, = o Nwe(De N/ with hye = [hwe(0),

hoo(1), ..., h,o(L—1)] representing the baseband equivalent im-

pulse response of the channel between wth transmit antenna and
£2th receive antenna, and L denoting the length of the channel
impulse response. Following (6), for simplicity, (7) can be written
as

Y9 = HIXS + W9 ; 0sp=N—180=|2| (®
Where, ng is the N x 1 vector of elements that are realizations of
Gaussian random variable with zero mean. HY is Ny x Ny baseband
equivalent impulse response of the channel matrix at a particular
frequency p.

The deinterleaver (17~') considers the received matrix, con-
structs a block of N— columns, and feeds the N x N matrix
to the detector. The detection employed is either a single-stage
Maximum Likelihood (ML) detection of the entire NSFBC-IM code,
or a two-stage minimum mean square estimation (MMSE)-ML
decoder. In the case of two-stage MMSE-ML decoder, the first
stage is for the detection of carrier selection bits using Minimum
Mean Square Estimation (MMSE), and the second stage is for the
detection of data bits using Maximum Likelihood (ML) decoder.
Thus the receiver is either

1. Single stage ML receiver or
2. Two Stage MMSE-ML receiver

1 Single Stage ML Receiver
In this case, the NSFBC-IM decoder is considered to be ML
detector. At particular subblock G, the ML detector consid-
ers the Ng x N matrix Y9 corresponding to that subblock G
and obtains an estimate of the transmitted Ny x N matrix
for estimating the transmitted NSFBC-IM codeword X, .
Following (7), the received Ng x N matrix can be given as

Yo =A% (x9,)" + W 0<G<G—1(9)

Where,
Yo=[vo.vi. ... vg ]
HS 0 0 0
o H 0 - 0
Re—| 0 o HY 0

|
Lo 0o 0 - ﬁﬁ_lJ
X2y =[X5. X7, X5, ... X7 ]

we = [wy, wy, ...

The ML decision required in estimating one transmitted
NSFBC-IM codeword ijJM, is then given by

) . 2
(XEJM)ML = arg min (Hyg — HY (Xg_m) F) ;

0<g=G-1 (10)

T

From the estimated NSFBC-IM matrix, the information bits
(Ib) transmitted are then decoded.
2 MMSE-ML Based Receiver

(a) In this case the detection is a two-stage process. At
the first stage, the information conveyed using index
modulator is obtained using MMSE based index de-
modulator. At the second stage, the modulated data
is obtained using ML based NSFBC decoder. Assum-
ing availability of perfect channel state information
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Table 4

Computational complexity.
Method Complexity
MIMO-OFDM Ni(Ny + 1)MM

MIMO-0FDM-IM
Proposed Method (MMSE-ML)
Proposed Method (ML)

Ni(Nr + 1)(2Pr <N
NeNy (2NR+N)+e}m(( ) (g

(5)" ((D)a™ —

—1)+1)
1)+ 1) (NkNyN2 + NyN)

(CSI) at the receiver the MMSE estimation of )A(f;
can be obtained in the following manner. At the
first stage, MMSE estimation is performed for each
column of the decoded NSFBC-OFDM-IM block S. The
estimated vector X~‘ is obtained using

~ H . aH -
X6 =ug" (WoHg +u) YO, 0<p<Ne—1

X9 =n"
P

-1
ot GxG
; (Hf;Hp +u) (HIXT +w?)  (11)

Where, A is a constant and is equal to ]:—; in the case
Ny

of linear MMSE estimators.

An estimate of the transmitted NSFBC-IM is then

given by

As seen from (11), X‘qjM contains Gaussian noise

which is scaled by fading coefficients. From )(p e it
is possible to obtain the carrier selection bits by find-
ing locations of minimum magnitude. The remaining
e; high magnitude complex values of each row are
considered to form an estimate of the m x e; NSFBC
matrix. This matrix is then fed as input to NSFBC
decoder.

(b) The second decoder (NSFBC decoder) considers the
estimated m x ¢; matrix and compares it with all the
codewords of the corresponding composite NSFBC
;. The codeword which is at the minimum distance
with this m x e; matrix is then considered as X,.
The information corresponding to ﬁp is considered
as data bits.

The carrier selection and data bits together form an estimate
of the transmitted information bits.

3.3.4. Computational complexity

In this Section, The computational complexity (in terms of
the number of complex multiplications) of the receiver in de-
coding information which is pertaining to one NSFBC codeword
is discussed. The terms K, p;, M mentioned in Table 4 are taken
from [4]. Where, K represents the number of subcarriers assigned
per MIMO-OFDM-IM codeword, M is the order of QAM used,
and p, is the number of data bits per group in MIMO-OFDM-IM
system.

As seen from Table 4, the single stage ML decoding complexity
of NSFBC-MIMO-OFDM-IM is exponential in ( ) which is increas-
ing the decoding complexity with m. However the two-stage
decoding complexity is found to be dependent only on g*™.

4. Analytical upper bound

In [6], an upper bound on the probability of error of Alamouti
based space-frequency block codes (SFBC) is provided. The bound
is derived by exploiting the structure of Alamouti code which is
resulting in a closed form expression. Because of the frequency

selective nature of the channel and structure of the Alamouti
code, joint detection of the symbols has been employed [6].
However, in this approach, as the structure is non-orthogonal and
also because of the assumption that L > L, we have employed the
use of BER analysis provided in [4].

Since the value of G is considered in such a way that the
subcarriers are uncorrelated, the pairwise error events within
different subblocks are identical [4]. Hence, it is sufficient to
estimate the PEP associated with one subblock to evaluate the
performance of the proposed scheme. To derive the bound, we
consider single stage ML detection of entire Ny x N NSFBC-IM
codeword including joint detection of symbols along Ny rows
of the received matrix, and for N consecutive columns that are
corresponding to N columns of X, .

Based on the analysis given in [4], the analytical upper bound
(union bound) is derived with reference to (10) and is given as,

NeINe=1 P (X~ X N
1 ( p.IM pr) ij o
Phs— Y > S (12)

NC i=0 j=0 N
Where,
— (LN AkNT Nytm -~

o Ne = ()@ —1)+1) (Cj) total number of NSFBC-IM
codewords.

e Np—total number of bits associated with the NSFBC-IM code-
word.

e n;j—number of bits in error between binary tuple associated
with X L and XJpJM

o P g 'ﬂ M= XL,M) represents the Pairwise Error Probability
(PEP).

In (12), PEP is obtained by computing conditional PEP (CPEP)
between two NSFBC-IM codewords and averaging the CPEP over
all channel realizations.

Following [23], the CPEP P (x"pJM =X ﬁjm) is given
by,

p (X] M xp mr | Hp IM)

) 2
B .
o HHp.fM (x:o,lM - xJp.IM) ”

= 13
Q > (13)
Using Craig’s formula, this can be expressed as
p (X1 M x;; | Hp [M)
v (] e e = %) |
- f exp (14)
T Jo 2

The Pairwise error probability (PEP) [4,23] can be obtained by
G
integrating (14) over probability density of I = HH M (X’p M

Xﬂ [M) ” The PEP is given by

g

/2 Nk 1
1
P (X = X, ) f — | A 5
k=0 4NDsin2¢

Where, Ny is the number of Eigen values, and 4;; are the Eigen

values of the difference matrix ()(fp ™ Xp nw) (XiO Y Xp ™

It can be noted that, the value of Ny = N, = ¢; in the case of
FR-NSFBC-IM. Where as, the value of Ny can be less than e; for
RD-NSFBC-IM codewords.
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Table 5

MIMO-OFDM-IM system parameters [4].
Number of subcarriers (Ng) 512
Number of subcarriers per NSFBC-IM Block (N) 48,16
Subcarrier spacing (Af) 15 KHz
Sampling frequency (f;) 7.68 MHz

Cyclic prefix length (L) 36
Gaussian or Eisenstein Constellations IF(5), F(7), F(13)

Table 7
Spectrally efficiencies of proposed FR-NSFBC-IM over Fpa.

Gp— (EJ‘, k) N

Nehearetical (bPCU) Npractical (bpcu)

q=5 q=7 q=13 q=>5 q=7 q=13
(2.1) 4 2.64 3.10 3.93 2.56 3.03 3.85
(4,2) 8 2.66 3.12 3.96 2.62 3.03 391
(8.4) 16 264 3.10 3.94 2.62 3.09 391

Table 6
Spectrally efficiencies of proposed FR-NSFBC-IM codes over Fea.

Table 8
Spectrally efficiencies of proposed RD-NSFBC-IM codes over Foa.

€R — (e_p k) N Nihearetical (DPCU) Npractical (bpcu)

Cr — (ejv k) N Ntheoretical (bpCu) Npractical (bpcu)

q=5 q=7 q=13 q=>5 q=7 q=13 q=5 q=7 q=13 q=>5 q=7 q=13
(2,1) 4 2.45 2.93 3.97 2.10 2.56 3.50 (2,1) 4 4.79 5.25 6.08 4.67 5.13 5.95
(4,2) 8 244 292 3.79 2.33 2.80 3.73 (4,2) 8 5.05 551 6.35 4.90 5.31 6.18
(8,4) 16 2.33 2.84 3.71 2.27 2.80 3.67 (8,4) 16 5.19 5.66 6.49 5.16 5.63 6.45

Following [23], using partial fraction expansion, a closed form
solution of PEP can be given by,

1\
i
POX, = X ) _2]_[( +q)) (16)
Where, ¢, = ”l”"
Substltutmg F]B ) in (12), union bound can be given by,
1 l—[ ( Ne
Ne—1Ng—1 N
(HCI)) e
N— DI SRS (17)
i=0 j=0
1 Ne—1Ne—1 Ni 1 Ng
Py < nij; i#j 18
> = 3NN, ; ;H((l +q)) iy 1#] (18)

5. Simulation results

Based on the criteria given in [4,12], the number of transmit
antennas Ny is considered to be two and four. We consider a 10-
path frequency-selective Rayleigh fading MIMO channel with the
maximum delay spread of 10T; for fair comparison with existing
results [4]. Table 5 gives the values of various system parameters
considered for simulations.

It is assumed that the channel state information (CSI) is un-
known to the transmitter but, perfectly known to the receiver.
Since, Np = 512 and N = 4, 8, or 16, each value of N results
inG = G = Ng/N = 128, 64, or 32 number of NSFBC-IM
codewords per NSFBC-OFDM-IM block.

Tables 6-8 give spectral efficiencies that can be achieved by
the proposed codes for various (e;, k) codes over Fz and Fa re-
spectively. From Table 6, it can be seen that a theoretical spectral
efficiency of around 2.45 b/s/Hz can be achieved by using codes
over Fs» when compared to 1.87 b/s/Hz offered by MIMO-OFDM-
IM with BPSK [4]. From Table 7, we note that the improvement
in spectral efficiency achieved by FR-NSFBC-IM codes over Fa is
around 0.2 b/s/Hz for most of the values of ¢ when compared to
the corresponding FR-NSFBC-IM codes over F,>. From Table 8, we
see that the proposed RD-NSFBC-IM codes achieve better spectral
efficiencies which is almost > 2 b/s/Hz while comparing with the
corresponding FR-NSFBC-IM codes over F 4. The reason is that the
carrier selection bits per RD-NSFBC-IM codeword are n, times
more than FR-NSFBC-IM codeword.

In Fig. 4, the simulation results and upper bound of proposed
(ej, k) NSFBCs over Fs2, F;2 are depicted. It can be seen that for
a particular value of ¢, the BER performance improves with an
increase in the values of ¢, k. It is observed that, (16, 8) codes

over Fs2 provide a gain of around 1.5 dB when compared to (8, 4)
codes over Fsa. The above results are observed at a BER of 107°.
A similar pattern is also observed in the case of codes over Fo».
In addition to that, we see that the codes over Fs; achieve a
spectral efficiency of around 2.4 b/s/Hz from Table 6. Whereas,
codes over F,2 achieve a spectral efficiency of around codes over
2.9 b/s/Hz. From Fig. 4, it can also be seen that the proposed (8, 4)
FR NSFBC-IM codes provide similar BER performance when com-
pared to Rate-1 Alamouti code based MIMO-OFDM-IM. However,
ina2 x 2 MIMO-OFDM-IM system with Np = 512 and N =
4, the Alamouti code with QPSK symbols (with rank preserving
index modulation) provide a theoretical spectral efficiency of 1.5
b/s/fHz which is approximately 1 b/s/Hz less than the spectral
efficiency provided by FR-NSFBC-IM codes over F.2. Furthermore,
it is observed that at lower values of (e;. k), constructions over Fyz
provide similar performance with respect to constructions over
Fs2. However, we see that the spectral efficiency is increased by
about 0.3 b/s/Hz as shown in Table 6.

In Fig. 5, we compare the BER performance of 2 x 2 MIMO-
OFDM-IM system employing NSFBC codes over Fs2, Rate-1 OSFBC
(Alamouti) codes [6] and full rate quasi-orthogonal space fre-
quency block codes (QOSFBC) [18]. The detection is based on
single-stage ML decoding. Moreover, VBLAST based MIMO-OFDM
scheme is also considered for comparison. One can observe from
Fig. 5 that the proposed (8,4) FR-NSFBC-IM codes provide an
asymptotic gain of around 1 dB when compared to MIMO-OFDM-
IM with BPSK uncoded constructions [4]. The improvement in
spectral efficiency is about 0.6b/s/Hz. A similar asymptotic per-
formance is observed with (8, 4) NSFBC code with an improved
spectral efficiency of around 0.9 b/s/Hz when compared to Rate-
1 Alamouti based MIMO-OFDM-IM (with rank preserving index
mapping). It can be seen that (16, 8) NSFBC codes offer an asymp-
totic gain of around 0.5 dB when compared to QOSFBC [ 18] based
MIMO-OFDM-IM system. The performance is approximately 2 dB
when compared to OSFBC based MIMO-OFDM-IM system. In this
case, the improvement in spectral efficiency when compared to
OSFBC-MIMO-0OFDM-IM and QOSFBC-MIMO-OFDM-IM is 0.5 and
0.9 b/s/Hz respectively. In case of a 4 x 4 MIMO system, the
asymptotic performance of (8, 4) RD-NSFBC-IM codes over Fza is
observed to be similar at a BER of 10~%. Here, both simulation
and analytical performances have been realized to offer a gain
difference of approximately 0.1 dB when compared to the existing
method [4]. However, from Table 8, the obtained spectral effi-
ciency is found to be 1.3 b/s/Hz higher than the spectral efficiency
quoted by MIMO-OFDM-IM system with BPSK [4]. Hence, the
proposed RD-NSFBC-IM codes offer higher spectral efficiency,
when compared with the uncoded MIMO-OFDM-IM scheme [4].



Raghavendra M.A.N.S and U.S. Acharya / Physical Communication 34 (2019) 174-187

T T

T

10

T T

T

1073

L improvement in 7 by 0.7 b/s/Hz

T T T T T T I T
— = —(4,2) FR-SFBC-IM over F.»

o Same BER performance —=—(4,2) FR-SFBC-IM over F >-analytical
with improvement in 77 by 0.9/b/s/Hz — % —(4,2) FR-SFBC-IM over F.2
§ 5

—+—(4,2) FR-SFBC-IM over Fsz—analytical
— % —(8,4) FR-SFBC-IM over F72
—+—(8,4) FR-SFBC-IM over F72-analyl.ical

—4 -2 x 2 Rate-1 OSFBC [6]
— = —(8,4) FR-SFBC-IM over FSZ

—=—(8,4) FR-SFBC-IM over Fszfanalytical
# ~(16,8) FR-SFBC-IM over F_2
+—(16,8) FR-SFBC-IM over F_z-analytical

— = (16,8) FR-SFBC-IM over Fsz

—=—(16,8) FR-SFBC-IM over Fsz—analylical

R ) ——— 3

Gain of ~1.5 dB with

0

Fig. 4. BER perfor

Gain of ~1dB
with improvement in 1 by 1.27 b/s/Hz .
1 1 I | 1 1 =
2 4 6 8 10 12 14 16 18 20 22
SNR

mance of FR-NSFBC-IMs over Fs2, IF;2 with Ny=2, Ng=2, N = 4, 8, 16 corresponding to e; = 2, 4, 8 and ML-ML decoding.

10°

107§

107

Gain around ~ 2dB

T |
~ Gainaround ~ 1dB — ¢ -4 x4 (8.4) FR-SFBC-IM over F i
with improvement in 7 by 0.6 b/s/Hz 4x 4 (8.4) FR-SFBC -IMover F+-Theo.
= - 4x4 MIMO-OFDM-IM

—=— 4x4 MIMO-OFDM-IM-theo
— v -4 x4 (84) RD-SFBC-IM over F54

—v—4 x4 (8,4) RD-SFBC-IM over F 54-Theo
— A -4 x4 (4,2) RD-SFBC-IM over F54
—Aa—4 x4 (4.2) RD-SEBC-IM over F54-Thco
— & -(16,8) FR-SFBC-IM over Fsz

42X 2QOSFBC[18]
— e -2X2(8,4) FR-SFBC-IM over sz
— 52 X2 (84) FR-SFBC-IM over Fsz—Thc:u
— £ -2 X 2 Rate-1 OSFBC [6]
& -2 X 2 MIMO-OFDM-IM [4]
&2 X 2 MIMO-OFDM-IM-Theo [4]
— ¢ - VBLAST OFDM

Gain of ~ 0.5 dB with Impre:lement in i by ~0.5 b/s/Hz

100
0

5 10 15 20 25
SNR

183

Fig. 5. BER performance of NSFBC-IMs (both FR and RD) over Fs> and Fss for MIMO-OFDM-IM system with ML-ML decoding and Ny = Ng=2,4, N=4,8,16,32.
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Fig. 6. BER of the proposed NSFBC over Fy2, Fp2, F 32, F 52, for MIMO-OFDM-IM system with MMSE-ML decoding and Ny = Ni=2, N=4 corresponding to e; =8.
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In this case, the BER performance is similar. In addition to that
the proposed (4, 2) outperforms VBLAST OFDM. However, both
the systems maintain the same spectral efficiency.

In Fig. 6, the performance of 2 x 2 MIMO-OFDM-IM system
employing MMSE detection has been depicted. We can see that
the proposed constructions over Fs» provide a gain of approxi-
mately 2 dB when compared to uncoded communication using
BPSK [4]. This is observed when BER is 1072. In the case of (8, 4)
FR-NSFBC-IM codes over F32, F,52, and IF,;2, the BER performance
gets deteriorated with an increase in the attribute g. However,
Table 8 shows that the spectral efficiency of FR-NSFBC-IM codes
over -2 is about 1.1 b/s/Hz higher than that of MIMO-OFDM-IM
with BPSK [4]. It is also observed that (16, 8) FR-NSFBC-IM code
over Fs» offer asymptotic gain of around 1 dB when compared to
(8, 4) FR-NSFBC-IM codes over Fx>. The spectral efficiency is same
in both the cases.

6. Conclusion

In this paper, we have proved that there is a possibility to
design full rank cyclic codes k > 2 and also detailed the process
of constructing (n, k) full rank cyclic codes for k > 2. The
full rank codes that are derived from cyclic codes have been
employed to synthesize space-frequency block codes that are
non-orthogonal in nature (NSFBCs) for MIMO-OFDM-IM systems.
The performance of these systems has been evaluated on a 10-
path frequency selective MIMO channel. The results obtained
through simulation says that the proposed RD-NSFBC-IM codes
over Fs4 provide considerable improvement in spectral efficiency
of about 1.3 b/s/Hz when compared to MIMO-OFDM-IM with
BPSK, in the case of 4 x 4 MIMO scenario. Moreover, the BER
performance is observed to be similar. For a 2 x 2 system, the
proposed FR-NSFBC-IM codes over Fs» provide an improvement
in spectral efficiency of about 0.9 b/s/Hz when compared to
MIMO-OFDM-IM system, with Rate-1 Alamouti code and QPSK.
The BER performance is observed to be similar in this case as well.
Additionally, in case of a 2 x 2 MIMO system, the proposed codes
provide an improvement in spectral efficiency by 0.6 b/s/Hz with
SNR gain of 1 dB, when compared to QOSFBC based design.

Appendix

A.1. Proof of Proposition 1

For k— free transform components, from the definition of
IGFFT we have

(U™ + U o+ U
0<i<n-—1 (19)

u; = (nmod q)~"

Consider the g— cyclotomic coset [j11 = {j1.j19.j19°%. ...,
jigm "), The associated conjugacy class is given by gl =

(g, pha, phe’ ,th(” }. Since the conjugacy class is of size
1j,, the associated minimal polynomlalf] will be of degree 1;,. Let
the reciprocal polynomial of f;, be give by f* The roots of this re-
ciprocal polynomial will be the inverses of ,BUI' i.e. the elements

-1)
from the set g~ = (g gHa g1 h }. According
to the property of the reciprocal polynomials, the reciprocal
polynomial of an irreducible polynomial is also irreducible [16].
Hence, the degree ofﬂ* is rj,. Similarly, the reciprocal polynomial
1 . . ) .
Jj: of degree rj, represents irreducible polynomial of f;, having

. R . (r;, —1)
roots from the set Ukl = (g0 gd )

, ﬁ*jkq

According to Lemma 1, if {g Utu g 21U ... U Uk} s the
union set of conjugacy classes then the minimal degree recipro-
cal polynomial f* associated with this set, will be of degree e;,

specified as
[ =bex9 + be x5 + b 5x972 4 -+ + bix + by (20)

Where, b; € F, for all 0 < i < e; and not all b; = 0 Since f* is the

reciprocal polynomial corresponding o
{‘3 hlyp-lizly...up- Uk'}‘we have f*(B~ lirly = E(‘B*Uzl) =
--J;-*(,B‘U“) = 0. From (20), we then have.
ﬁ*@jﬁ — be Z bﬁ U]
(21)
proik =~ Zej by

Now cons1der (19) with i = e; + 1, then

aejﬂ

= (nmodq) " (U;,p G U, Gz 4.y, gl )
(22)

Since the term @ = g-&V18-U and the condition b] =

—b,-/bej € Fy, we have

=8 U]Zbﬁ i1

ﬁ €J—+f)}1

from (21).
Expanding the summation, we get

‘Bf(eﬁi)h - ,87”] (b, + bflﬁﬂh 4+t b’ej—l
+ b; ﬁ*(ﬁj*H’lel 4+ bi’j

_ {b’ﬁ 'Jl +b.’ﬁ (1), +-
+b, !+1ﬁ_hﬁ LR

ﬁ*(ej*'y]
71,87(91'7”]‘1}

-+ bérlﬂfe’jl
4 béj,]ﬁ_u_l)j‘ﬁ_ejj‘}

ﬁ*(%‘“)jl

Again, substituting for 8% from (21), we get
L’j'*l

+be, Z bip T+

i=0

ﬁ*(cﬁflh _ bi)ﬁflh 4+ b’]ﬁ*(’“)ﬁ 4.
gj—1
+ b gy g (23)
i=0
From the above analysis, we can see that whenever the degree
of B exceeds e;, B~V can be substituted appropriately from

(21). As the maximum degree term is Y, Eq. (23) can now
be written as

ﬁ*(cﬁilﬁ _ [Ug + ! g4 U;,zﬂf(efz]j‘ + U;;71ﬂ7(9j71111
(24)

Now, consider the term @2, From (21), we see that the
constants in the summation of g~(&V1 B~z are same. Hence,
following (24), the term 8~%*2 can be written as

pieitlis — [ug PRI e Ugizﬁ—(ej—wz }
(25)

In general,

B = Lo g g v gk o gt

(26)



Raghavendra M.A.N.S and U.S. Acharya / Physical Communication 34 (2019) 174-187 185

Following (19) and (24)-(26) can be written as

Ug 41 = (nmodq) !
g1 g1 g1
x | Un 2w BT Uy Yol B T Uy Y BT
i=0 o —
(27)
g—1
s = (nmod @) Y vf Uy B + Up B 4 +U BT (28)
i=0
The term inside the brackets is nothing but u;. Hence, (28) can
be written as

Z v (29)

From (29), we can mfer that the element Ug; 1 forO<l<n-—
ej — 1 can be expressed as linear combination of first e; elements
of codeword vector u. Where v;" € Fy. Therefore, Ry(u) can now
be given by the number of linearly independent elements in the
set {up, Uy, ..., uej_l}. It is to be noted that if j;, j2, ..., jk belong
to different g— cyclotomic cosets [j1ln. [z21ns ..., [xln then all
roots correspond to different minimal polynomials f;,, fi,, . . .. fi.-
Hence, ej =r1j, =15, +--- + 1.

We now try to determine the rank of code ¥ by finding the
existence of codeword u with the number of linearly independent
elements less than e;.

Ugi 1 = (nmod q)~

A.2. Proof of Proposition 2

The IGFFT equation with k— non-zero free transform compo-
nents {Uj,, Uj,, . ... Uj }.(and rest of the components constrained
to zero) is be given by,

u = (nmodq) Uy, 1 +Upae 2 - -+ Ujo ), 0 <i<n—1
(30)

Following Proposition 1, each codeword vector has elements
related by,

&
E vitli =0 ;
i=0

Since it is evident that the components of a codeword vector
- starting from location e; - are a linear combination of first e;
components, the rank of the codeword vector u (equivalently
codeword matrix U) is determined by the first e; components
of the codeword vector. We now try to find the minimum rank
of the code ¢ by finding the codeword vector with a minimum
number of linearly independent components within the first ¢;
elements {u,, uy. ..., uej,l} of the codeword vector u. We first
consider the cyclic code % obtained using three transform compo-
nents and generalize it the case of k free transform components.
Without loss of generality let us consider the three free transform
components to be Uj , Uj,, Uj,. (2) now becomes

u; = (nmodq) (U, B "4+ U,B 2 +U;,B ™), 0<i<n—1(32)
From (32) in

v; € Fy (31)

(31), we get
¢
(nmod q)! Z iUy, et

i=0

N4 Upa 2 4 Ue ) =0 (33)
Since the term (n mod q)~!
rewritten as

¢ ¢ gl
Uy D v T+ U, Y w40, Y up =0 (34)

i=0 i=0 i=0

is a constant, the above (33) be

Case 1: Let us consider the transform component indices as
Ji1.J2 = j19%, j3 = j19°2, chosen from cyclotomic coset [j;] of size
rj,- Then according to Proposition 1 e; = rj,. (34) now becomes

Ty Ty Tiy

E: —ii E: if1g°1 }: —i14°2
Uj, v T+ U up T+ U vip

i=0 i=0

i=0
From (35), we have

=0 (35)

i Tiy q°1 i q2
Uy D uiB ™ + U (Z vaﬂ“‘) + Ujg2 (Z v.—ﬁ”l) =0
i=0 i=0 i=0

(36)

The above (36) can be rewritten as

Tiy Tiy L T a2
ir , Ungt Uj, g2
Yoo s B () B (Y un) o

i=0 h i=0
(37)

Let us consider a codeword vector u obtained by the free trans-
form component Uj, such that Uj, "' = x € Fgs, where g|rj,|m.
The number of linearly independent elements of this u is now
represented by r, < rj,, With this, (37) can now be written as

ru i g1 Ty q%2
Z v, g (Z U”Bij]) +xUj g2 (Z U“BUZ) =0
i—0

i=0 i—0
(38)

Since, we are determining the value of r,, we now consider the
case for which r, < rj, can be obtained. Let us define §; =

Ui (20 Dv,B_’”) for i =

element x can be expressed as ¥ %,

1.2 Also since x € Fg the
' dix;, with d; € F,. Here,

{X0. %1, ..., %;_1} forms trivial b.351s of Fge. (38) can now be
written as

Zvﬁ ”1+512dxi+622dx1_0 (39)
i=0

We can see that 8 1s dependent on the value of U g for i =
1, 2. Hence, there can exist 81,8, ¢ Fg, and §; # &, such
that the set {Slxo,‘. L 81Xg 1, B2Xo, . . ., 82%,_1, t forms the set
of 2g linearly mdependent elements in the field Fgm. Since,
{p=h, g~ .. g7} forms the set of lmearly independent
elements in Fgn, the set {71, g2, ... g0 5,x,,
81Xg_1, 82X0, .. ., Szxg_l} forms the set of linearly mdependent
elements in Fgn. This implies that the value of r, in the first
summation of (38) is r, = rj, — 2g. The vector u obtained using
the above considerations is indeed the vector with minimum
number of linearly independent elements because u obtained for
any other values of Ujg:, Uz, 81X = 8,x; for some 1, ], the set
{810, 81x1. ..., 81xg 1} N{82%0, S2X1, .. ., 82Xg 1} is not a null set.
Hence, the value of r, required to satisfy (38) is r, > 1, — 2g.
Hence, Ry(¢) = 1j, — 28.

In general, if ¢ is designed using k free transform coefficients
with indices chosen from same g— cyclotomic coset of size rj, > k
then Ry(¢) = rj, — (k — 1)g. Note: In case of rj, = m, Ry(¥¢) =

— (k — 1)g. Case 2: Without loss of generality, let us consider

the free transform components to be Uj,, Uj,. Uj; with transform
component indices ji, j2, j3 chosen from different g— cyclotomic
cosets [ji1, [j21. [j3] of sizes rj,. 13, and, rj, respectively.
According to Proposition 1, the minimum degree irreducible
polynomial f; which contains 871, 772, 8713 as roots is of degree
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ej = Trj, +Tj, + Ij;. (34) now becomes
Ty 1 i Ty i i Ty Hj i
—ij —ij —ij
Uy Do uB U, 3 wB U, 3D wp =0
i=0 i=0 i=0
(40)
Which can be simplified to
Ty i i Us Ty Hig i U. Tjy i Hi
g~ J2 g2 J3 B —
vif U+ . vif 2 + . viff k=
i=0 iz o
(41)

Since, U;,, Uj,,Uj; € Fym take on values independently let us
consider a codeword vector u, obtained by considering U;, ' =
x € Fge. Also, let 1y < 1j, be the number of linearly independent
elements of this codeword vector u. From Proposition 1, these
r, elements are the first set of coefficients {ug, U, ..., uru_l} of
the codeword vector w. The remaining n — r, elements of this
codeword are linearly dependent on the first r, elements. With
this consideration (41) can be written as

Ty Ty Tu
D aw XU, (Y wp ) 4 aU (D wp ) =0 (42)
i=0 i=0 i=0

Let us define &; = U; (X1, v ") for i = 1.2. Also, since
x € Fg the element x can be expressed as Z;‘:OI dixi, with d; € Fy.

Here, {Xu, X1, ... ,xg_l} forms trivial basis of Fge. Using this (42)
can now be written as

Tu g-1 g—-1

Z Uiﬂ_'h =+ (31 Z d,‘X,‘ + 82 Zd,»x,» =0 (43)
i=0 i=0 i=0
We can see that §; is dependent on the value of Uj, fori = 1, 2.

Hence there can exist &1, 82 ¢ Fge, and 8; # &2 such that the set
{81X0. . ... 81Xg_1. 82Xo. . ... 82Xg_1. | forms the set of 2g linearly
independent elements in the field Fym.

Eq. (31) is obtained from the result that ¢; + 1 elements of
any codeword % are linearly dependent. This means that there
exists a minimum of ¢; + 1 terms in the summation of (31) for
the summation to be 0. In (43), we have identified 2g elements
which are linearly independent. From a close examination of (43),
we canwriter, +1+2g =1, +15,+15, +1 = 1, =
rj, 41, 415, —2g. It is to be noted that, for the case §,x; = §,x; for
some i, j the set {81x0. 81, ... 81Xg—1] N {82%0. S2x1. ... 32x5 1}
is not a null set. Hence, the value of r, required to satisfy (31) is
ry > Tj, +1j, +rj; — 2g. Hence, the upper limit in the summation
for which the (31) holds good is rj, +rj, 415, —2g. That is the first
ej—2g = rj, +1j, +1j, —2g elements are linearly independent and
the rest will be dependent on these e; elements. When viewed
as m x n matrices over T, this means the first ¢; — 2g = r;, +
rj, + 1j; — 2g columns are linearly independent and rest of the
columns are linearly dependent on these columns. Here we can
see that depending on the values of rj , 13,, 13, the value of ; can
be greater than m or less than m. Hence, following rank nullity
theorem rank of these codewords is equal to min(e;, m). Since
code ¢ contains codewords for all possible values of Uj,, Uj,, U,
Ry(¢) = min(rj,, 1j,. 1,. m). In general for 4 constructed using k
free transform coefficients with indices coming from k different
q— cyclotomic cosets then Ry(¥¢) = min(rmin, m) where rppn =
Min(rj,, Tys - -5 Tj, )
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