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Abstract

In the present study, various ocean wave parameters are estimated from theoretical

Pierson–Moskowitz spectra as well as measured ocean wave spectra using backpropagation neural

networks (BNN). Ocean wave parameters estimation by BNN shows that the correlations are very

close to one. This substantiates the use of neural networks (NN). For Indian coast, Scott spectra are

used as it reasonably represents the measured spectra. The correlations of NN and Scott spectra are

also compared. Once the network is trained, the ocean wave parameters can be estimated for

unknown measured spectra, whereas significant wave height and spectral peak period are required to

first generate the Scott spectra and then estimate other ocean wave parameters.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The ocean wave model hindcasts ocean wave parameters based upon the past
meteorological and oceanographic data. Wave forecasting by wave models is useful in
the planning and maintenance of marine activities. Just as weather conditions, the wave
conditions will change from year to year, thus a proper statistical analysis requires several
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years of wave data and quite often from many locations simultaneously. Estimation of
ocean wave parameters is useful for the design of harbors, coastal structures, offshore
structures, defense purposes, planning, operations, coastal erosion, sediment transport and
wave energy estimation. Waves are mostly generated by winds. They are very complex in
nature and tend to change very much in rough weather. Despite their obvious importance,
the complex processes are active in their generation is not a simple task. Progress in
understanding the phenomenon has been hindered due to lack of wave data. Neural
networks (NN) provide a good alternative to predict the behavior of ocean waves in
different weather conditions. For any engineering work, short term (say, three hourly) sea
wave parameters, namely significant wave height, zero crossing period, spectral peakedness
parameter, spectral width parameter, maximum spectral energy, spectral peak period,
spectral narrowness parameter, etc. are required. For better representation of the sea state,
these wave parameters are to be accurately estimated from wave spectra.
Wave spectra that have been employed to describe ocean waves in Indian coast are

Pierson–Moskowitz [1] and Scott [2] spectra as reported by Dattatri et al. [3], Narasimhan
and Deo [4] and Kumar et al. [5]. NN have the ability to recognize the hidden pattern in
the data and accordingly estimates the values. Provision of model-free solutions, data error
tolerance, built in dynamism and lack of any exogenous input requirement makes the NN
attractive. A NN is an information processing system modeled on the structure of the
dynamic process. Its merit is the ability to deal with information whose interrelation is
ambiguous or whose functional relation is not clear. Deo and Naidu [6] and Deo et al. [7]
have carried out applications of the NN for wave forecasting and Subba Rao et al. [8] have
worked on wave propagation using backpropagation neural network (BNN). Subba Rao
and Mandal [9] have hindcasted storm waves using NN. Deo et al. [10] have investigated
dependency of the spreading parameter on the characteristic wave parameters using NN.
Non-linear wave–wave interaction source term of the energy balance equation is simplified
using artificial NN [11] and thereby improved the ocean wave predictions. Londhe and
Deo [12] have carried out wave tranquility using NN. Altunkaynak and Ozger [13] have
used perceptron Kalman filtering technique for estimation of significant wave height from
wind speed.
This paper describes the BNN that is used to estimate ocean wave parameters, namely

significant wave height (Hs), zero crossing period (Tz), spectral peakedness parameter (Qp),
spectral width parameter (Sp), maximum spectral energy (Emax) and time period
corresponding to maximum spectral energy (Tp) from Pierson–Moskowitz spectra as well
as field data and also how the NN is more effective than Scott spectra, which is widely
represented for Indian coastal condition [3,4]. Here the BNN with updated algorithms
Rprop [14] is used.

2. Backpropagation neural network

NN are composed of simple elements operating in parallel. These elements are inspired
by biological nervous systems. As in nature, the network function is determined largely by
the connections between elements. A NN can be trained to perform a particular function
by adjusting the values of the connecting weights between the elements. BNN are adjusted
or trained to establish a required path/trend, so that a particular input leads to a specific
target output. Such a situation is shown in Fig. 1. Here, the network is adjusted, based on a
comparison of the output, and the target, until the network output matches the target.

ARTICLE IN PRESS
S. Mandal et al. / Marine Structures 18 (2005) 301–318302



Typically, many such input/output pairs are used to train a network. Batch training of a
network proceeds by making weight and bias changes based on an entire set of input
vectors. Incremental training changes the weights and biases of a network as needed after
presentation of each individual input vector.

One of most widely used types of network is the BNN, which is the extension of the feed-
forward NN. This type of network model is equivalent to a multivariate multiple non-
linear regressions model and is used in this study. It consists of a layer of nodes that accept
various inputs. These inputs, depending on the complexity of the network architecture, are
fed to hidden layer’s nodes and ultimately to a layer of outputs, which produce a response.
The aim of the technique is to train the network such that the response to a given set of
inputs corresponds as closely as possible to a desired output. Multi-layer feed-forward
networks have the property that they can approximate to arbitrary accuracy of any
continuous function, defined on a domain provided that the number of internal hidden
nodes is sufficient.

Mathematically, the feed-forward artificial NN is expressed in the form

ykðxÞ ¼
XM

j¼1

wKj � TrðzÞ þ bko, (1)

z ¼
XD

i¼1

wji � xi þ bji, (2)

where x is considered to be the original parameter space of dimension D, wkj and wji are
weighting parameters, bko and bji are bias parameters, M is the number of nodes in the
hidden layer and Tr (z) is the activation function. This activation function allows a non-
linear conversion of the summed inputs. It has the form of a hyperbolic tangent sigmoid
function as

TrðzÞ ¼
2

1� e�2z
� 1, (3)

z corresponds to the summed weighted input from the input layer. This is a key element of
the model. The bias parameters for the hidden and output layers allow offsets to be
introduced. Using Rprop algorithm, the weights to both the hidden and output layers are
adjusted to minimize the error between the NN’s simulated output and the actual output.
The overall objective of a training algorithm is to reduce the global error, E is defined
below:

E ¼
1

p

XP

p¼1

Ep; (4)
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Fig. 1. Basic principle of artificial neural networks.
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where P is the total number of training patterns, Ep is the error at pth training pattern is
given by

Ep ¼
1

2

XN

k¼0

ðOk � tkÞ
2, (5)

where N is the total number of output nodes, Ok is the output at the kth output node and tk

is the target output at the kth output nodes.

2.1. Backpropagation learning

Backpropagation is the most widely used algorithm for supervised learning with multi-
layer feed-forward networks. The idea of the backpropagation learning algorithm is the
repeated application of the chain rule to compute the influence of each weight in the
network with respect to an arbitrary error function E:

qE

qwij

¼
qE

qsi

� �
�

qsi

qneti

� �
�

qneti

qwij

� �
. (6)

Here, wij is the weight from neuron j to neuron i, si is output, and neti is the weighted
sum of the inputs of neuron i. Once the partial derivative for each weight is known, the aim
of minimizing the error function is achieved.
Various adaptive techniques [15] are available to efficiently minimize the error function.

Here resilient propagation (Rprop) adaptive technique is applied. It performs a direct
adaptation of the weight step based on local gradient information. Reidmiller and Braun
[14] introduce for each weight its individual update value Dij, which solely determines the
size of the weight update. During the learning process the adaptive updating weight evolves
based on its local sight on the error function E, which is given below:

w
ðtþ1Þ
ij ¼ w

ðtÞ
ij þ Dw

ðtÞ
ij , (7)

where Dwij, is given as,

Dw
ðtÞ
ij ¼

�DðtÞij if
qEðtÞ

qwij

40;

þDðtÞij if
qEðtÞ

qwij

o0;

0 else:

8
>>>>><

>>>>>:

(8)

3. Wave analysis

The ocean wave parameters used in the present analysis are significant wave height (Hs),
zero crossing period (Tz), spectral peakedness parameter (Qp), spectral width parameter
(Sp), maximum spectral energy (Emax) and time period corresponding to maximum spectral
energy (Tp). There could be some ambiguities on accurate estimation of measured
ocean wave parameters using NN which do not have a clear-cut straight-forward optimal
system. Therefore, using NN wave parameters are estimated from a theoretical
Pierson–Moskowitz wave spectrum to first confirm the usefulness of NN. The trained
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network having fixed weights and biases, estimates ocean wave parameters, which should
be very close to the estimated theoretical wave parameters. Thereafter, NN are applied for
estimating the measured ocean wave parameters.

3.1. Theoretical wave analysis

In order to establish the NN between theoretical wave spectrum and ocean wave
parameters, a fully developed sea Pierson–Moskowitz spectrum is used

SðoÞ ¼
A

o5
� exp

�B

o4

� �
, (9)

where A ¼ 0:0082 g2, B ¼ 0:74ðg=vÞ4, v is the wind speed in m/s at a height of 19.5m above
mean water level, g the gravitational acceleration in m/s2, o ¼ 2pf , f is the frequency in Hz

The statistical parameters were evaluated using the spectral moments [5] as follows:

Significant wave height; Hs ¼ 4
ffiffiffiffiffiffi
m0

p
, (10)

Zero crossing wave period; Tz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0=m2Þ

p
, (11)

Peakedness parameter; Qp ¼ ð2=m2
0Þ
X

f � S2ðf Þ � df , (12)

Spectral width parameter; Sp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðm2

2=ðm0 �m4ÞÞÞ

q
, (13)

where mn ¼
P

f n
�S(f)� df and f the frequency from 0.01 to 0.6Hz with df ¼ 0.005Hz.

The wave period corresponding to maximum spectral energy (Tp) and maximum spectral
energy (Emax) are found from spectral energy values S(o).

Using the above formulae spectral data sets and corresponding wave parameters are
generated for wind velocities (V) ranging from 5 to 25m/s as shown in Table 1. Sixteen of
those data sets are used for training and remaining five data sets are used as test patterns.
In first step using wind velocity six-ocean wave parameters have been obtained. The
network structure N-1-4-6 is obtained (Fig. 2). In order to properly understand the
working of NN and after estimating weights and biases (Tables 2 and 3) using BNN, the
procedure for calculation of wave parameters is explained below.

Here once the network is trained, the weights and biases are fixed. For the present case
of a trained network (N-1-4-6) for 16 sets of inputs–outputs, fixed values of weights and
biases are estimated as shown in Fig. 2. ni (summation function of neuron i) and Fi

(hyperbolic tangent sigmoid transfer function of neuron i) are obtained. These values (Fi)
are neurons, belong to hidden layer. The transfer function was chosen as described in Eq.
(3) and also shown as Fi function. In output neurons, summation functions are only
selected as output values which are Hs (m), Tz (s), Qp, Sp, Emax (m

2/Hz) and Tp (s). For this
purpose purelin was chosen [4] as transfer function. To estimate the above six-ocean wave
parameters, the following formulations are used:

Transfer functions; Fi ¼ f2=ð1þ expð�2� niÞÞ � 1g; i ¼ 1 to 4. (14)

For trained network, estimated weights and biases (shown in Fig. 2) are used as given
below:

n1 ¼ V � ð0:0807Þ � 12:5160,
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F 1 ¼ 2=ð1þ expð�2� n1ÞÞ � 1,

n2 ¼ V � ð0:3327Þ � 7:6137,

F 2 ¼ 2=ð1þ expð�2� n2ÞÞ � 1,

n3 ¼ V � ð0:2401Þ � 4:2457,

F 3 ¼ 2=ð1þ expð�2� n3ÞÞ � 1,

n4 ¼ V � ð0:1195Þ � 0:5811,

F 4 ¼ 2=ð1þ expð�2� n4ÞÞ � 1,

where V is the wind speed, n1–n4 and F1–F4 represent summation function and transfer
function of each neuron at hidden layer, respectively.
The six-ocean wave parameters, i.e., Hs, Tz, Qp, Sp, Emax and Tp are computed as

Hs ¼ F 1 � ð1:3749Þ þ F2 � ð0:9601Þ þ F3 � ð1:1238Þ þ F 4 � ð1:4855Þ þ 0:7951,

(15)

Tz ¼ F1 � ð3:2842Þ þ F2 � ð1:0535Þ þ F 3 � ð1:9428Þ þ F 4 � ð4:7756Þ þ 2:5119, (16)

Qp ¼ F1 � ð0:4839Þ þ F 2 � ð�0:0197Þ þ F3 � ð0:0348Þ þ F 4 � ð�0:1766Þ þ 1:6593,

(17)
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Table 1

Wave parameters for PM spectra

Sr. no. Wind speed (m/s) Hs (m) Tz (s) Qp Sp Emax (m
2/Hz) Tp (s)

1 5 0.20 2.93 2.214 0.49 0.02 3.64

2 6 0.30 3.39 2.103 0.55 0.04 4.35

3 7 0.42 3.87 2.056 0.59 0.08 5.13

4 8 0.55 4.36 2.033 0.63 0.16 5.88

5 9 0.69 4.86 2.021 0.66 0.28 6.67

6 10 0.85 5.34 2.013 0.68 0.48 7.41

7 11 1.04 5.86 2.009 0.70 0.77 8.00

8 12 1.23 6.37 2.006 0.71 1.19 8.69

9 13 1.45 6.87 2.005 0.73 1.78 9.52

10 14 1.68 7.38 2.004 0.74 2.56 10.00

11 15 1.93 7.89 2.003 0.75 3.63 11.11

12 16 2.19 8.40 2.002 0.76 5.02 11.76

13 17 2.47 8.92 2.002 0.76 6.80 12.50

14 18 2.77 9.43 2.001 0.77 9.04 13.33

15 19 3.09 9.94 2.001 0.78 11.76 14.28

16 20 3.42 10.46 2.008 0.78 15.26 14.29

17 21 3.78 10.97 2.007 0.79 19.57 15.38

18 22 4.14 11.49 2.006 0.79 24.35 16.66

19 23 4.53 12.01 2.005 0.80 30.83 16.67

20 24 4.93 12.52 2.004 0.80 37.62 18.18

21 25 5.35 13.04 2.003 0.81 46.79 18.18
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Sp ¼ F1 � ð0:1468Þ þ F2 � ð�0:0127Þ þ F3 � ð0:0564Þ þ F4 � ð0:1525Þ þ 0:4684,

(18)

Emax ¼ F1 � ð12:3424Þ þ F 2 � ð20:0956Þ þ F 3 � ð4:8167Þ þ F4 � ð3:9439Þ þ 11:0736,

(19)
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Fig. 2. ANN structure (PM) NN-1-4-6.

Table 2

Weights (Wih) and bias (Bhl) between input and hidden layers

W ih for input wind speed Bias values of hidden layer nodes (Bhl)

0.0807 12.5160

0.3327 �7.6137

0.2401 �4.2457

0.1195 �0.5811
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Tp ¼ F1 � ð2:9424Þ þ F 2 � ð1:0975Þ þ F3 � ð3:0393Þ þ F4 � ð7:0293Þ þ 4:6809. (20)

In second step using spectral energies, six-ocean wave parameters have been obtained.
The network structure N-120-6-6 is obtained (Fig. 3). Estimated ocean wave parameters by
NN are compared with actual values as shown in Figs. 4–9. The correlations for ocean
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Table 3

Weighs (Who) and bias (Bol) between hidden and output layers

W ho for hidden

node 1

W ho for hidden

node 2

W ho for hidden

node 3

W ho for hidden

node 4

Bias values of

nodes (Bol)

1.3749 0.9601 1.1238 1.4855 0.7951

3.2842 1.0535 1.9428 4.7756 2.5119

0.4839 �0.0197 0.0348 �0.1766 1.6593

0.1468 �0.0127 0.0564 0.1525 0.4684

12.3424 20.0956 4.8167 3.9439 11.0736

2.9424 1.0975 3.0393 7.0293 4.6809

Fig. 3. ANN structure (PM) NN-120-6-6.
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wave parameters, namely, Hs, Tz, Emax, Tp and Sp are close to one, except for Qp. Since the
actual values of Qp are about 2 and there is marginal variation as compared to other 5
parameters, predicted values of Qp are not close to one. This substantiates the use of NN.
A 451 line is drawn in above graphs which represents the correlation coefficient (CC) of
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one. The deviation of points from this line will reduce the CC between the two variables,
i.e., target and actual output. Since the theoretical ocean wave parameters are estimated
from the PM spectra using various wind speeds, both above procedures yield correlations
close to one as shown in Table 4. This leads to an established NN procedure to the
estimation of wave parameters from ocean wave spectra.
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3.2. Field wave analysis

The wave data collected off Marmugao, west coast of India (Lat 151 27.90 N, Lon 731
41.00 E) at a water depth of 23m during July 1996 is used for the present study. Three
hourly ocean wave spectral parameters over the period are used for training the network.
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The ocean wave parameters, i.e., Hs, Tz, Qp, Sp, Emax and Tp are calculated from the
measured spectral energy by using Eqs. (10)–(13). From 72 wave data sets considered, 60
data sets are used for training the network and remaining 12 data sets for testing. In first
step from spectral energy the six-ocean wave parameters are calculated. The NN structure
64-30-6 (Fig. 10) is trained and tested. Figs. 11–16 are the graphs for six-wave parameters
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Table 4

Correlation coefficients (CCs) for wave parameters from wind speed and spectral energy

Wave parameters CC from wind speed CC from spectral energy

Significant wave height (Hs) 0.999 0.998

Zero crossing period (Tz) 0.999 0.999

Maximum spectral energy (Emax) 0.999 0.999

Wave period corres. to Emax (Tp) 0.995 0.998

Spectral peakedness (Qp) 0.961 0.920

Spectral width (Sp) 0.972 0.991

Fig. 10. ANN structure (field data) NN-64-30-6.
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which are estimated from field spectra using Eqs. (10)–(13) and NN. The CCs (trained
network) of wave parameters, i.e., Hs, Tz, Emax Tp, Sp and Qp are above 0.9. The estimation
(test) of Hs, Tz and Emax are very good (CCs are above 0.94). The correlation of Tp

(CC ¼ 0.8825) is less as compared to other parameters owing to relatively poor training
(CC ¼ 0.9001) of this parameter as can be observed in Fig. 16. Similarly correlation of Sp
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is less than 0.9. This is owing to marginal variation of this parameter as compared to other
parameters. A 451 line drawn in above graphs which represents the CC of one. Similarly
the network structure 64-15-4 for 4 parameters (Hs, Tz, Emax and Tp) is also used for above
data sets. The CCs are calculated as shown in Table 5. Comparing NN estimated all
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six-wave parameters of PM spectra and field data, the two wave parameters namely
spectral width and peakedness parameters have less influence on estimation of spectral
energies. The high CCs, 0.89–0.99 for training field data shows that the training has been
done correctly for all input patterns. The distribution of measured waves is not purely
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Table 5

Correlation coefficients (CCs) for wave parameters (field data) obtained from actual field spectrum and NN

method

Wave parameters CC for 6 parameters CC for 4 parameters

Train Test Train Test

Significant wave height (Hs) 0.955 0.947 0.926 0.914

Zero crossing period (Tz) 0.966 0.945 0.938 0.929

Maximum spectral energy (Emax) 0.979 0.953 0.974 0.956

Wave period corres. to Emax (Tp) 0.900 0.883 0.885 0.840

Spectral peakedness (Qp) 0.958 0.901 — —

Spectral width (Sp) 0.914 0.891 — —
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Fig. 17. Variation of measured/NN4/Scott spectra.
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Gaussian, but having multiple peaks with noise/spikes and because of this the CC for test
data is between 0.87 and 0.95. In the absence of spectral width and spectral peakedness,
CCs for Hs, Tz, Emax and Tp are relatively less as compared to six-wave parameters
estimation.

3.3. Comparison between Scott and NN spectra

Scott spectrum [2] was recommended for the west coast of India by Dattatri et al. [3],
Narasimhan and Deo [4], Baba and Dattatri [16] and Kumar et al. [5] by analyzing the
data collected off Mangalore, Mumbai High, Cochin and Karwar, respectively. The reason
is that the original validation of Scott spectrum was carried out using considerable swell
dominated data. Similar situation usually prevails at many sites along the Indian coast.

The Scott spectrum is given by

SðoÞ ¼ 0:214�Hs � exp �
ðo� o2

pÞ

0:065ðo� op þ 0:26Þ

 !1=2

¼ 0� 0:26oðo� opÞo1:65, ð21Þ

where S(o) is the spectral density at angular wave frequency ‘o’, Hs is the significant wave
height and op is the peak angular wave frequency.

The Scott spectra are estimated for the same Marmugoa measured wave data (using Hs

and Tp) and it is shown that average CC of wave parameters are 0.8 [5]. Here 4 wave
parameters, namely Hs, Tz, Emax and Tp are used as input to estimate the NN4 spectra. The
measured, neural network (NN4) and Scott spectra are compared as shown in Fig. 17. The
CCs of NN4 and Scott spectra are comparable as shown in Table 6. However,
the estimated NN spectra are better represented in peak frequency region as compared
to that of Scott spectra. Once the network is trained the ocean wave parameters can be
estimated for measured unknown spectra, whereas Hs and Tp are required to first generate
the Scott spectra and then estimate other ocean wave parameters.
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Table 6

CCs for NN and Scott spectra

Field wave data CC for NN4 CC for Scott

G9607080351 0.941 0.902

G9607080651 0.921 0.968

G9607081019 0.921 0.974

G9607081249 0.913 0.920

G9607081548 0.946 0.980

G9607081852 0.936 0.971

G9607082151 0.901 0.894

G9607090050 0.852 0.909

G9607091849 0.848 0.940

G9607092149 0.929 0.952

G9607100052 0.923 0.964

G9607100351 0.947 0.954
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4. Conclusions

Based on the present investigation the following conclusions are drawn:
The Pierson–Moskowitz spectral data sets are generated and used for network training

and testing. Very high CCs for Hs, Tz, Emax and Tp in training and testing for
Pierson–Moskowitz spectra owing to Gaussian distribution justify the use of NN. The
distribution of measured waves is not purely Gaussian, but having multiple peaks with
noise/spikes. Hence the CCs for training and testing field wave data are relatively less as
compared to CC for theoretical spectra. The CCs of NN and Scott spectra are comparable,
but the spectra in peak frequency region are better estimated by NN as compared to Scott.
This study shows that the ocean wave parameters can be directly obtained from the

measured spectra using trained NN.
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