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1. Introduction

Let H denote a complex Hilbert space with the inner product 〈., .〉 without the
requirement of separability. A subspace M of H is called semiclosed [6] if there
exists a Hilbert inner product 〈., .〉∗ on M such that (M, 〈., .〉∗) is continuously
embedded in (H, 〈., .〉). That is, if there exists an inner product 〈., .〉∗ on M
such that (M, 〈., .〉∗) is Hilbert and there exists k > 0 with 〈x, x〉 ≤ k〈x, x〉∗ for
all x ∈ M . It is known that every subspace of H is closed if and only if H is of
finite dimension. As every closed subspace is semiclosed, only infinite dimen-
sional complex Hilbert spaces are discussed in the sequel. Semiclosed subspaces
possess many special features that distinguish them from arbitrary subspaces.
Dixmier [3] calls a semiclosed subspace a “Julia variety” ; “paraclosed subspace”
by Foias in [5].

An operator on H will always be understood to be a linear transformation
from H into itself. The set of bounded operators and the cone of positive
bounded operators on H are denoted by B(H) and B(H)+ respectively. If M
is a subspace of a Hilbert space H, the closure of M in H and the orthogonal
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complement of M in H are denoted by M and M⊥ respectively, whereas the
bar z̄ indicates the complex conjugate of z.

2. Semiclosed Subspaces

An operator range [4] in a Hilbert space H is a subspace of H that is the range
of some bounded operator on H. Semiclosed subspaces are characterized by
operator ranges. Indeed, if M is a semiclosed subspace of H. Then there exists
an inner product 〈., .〉∗ onM such that (M, 〈., .〉∗) is Hilbert and there exists k >
0 with 〈x, x〉 ≤ k〈x, x〉∗ for all x ∈ M . The inclusion map J : (M, 〈., .〉∗) → H is
bounded. Now consider the polar decomposition of J∗, J∗ = U(JJ∗)1/2, then
U : H → (M, 〈., .〉∗) is a partial isometry with final space R(J∗) = N(J)⊥ = M .
Considering U from H into H, we have R(U) = M . Boundedness of U follows
from 〈Ux,Ux〉 ≤ k〈Ux,Ux〉∗ ≤ k〈x, x〉 for all x ∈ H. Hence M is an operator
range.

Conversely, if M is an operator range. Then M = R(T ) for some T ∈ B(H).
By closed graph theorem, T is closed. Now consider the operator T̃ = T |N(T )⊥

which is an injective closed operator whose range equalsM . The inverse of T̃ is a
closed operator with domainM . Define 〈x, y〉∗ = 〈x, y〉+〈T̃−1x, T̃−1y〉 for x, y ∈
M . Then (M, 〈., .〉∗) is a Hilbert space and 〈x, x〉 ≤ 〈x, x〉 + 〈T̃−1x, T̃−1x〉 =
〈x, x〉∗ for all x ∈ M . Hence M is a semiclosed subspace.

From the above discussions one can observe that the ranges of members of
B(H)+ can alone characterize all semiclosed subspaces of H. Operator ranges
have been studied by many authors, most notoriously by J. Dixmier in [3]
and by P. A. Fillmore and J. P. Williams in [4]. We start with a number of
characterizations of semiclosed subspaces (operator ranges).

Theorem 1. [4] Let M be a subspace of a Hilbert space H. The following
are equivalent:

1. M is a semiclosed subspace of H.

2. M is the range of a bounded operator on H.

3. M is the range of a closed operator on H.

4. M is the domain of a closed operator on H.

5. There is a sequence {Hn : n ≥ 0} of closed mutually orthogonal subspaces
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of H such that

M =

{

∞
∑

n=0

xn : xn ∈ Hn and
∞
∑

n=0

(2n‖xn‖)
2 < ∞

}

.

As every semiclosed subspace in a Hilbert space H is the range of some
bounded operator on H, every semiclosed subspace is necessarily a Borel set,
in fact, an Fσ-set and every proper semiclosed subspace is necessarily of first
category by an application of the open mapping theorem ; these conditions are
not sufficient, refer to [4].
The following examples show that all semiclosed subspaces are not closed and
every subspace is not necessarily semiclosed.

Example 2. Consider the subspace

M = {(x1, x2, . . .) :

∞
∑

n=1

(n|xn|)
2 < ∞}

of the space ℓ2 of square-summable sequences. AsM contains all sequences with
finite support and (1, 12 ,

1
3 , . . .) is not in M , it is a proper dense subspace of ℓ2.

So, M is not closed but it is semiclosed because M is the range of the bounded
operator T : ℓ2 → ℓ2 defined by T (x1, x2, x3, . . .) = (x1,

x2

2 ,
x3

3 , . . . ,
xn

n , . . .).

Example 3. Consider in H = L2[0, 1], the subspace Lp[0, 1] (2 < p < ∞)
is not a semiclosed subspace of H because Lp[0, 1] cannot be the range of any
bounded operator on L2, by the following remark: If T is a continuous linear
injection of a Banach space X in a Hilbert space H, and if T (X) is the range
of a bounded operator on H, then X is isomorphic to a Hilbert space. Since
Lp is not isomorphic to a Hilbert space [9], it follows that Lp is not the range
of any bounded operator on L2.

The sum of closed subspaces of a Hilbert space need not be closed [1].
There are necessary and sufficient conditions for the sum of closed subspaces
of a Hilbert space to be closed; specifically, the angle between the subspaces is
not zero, or the projection of either space into the orthogonal complement of
the other is closed.

In the case of the set SC(H) of semiclosed subspaces of a Hilbert space
H, SC(H) forms a complete lattice with respect to “intersection” and “sum”,
which is shown by the following propositions. Moreover, SC(H) is the smallest
lattice containing all closed subspaces of H.

Proposition 4. The intersection of two semiclosed subspaces of H is again
a semiclosed subspace.
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Proof. Let M1 and M2 be semiclosed subspaces of H. Then there are two
Hilbert inner products 〈., .〉1 and 〈., .〉2 such that each (Mi, 〈., .〉i) is continuously
embedded in H, i = 1, 2. Define 〈., .〉∗ on M1∩M2 by 〈x, y〉∗ = 〈x, y〉1+ 〈x, y〉2.
Then 〈., .〉∗ is a Hilbert inner product and is stronger than the usual inner
product on H. Hence M1 ∩M2 is a semiclosed subspace.

Let T be a bounded operator on H. The range of T can be given uniquely
a Hilbert space structure, with norm ‖.‖T as follows. Moreover, T becomes a
coisometry from H to (R(T ), ‖.‖T ). In fact, since T gives rise to a bijection
from N(T )⊥ = R(T ∗) is a Hilbert space, the inner product 〈., .〉T on R(T ),
defined by

〈Ta, T b〉T = 〈Pa, Pb〉 for a, b ∈ H,

where P is the orthogonal projection to N(T )⊥, makes R(T ) a Hilbert space
and the uniqueness is obvious. Since Ta = TPa and ‖Pa‖ ≤ ‖a‖, norm ‖u‖T
admits the description

‖u‖T = min{‖a‖ : Ta = u} for u ∈ R(T ),

and the following inequality holds

‖u‖ ≤ ‖T‖ ‖u‖T for u ∈ R(T ).

Hence for each u ∈ R(T ) there is uniquely a ∈ R(T ∗) such that

Ta = u and ‖a‖ = ‖u‖T .

The space R(T ) equipped with the Hilbert space structure ‖.‖T is denoted by
M(T ):

M(T ) ≡ (R(T ), ‖.‖T ).

M(T ) is called de Branges space induced by T . These Hilbert spacesM(T ) play
a significant role in many areas, in particular in the de Branges complementation
theory [2].

Conversely, suppose that a subspace M of a Hilbert space H is equipped
with a Hilbert space structure ‖.‖∗ such that (M, 〈., .〉∗) is continuously em-
bedded in H. Then there is uniquely a positive operator T on H such that
(M, ‖.‖∗) = M(T ).

Theorem 5. [2] For T1, T2 ∈ B(H), let T = (T1T
∗
1 + T2T

∗
2 )

1/2. Then
‖u1+u2‖

2
T ≤ ‖u1‖

2
T1
+‖u2‖

2
T2
, for u1 ∈ R(T1), u2 ∈ R(T2), and for any u ∈ R(T ),

there are uniquely u1 ∈ R(T1), u2 ∈ R(T2) such that u = u1 + u2 and

‖u1 + u2‖
2
T = ‖u1‖

2
T1

+ ‖u2‖
2
T2
.
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Proposition 6. The sum of two semiclosed subspaces of H is again a
semiclosed subspace.

Proof. Let M1,M2 be two semiclosed subspaces of H. There are positive
operators T1, T2 on H such that

(M1, ‖.‖1) = M(T1) and (M2, ‖.‖2) = M(T2).

Moreover, there are positive numbers k1 and k2 such that

‖u1‖ ≤ k1‖u1‖1 and ‖u2‖ ≤ k2‖u2‖2 for all u1 ∈ M1, u2 ∈ M2.

Let T = (T1T
∗
1 + T2T

∗
2 )

1/2. Then by theorem 5, for any u ∈ R(T ), there are
uniquely u1 ∈ R(T1), u2 ∈ R(T2) such that u = u1 + u2 and

‖u‖2T = ‖u1 + u2‖
2
T = ‖u1‖

2
1 + ‖u2‖

2
2.

Hence ‖.‖T is a Hilbert inner product on M1 +M2 such that (M1 +M2, 〈., .〉T )
is continuously embedded in (H, 〈., .〉) because for any u ∈ M1 +M2,

‖u‖2 ≤ ‖u1‖
2 + ‖u2‖

2 ≤ k2(‖u1‖
2
1 + ‖u2‖

2
2) = k2‖u‖2T ,

where k = max{k1, k2}. Thus M1 +M2 is a semiclosed subspace of H.

To appreciate an application of Riesz representation theorem for Hilbert
spaces, we reproduce proof of the result in [8] which reveals that semiclosed
subspaces can be characterized alone by the ranges of members of B(H)+. For
a fixed inner product 〈., .〉∗ on M , some properties for the operator A corre-
sponding to inner product 〈., .〉∗ are discussed below. Unless and otherwise
specified, H and M have Hilbert inner products 〈., .〉 and 〈., .〉∗ respectively.
We denote C for the set of complex numbers and the conjugate of 〈x, y〉 by
〈x, y〉.

Theorem 7. Let M be a semiclosed subspace of a Hilbert space H. For
each Hilbert inner product 〈., .〉∗ on M such that (M, 〈., .〉∗) is continuously em-
bedded inH, there is a uniqueA ∈ B(H)+ such that 〈x, y〉 = 〈x,Ay〉∗ for all x ∈
M,y ∈ H.

Proof. Given that (M, 〈., .〉∗) is a Hilbert space and there exists k > 0 such
that 〈x, x〉 ≤ k〈x, x〉∗ for all x ∈ M . Let y ∈ H. Define fy : H → C by
fy(x) = 〈x, y〉. The restriction of fy to M is bounded on (M, 〈., .〉∗) because for
x ∈ M ,

|fy(x)| ≤ ‖x‖ ‖y‖ ≤ k‖x‖∗ ‖y‖.
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By Riesz representation theorem for Hilbert spaces, there exists a unique z ∈ M
so that fy(x) = 〈x, z〉∗ for all x ∈ M .

Define A : (H, 〈., .〉) → (M, 〈., .〉∗) by Ay = z. Then 〈x, y〉 = 〈x,Ay〉∗ for all
x ∈ M,y ∈ H. Clearly A(H) ⊂ M and the uniqueness of A follows from the
Riesz representation theorem.

For each x ∈ H,

‖Ax‖ ≤ k‖Ax‖∗ = k sup{|〈z,Ax〉∗| : ‖z‖∗ = 1}

= k sup{|〈z, x〉| : ‖z‖∗ = 1} ≤ k‖x‖,

hence A is bounded. From the relation 〈Ax, y〉 = 〈Ax,Ay〉∗ = 〈Ay,Ax〉∗ =
〈Ay, x〉 = 〈x,Ay〉, we get 〈x,Ay〉 = 〈Ax, y〉 for all x, y ∈ H. The positiveness of
the operator A comes from 〈Ax, x〉 = 〈Ax,Ax〉∗ = ‖Ax‖2∗ ≥ 0 for all x ∈ H.

Proposition 8. Let M be a semiclosed subspace of H and AM be the
restriction of A to M with the Hilbert norm ‖.‖∗. Then AM : M → M is a
bounded positive self-adjoint operator on M .

Proof. The boundedness of AM comes from the following:

‖AMx‖∗ = sup{|〈z,AMx〉∗| : ‖z‖∗ = 1}

= sup{|〈z, x〉| : ‖z‖∗ = 1} ≤ ‖x‖ ≤ k‖x‖∗.

For each x, y ∈ M ,

〈AMx, y〉∗ = 〈y,AMx〉∗ = 〈y, x〉 = 〈x, y〉 = 〈x,AMy〉∗

hence we get 〈x,AMy〉∗ = 〈AMx, y〉∗ for all x, y ∈ M . AM is positive because
for x ∈ M , 〈AMx, x〉∗ = ‖x‖2 ≥ 0.

In addition to the notational conventions mentioned in the introduction, we

denote the positive square roots of A and AM by A1/2 and A
1/2
M respectively.

To differentiate the convergence of a sequence in M with respect to the new
norm ‖.‖∗, we denote lim∗ xn = x for the sequence (xn) in M converging to x
with respect to the norm ‖.‖∗. The closure of a subset N of M corresponding
to the norm ‖.‖∗ is denoted by N

∗
whereas N denotes the closure of N with

the usual inner product on H.

Theorem 9. [7] For each self-adjoint operator A ∈ B(H)+, there exists a
unique self-adjoint B ∈ B(H)+ such that B2 = A and B is strong limit of the
sequence given by the recursive relation A0 = 0, An = [(I −A)−A2

n−1], n ≥ 1.
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Proposition 10. For x ∈ M , ‖x‖ = ‖A
1/2
M x‖∗ and A1/2 agrees with A

1/2
M

on M .

Proof. Let x ∈ M . Then ‖x‖2 = 〈x,AMx〉∗ = 〈A
1/2
M x,A

1/2
M x〉∗ = ‖A

1/2
M x‖2∗.

We next claim that A1/2 and A
1/2
M are same at every point of M . If x ∈ M ,

then A
1/2
M x = lim∗Anx. As ‖.‖∗ is stronger than ‖.‖, we get limAnx = A

1/2
M x,

hence A1/2x = A
1/2
M x, where {An}n≥1 are as given in the theorem 9.

For each such inner product 〈., .〉∗ on the semiclosed subspace M , there cor-
responds a topology on M . Interestingly all such inner products are equivalent
which is shown by the following theorem. Hence the topology on M is unique.
This topology coincides with the induced topology if the subspace M is closed
in H.

Theorem 11. Let M be a semiclosed subspace of H. Then all inner
products 〈., .〉∗ such that (M, 〈., .〉∗) is continuously embedded, generate the
same topology on M .

Proof. Suppose M has two such Hilbert space inner products 〈., .〉1 and
〈., .〉2 respectively. Then by theorem 7, there are A1, A2 ∈ B(H)+ such that

〈x, y〉 = 〈x,A1y〉1 and 〈x, y〉 = 〈x,A2y〉2 for all x ∈ M,y ∈ H.

Let B1 = {y ∈ M : ‖y‖1 = 1}. Then for y ∈ B1, then linear functional Fy(x) =
〈x, y〉 = 〈x,A1y〉1 = 〈x,A2y〉2, for all x ∈ M,y ∈ H. As |Fy(x)| ≤ ‖x‖1‖y‖1
and |Fy(x)| ≤ ‖x‖2‖y‖2, Fy is a bounded linear functional on both (M1, ‖.‖1)
and (M2, ‖.‖2).

For its corresponding operator norms ‖Fy‖1 and ‖Fy‖2, we obtain ‖Fy‖1 =
‖y‖1 and ‖Fy‖2 = ‖y‖2. For all x ∈ M , we have supy∈B1

|Fy(x)| ≤ ‖x‖1 <
∞. By the uniform boundedness principle, there exists c > 0 such that
supy∈B1

‖Fy‖2 ≤ c. This proves that ‖y‖2 ≤ c‖y‖1 for all y ∈ M . By inter-
changing the role of ‖.‖1 and ‖.‖2, we obtain that these norms are equivalent.
Thus each semiclosed subspace of H has a unique topology.

3. Dense Semiclosed Subspaces

Every subspace of a Hilbert space which is dense and proper, is never closed
in the strong topology. But semiclosed subspaces possess many special fea-
tures that distinguish them from closed subspaces. Few properties of operators
associated with proper dense semiclosed subspaces are discussed in the section.
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Theorem 12. Let M be a dense semiclosed subspace of a Hilbert space
H and A be the operator corresponding to the inner product 〈., .〉∗. Then A
has dense range in H and A is injective.

Proof. Suppose y0 ∈ M such that 〈Ax, y0〉∗ = 0 for each x ∈ H. Then 0 =
〈Ay0, y0〉∗ = 〈y0, y0〉, so y0 = 0, hence R(A) is dense in M with respect to 〈., .〉∗.

As M = R(A)
∗
⊂ R(A) and M is dense in H, we get H = M ⊂ R(A) ⊂ H,

R(A) is dense in H.
Suppose that for some x ∈ H with Ax = 0. Then for each y ∈ H, 〈x,Ay〉 =

〈Ax, y〉 = 0, so x is in the orthogonal complement of R(A). The denseness of
R(A) in H gives that x = 0. Hence A is injective.

Theorem 13. Let M be a dense semiclosed subspace of a Hilbert space
H and A be the operator corresponding to the inner product 〈., .〉∗. Then
R(A1/2) = M .

Proof. Suppose x ∈ H. Since M is dense in H, there exists a sequence (xn)

in M such that limxn = x. By Proposition 10, for each n, ‖xn‖ = ‖A
1/2
M xn‖∗.

The boundedness of A gives that A1/2 is bounded from H to H. Then

‖x‖ = lim ‖xn‖ = lim ‖A1/2xn‖∗ = ‖A1/2x‖∗.

Thus if x ∈ H and ‖x‖ = ‖A1/2x‖∗.
Suppose (A1/2xn) converges in M to y. Since ‖A1/2xn‖ = ‖xn‖, we have

that (xn) is Cauchy in H. Let lim∗ xn = x. Then A1/2x = y since

‖A1/2x− y‖ ≤ ‖A1/2x−A1/2xn‖+ ‖A1/2xn − y‖

and given ε > 0, there exists an n so that the right side of the inequality is less
than ε. Hence A1/2x = y and A−1 exists, by Theorem 12.

Suppose A1/2x = 0. Then Ax = A1/2A1/2x = 0 and so x = 0, hence A1/2 is
injective. To show the range of A1/2 is dense in M . Suppose there exists y ∈ M
so that 〈A1/2x, y〉∗ = 0 for all x ∈ H. Then if we let x = A1/2y,

0 = 〈A1/2A1/2y, y〉∗ = 〈A1/2y,A1/2y〉∗ = ‖A1/2y‖∗.

This implies that A1/2y = 0, so y = 0. Thus R(A1/2) is a dense and closed
subspace of M , hence it is equal to M .

Theorem 14. LetM be a semiclosed subspace of H and A be the operator
corresponding to the inner product 〈., .〉∗. Then A from H to H is compact if
and only if A from H to M is compact.
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Proof. Suppose A : H → M is compact. Then for a bounded sequence
(xn) in H, (Axn) has a convergent subsequence in M . Since the norm ‖.‖∗ is
stronger than the usual norm ‖.‖ on H, (Axn) has a convergent subsequence
in H. On the other hand, suppose that A : H → H is compact. Then we get
A1/2 : H → H is compact. Thus if (xn) is a bounded sequence in H, then
(A1/2xn) has a convergent subsequence in H ; we call the subsequence by the
same name as the original sequence. By theorems 12 and 13, for each x ∈ H,

‖A
1/2
M x‖∗ = ‖x‖, we get that ‖Axn‖∗ = ‖A1/2A1/2xn‖∗ = ‖A1/2xn‖. Since

(A1/2xn) is convergent in H, it is a Cauchy sequence. Using the above relation,
we get (Axn) is Cauchy in M . Hence it converges in M .

Lemma 15. [8] If A is a positive self-adjoint bounded operator on a
Hilbert space H and z ∈ H, then z ∈ A1/2(H) iff there exists b > 0 such that
|〈x, z〉|2 ≤ b〈x,Ax〉 for each x ∈ H. Moreover, ‖A−1/2z‖2 is the least of b.

Theorem 16. Let M be a proper dense semiclosed subspace of H. Then
there exists a proper subspace N of H such that M is a semiclosed subspace of
N .

Proof. The semiclosedness of M gives a Hilbert inner product 〈., .〉∗ on
M such that for some k > 0, 〈x, x〉 ≤ k〈x, x〉∗ for each x ∈ M . Then by
theorems 7, 12 and 13, there exists A ∈ B(H)+ such that 〈x, y〉 = 〈x,Ay〉∗ for
all x ∈ M,y ∈ H and M = R(A1/2). As M is proper in H, choose u0 in H not
in M such that ‖u0‖ = 1. Define B : H → H by Bx = Ax+ 〈x, u0〉u0, x ∈ H.
Clearly B ∈ B(H)+ is injective and hence B−1/2 exists.

Let N = R(B1/2) and 〈., .〉1 be the inner product on N defined by 〈B1/2x,
B1/2y〉1 = 〈x, y〉 for each x, y ∈ H. Clearly 〈., .〉1 is a Hilbert inner product on
N . Let z ∈ M . For each x ∈ H,

|〈x, z〉|2 = |〈Ax, z〉∗|
2 ≤ ‖Ax‖2∗‖z‖

2
∗ ≤ ‖z‖2∗〈x,Ax〉 ≤ ‖z‖2∗〈x,Bx〉

so by Lemma 15, ‖z‖1 ≤ ‖z‖∗. Let z ∈ N . Then for each x ∈ H,

|〈x, z〉|2 = |〈B1/2x,B1/2z〉1|
2 = |〈Bx, z〉1|

2

≤ ‖z‖21 ‖Bx‖21 ≤ ‖z‖21 〈x,Bx〉

≤ ‖z‖21 (〈x,Ax〉 + 〈x, x〉) = ‖z‖21 (k + 1)〈x, x〉

so ‖z‖ ≤ (k+1)1/2‖z‖1. We proved that (M, 〈., .〉∗) is a semiclosed subspace of
(N, 〈., .〉1) which is a semiclosed subspace of H.

We next claim that N is a proper subspace of H. Suppose B1/2(H) = H.
Then B(H) = H. Therefore there exists x0 ∈ H such that Bx0 = u0. Then

A1/2(A1/2)x0 = Ax0 = [1− 〈x0, u0〉]u0.
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Since u0 /∈ M = R(A1/2), A1/2x0 = 0 so that x0 = 0 implies that u0 = 0, which
is a contradiction to u0 6= 0, hence B1/2(H) 6= H. Note that A ≤ B because
〈x,Ax〉 ≤ 〈x,Bx〉 for all x ∈ H.
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