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Introduction

Let G : D ⊂ B → B be a Fréchet differentiable operator defined on a convex and open
subset D of a Banach space B with values in B. A point p satisfying

G(p) = p (1)

is called a fixed point of operatorG.Many problems inComputational Sciences, such as prob-
lems in optimization, Applied Mathematics; Physics, Astrophysics; Biology; Economics;
Chemistry, Control theory, Signal and image processing, inverse and ill-posed problems,
least squares, engineering and other areas can be set up as equations of the type (1) using
Mathematical modeling [1,2,9–11,14–18,23,24]. A fixed point p in closed form is desirable
but usually it is unavailable. That is why most researchers rely on the generation of some
iterative method approximating p. Picard’s method or the method of successive substitutions
[17] defined for all n = 0, 1, 2, . . . by xn+1 = G(xn), where x0 ∈ D is an initial point
generates a sequence converging linearly to p provided that G is a contraction operator on
D. To accelerate the convergence higher order methods have been proposed.

Stirling’s method defined for all n = 0, 1, 2, . . . by

xn+1 = xn − A−1
n (xn − G(xn)), (2)

where x0 ∈ D is an initial point and An = I − G ′(G(xn)) has been utilized to generate a
sequence {xn} converging quadratically to p [7,20,22].

Stirling’s method is a combination of Picard’s method (or method of the successive substi-
tutions) andNewton’s method. Bothmethods utilize the same number of function evaluations
per step, since each step utilizes the G and G ′. These methods are compared in [7,20–22]
under the crucial hypothesis that

‖G ′(x)‖ < 1 (3)

in D.This is amajor setback in the usage of Stirling’smethod. Let us consider themotivational

example using functionG(x) = x2
2 for all x ∈ D = [−1, 1].Then, we have that ‖F ′(x)‖ ≤ 1

for all x ∈ D, so (3) is violated. Hence, the results in [7,20–22] cannot guarantee the
convergence of Stirling’s method to p. However, we can show convergence although (3) is
not satisfied (see the Examples). Notice also that Stirling’s method is an important alternative
in cases Newton’s method fails to converge. In particular, Rall [22] used Banach theorem on
fixedpoints in combinationwithLipschitz continuousfirst Fréchet derivative forG ′ to provide
semi-local convergence results for Stirling’s method. Parhi and Gupta [20,21] studied the
semi-local convergence of the method using Hölder continuous Fréchet-derivative. Another
setback of the preceding approaches is the fact that the region of convergence is small in
general. Therefore, extending the convergence region of iterative methods with additional or
weaker hypotheses than before is very important in computational Mathematics and related
areas.

“The novelty of the paper is the fact that convergence of Stirling’s method is established,
even if (3) is not satisfied. Moreover some other benefits are reported even if (3) is satisfied.
The region of convergence for Stirling’s method is extended using our new approach of
restricted domains of convergence. Following this ideawe find a subset of the original domain
that also contains the Stirling’s iterates leading to at least as tight Lipschitz conditions as in
the earlier studies. The new constants are special cases of the old constants. Consequently
no additional computational cost is required to obtain the improved convergence analysis.
Furthermore, favorable comparisons are also reported with respect to Newton’s method. The
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new ideas can be used to study other iterative methods using inverses of linear operators
[1,2,2–21,23,24]”.

The rest of the paper is designed as follows: In second section we report on the semi-
local convergence; third section contains the local convergence. Fourth section contains the
numerical examples.

Semi-local Convergence

We need an auxiliary results on majoring sequences for Stirling’s method.

Lemma 2.1 [6] Let l0 > 0, l > 0 and η > 0 be parameters. Suppose

h := K0η ≤ 1

2
, (4)

where

K0 = 1

8

(
4l0 + √

l0l +
√
l0l + 8l20

)
. (5)

Then scalar sequence {sk} defined by

s0 = 0, s1 = η, s2 = η + l0η2

2(1 − l0η)
,

sn+2 = sn+1 + l(sn+1 − sn)

2(l − l0sn+1)
, f or each n = 1, 2, . . . (6)

is monotonically converging to each unique least upper bound s∗, which satisfies

η ≤ s∗ ≤ q, (7)

where

q = η + l0η2

2(1 − α)(1 − l0η)
(8)

and

α = 2l

l +
√
l2 + 8l0l

. (9)

Let U (w, �) stand for an open ball with center w ∈ B and of radius � > 0. Moreover, let
U (w, �) be the closure of U (w, �).

The semi-local convergence analysis of Stirling’s method is based on the hypotheses (H)
for some x0 ∈ D:

123

Author's personal copy



Int. J. Appl. Comput. Math

(h1)A
−1
0 ∈ L(B) and there exists η ≥ 0 such that ‖A−1

0 (x0 − G(x0)‖ ≤ η;
(h2) ‖G(x) − G(x0)‖ ≤ a0‖x − x0‖, f or all x ∈ D and some a0 ≥ 0;
(h3) ‖A−1

0 (G ′(G(x0)) − G ′(y))‖ ≤ b0‖G(x0) − y‖, f or all y ∈ D and some b0 ≥ 0;
(h4) ‖A−1

0 (G ′(u) − G ′(v))‖ ≤ b‖u − v‖ f or all u, v ∈ D0 := D ∩U
(
x0,

1
a0b0

)
and

some b ≥ 0;
(h5) ‖G ′(x)‖ ≤ c f or all x ∈ D0 and some c ≥ 0;
(h6) Condition (4) holds f or l0 = b0 max{3 + 2c, a0} and l = b(3 + 2c);
(h7) U (x0, R) ⊆ D, where R := ‖x0 − G(x0)‖ + a0s∗, where s∗ is given in Lemma 2.1.

Next, we present the semi-local convergence analysis of Stirling’s method using (H) hypothe-
ses and the preceding notation.

Theorem 2.2 Suppose that the hypotheses (H) hold. Then, sequence {xn} starting from x0
and generated by Stirling’s method exists and converges to a fixed point p ∈ U (x0, s∗) of
operator G so that

‖xn − xp‖ ≤ r∗ − rn−1,

where, scalar sequence {rn} is defined by
r0 = 0, r1 = η, r2 = r1 + b0(3+2c)(r1−r0)2

2(1−a0b0r1)
,

rn+2 = rn+1 + b(3+2c)(rn+1−rn)2

2(1−a0b0rn+1)
f or all n = 1, 2, . . .

(10)

and r∗ = limn→∞.

Proof A simple induction argument shows that

rn ≤ sn ≤ s∗ (11)

and

rn ≤ rn+1 (12)

rn+1 − rn ≤ sn+1 − sn (13)

by the choice of l0, l, (6) and (10). Hence, sequence {rn} is nondecreasing and bounded above
by s∗ and as such it converges to its unique least upper bound r∗. Next, we shall show that
sequence {rn} majorizes {xn}. That is, we shall show that for each m = 0, 1, 2, . . .

‖xm − xm−1‖ ≤ rm − rm−1 (14)

and

U (xm, r∗ − rm) ⊆ U (xm−1, r
∗ − rm−1). (15)

Let w ∈ U (x1, r∗ − r1). We get:

‖w − x0‖ ≤ ‖w − x1‖ + ‖x1 − x0‖ ≤ r∗ − r1 + r1 − r0 = r∗ − r0,

so w ∈ U (x0, r∗ − r1). By (h1) and (10) we have

‖x1 − x0‖ = ‖A−1
0 (x0 − G(x0)‖ ≤ η = r1 = r1 − r0,

so (14) and (15) hold for m = 0. Suppose (14) and (15) hold for all integers smaller or equal
to m. Then, we get

‖xm − x0‖ ≤
m∑
i=1

‖xi − xi−1‖ ≤
m∑
i=1

(ri − ri−1) = rm − r0 = rm ≤ r∗, (16)
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and

‖xm + θ(xm − x0) − x0‖ ≤ rm−1 + θ(rm − rm−1) ≤ r∗ (17)

for all θ ∈ [0, 1]. Let x ∈ D0, then

‖x0 − G(x)‖ ≤ ‖x0 − G(x0)‖ + ‖G(x) − G(x0)‖
≤ ‖x0 − G(x0)‖ + a0‖x0 − x1‖ ≤ ‖x0 − G(x0)‖ + a0r∗ = R.

(18)

Using the induction hypotheses, (h2), (h3) and (16), we have

‖A−1
0 (G ′(G(x0)) − G ′(G(xn)))‖ = ‖A−1

0 (G ′(G(x0)) − G ′(G(xm)))‖
≤ b0‖G(x0) − G(xm)‖ = ‖b0a0‖xm − x0‖ ≤ b0a0rm < 1,

(19)

so by the Banach perturbation lemma [14] and (19) A−1
m exists and

‖A−1
m A0‖ ≤ (1 − b0a0‖xm − x0‖)−1 ≤ (1 − b0a0rm)−1. (20)

Using Stirling’s method we obtain in turn the approximation

A0(xm − G(xm)) = A0(xm − G(xm−1) − G(xm) + G(xm−1))

= A0(G ′(G(xm−1))(xm − xm−1) − G(xm) + G(xm−1))

= A0
∫ xm
xm−1

(G ′(G(xm−1)) − G ′(x))dx
= A0

∫ 1
0 (G ′(G(xm−1)) − G ′(xm−1)

+ θ(xm − xm1))(xm − xm−1)dθ.

(21)

In view of (h4), (h5), (14) and (21), we obtain in turn

‖A0(xm − G(xm))‖ ≤ ∫ 1
0 b‖G(xm−1) − xm−1 − θ(xm − xm1)‖‖xm − xm−1‖dθ

≤ b
∫ 1
0 (‖G(xm−1) − xm−1‖ + θ‖xm − xm1‖)‖xm − xm−1‖dθ

≤ b
∫ 1
0 (‖I − G ′(G(xm−1))‖ + θ)‖xm − xm−1‖2dθ

≤ b(3+2c)
2 ‖xm − xm−1‖2 ≤ b(3+2c)

2 (rm − rm−1)
2,

(22)

where

b =
{
b0, m = 1
b m > 1.

Moreover, by Stirling’s method, (10), (14), (20) and (22), we get that

‖xm+1 − xm‖ = ‖A−1
m (xm − G(xm))‖ ≤ ‖A−1

m A0‖‖A−1
0 (xm − G(xm))‖

≤ b(3+2c)(rm−rm−1)
2

2(1−a0b0rm )
= rm+1 − rm,

(23)

so the induction for (14) is completed. 
�
Furthermore, for w ∈ U (xm+1, r∗ − rm+1), we have

‖w − xm+1‖ ≤ ‖w − xm+1‖ + ‖xm+1 − xm‖ ≤ r∗ − rm+1 + rm+1 − rm = r∗ − rm,

which completes the induction for (15).
We have that that sequence {rn} is complete. By (1.11) and (15) sequence {xm} is complete

too in a Banach space B, so there exists p ∈ U (x0, r∗) such that limm→∞ = p. By letting
m → +∞ in (12), the estimate ‖A−1

0 (xm − G(xm))‖ ≤ b̄
2 (3 + 2c)(rm − rm−1)

2, we get
p = G(p). Finally, estimate (13) follows from (14) using standard majorization procedures
[2,3,8,14].
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Remark 2.3 (a) If a0 ∈ [0, 1) and r∗ ≥ ‖x0 − F(x0)‖/(1 − a0), then these conditions can
replace (h7). In particular, in view of the estimate

‖x0 − F(x)‖ = ‖x0 − F(x0) + F(x0) − F(x)‖
≤ ‖x0 − F(x)‖ + a0‖x − x0‖ ≤ ‖x0 − F(x0)‖ + a0 ≤ r∗

for all x ∈ D. Hence, (h6) is replaced by (h7)’ U (x0, r∗) ⊆ D provided that a0 ∈ [0, 1)
and r∗ ≥ ‖x0 − F(x0)‖/(1 − a0).

(b) Limit point r∗ can be replaced in Theorem 1 by q given in closed form.
(c) It follows from (10), (14) and (19) that the Q-order of Stirling’s method is 2.

Concerning the uniqueness of the fixed point p, we have:

Proposition 2.4 Under the hypotheses (H), further suppose that there exists R∗ ≥ r∗ such
that

b0((2a0 + 1)r∗ + R∗) < 2, (24)

then, p is the only fixed point of G in D1 := D ∩U (x0, R∗).

Proof Let p∗ ∈ D1 with G(p∗) = p∗. The existence of p has been established in Theorem
1 under the hypotheses (H). Let T : B → B defined by

T =
∫ 1

0
A−1
0 G ′(p + θ(p∗ − p))dθ.

Using (h2), (h3) and (24), we have in turn that

‖I − (A−1
0 − I )‖ = ‖ ∫ 1

0 A−1
0 (G ′(p + θ(p∗ − p)) − G ′(G(x0)))dθ‖

≤ b0
∫ 1
0 ‖p + θ(p∗ − p) − G(x0)‖dθ

≤ b0
∫ 1
0 ‖G(p) − G(x0) + θ(p∗ − x0) − θ(p − x0)‖dθ

≤ b0
[
a0r∗ + 1

2 (R
∗ + r∗)

]
< 1,

(25)

so (A−1
0 − T )−1exists. Then, from the identity

0 = A−1
0 [p∗ − G(p∗) − p + G(p)] = (A−1

0 − T )(p∗ − p), (26)

we conclude that p = p∗. 
�
Remark 2.5 Let L0 = max{a0b0, b(3 + 2c)}. Then we can define sequence {tn} by

t0 = 0, tn+1 = tn − f (tn)

f ′(tn)
= tn + L0(tn − tn−1)

2

2(1 − L0tn)
, (27)

where

f (t) = L0

2
t2 − t + η. (28)

Suppose

h = L0η ≤ 1

2
. (29)

Sequence {tn} looks like the usual majorizing sequence appearing in the semi-local conver-
gence ofNewton’smethod,whereas (29) is the correspondingNewton-Kantorovich sufficient
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semi-local convergence criterion for Newton’s method. Clearly, {tn}, (29) can replace {rn},
(4) in Theorem 1, since a simple inductive arguments shows that

rn ≤ tn

rn+1 − rn ≤ tn+1 − tn

r∗ ≤ t∗ = lim
n→∞ tn = 1 − √

1 − 2L0η

L0

and h ≤ 1/2 ⇒ h0 ≤ 1/2.

There is a plethora of error bounds for sequence {tn} [1–24]. A direct comparison between
Newton’s and Stirling’s method is possible under the above setting but we must use

‖(I − G ′(x0))−1(G ′(x) − G ′(x0))‖ ≤ b0‖x − x0‖, x ∈ D

‖(I − G ′(x0))−1(G ′(x) − G ′(y))‖ ≤ b‖x − y‖, x ∈ D5 = D ∩U

(
x0,

1

b0

)

‖(I − G ′(x0))−1(G ′(x) − G ′(x0))‖ ≤ η

and the corresponding criterion, iteration {t̄n} are [6]

H = Lη ≤ 1

2
(30)

where

L = 1

8

(
4b0 +

√
b0b +

√
b0b + 8b

2
0

)

and

t0 = 0, t1 = η, t2 = t1 + b0(t1 − t0)2

2(1 − b0t1)
,

tn+2 = tn+1 + b(tn+1 − tn)2

2(1 − btn+1)
.

Local Convergence

The local convergence analysis of Stirling’s method is based on the hypotheses (C):

(c1) There exists p ∈ D wi th p = G(p) such that the inverse of
A� = I − G ′(p) exists;
(c2) ‖G(x) − G(p)‖ ≤ β0‖x − p‖, f or all x ∈ D and some β0 ≥ 0;
(c3) ‖A−1

� (G ′(p) − G ′(x))‖ ≤ γ ‖p − x‖, f or all x ∈ D and some γ ≥ 0;
(c4) ‖A−1

� (G ′(x) − G ′(y))‖ ≤ d‖x − y‖ f or all x, y ∈ D2 := D ∩U
(
p, 1

β0γ

)
and

some d ≥ 0;
(c5) U (p, �∗) ⊆ D,

where

�∗ = 2

2β0γ + (1 + 2β0)d
. (31)
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Theorem 3.1 Suppose that the hypotheses (C) hold. Then, Stirling’s sequence {xn} starting
from x0 ∈ U (p, �∗) converges to p so that

‖xn+1 − x∗‖ ≤ d(1 + 2β0)

2(1 − β0γ ‖xn − p‖)‖xn − p‖2. (32)

Proof We use induction and the estimates for xm ∈ U (p, �∗)

‖A−1
� (A� − A(xm))‖ = ‖A−1

� (G ′(G(p)) − G ′(G(xn)))‖
≤ γ ‖G(p) − G(xm)‖ ≤ b0γ ‖p − xm‖
≤ β0γ �∗ < 1,

(33)

and

‖G(xn) − xm‖ ≤ ‖(G(xm) − p) + p − xm‖
≤ ‖G(xm) − G(p)‖ + ‖xm − p‖
≤ (β0 + 1)(‖xm − p‖,

(34)

and

‖A−1
� (G(xm) − G(p) − G ′(G(xm))(xm − p))‖

= ‖ ∫ 1
0 A−1

� [G ′(θxm + (1 − θ)p) − G ′(θF(xm) + (1 − θ)F(xm))](xm − p)dθ‖
≤ d

∫ 1
0 [θ‖xm − G(xm)‖ + (1 − θ)‖p − G(xm)‖]‖xm − p‖dθ

= d
2 [‖xm − F(xm)‖ + ‖G(xm) − p‖] ≤ d(1+2β0)

2 ‖xm − p‖2
(35)

so by (33) and (35), we arrive at (32). 
�
Concerning the uniqueness part:

Proposition 3.2 Suppose that the hypotheses (C) hold for β0 ∈ [0, 1). Then, p is the unique
fixed point of operator G on U (p, �∗).

Proof We have by (c2) that for p �= p∗ ∈ U (p, �∗) with p∗ = G(p∗):

‖p − p∗‖ = ‖G(p) − G(p∗)‖ ≤ β0‖p − p∗‖ < ‖p − p∗‖,
so we deduce that p = p∗. 
�
Remark 3.3 Condition (c2) does not imply that G ′ is a contraction operator. Hence, the
applicability of Stirling’s method is expanded in the local convergence case too. The local
convergence results in [22, see, e.g, Theorem 4, pp 16] given in non-affine invariant form can
be improved under the same hypotheses.

Proposition 3.4 Suppose: There exists δ ≥ 0 and μ ∈ [0, 1), μ0 ∈ [0, 1] such that
‖G ′(x)‖ ≤ μ;

‖G ′(x) − G ′(y)‖ ≤ δ‖x − y‖ f or all x, y ∈ D;
‖G(x) − G(p) ≤ μ0‖x − p‖ for all x ∈ D

and

U (p, �∗
1) ⊆ D,

where

�∗
1 = 2(1 − μ)

δ(1 + 2μ0)
. (36)
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Then, Stirling’s method starting from x0 ∈ U (p, �∗) − {p} converges to p so that

‖xn+1 − p‖ ≤ δ(1 + 2μ0)

2(1 − μ)
‖xn − p‖2. (37)

Proof Follow the proof of Theorem 4 in [22] but use

‖G(p) − G(xm)‖ ≤ α0‖p − xm‖
instead of ‖G(p) − G(xm)‖ ≤ μ‖p − xm‖. 
�
Proposition 3.5 The radius of convergence and corresponding error bounds in [22] are
given, respectively by

�∗
0 = 2(1 − μ)

δ(1 + 2μ)
(38)

and

‖xn+1 − p‖ ≤ δ(1 + 2μ)

2(1 − μ)
‖xn − p‖2. (39)

Our results (36) and (37) improve (38) and (39), respectively, sinceμ0 ≤ μ. These advantages
require the same computational effort as in [7,20–22], since in practice the computation of
a requires the computation of a0 as a special case.

Numerical Examples

We present three numerical examples to show that out results can be used to solve equa-
tions but earlier ones using even stronger contractivity type hypotheses cannot be used. The
first example involves the local convergence and the last two the semi-local convergence of
Stirling’s method.

Example 4.1 Let B = R
3, D = Ū (0, 1) and p = (0, 0, 0)T . Define function F on D for

w = (x, y, z)T by G(w) = w + F(w), where

F(w) =
(
ex − 1,

e − 1

2
y2 + y, z

)T

.

Then, the Fréchet-derivative is given by

G ′(w) =
⎡
⎣ ex 0 0

0 (e − 1)y + 1 0
0 0 1

⎤
⎦ + I.

Notice that using the (C) conditions, we get β0 = e + 1, γ = e − 1, d = e
1

β0γ , ‖A−1∗ ‖ = 1
and the radius ρ∗ is given by ρ∗ = 0.0883232487593. Notice that earlier results [7,20–22]
cannot apply, since G is not a contraction on D.

Example 4.2 Looking again at the motivational example at the introduction of this study,
let x0 = 0.1. Then hypotheses (H) are satisfied for a0 = 0.505, A0 = 0.99995, A−1

0 =
1.00005, η = 0.0099504, b0 = b = A−1

0 , c = 1, l0 = l = 5A−1
0 , K0 = l, since (4) gives

lη = 0.0497522 < 0.5 and R = 0.02. Hence,our Theorem 3.1 guarantees the convergence
of Stirling’s method to p = 0 starting at x0.
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Example 4.3 Let B = C[0, 1], D = Ū (p, 1) and consider the nonlinear integral equation
of the mixed Hammerstein-type [4,7] defined by

x(s) = λ(s) + ε

∫ 1

0
K (s, t)x(t)2dt, s ∈ [0, 1], x ∈ B, (40)

where the kernel P is a continuous function defined on the interval [0, 1] × [0, 1], ε is a
constant and λ(s) is continuous on [0, 1]. Equations of the form (40) appear in the kinetic
theory of gases or neutron transport [2,3,14]. Equation (40) can be written as

G(x) = x (41)

where G : C[0, 1] −→ C[0, 1] is defined by

G(x)(s) = λ(s) + ε

∫ 1

0
K (s, t)x(t)2dt (42)

The Fréchet-derivative of G is defined by

G ′(x)v(s) = 2ε
∫ 1

0
K (s, t)v(t)dt. (43)

We have ‖G ′(x)‖ ≤ 2|ε|‖d̃‖‖x‖, ‖G ′(G(x))‖ ≤ 2|ε|‖d̃‖‖G(x)||,
where d̃ = maxs∈[0,1] |

∫ 1
0 K (s, t)dt |.Choose x0 = x0(s) = 1, λ(s) = μ−εs and K (s, t) =

s for all (s, t) ∈ [0, 1] × [0, 1] and some μ ∈ R. Then, we have d̃ = 1, η = |1−μ|
1−2|μ||ε| , c =

a0 = 4|ε| and K0 = l0 = l = 3+8|ε|
1−2|μ||ε| provided that 2|μ||ε| < 1. If 4|ε| ≥ 1, then condition

(3) is not satisfied. Hence, the earlier results [7,20–22] cannot apply to solve (41).
However, our condition (4) becomes

2(3 + 8|ε|)|1 − μ||ε|
(1 − 2|με|)2 ≤ 1

2
. (44)

Choose ε = 0.255 and μ = 0.95. Then condition (3) is not satisfied but (44) is satisfied,
since 0.4836302 < 0.5 and 2|μ||ε| = 0.4845 < 1. Hence, the conclusion of Theorem 3.1
apply.

Conclusion

The local as well as the semi-local convergence of Stirling’s method is studied under not
necessarily contractive hypotheses on G or G ′ for approximating a fixed point p of operator
G in a Banach space setting. Our work extends the applicability of this method, since in all
earlier studies [7,20–22] very restrictive contractive condition (3) was assumed. Numerical
examples where earlier works cannot apply to solve equations but our work applies are also
presented in this study in both the local as well as the semi-local convergence case.
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