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a b s t r a c t

In hospitals, caregivers are trained to chronicle the subtle changes in the clinical conditions of a
patient at regular intervals, for enabling decision-making. Caregivers’ text-based clinical notes are a
significant source of rich patient-specific data, that can facilitate effective clinical decision support,
despite which, this treasure-trove of data remains largely unexplored for supporting the prediction
of clinical outcomes. The application of sophisticated data modeling and prediction algorithms with
greater computational capacity have made disease prediction from raw clinical notes a relevant
problem. In this paper, we propose an approach based on vector space and topic modeling, to
structure the raw clinical data by capturing the semantic information in the nursing notes. Fuzzy
similarity based data cleansing approach was used to merge anomalous and redundant patient data.
Furthermore, we utilize eight supervised multi-label classification models to facilitate disease (ICD-9
code group) prediction. We present an exhaustive comparative study to evaluate the performance
of the proposed approaches using standard evaluation metrics. Experimental validation on MIMIC-
III, an open database, underscored the superior performance of the proposed Term weighting of
unstructured notes AGgregated using fuzzy Similarity (TAGS) model, which consistently outperformed
the state-of-the-art structured data based approach by 7.79% in AUPRC and 1.24% in AUROC.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Disease prediction and quantification of patients’ health data
have been shown to have significant contributions in improving
clinical care and management [1]. Every year, over 30 million
patients visit hospitals in the United States alone [2], and 83%
of these hospitals utilize the Electronic Health Record (EHR) sys-
tem [3]. EHRs have seen widespread adoption due to the stipu-
lations of the Health Information Technology for Economic and
Clinical Health (HITECH) Act of 2009 [4]. Over recent years, with
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the rise in EHR implementation in the hospitals of developed
countries, application of machine and deep learning models to
patient data for the prediction of clinical outcomes such as causal
effect inference and survival analysis has sparked widespread
interest [5–8]. Owing to the availability of large, de-identified,
public healthcare databases such as MIMIC (Medical Information
Mart for Intensive Care II [9] and III [10]), mining patient data
to accurately assess the severity of illness and determining diag-
nostic measures for augmenting healthcare policies has become
a prominent area of research [11–13]. Healthcare data accessible
via structured EHRs is widely used in the existing Clinical Deci-
sion Support Systems (CDSSs) [14–16]. However, there is limited
adoption of these structured EHRs in developing countries, thus
leaving clinicians in such countries with no choice but to resort
to manual consumption of available clinical notes for causal effect
inference and decision-making [17].

Clinical notes maintained by caregivers like nurses, record
subjective assessments and crucial information concerning a pa-
tient’s state, which is mostly lost when transcribed into struc-
tured EHRs [18]. Mining and modeling such nursing notes for
extracting rich patient data and utilizing this to predict clin-
ical events and outcomes with machine learning models is a
challenging process, owing to their rawness, high-dimensionality,
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sparsity, complex temporal and linguistic structure, and presence
of rich medical jargon and abbreviations [18,19]. The efficacy
of using such raw clinical notes largely depends on the ability
to extract and consolidate the information embedded in them
effectively [20]. Furthermore, there is often a need for multiple-
label assignment (from a large set of potential labels) to a patient
record [21] due to the manifold nature of disease symptoms.
Disease prediction (ICD-92 code group prediction [22]) and risk
assessment via nursing notes can help in taking effective mea-
sures at the earliest signs of patient distress. Recognition of the
onset of disease and the determination of its risk using clinical
nursing notes, followed by effective communication and response
by interdisciplinary care team members could be both time-
and cost-efficient [23], which can also lead to reduced hospital
mortality rate [24].

Early works [25–29] applied machine learning techniques to
structure patient data in forecasting the length of stay in Inten-
sive Care Units (ICUs) and mortality prediction. In recent years,
practical progress in clinical machine and deep learning is bench-
marked using MIMIC databases, for clinical prediction tasks such
as in-hospital, short-term, and long-term mortality prediction,
length of stay prediction, phenotyping, and ICD-9 code group
prediction [30]. Johnson et al. [11] extracted a set of features
from the MIMIC-III database for the prediction of ICU mortality
and compared several existing works against Logistic Regression
(LR) and gradient boosting models. More recently, Purushotham
et al. [1] reported their performance on five clinical prediction
tasks (on MIMIC-III database) using deep learning models and
compared the performance with existing state-of-the-art meth-
ods and scoring systems.

Although some state-of-the-art methods benchmark machine
and deep learning models for several clinical prediction tasks on
MIMIC, they have neglected the rich patient information available
in the unstructured clinical nursing notes. In this paper, the
applicability of vector space models (with term weighting [31]
and Doc2Vec [32]), topic modeling (Hierarchical Dirichlet Process
(HDP) [33] and Latent Dirichlet Allocation (LDA) [34] with Topic
Coherence (TC) [35]) is studied to model this data. Our objective
is to measure their effectiveness in vectorizing and accurately
modeling the semantic relationships between the textual fea-
tures of unstructured nursing notes, for accurately predicting
the ICD-9 code groups. A fuzzy similarity based data cleansing
approach was designed to derive optimal data representations
and eliminate redundant information in the nursing notes, thus
improving the causal effect inference. We experimented with
eight supervised multi-label classification approaches including
K-Nearest Neighbors (KNN), Multi-Layer Perceptron (MLP), One-
vs-Rest (OvR) with KNN, OvR with LR, OvR with Support Vec-
tor Machines (SVM), Random Forest (RF), Hard Voting Ensemble
(HVE), and Stacking Ensemble (SE), to accurately predict the ICD-
9 code groups. Furthermore, we present an exhaustive study
to evaluate a variety of data cleansing (using similarity) and
modeling (using machine learning) approaches across several
standard evaluation metrics. The key contributions of our work
are summarized below:

• Design of a fuzzy token-based similarity matching approach
for unstructured clinical data. This is used for deriving op-
timal data representations and eliminating anomalous or
redundant data, due to which the cognitive burden is re-
duced, and an improvement in the clinical decision-making
process is observed.

2 International Classification of Diseases, ninth revision.

• Leveraging vector space and topic modeling to extract the
rich patient-specific information available in unstructured
clinical nursing notes to predict ICD-9 code groups accu-
rately. Experimental results show that our proposed super-
vised learning models consistently outperformed the state-
of-the-art models built on structured data.

• Design of an approach that utilizes unstructured clinical
text for the development of CDSSs, thus eliminating the
dependency on the availability of structured EHRs. This can
be crucial in countries where structured EHR adoption is not
widespread.

The rest of this paper is organized as follows: Section 2 pro-
vides an overview of the related work and reviews their advan-
tages and limitations. Section 3 describes the MIMIC-III database
and the preprocessing steps designed to generate optimal rep-
resentations from the clinical nursing notes. The experiments,
evaluation, and results are discussed in great detail in Section 4.
Finally, Section 5 concludes this paper with highlights on future
research possibilities.

2. Related work

An extensive body of research on using machine and deep
learning models for clinical predictions is available in the existing
literature. In this section, we discuss a few of these works to
provide an overview of the existing models and state-of-the-art
methods built on large healthcare datasets. In this discussion,
we also highlight the importance of accurate ICD-9 code group
prediction in modern healthcare systems.

Buchman [36] compared statistical and connectionist mod-
els for the prediction of clinical trajectory, including resource
and outcome utilization in surgical ICUs. However, much of this
work formulated the task of identifying patients at risk as binary
classification rather than regression. Other early works [37,38]
showed that machine learning models provide promising results
in predicting medical risk, mortality, and in forecasting the length
of stay in ICU. Early works [37,39] also established that feed-
forward neural networks almost always outperformed severity
scores and logistic regression in mortality risk prediction among
hospitalized patients. With recent advances in machine and deep
learning, there is widespread interest in applying these models
to predict healthcare outcomes accurately [40–42]. Dabek and
Caban [43] reported that several psychological conditions, in-
cluding depression, post-traumatic stress disorder, and anxiety,
could be improved using a neural network model. Che et al. [44]
designed a scalable feed-forward deep learning framework for
disease diagnosis that learns relevant clinical features based on
the prior knowledge from medical ontologies.

Some works that aimed at multi-label prediction of the diag-
nostic codes from clinical time series used feed-forward neural
networks [40], temporal Convolutional Neural Networks (CNNs)
[45], and Long Short Term Memory (LSTM) networks [46] to cap-
ture the co-morbidities in the hidden layers implicitly. Other re-
cent works [47–49] modeled clinical time series and disease data
by leveraging the power of deep learning approaches. In 2016,
novel deep learning architectures were proposed to model sur-
vival analysis as a time-to-event regression task [50,51]. Luo [52]
used sentence and segment LSTM models with word embeddings
to classify the relations in the nursing notes. More recently,
Rajkomar et al. [53] showed that novel neural network based
architectures including LSTM perform well in the prediction of
an extended length of stay, 30-day unplanned re-admission, in-
patient mortality, and diagnoses on general EHR data. Krishnan
and Kamath [17] used extreme learning machine architecture
with Word2Vec embedding for mortality prediction using un-
structured ECG text reports. Khin [54] developed a bi-directional
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LSTM with deep contextualized word embeddings and varia-
tional dropouts, and empirically validated the model’s superi-
ority in terms of performance and convergence. These previous
works demonstrate the power and efficacy of machine and deep
learning models in large healthcare applications.

The availability of large public healthcare databases such as
MIMIC-II and MIMIC-III has enabled healthcare researchers to
benchmark the developed machine and deep learning models in
the effective prediction of clinical events and outcomes. In 2016,
Pirracchio [55] presented that the super learner algorithm which
is an ensemble of various machine learning models outperforms
severity scores such as SOFA (Sepsis-related Organ Failure As-
sessment) [56], SAPS-II (Simplified Acute Physiology Score) [57],
and APACHE-II (Acute Physiologic Assessment and Chronic Health
Evaluation) [58] in ICU mortality prediction. The author’s work
underscored the superiority of machine learning models over tra-
ditional prognostic scores but the author did not benchmark the
obtained results against most recent machine and deep learning
models.

Recently, Johnson et al. [11] presented a case study on clinical
mortality prediction task, highlighting the challenges in replicat-
ing results reported by related and recent publications on MIMIC-
III. They reviewed 28 key existing works and compared the re-
ported performance against LR and gradient boosting models
using an extracted set of features from MIMIC-III. Furthermore,
the authors stressed the need for an improvement in the way of
reporting the performance of clinical prediction tasks, to account
for the substantial heterogeneity in the studies and to ensure
fairer comparison among approaches. Harutyunyan et al. [30]
proposed a comprehensive deep learning approach using multi-
task Recurrent Neural Networks (RNNs) and empirically bench-
marked their outcomes using four different clinical prediction
tasks on the MIMIC-III database. Their work showed promising
results for using deep learning models in clinical prediction. How-
ever, the authors only compared their obtained results against
standard LR model and LSTM deep learning model [59], and
excluded the comparison with machine learning models (specif-
ically, super learner) or severity scoring systems. Purushotham
et al. [1] presented an exhaustive set of benchmarking results on
several clinical tasks including the length of stay, phenotyping,
multiple versions of in-hospital mortality predictions, and ICD-
9 code group predictions using the MIMIC-III database. They
used LSTM-based deep architectures and compared their perfor-
mance with traditional machine learning approaches and severity
scoring systems on these tasks.

In 2019, Krishnan and Kamath [60] proposed a novel hy-
brid metaheuristic approach with genetic algorithm and extreme
learning machine for patient-specific mortality prediction that
outperformed various severity scoring systems and machine
learning models. However, their study uses large-scale struc-
tured lab event data for the clinical prediction task. In a parallel
work [61], ICU mortality prediction task was performed using
Word2Vec, Glove, and FastText embeddings of MIMIC-III nursing
notes. They used the RF classifier, and their data processing
and feature extraction are quite different from the approaches
followed in this paper. Stone [62] discussed the opportunities
of improving the triage accuracy in CDSSs, to effectively assist
the medical personnel in drawing inferences in high-pressure
situations with many distractions, where the patient history
concerning the sustained trauma is limited. This work extends the
efforts of the author by utilizing the patient-centric information
to identify high-risk patients, thus aiding the underlying CDSS
with increased triage accuracy, optimized patient outcomes, and
minimized risk of clinical deterioration. To automate the process
of ICD-9 coding, Zeng et al. [63] proposed a multi-scale deep
neural transfer framework which employs the transfer of (Medi-
cal Subject Headings (MeSH) domain knowledge to improve the

coding process. Huang et al. [64] employed state-of-the-art deep
neural models, including CNN, LSTM, and Gated Recurrent Unit
(GRU) to predict (top−10) ICD-9 code categories. However, these
works utilize discharge summaries of the MIMIC-III database
rather than the nursing notes—clinician’s notes are more rich,
informative, and patient-centric. Moreover, modeling nursing
notes can facilitate reliable billing, effective clinical decision sup-
port, and revising healthcare policies, while modeling discharge
summaries is only useful only in billing.

Many hospitals in developed countries, including the United
States, employ ICD-10 diagnostic coding systems, and hence there
is a need for the translation of legacy ICD-9 codes into more
specific ICD-10 concepts. Hernandez-Ibarburu et al. [65] studied
the incompatibilities between ICD-9 and ICD-10 coding schemes.
They presented a way of improving the translation of legacy data
(that employs ICD-9 codes) with an extended version of ICD-10
codes generated using selected ICD-9 codes, in turn improving
the mapping reliability. To achieve the mapping, they employed
general equivalence mappings and integration of certain ICD-
9 concepts within the hierarchical relations of ICD-10 codes.
Angiolillo et al. [66] also studied the effect of coding termi-
nology transitions on healthcare quality analysis. They reported
that the legacy metrics across ICD generations could be bridged
through equivalence mapping of ICD-9 concepts. Furthermore,
they hypothesized that developing novel metric definitions could
mitigate the complexity arising from equivalence mapping.

Our work explores a much-neglected, but an abundant source
of patient information, i.e., unstructured clinical notes, and ad-
vances the state-of-the-art methods in the literature by using
the rich information present in them, which is so often lost in
the structured EHR generation process. By utilizing the patient-
centric information to identify high-risk patients, this work en-
hances the underlying CDSS with optimized patient outcomes,
increased triage accuracy, and minimized risk of clinical deteri-
oration. Furthermore, our work presents an exhaustive compara-
tive study to evaluate the performance of various data cleansing
and modeling approaches across a variety of machine learning
models in the multi-label prediction of ICD-9 code groups. Ta-
ble 1 shows a detailed comparison of our proposed work with
the state-of-the-art works in the area of prediction of clinical
outcome(s) using the MIMIC-III database.

2.1. Motivation

In hospitals, especially in ICUs, a high patient-to-staff ratio and
advanced medical equipment are utilized for continuous support
and monitoring of critically ill patients. However, critical care
patients are often susceptible to varied complications arising from
advanced medical interventions, that can adversely affect their
mortality and morbidity [67]. Common infections include central
line-related bloodstream infection, ventilator-related pneumonia,
and catheter-related urinary tract infection, that arise from the
usage of invasive devices in ICUs. Surgical site infections resulting
from prior procedures performed on patients and acute renal
failure due to unrecognized drug interactions are also potential
risks [67]. Ventilator support provided to critical care patients
is often related to several complications including barotrauma,
short and long-term intubation, weaning errors, and gastroin-
testinal tract bleeding [68]. Additionally, ICU patients pose a risk
of acid–base problems, nutritional complications, and psycho-
logical disturbances [68]. Furthermore, ICU survivors are known
to suffer from neuro-psychiatric, quality of life, and long-term
physical impairments [69]. The minute variations in the condition
of ICU patients is recorded and monitored regularly by the trained
nursing staff. Hence, nursing notes are very data-rich voluminous
resources containing continuously documented subjective and
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Table 1
Comparison of this work with the state-of-the-art works in the prediction of clinical outcome(s) using the MIMIC-III database.
Work Data Approach(es) Modeling and classification Performance evaluation

Data source(s) Structure Volume Classification type(s) Feature modeling Classifier(s) Comparison Evaluation metric(s)

Harutyunyan
et al. [30]

Chart and lab
events data

Structured 42,276 ICU
stays

In-hospital mortality
prediction, decomposition
prediction, length of stay
prediction, and
phenotyping

Mortality: binary;
decomposition: binary;
length of stay: multi-class;
phenotyping: multi-label

17 selected clinical
variables (1)

Deep supervision,
multitask standard
LSTM, and multitask
channel-wise LSTM (3)

LR, standard LSTM,
and channel-wise LSTM
(3)

AUROC, AUPRC,
Kappa, and mean
absolute difference
(4)

Purushotham
et al. [1]

Lab, input,
output, and
chart events
data, and
prescriptions

Structured 35,627
admissions

In-hospital mortality
prediction, short- and
long-term mortality
prediction, length of stay
prediction, phenotyping,
and ICD-9 code group
prediction

Mortality: binary; length
of stay: multi-class;
phenotyping: multi-label;
ICD-9 code group:
multi-label

Three feature sets of
17, 20, and 135
features respectively
(3)

MLP, multimodal deep
learner, and RNNs (2)

Scoring methods and
super learner (2)

AUPRC and AUROC
(2)

Huang et al.
[64]

Discharge
summaries

Unstructured 59,652
summaries

Prediction of (top−10)
ICD-9 code categories
using state-of-the-art
deep learning models

Multi-label classification
via deep learning
approaches

TF-IDF, Word2Vec,
and word sequencing
with an embedding
matrix (3)

CNN, LSTM, and GRU
(3)

Prakash et al. [70], LR,
RF, and MLP (4)

ACC, micro F1,
AUPRC, precision@5,
and hamming loss (5)

Zeng et
al.[63]

Discharge
summaries

Unstructured 58,929
summaries

ICD-9 code assessment
via deep transfer
learning framework

Multi-label classification
via deep neural networks

Word embeddings (1) Transferring MeSH
domain knowledge
with sequential CNN
(1)

Hierarchy-based SVM,
flat SVM, and segmented
CNN (3)

Micro-average
precision,
micro-average recall,
and micro-average
F-measure (3)

This work Nursing notes Unstructured 223,556
notes

Term weighting of
voluminous nursing notes
aggregated using the fuzzy
similarity of the raw
clinical text for effective
ICD-9 code group
assessment

Multi-label classification
via machine learning
approaches

Term weighting,
Doc2Vec (500 and
1000), HDP with
BoW, HDP with term
weighting, and LDA
with TC (6)

KNN, MLP, KNN as
OvR, LR as OvR, SVM
as OvR, RF, HVE, and
SE (8)

Purushotham et al. [1],
Doc2Vec (500 and
1000), HDP with BoW,
HDP with term
weighting, and LDA
with TC (and their
respective variants of
naive aggregation) (12)

Accuracy, MCC,
AUROC, AUPRC, F1,
CE, and LRL (7)
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objective assessments concerning a patient’s state. Effective
modeling of such clinical text to aid in the early identification of
high-risk patients is of utmost importance, to provide prioritized
care and prevent further complications.

Due to practical constraints, the availability of resources in-
cluding medical equipment and staff in ICUs is, more often than
not, limited [71]. There is often a lack of accurate knowledge of
the etiology of ICU complications, leading to the inability of accu-
rate risk assessment and prevention of resulting complications; as
a result of which, in most cases, adequate clinical care can only be
provided after a complication develops. ICD-9 codes are designed
to code diseases into categories, essential in epidemiological stud-
ies [72], cost-effectiveness analysis, and determining healthcare
policies [73]. ICD-9 code group prediction is a preliminary step
to ICD-9 code prediction, requiring high prediction performance.
Since the patient encounters are grouped by diagnoses, ICD-9
code groups facilitate research, along with tracking and billing,
by reporting on severity, symptoms, and use of resources across
agencies. Furthermore, disease-specific staging systems could be
beneficial towards capturing the severity, symptoms, and use
of resources within a single code group. However, the existing
state-of-the-art model [1] built on structured EHR data reported
modest performance in ICD-9 code group prediction with an
AUROC score of 0.7772 and AUPRC score of 0.6008. Thus, there
is a need for the development of an effective modeling strategy
to facilitate accurate ICD-9 code group prediction, in turn aiding
in the accurate determination of ICD-9 codes.

3. Materials and methods

In this section, we first discuss in brief, the statistics of the
MIMIC-III database. The detailed overview of the Natural Lan-
guage Processing (NLP) pipeline architecture used in the task of
ICD-9 code group prediction is shown in Fig. 1. Then, we elucidate
on the preprocessing steps employed to extract features for ICD-9
code group prediction as a multi-label classification task.

3.1. Dataset description and cohort selection

MIMIC-III is a freely accessible large database developed by
the Massachusetts Institute of Technology Lab for Computational
Physiology. It encompasses diverse and comprehensive
de-identified health-related data of over 40,000 critical care pa-
tients at the Beth Israel Deaconess Medical Center, Boston, Mas-
sachusetts between June 2001 to October 2012. The database
contains crucial patient information including vital sign mea-
surements, demographics, laboratory test results, medications,
procedures, imaging reports, caregiver (nursing) notes, and in and
out of hospital mortality.

MIMIC-III database contains 2, 083, 180 note events, of which
223,556 are nursing notes of 7704 distinct ICU patients (subjects).
Details of the nursing note text corpus are summarized in Table 2.
At present, we considered two criteria to select the MIMIC-III
subjects in the preparation of our datasets. Firstly, the subjects
with age less than 15 (neonates) were identified using the age
at the time of admission to the ICU. Based on the existing litera-
ture [1,11], only adult subjects (age 15 or above) are considered
for the study. Secondly, for each MIMIC-III subject, only their first
admission to the hospital was considered, and all later admissions
were discarded. This was done to ensure the prediction with the
earliest detected conditions (faster risk prediction), to avoid any
information loss, and to ensure similar experimental settings as
in existing literature [1,11,17]. Fig. 2c outlines the distribution of
the number of code group mismatches across patients’ first ad-
mission to their later admissions. From Fig. 2c it can be observed

Table 2
Statistics of the clinical nursing note text corpus.
Parameter Total Average

Clinical nursing notes 223,556 –
Sentences in the nursing notes 5,244,541 23.46
Words in the nursing notes 79,988,065 357.80
Unique words in the nursing notes 715,821 3.20

that the code groups in the later admissions of over 94% of the
patient nursing notes are the same as those occurring in their
first hospital admission. Owing to this, we decided to consider
only the first admission of a MIMIC-III subject to a hospital, with
no loss of information.

3.2. Data extraction

The MIMIC-III (v1.4) database consists of 26 relational tables
in total. For the purpose of this study, the following four ta-
bles were used to extract the selected cohort data: noteevents
consisting of several kinds of reports and notes including ECG re-
ports, radiology reports, nursing notes, and discharge summaries
in an unstructured text form; admissions reports information
concerning the patient’s admission to the hospital and is used
for the time of the subject’s admission to the ICU; patients,
containing the charted data for all critical patients, from which
the patients’ date-of-birth is obtained for the computation of the
age of patients; diagnoses_icd, comprises the ICD-9 diagnoses
of the patients. Most relevant healthcare features and data is
present in these tables, and therefore these tables are selected
to prepare datasets for the task of ICD-9 code group prediction.
The statistics of the data extracted from the MIMIC database is
shown in Fig. 2. With the patient cohorts presented in Section 3.1,
the dataset extracted from the selected tables contained nursing
notes corresponding to 7638 patients with the median age of 66
years (Quartile Q1 = 52 years, Quartile Q3 = 78 years).

3.3. Data cleansing, aggregation, and preprocessing

Due to various factors including outliers, noise, missing values,
incorrect or duplicate records, and others, the data extracted
from the MIMIC-III database has erroneous entries. The following
three issues with the extracted data were identified and handled
accordingly. Firstly, the erroneous entries in nursing notes with
the iserror attribute of the noteevents table set to one were iden-
tified and removed. Secondly, some subjects that had duplicate
records were identified, and the duplicate entries were dedupli-
cated. The resulting data obtained by handling erroneous entries
corresponded to 6532 MIMIC-III subjects. Finally, a MIMIC-III
subject had multiple nursing notes with different ICD-9 code
groups, which were merged or purged using a fuzzy token-based
similarity approach.

3.3.1. Fuzzy token-based similarity merging
Multiple nursing notes of a MIMIC-III subject have to be

merged to enable multi-label ICD-9 code group classification.
Fig. 3 shows the heavy-tailed distribution of nursing notes across
various patients. It can also be observed that the extracted MIMIC-
III patient cohort has an average of 176.49 nursing notes per
patient, with 4183 patients having more than fifty nursing notes
composed of over 17,890 words on an average. Such volumi-
nous nursing notes often include many similar terms which
could significantly affect the vector representations. To handle
the voluminosity and near-duplicate nursing notes of a patient,
Monge-Elkan (ME) [74], a token-based fuzzy similarity scoring
scheme is integrated with Jaro [75] internal scoring scheme and



6 T. Gangavarapu, A. Jayasimha, G.S. Krishnan et al. / Knowledge-Based Systems 190 (2020) 105321

Fig. 1. NLP pipeline used to predict the ICD-9 code group using unstructured clinical nursing notes.

Fig. 2. Statistics of the data extracted from the MIMIC-III database.
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Fig. 3. The distribution of nursing notes across various MIMIC-III subjects (red dashed line exhibits the distribution at 50 nursing notes).

Fig. 4. Two sample de-identified nursing notes from the MIMIC-III database. The two nursing notes are quite similar, while the only new content is the updated
response (indicated as red italicized text).

used as a decision-making mechanism. ME similarity is used
to handle clinical abbreviations, alternate names, and medical
jargon. Jaro similarity is used as an internal scoring scheme to
handle typographical errors and to obtain a normalized similarity
score between 0 and 1. Given two nursing notes ηi and ηj with
|ηi| and |ηj| tokens (C

(i)
k s and C(j)

l s) respectively, their ME similarity
score with Jaro is,

MEJaro(ηi, ηj) =
1

|ηi|

|ηi|∑
k=1

max
{
Jaro(C(i)

k , C(j)
l )

}|ηj|

l=1
(1)

where the Jaro similarity score of two given clinical terms (to-
kens) Ci of length |Ci| and Cj of length |Cj| with m matching
characters and t transpositions is,

Jaro(Ci, Cj) =

{
0, if m = 0
1
3

(
m

|Ci|
+

m
|Cj|

+
2m−t
2m

)
, otherwise

(2)

The nursing notes of a patient are processed in the order of
oldest to the most recent. Based on the predetermined similarity
threshold (θ ) ranging between 0 and 1, a pair of nursing notes
(η(k)

i , η
(k)
j ) corresponding to a patient (P(k)) are merged only if

MEJaro(η
(k)
i , η

(k)
j ) is less than θ , else η

(k)
j is retained and η

(k)
i is

purged, thus maintaining only the latest of the two nursing notes.
Note that, similarity merging and purging applies only to nursing
notes and not to the ICD-9 code groups. Corresponding ICD-9
codes across various nursing notes of a patient are merged to
enable multi-label classification. The resultant nursing note for a
patient P(k) after merging is hereafter referred to as the aggregate
nursing note of that patient. For the purpose of this research, we
have empirically determined the fuzzy-similarity θ to be 0.825
using grid search.

Consider two sample nursing notes (η(p)
i and η

(p)
j ) of a patient

(p) extracted from the MIMIC-III database, recorded at times T
(shown in Fig. 4a) and T ′ > T (shown in Fig. 4b) respectively.
It can be observed that both the recorded nursing notes are
quite similar—the nursing note recorded at time T ′ records all
the details in nursing note η

(p)
i , along with additional ‘response’

concerning the patient’s state. To handle the voluminosity of the
nursing notes and delete the near-duplicate nursing notes, we
compute the ME similarity (with internal Jaro similarity scoring)
score using Eq. (1). The nursing notes shown in Fig. 4 have an ME
similarity score of 0.85, which is higher than the preset threshold
of 0.825. Thus, note η

(p)
j is retained, and note η

(p)
i is purged.

3.3.2. Preprocessing
The next phase in the NLP pipeline is to preprocess the nursing

notes to achieve data (text) normalization. Transformation of text
into a canonical form allows for the separation of concerns and
helps maintain consistency. Preprocessing essentially includes
tokenization, stopword removal, and stemming/lemmatization.
First, multiple spaces, special characters, and punctuation marks
are removed. During tokenization, the clinical notes’ text is split
into several smaller tokens (words). Stopwords from the gen-
erated tokens are removed using the NLTK English stopword
corpus [76]. Furthermore, character case folding is performed,
and references to images (file names such as ‘scanImage.png ’)
are removed. It is to be noted that, token-length based token
removal was not performed to avoid the loss of important med-
ical information (such as ‘CT ’ in ‘CT Scan’). Finally, stemming
was performed for suffix stripping, followed by lemmatization
to convert the stripped tokens to their base forms. To eliminate
overfitting and lower the computational complexity, the tokens
appearing in less than ten nursing notes were removed before
any further processing.
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Fig. 5. Correlations between top ten terms’ membership in d = 5 topic modeling clusters obtained using aggregated nursing notes (using fuzzy similarity θ = 0.825).

3.4. Feature extraction

Let P be the set of all patients. A patient (P(k)
∈ P) has a

sequence of nursing notes, S(k)
= {η

(k)
i }

N(k)

i=1 , with N (k) total nursing
notes (η(k)

i s).
Each nursing note constitutes a variable length of tokens from

a sizeable vocabulary V, and each patient has a variable number
of such notes, thus making S(k) very complex. Thus, the transfor-
mation (T ) of unstructured clinical text (S(k)) into an easier-to-use
form (such as fixed length vector of tokens) is critically important.
Thus, an effective mapping from the S space to R is attempted.

T : S(k)
−→ Rd (3)

The patient information is transformed into a machine pro-
cessable form, P (k)

= T (S(k)), P (k)
∈ Rd. To tackle the curse

of dimensionality [77], usually d ≪ |V|. Although traditional
dictionary and rule-based NLP transformations show good per-
formance in certain applications, they are not automated and
need manual effort to adapt them in various domains [17]. To
improve the performance and effectiveness of the classification
models, optimized vector representations of the underlying cor-
pus is mandatory. To enable an exhaustive comparative study, we
use six data modeling approaches as described below.

3.4.1. Vector space modeling of aggregated clinical notes
A prominent transformation of the Bag of Words (BoW) that

weighs each token in an unsupervised way, is the term weighting
scheme. It is a numerical statistic that captures both the impor-
tance and specificity of a term in the given vocabulary. The weight
(W (i)

m ) of a term w(i)
m (of total |w(i)

| terms) in a nursing note ηi (of
total N nursing notes) occurring f (i)m times is given by,

W (i)
m =

{(
1 + log2 f

(i)
m

)(
log2

N
|w(i)|

)
, if f (i)m > 0

0, otherwise
(4)

The weight of every term in a patient’s aggregate nursing note
(P(k)) is computed to obtain a vector V (k)

∈ R|V|. Now, the patient
information in machine processable form, P (k)

term_weighting = V (k).
Due to the one-hot encoding of every word in BoW models,

the resulting models suffer from high dimensionality and sparsity.
Moreover, BoW models do not capture the intuition of seman-
tically similar nursing notes having similar representations. For
example, two terms with a close semantic relationship (as in ‘Can-
cer ’ and ‘Melanoma’) could be mapped to two entries with large

distance. Vector space embeddings cope with these shortcomings
by efficiently learning the term representations in a data-driven
manner. An influential work in this domain is the Doc2Vec or
Paragraph Vector (PV) network. Doc2Vec aims at numerically rep-
resenting variable length documents as fixed length low dimen-
sional document embeddings (vectors). Doc2Vec is essentially a
neural network with one shallow hidden layer that learns the
distributed representations, to provide a content-related mea-
surement. It incorporates semantic textual features obtained from
the nursing notes text corpus. The PV Distributed Memory (PV-
DM) variant of Doc2Vec was chosen over PV Distributed BoW
(PV-DBoW) due to its ability to preserve the word order in the
nursing notes and its comparatively superior performance [32].
The implementations in the Python Scikit-learn [78] and Gen-
sim packages [79] were used to extract term weighting and
Doc2Vec style textual features on the transcribed clinical words
(extracted from aggregate nursing notes). For an exhaustive anal-
ysis, Doc2Vec dimension sizes of 500 (trained for 25 epochs) and
1000 (trained for 50 epochs) were used.

3.4.2. Topic modeling of aggregated clinical notes
Topic modeling can be used for finding a set of terms (topics)

from a collection of documents that best represents the docu-
ments in the corpus. Traditional models of information retrieval
such as Latent Semantic Analysis (LSA) [80] use a low approx-
imation of BoW/term weight matrix by calculating the singular
value decomposition of the matrix. Such models usually deal
with complex matrix computations. A variant of the LSA is the
probabilistic LSA [81] that combines co-existing and implicit topic
data into probabilistic statistics to find potential relationships
among terms.

A popular cluster analysis approach, LDA is a generative topic
model based on the Bayesian framework of a three-layer struc-
ture (documents, topics, and terms). LDA generates a soft prob-
abilistic and flat clustering of terms into topics and documents
into topics. LDA posits that each (aggregate) nursing note η

(k)
i of

a patient P(k) and each term belongs to a set of d (≪ |V|) clusters
(topics) T, with some probability ρ. Thus, each nursing note is
transformed as,

η
(k)
i −→ T

(k)
i ∈

[
ρ
(k)
ij

]d

j=1
where

d∑
j=1

ρ
(k)
ij = 1 and ρ

(k)
ij ≥ 0∀j (5)

Similar to other clustering approaches, there is no simple way
to determine the correct number of d LDA clusters. To cope with



T. Gangavarapu, A. Jayasimha, G.S. Krishnan et al. / Knowledge-Based Systems 190 (2020) 105321 9

Table 3
Statistics of the ICD-9 code group labels extracted from MIMIC-III nursing notes.
ICD-9 group ICD-9 code range Diagnosis #Patients (out of 6532)

1 001 – 139 Parasitic and infectious diseases 1856
2 140 – 239 Neoplasms 1319
3 240 – 279 Endocrine, immunity, metabolic, and nutritional 4785
4 280 – 289 Blood-forming organs and blood 2705
5 290 – 319 Mental disorders 2614
6 320 – 389 Sense organs and nervous system 2611
7 390 – 459 Circulatory system 5393
8 460 – 519 Respiratory system 3301
9 520 – 579 Digestive system 2903

10 580 – 629 Genitourinary system 2912
11 630 – 677 Childbirth, pregnancy, and puerperium 31
12 680 – 709 Subcutaneous tissue and skin 781
13 710 – 739 Connective tissue and musculoskeletal system 1637
14 740 – 759 Congenital anomalies 269
15 780 – 789 Symptoms 2432
16 790 – 796 Nonspecific abnormal findings 647
17 797 – 799 Unknown or ill-defined causes of mortality and morbidity 299
18 800 – 999 Poisoning and injury 2978
19 Ref and V codes Reference codes and supplemental V codes 4853

this issue, more complex models such as Hierarchical Bayesian
Non-parametric (HDP) which automatically determine the num-
ber of clusters through posterior inference can be used. HDP is
a hierarchical Bayesian non-parametric model that can model
mixed-membership data with potentially infinite terms, in an
unsupervised way. In LDA, only the mixture of topics is drawn
from the Dirichlet distribution, while in HDP, a Dirichlet process
is used to capture the uncertainty in the number of terms. For the
ease of interpretation, the top ten terms’ membership with five
HDP clusters is shown in Fig. 5a.

Probabilistic models are commonly evaluated by measuring
the log-likelihood of unseen documents. As an alternative to
HDP, the methods of average similarity, perplexity [82], and TC
between topics can also be used to derive the optimal num-
ber of topics. Perplexity measures the quality and generalization
ability of the model. However, perplexity may not always cor-
relate with human judgment and some times the two are anti-
correlated [83]. TC is a way to evaluate topic models with a
much greater guarantee of human interpretability. In this paper,
we adopt LDA with TC as it accounts for the semantic similarity
between high scoring terms. Cv , a variant of coherence measure-
ment is used in this study, as it accounts for high correlation with
all the available human ranking data [35]. First, Cv segments each
of the topic’s top K tokens into token pairs. Then, it incorporates
a Boolean sliding window approach in which for every window of
size s sliding at one token per step, a virtual document is created.
Token or token pair probabilities are computed from the total
count of virtual documents. To some degree, the sliding window
approach captures the proximity between tokens. Then, a con-
firmation (similarity) measure is used to quantify how strongly
a token set supports another token set. Normalized point-wise
mutual information [84] is used in this paper as a confirmation
measure due to its high correlation with human interpretability.
All the confirmation measures are averaged to obtain the final
coherence score. The higher the coherence value, the stronger is
the model’s human interpretability and generalization ability. For
the ease of interpretation, the top ten terms’ membership with
five LDA (with TC) clusters is shown in Fig. 5b.

The implementations available in the Python Gensim package
were used to implement LDA with TC and HDP models. To provide
exhaustive analysis, HDP with truncation level set to 150 was
modeled with both BoW and term weighting. Alternatively, LDA
(set to 100 topics) with TC was modeled with BoW representa-
tions. Furthermore, the number of LDA topics was determined
by comparing the TC scores of several LDA models obtained by
varying the number of LDA topics from 2 to 500 in the increments
of 100.

4. ICD-9 code group prediction

ICD-9 codes are a taxonomy of diagnostic codes that are used
by doctors, public health agencies, and health insurance com-
panies across the world to classify diseases and a wide variety
of infections, disorders, symptoms, causes of injury, and others.
Owing to the high granularity of ICD-9 codes, researchers sug-
gested differentiating between category-level (group) predictions
and full-code predictions [85]. Each ICD-9 code group includes a
set of similar diseases, and almost every health condition can be
represented with a unique ICD-9 code group. In this study, we fo-
cus on ICD-9 code group predictions as a multi-label classification
problem, with each patient’s nursing note mapped to more than
one group. All the ICD-9 codes assigned to a patient’s admission
are grouped into 19 diagnosis classes.3 In this study, the Ref and
V codes are classified into the same code group to lower the
computational cost of training. Table 3 presents the statistics of
ICD-9 code group labels extracted from MIMIC-III nursing notes.

4.1. ICD-9 disease code group prediction

In this section, we discuss the prediction algorithms employed
to achieve the task of ICD-9 code group multi-label classifica-
tion. We experimented with eight different prediction models
conforming to various algorithmic classes including algorithm
adaptation based, problem transformation based, and ensemble
models. The implementations available in the Python Scikit-learn
package were used to make predictions.

4.1.1. Algorithm adaptation classification models
The models in this class adapt existing machine learning

algorithms for the task of multi-label classification. We used
two models including K-Nearest Neighbors (KNN) and Multi-
Layer Perceptron (MLP), for the prediction of ICD-9 code groups.
KNN [86] is a non-parametric instance-based (non-generalizing)
lazy learner used in regression and classification tasks. In KNN
classification, the output class membership is determined by the
majority vote of its K closest neighbors. In the sense of multi-
label classification, KNN first identifies the K closest neighbors
and then, based on the statistical inferences gained from the
neighboring class label sets, maximum a posteriori principle is
used to determine the class label set of an unseen instance. Let
S = {η(i)

}
|P|

i=1 be the set of all aggregate notes of |P| patients, and Y

3 http://tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx.

http://tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx
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denote the set of all possible class labels. Each nursing note η(i) is
mapped to a class label set Y(i)

⊆ Y. For an unseen instance η(m),
let K (m) denote the K closest neighbors. Membership counting
function for cth class label (c ∈ Y), based on K-closest neighbors
can be computed as,

Countm(c) =

K (m)∑
n=1

Y
(n)(c), where Y

(n)(c) =

{
1, if c ∈ Y(n)

0, otherwise
(6)

Let E(Countm(c)) denote the event (E(·)) that Countm(c)
neighbors of η(m) belong to the cth class. Then, using the maxi-
mum a posteriori principle, we obtain the membership of a class
label (c) as,

Y
(m)(c) = argmax

s∈{0,1}
P(H (c)

s |E(Countm(c))),

H (c)
s =

{
E(c ∈ Y(m)), if s = 1
E(c ̸∈ Y(m)), otherwise

(7)

Thus, finding all class membership values will help in ob-
taining the multi-label classification of an unseen nursing note.
In our work, 15 closest neighbors were considered (empirically
determined using grid search), where closeness is weighted as the
inverse of the distance between instances.

MLP (vanilla neural network) [87] is a feed-forward neural
artificial network with an input layer, one or more hidden layers,
and one prediction layer at the top, for classification. The first
layer takes η(m) with p′ clinical terms as the input and uses the
output of each layer as the input to the following layer. The
transformation from a layer l with the output O(l) to the following
layer with weights W (l+1) and biases b(l+1) can be represented as,

O
(l)

−→ W (l+1)
O
(l)

+b(l+1)
−→ g(W (l+1)

O
(l)

+b(l+1)) −→ O
(l+1) (8)

where g is a non-linear activation function such as a tanh, logistic
sigmoid, or ReLU [88]. In training, to update the weights and
biases, MLP uses a supervised approach called Backpropagation
(BP) [89]. BP is used to calculate the gradient of the loss function
to update weights, which aids the MLP to learn the internal rep-
resentations, allowing it to learn any arbitrary mappings within
the network. In the case of multi-label classification, while the
forward pass remains the same, the classical BP algorithm uses
a global error function that addresses the dependencies between
the class labels. Fig. 6 shows a one hidden layer feed-forward MLP
network for multi-label classification. In this study, we use vanilla
neural networks with one hidden layer of 75 nodes and a ReLU
activation function, empirically determined using grid search.

4.1.2. Problem transformation classification models
These classification models aim at transforming an existing

multi-label task into one or more single-label regression or classi-
fication tasks. Three classifiers including KNN, LR, and SVM were
utilized as OvR classifiers in the prediction of ICD-9 diagnosis
code groups. LR or maximum-entropy classification [90] is a
discriminative model that models the probabilities of possible
outcomes using a logistic function. The model posits that,

P(Y (i)
|ρ(i)) = ρ(i)Y

(i)
(1 − ρ(i)1−Y(i)

), where ρ(i)
=

1
1 + exp(−xiβ)

(9)

where Y (i) is a single outcome variable corresponding to xi and
following a Bernoulli probability distribution, that draws a value
of 1 with ρi probability. The unknown parameter β = (β0, β1

′)′ is
an (m×1) vector, where β0 is the scalar intercept (constant term),
and β1 is an (m − 1 × 1) vector with elements corresponding to
m − 1 explanatory variables of xi. To achieve fast convergence

Fig. 6. Multi-label classification neural network model with p input clinical
terms (Cis), a hidden layer with q nodes (His), and r possible ICD-9 code groups
(Yis).

to the optimal solution, we used the stochastic average gradient
solver.

SVM [91] is also a discriminative approach that classifies by
constructing hyperplane(s) in a high-dimensional space. For a
given set of linear separable training instances, SVM finds a linear
rule that maximizes (optimizes) the geometric margin (street
width). In practice, most of the training sets are not usually
linearly separable. Now, a trade-off between minimizing pre-
diction error and maximizing the geometric margin must be
incorporated. Kernels such as tanh, sigmoid, Radial Basis Function
(RBF) [92], and others are generally used to transform from the
linearly inseparable space to a higher dimensional space where
the points could be separated. The RBF kernel on two samples
η(i) and η(j) can be defined as,

KRBF(η(i), η(j)) = exp(−γ ∥η(i)
− η(j)

∥
2
) (10)

where γ measures the spread of the kernel. The RBF kernel de-
fines a space that is larger than linear or polynomial kernels and
has properties such as being stationary, isotropic, and infinitely
smooth. Thus, in this analysis, we used SVM with an RBF kernel
with γ set to 1/#features.

OvR [93] prediction strategy essentially transforms the multi-
label classification problem into multiple binary relevance tasks.
OvR trains a classifier for each class (c ∈ Y), with the sam-
ples (aggregate nursing notes, (η(i), Y(i))) of that class as positive
(c ∈ Y(i)) and the remaining samples as negative (c ̸∈ Y(i)). The
base classifiers produce a real-valued confidence score for the
prediction decision. Then, for an unseen instance, the combined
model predicts all the class labels for which the corresponding
base classifiers predicted a positive result.

4.1.3. Ensemble classification models
Ensemble learning approaches help in the improvement of the

prediction performance by combining several learning models.
Three ensemble prediction approaches including Random Forest
(RF), Hard-voting Ensemble (HVE), and Stacking Ensemble (SE)
were employed in the classification of ICD-9 diagnostic code
groups. RF or decision tree ensembles [94] predict by construct-
ing multiple Classification And Regression Trees (CARTs) during
training and predict the output class as a function of the outputs
of individual trees for the test data. At each node of the CART, a
random subset of input parameters (usually of size

√
#features)

are chosen, and the best feature is selected based on the splitting
condition. The splitting conditions are based on the threshold



T.Gangavarapu,A.Jayasim
ha,G.S.Krishnan

et
al./

Know
ledge-Based

System
s
190

(2020)
105321

11

Table 4
ICD-9 code group prediction using nursing notes of MIMIC-III (using fuzzy similarity with θ = 0.825).
Data model Classifier Performance scores

ACC AUROC AUPRC MCC F1 CE LRL

TAGS
(6532×14,650)

KNN 0.7857 ± 0.0011 0.7681 ± 0.0010 0.5904 ± 0.0016 0.5286 ± 0.0019 0.6688 ± 0.0017 18.0936 ± 0.0501 0.4181 ± 0.0018
MLP 0.7947 ± 0.0009 0.7677 ± 0.0013 0.5987 ± 0.0018 0.5366 ± 0.0020 0.6664 ± 0.0018 18.2327 ± 0.0574 0.4226 ± 0.0024
KNN as OvR 0.7725 ± 0.0018 0.7645 ± 0.0011 0.5738 ± 0.0021 0.5108 ± 0.0024 0.6619 ± 0.0017 17.9385 ± 0.0791 0.4204 ± 0.0020
LR as OvR 0.8239 ± 0.0011 0.7868 ± 0.0011 0.6476 ± 0.0011 0.5953 ± 0.0018 0.6981 ± 0.0016 18.2849 ± 0.0643 0.3978 ± 0.0021
SVM as OvR 0.7413 ± 0.0014 0.6801 ± 0.0011 0.5249 ± 0.0014 0.4007 ± 0.0024 0.5207 ± 0.0019 19.5542 ± 0.0206 0.5880 ± 0.0018
RF 0.7630 ± 0.0012 0.6926 ± 0.0009 0.5486 ± 0.0014 0.4388 ± 0.0022 0.5450 ± 0.0016 19.5678 ± 0.0238 0.5728 ± 0.0014
HVE 0.8171 ± 0.0010 0.7781 ± 0.0007 0.6367 ± 0.0007 0.5786 ± 0.0007 0.6837 ± 0.0009 18.5659 ± 0.0614 0.4132 ± 0.0014
SE 0.7972 ± 0.0009 0.7698 ± 0.0015 0.6027 ± 0.0021 0.5421 ± 0.0016 0.6701 ± 0.0017 18.2673 ± 0.0630 0.4195 ± 0.0029

Doc2Vec 500
(6532×500)

KNN 0.7399 ± 0.0020 0.6628 ± 0.0027 0.5247 ± 0.0021 0.3949 ± 0.0041 0.4802 ± 0.0055 19.5644 ± 0.0278 0.6363 ± 0.0058
MLP 0.7368 ± 0.0009 0.7102 ± 0.0012 0.5240 ± 0.0020 0.4150 ± 0.0023 0.5911 ± 0.0021 18.8039 ± 0.0450 0.5078 ± 0.0021
KNN as OvR 0.7377 ± 0.0016 0.6674 ± 0.0024 0.5206 ± 0.0015 0.3888 ± 0.0030 0.4902 ± 0.0052 19.5144 ± 0.0269 0.6197 ± 0.0055
LR as OvR 0.7950 ± 0.0013 0.7579 ± 0.0011 0.5970 ± 0.0018 0.5262 ± 0.0023 0.6607 ± 0.0017 18.6491 ± 0.0375 0.4400 ± 0.0019
SVM as OvR 0.8059 ± 0.0013 0.7666 ± 0.0010 0.6184 ± 0.0012 0.5514 ± 0.0022 0.6743 ± 0.0015 18.7379 ± 0.0462 0.4273 ± 0.0017
RF 0.7484 ± 0.0013 0.6787 ± 0.0010 0.5356 ± 0.0010 0.4142 ± 0.0021 0.5190 ± 0.0018 19.6208 ± 0.0225 0.5991 ± 0.0019
HVE 0.8013 ± 0.0014 0.7636 ± 0.0011 0.6084 ± 0.0016 0.5407 ± 0.0024 0.6691 ± 0.0012 18.6652 ± 0.0149 0.4312 ± 0.0015
SE 0.8047 ± 0.0014 0.7652 ± 0.0011 0.6164 ± 0.0008 0.5482 ± 0.0023 0.6715 ± 0.0014 18.7367 ± 0.0483 0.4296 ± 0.0017

Doc2Vec 1000
(6532×1,000)

KNN 0.7322 ± 0.0018 0.6543 ± 0.0030 0.5104 ± 0.0016 0.3741 ± 0.0036 0.4650 ± 0.0062 19.6614 ± 0.0478 0.6494 ± 0.0072
MLP 0.7458 ± 0.0011 0.7170 ± 0.0013 0.5307 ± 0.0011 0.4291 ± 0.0025 0.5989 ± 0.0015 18.8467 ± 0.0374 0.4988 ± 0.0021
KNN as OvR 0.7376 ± 0.0017 0.6712 ± 0.0029 0.5189 ± 0.0013 0.3883 ± 0.0035 0.5020 ± 0.0057 19.5014 ± 0.0415 0.6074 ± 0.0068
LR as OvR 0.7735 ± 0.0015 0.7414 ± 0.0017 0.5667 ± 0.0015 0.4845 ± 0.0030 0.6374 ± 0.0019 18.7376 ± 0.0526 0.4623 ± 0.0029
SVM as OvR 0.8067 ± 0.0012 0.7693 ± 0.0013 0.6187 ± 0.0012 0.5542 ± 0.0021 0.6762 ± 0.0016 18.6286 ± 0.0472 0.4227 ± 0.0023
RF 0.7464 ± 0.0012 0.6760 ± 0.0010 0.5334 ± 0.0014 0.4102 ± 0.0020 0.5136 ± 0.0018 19.6269 ± 0.0248 0.6045 ± 0.0020
HVE 0.7904 ± 0.0015 0.7562 ± 0.0018 0.5922 ± 0.0017 0.5201 ± 0.0033 0.6566 ± 0.0022 18.6607 ± 0.0545 0.4413 ± 0.0033
SE 0.8052 ± 0.0015 0.7680 ± 0.0013 0.6164 ± 0.0009 0.5510 ± 0.0025 0.6738 ± 0.0016 18.6683 ± 0.0402 0.4249 ± 0.0023

HDP with BoW
(6532×150)

KNN 0.7718 ± 0.0009 0.7422 ± 0.0009 0.5723 ± 0.0017 0.4892 ± 0.0018 0.6318 ± 0.0014 18.7632 ± 0.0514 0.4629 ± 0.0014
MLP 0.7912 ± 0.0011 0.7557 ± 0.0012 0.5974 ± 0.0014 0.5255 ± 0.0019 0.6502 ± 0.0019 18.6689 ± 0.0330 0.4464 ± 0.0022
KNN as OvR 0.7682 ± 0.0008 0.7397 ± 0.0010 0.5661 ± 0.0019 0.4822 ± 0.0018 0.6275 ± 0.0014 18.7482 ± 0.0380 0.4666 ± 0.0016
LR as OvR 0.7815 ± 0.0010 0.7417 ± 0.0011 0.5850 ± 0.0014 0.5017 ± 0.0020 0.6251 ± 0.0016 18.9294 ± 0.0476 0.4729 ± 0.0020
SVM as OvR 0.7511 ± 0.0011 0.6875 ± 0.0008 0.5410 ± 0.0015 0.4245 ± 0.0019 0.5284 ± 0.0017 19.4253 ± 0.0279 0.5827 ± 0.0015
RF 0.7574 ± 0.0015 0.6915 ± 0.0014 0.5486 ± 0.0017 0.4359 ± 0.0028 0.5412 ± 0.0023 19.5291 ± 0.0314 0.5751 ± 0.0026
HVE 0.7826 ± 0.0013 0.7404 ± 0.0015 0.5869 ± 0.0008 0.5029 ± 0.0022 0.6229 ± 0.0020 18.9688 ± 0.0626 0.4767 ± 0.0029
SE 0.7851 ± 0.0008 0.7453 ± 0.0008 0.5874 ± 0.0014 0.5083 ± 0.0013 0.6317 ± 0.0006 18.7915 ± 0.0498 0.4660 ± 0.0014

HDP with term weighting
(6532×150)

KNN 0.7116 ± 0.0015 0.6723 ± 0.0018 0.4887 ± 0.0023 0.3479 ± 0.0034 0.5254 ± 0.0031 19.3027 ± 0.0297 0.5724 ± 0.0028
MLP 0.7409 ± 0.0016 0.6779 ± 0.0027 0.5245 ± 0.0014 0.3997 ± 0.0028 0.5158 ± 0.0056 19.5698 ± 0.0277 0.5940 ± 0.0069
KNN as OvR 0.7076 ± 0.0014 0.6689 ± 0.0018 0.4842 ± 0.0024 0.3399 ± 0.0034 0.5213 ± 0.0031 19.2999 ± 0.0269 0.5764 ± 0.0028
LR as OvR 0.7458 ± 0.0014 0.6780 ± 0.0010 0.5310 ± 0.0019 0.4082 ± 0.0027 0.5161 ± 0.0017 19.5929 ± 0.0258 0.5987 ± 0.0019
SVM as OvR 0.7413 ± 0.0014 0.6801 ± 0.0011 0.5249 ± 0.0014 0.4007 ± 0.0024 0.5207 ± 0.0019 19.5542 ± 0.0206 0.5880 ± 0.0018
RF 0.7557 ± 0.0010 0.6880 ± 0.0008 0.5376 ± 0.0012 0.4257 ± 0.0017 0.5359 ± 0.0015 19.4695 ± 0.0268 0.5800 ± 0.0015
HVE 0.7414 ± 0.0017 0.6801 ± 0.0013 0.5249 ± 0.0015 0.4007 ± 0.0029 0.5207 ± 0.0023 19.5542 ± 0.0083 0.5880 ± 0.0022
SE 0.7414 ± 0.0017 0.6801 ± 0.0013 0.5249 ± 0.0015 0.4007 ± 0.0029 0.5207 ± 0.0023 19.5542 ± 0.0083 0.5880 ± 0.0022

LDA with TC
(6532×100)

KNN 0.7883 ± 0.0016 0.7512 ± 0.0015 0.5939 ± 0.0014 0.5201 ± 0.0029 0.6440 ± 0.0021 18.7220 ± 0.0465 0.4554 ± 0.0025
MLP 0.8037 ± 0.0010 0.7657 ± 0.0014 0.6181 ± 0.0016 0.5544 ± 0.0021 0.6663 ± 0.0020 18.5933 ± 0.0463 0.4341 ± 0.0026
KNN as OvR 0.7838 ± 0.0012 0.7479 ± 0.0010 0.5859 ± 0.0008 0.5098 ± 0.0017 0.6389 ± 0.0015 18.7532 ± 0.0544 0.4593 ± 0.0019
LR as OvR 0.8018 ± 0.0010 0.7644 ± 0.0012 0.6157 ± 0.0014 0.5505 ± 0.0019 0.6624 ± 0.0017 18.6514 ± 0.0467 0.4361 ± 0.0023
SVM as OvR 0.7773 ± 0.0014 0.7272 ± 0.0013 0.5852 ± 0.0016 0.4949 ± 0.0026 0.5999 ± 0.0021 19.1559 ± 0.0464 0.5087 ± 0.0025
RF 0.7569 ± 0.0014 0.6945 ± 0.0011 0.5531 ± 0.0013 0.4415 ± 0.0023 0.5462 ± 0.0019 19.4421 ± 0.0404 0.5694 ± 0.0022
HVE 0.8018 ± 0.0011 0.7633 ± 0.0011 0.6160 ± 0.0011 0.5498 ± 0.0017 0.6607 ± 0.0012 18.6970 ± 0.0587 0.4384 ± 0.0020
SE 0.7983 ± 0.0012 0.7570 ± 0.0010 0.6096 ± 0.0012 0.5408 ± 0.0017 0.6504 ± 0.0013 18.7473 ± 0.0621 0.4513 ± 0.0017
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which is determined by optimizing a cost function (such as infor-
mation gain or Gini index). In multi-label classification, multiple
labels are present in the tree leaves, and the entropy is calculated
as the sum of entropies of each label,

Entropy = −

∑
c∈Y

ρc log2(ρc) + (1 − ρc) log2(1 − ρc) (11)

where ρc is the probability of class c (∈ the set of possible
labels (Y)). The predictions of multiple base CARTs are combined
using a simple voting scheme (such as probability distribution
or majority vote). In this research, we use RF with 100 CARTs
of maximum depth 2, and bagging was used to obtain diversity
among the base CARTs.

HVE aggregates the predictions of multiple diverse classifiers
using a majority rule. Given a set of diverse classifiers (Nis) with
prediction sets Yis, where each Yi a subset of Y (set of all class
labels), then the presence of a class (c) in an unseen instance
(η(m)) can be estimated as,

Y
(m)(c) =

⎧⎪⎨⎪⎩1, if
N∑
i=1

Y
(m)
i (c) >

⌈
N
2

⌉
0, otherwise

(12)

Thus, using the majority voting principle, the possible class
label set for the unseen instance can be predicted. Many varia-
tions on the classifiers used in HVE were tried, starting with KNN,
MLP, LR, LR as OvR, SVM as OvR, and KNN as OvR. After much
experimentation, only MLP, LR as OvR, and SVM as OvR were
used, due to their superior performance. Additionally, the plural-
ity voting scheme was also tested; however, the majority voting
scheme outperformed the plurality voting scheme. In this paper,
we only present the performance recorded using the majority
voting scheme.

SE [95] also combines discrete learning algorithms using a
meta-classifier. In the first phase, all the base classifiers (Nis) are
applied to the training data which generate the predictions (Yis).
Then, in the second phase, a meta-level dataset is created by
replacing every trained record (η(k)) with the predictions for that
record (Y(k)

i )
N
i=1. Then, another learning algorithm (L) is used to

classify the meta-level dataset. On an unseen testing instance ηm,
the predicted class set is L(Y(m)

i )Ni=1. In this study, MLP, LR as OvR,
and SVM as OvR are used as first-level classifiers, and MLP is used
as the second-level classifier. In contrast to voting, SE learns at the
meta-level, when combining multiple classifiers.

4.2. Experimental validation and discussion

To validate the proposed approach, we performed exten-
sive experiments over the nursing notes data obtained from
the MIMIC-III database. The primary challenge is the multi-label
classification, where a set of ICD-9 code groups are predicted for a
given nursing note. Let Y denote the set of all possible labels, Ytrue
denote the ground truth class labels, Ypred denote the predicted
class labels, and Yscore denote the target scores which are either
confidence values or probability estimates of the true class or bi-
nary decisions (Ypred). In this work, binary predictions were used
as the target scores, where, pairwise comparison of predicted
values and true values is performed. Seven standard evaluation
metrics were used to assess the performance of each prediction
algorithm with reference to each data modeling approach.

Accuracy (ACC): This metric computes the average number of
correct predictions over given samples. In the case of multi-
label classification, the function uses a pairwise label matching
to estimate the accuracy, as per Eq. (13).

ACC(Ytrue, Ypred) =
1
s

s∑
i=1

I(Ytruei, Ypred i) (13)

where s is the total number of samples, and I(x, y) is the indicator
function and returns one only when x = y.

Area Under the ROC Curve (AUROC): The ROC curve is a graphi-
cal plot created by plotting sensitivity against the fall-out (1 −

specificity). The AUROC metric [96] indicates the probability that
a prediction model will rank a randomly chosen true instance
higher than a randomly chosen false instance. A greater AUROC
score indicates greater performance.

Area Under the Precision–Recall Curve (AUPRC): The PR curve is
a graphical plot created by plotting precision against the recall.
When dealing with highly skewed datasets, the AUPRC [96] met-
ric provides a more informative insight into the performance of
the prediction algorithm. Higher the AUPRC, the better is the
model’s performance.

MCC Score: The Matthews correlation coefficient (φ-coefficient)
[97] presents the essence of the correlation between the observed
and the predicted binary classifications. It is a balanced score
that takes into account the true/false positives and negatives.
The higher the MCC score, the better the prediction is (Range =

[−1, 1]).

F1 Score: Balanced F-measure or F1-score [98] is an indicator
of the prediction accuracy, interpreted as a weighted average
of precision and recall. F1 score reaches a perfect recall and
precision at 1 (Range = [0, 1]) and is computed as,

Fβ = (1 + β2)
Recall · Precision

Recall + β2 · Precision
, where β = 1 (14)

Coverage Error (CE): This metric [99] evaluates the average num-
ber of labels to be included in order to cover all the true labels of
the instance. It can be related to precision at the level of perfect
recall, and the lesser the value of CE, the better the performance.
CE is calculated as,

CE(Ytrue, Yscore) =
1
s

s∑
i=1

max
j:Ytrue ij=1

rankij (15)

where s is the total number of samples, and rankij = |{k :

Yscoreik ≥ Ytrue ij}| (|·| is the cardinality of the set).

Label Ranking Loss (LRL): LRL [99] computes the average number
of label pairs that are incorrectly ordered. The lower the LRL, the
better the performance (Min = 0). LRL can be computed as,

LRL(Ytrue,Yscore) =
1
s

s∑
i=1

|(j, k) : Ytrue ij = 1,Ytrue ik = 0,Yscore ik ≥ Yscore ij|

∥Ytrue i∥0(|Y − ∥Ytrue i∥0|)

(16)

where s is the total number of samples, |·| denotes the cardinality
of the set, and ∥ · ∥0 denotes the l0 norm.

4.3. Experimental results

In this section, we report an exhaustive comparative study of
the performance of various data and modeling approaches on the
nursing notes of the MIMIC-III database. For the prediction task
of ICD-9 code group classification, 10-fold cross-validation was
performed. Furthermore, the mean and standard errors (of the
mean) of the performance scores are presented. Table 4 shows the
performance of all data modeling approaches and all prediction
models using nursing notes processed using fuzzy token-based
similarity with θ = 0.825. Table 5 tabulates the performance of
all data modeling approaches and all prediction models using
nursing notes processed without similarity. We observe that the
Term weighting of unstructured (nursing) notes AGgregated using
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Table 5
ICD-9 code group prediction using nursing notes of MIMIC-III (without similarity modeling).
Data model Classifier Performance scores

ACC AUROC AUPRC MCC F1 CE LRL

Term weighting
(6532×14,665)

KNN 0.7866 ± 0.0012 0.7689 ± 0.0016 0.5920 ± 0.0025 0.5306 ± 0.0032 0.6697 ± 0.0021 18.0463 ± 0.0691 0.4168 ± 0.0027
MLP 0.7962 ± 0.0011 0.7694 ± 0.0015 0.6009 ± 0.0026 0.5400 ± 0.0029 0.6685 ± 0.0024 18.2134 ± 0.0530 0.4199 ± 0.0026
KNN as OvR 0.7741 ± 0.0017 0.7662 ± 0.0014 0.5764 ± 0.0027 0.5144 ± 0.0032 0.6639 ± 0.0020 18.1744 ± 0.0644 0.4179 ± 0.0023
LR as OvR 0.8143 ± 0.0014 0.7804 ± 0.0017 0.6378 ± 0.0032 0.5845 ± 0.0035 0.6874 ± 0.0030 18.2934 ± 0.0389 0.3985 ± 0.0030
SVM as OvR 0.7414 ± 0.0015 0.6801 ± 0.0015 0.5249 ± 0.0026 0.4007 ± 0.0036 0.5207 ± 0.0028 19.5542 ± 0.0368 0.5880 ± 0.0024
RF 0.7653 ± 0.0011 0.6951 ± 0.0013 0.5517 ± 0.0024 0.4449 ± 0.0031 0.5484 ± 0.0023 19.5449 ± 0.0387 0.5695 ± 0.0022
HVE 0.8064 ± 0.0014 0.7782 ± 0.0014 0.6369 ± 0.0031 0.5788 ± 0.0032 0.6832 ± 0.0026 18.5193 ± 0.0489 0.4132 ± 0.0023
SE 0.7971 ± 0.0013 0.7693 ± 0.0018 0.6017 ± 0.0032 0.5412 ± 0.0034 0.6682 ± 0.0029 18.2290 ± 0.0363 0.4207 ± 0.0030

Doc2Vec 500
(6532×500)

KNN 0.7134 ± 0.0013 0.5986 ± 0.0021 0.4719 ± 0.0024 0.3111 ± 0.0040 0.3323 ± 0.0059 19.9011 ± 0.0208 0.7824 ± 0.0048
MLP 0.7370 ± 0.0011 0.7081 ± 0.0017 0.5217 ± 0.0022 0.4113 ± 0.0029 0.5885 ± 0.0026 18.8870 ± 0.0421 0.5113 ± 0.0028
KNN as OvR 0.7177 ± 0.0013 0.6091 ± 0.0020 0.4783 ± 0.0020 0.3167 ± 0.0035 0.3627 ± 0.0054 19.8782 ± 0.0171 0.7533 ± 0.0048
LR as OvR 0.7970 ± 0.0007 0.7586 ± 0.0009 0.5999 ± 0.0020 0.5291 ± 0.0016 0.6659 ± 0.0016 18.6661 ± 0.0346 0.4382 ± 0.0017
SVM as OvR 0.8068 ± 0.0010 0.7678 ± 0.0012 0.6206 ± 0.0024 0.5527 ± 0.0025 0.6774 ± 0.0018 18.7267 ± 0.0269 0.4245 ± 0.0021
RF 0.7490 ± 0.0014 0.6801 ± 0.0016 0.5351 ± 0.0027 0.4142 ± 0.0037 0.5232 ± 0.0029 19.6314 ± 0.0357 0.5942 ± 0.0027
HVE 0.8011 ± 0.0006 0.7627 ± 0.0008 0.6083 ± 0.0024 0.5387 ± 0.0013 0.6701 ± 0.0011 18.6705 ± 0.0216 0.4318 ± 0.0014
SE 0.8054 ± 0.0009 0.7659 ± 0.0010 0.6179 ± 0.0028 0.5489 ± 0.0022 0.6740 ± 0.0018 18.7635 ± 0.0400 0.4279 ± 0.0018

Doc2Vec 1000
(6532×1,000)

KNN 0.7141 ± 0.0016 0.6058 ± 0.0026 0.4754 ± 0.0028 0.3192 ± 0.0045 0.3520 ± 0.0069 19.8945 ± 0.0179 0.7643 ± 0.0058
MLP 0.7442 ± 0.0011 0.7159 ± 0.0017 0.5312 ± 0.0024 0.4270 ± 0.0030 0.5995 ± 0.0027 18.8172 ± 0.0321 0.4992 ± 0.0028
KNN as OvR 0.7162 ± 0.0018 0.6112 ± 0.0034 0.4781 ± 0.0037 0.3219 ± 0.0058 0.3671 ± 0.0091 19.8661 ± 0.0200 0.7493 ± 0.0076
LR as OvR 0.7749 ± 0.0005 0.7425 ± 0.0007 0.5698 ± 0.0018 0.4864 ± 0.0017 0.6418 ± 0.0015 18.7278 ± 0.0397 0.4592 ± 0.0010
SVM as OvR 0.8071 ± 0.0009 0.7684 ± 0.0012 0.6194 ± 0.0027 0.5528 ± 0.0026 0.6768 ± 0.0022 18.6731 ± 0.0429 0.4239 ± 0.0020
RF 0.7455 ± 0.0014 0.6760 ± 0.0014 0.5313 ± 0.0023 0.4077 ± 0.0032 0.5138 ± 0.0025 19.6283 ± 0.0375 0.6034 ± 0.0025
HVE 0.7915 ± 0.0009 0.7559 ± 0.0014 0.5943 ± 0.0037 0.5200 ± 0.0035 0.6588 ± 0.0029 18.6419 ± 0.0225 0.4410 ± 0.0022
SE 0.8061 ± 0.0011 0.7674 ± 0.0013 0.6179 ± 0.0035 0.5508 ± 0.0032 0.6750 ± 0.0025 18.6649 ± 0.0241 0.4256 ± 0.0022

HDP with BoW
(6532×150)

KNN 0.7778 ± 0.0011 0.7505 ± 0.0014 0.5792 ± 0.0024 0.5033 ± 0.0027 0.6407 ± 0.0019 18.5832 ± 0.0558 0.4502 ± 0.0024
MLP 0.7946 ± 0.0013 0.7574 ± 0.0016 0.6026 ± 0.0031 0.5336 ± 0.0036 0.6518 ± 0.0028 18.6202 ± 0.0417 0.4467 ± 0.0028
KNN as OvR 0.7733 ± 0.0013 0.7476 ± 0.0017 0.5726 ± 0.0030 0.4949 ± 0.0037 0.6367 ± 0.0026 18.5783 ± 0.0456 0.4536 ± 0.0027
LR as OvR 0.7878 ± 0.0016 0.7453 ± 0.0020 0.5932 ± 0.0030 0.5183 ± 0.0042 0.6307 ± 0.0033 18.7679 ± 0.0444 0.4723 ± 0.0033
SVM as OvR 0.7623 ± 0.0014 0.6926 ± 0.0017 0.5510 ± 0.0029 0.4450 ± 0.0038 0.5411 ± 0.0032 19.5415 ± 0.0398 0.5776 ± 0.0029
RF 0.7619 ± 0.0015 0.6982 ± 0.0017 0.5535 ± 0.0029 0.4468 ± 0.0039 0.5563 ± 0.0030 19.5531 ± 0.0314 0.5606 ± 0.0030
HVE 0.7886 ± 0.0011 0.7438 ± 0.0016 0.5941 ± 0.0027 0.5183 ± 0.0029 0.6286 ± 0.0024 18.8647 ± 0.0482 0.4759 ± 0.0031
SE 0.7886 ± 0.0006 0.7431 ± 0.0011 0.5935 ± 0.0023 0.5172 ± 0.0017 0.6288 ± 0.0018 18.8853 ± 0.0417 0.4766 ± 0.0022

HDP with term weighting
(6532×150)

KNN 0.7108 ± 0.0010 0.6718 ± 0.0018 0.4885 ± 0.0025 0.3476 ± 0.0030 0.5262 ± 0.0026 19.3230 ± 0.0378 0.5728 ± 0.0027
MLP 0.7413 ± 0.0014 0.6783 ± 0.0016 0.5253 ± 0.0029 0.4009 ± 0.0037 0.5167 ± 0.0033 19.5623 ± 0.0396 0.5934 ± 0.0046
KNN as OvR 0.7067 ± 0.0012 0.6685 ± 0.0020 0.4837 ± 0.0028 0.3393 ± 0.0036 0.5221 ± 0.0029 19.3410 ± 0.0392 0.5767 ± 0.0030
LR as OvR 0.7455 ± 0.0016 0.6779 ± 0.0016 0.5301 ± 0.0030 0.4072 ± 0.0041 0.5161 ± 0.0030 19.5868 ± 0.0369 0.5984 ± 0.0026
SVM as OvR 0.7414 ± 0.0015 0.6801 ± 0.0015 0.5249 ± 0.0026 0.4007 ± 0.0036 0.5207 ± 0.0028 19.5542 ± 0.0368 0.5880 ± 0.0024
RF 0.7559 ± 0.0012 0.6862 ± 0.0018 0.5386 ± 0.0030 0.4259 ± 0.0039 0.5313 ± 0.0033 19.4848 ± 0.0370 0.5854 ± 0.0030
HVE 0.7444 ± 0.0023 0.6789 ± 0.0012 0.5286 ± 0.0038 0.4058 ± 0.0049 0.5179 ± 0.0023 19.5742 ± 0.0588 0.5948 ± 0.0031
SE 0.7413 ± 0.0016 0.6800 ± 0.0010 0.5248 ± 0.0025 0.4007 ± 0.0031 0.5206 ± 0.0024 19.5566 ± 0.0507 0.5882 ± 0.0015

LDA with TC
(6532×100)

KNN 0.7872 ± 0.0011 0.7517 ± 0.0012 0.5937 ± 0.0023 0.5197 ± 0.0027 0.6449 ± 0.0024 18.7065 ± 0.0454 0.4539 ± 0.0020
MLP 0.8039 ± 0.0011 0.7669 ± 0.0014 0.6182 ± 0.0025 0.5547 ± 0.0028 0.6681 ± 0.0023 18.5665 ± 0.0489 0.4311 ± 0.0025
KNN as OvR 0.7824 ± 0.0008 0.7482 ± 0.0013 0.5851 ± 0.0022 0.5087 ± 0.0026 0.6392 ± 0.0021 18.7217 ± 0.0364 0.4581 ± 0.0021
LR as OvR 0.8018 ± 0.0013 0.7639 ± 0.0014 0.6152 ± 0.0027 0.5497 ± 0.0033 0.6626 ± 0.0025 18.6916 ± 0.0466 0.4367 ± 0.0024
SVM as OvR 0.7778 ± 0.0016 0.7297 ± 0.0015 0.5858 ± 0.0028 0.4961 ± 0.0036 0.6050 ± 0.0027 19.1415 ± 0.0275 0.5024 ± 0.0025
RF 0.7587 ± 0.0015 0.6962 ± 0.0013 0.5527 ± 0.0027 0.4424 ± 0.0032 0.5487 ± 0.0024 19.4452 ± 0.0393 0.5655 ± 0.0022
HVE 0.8009 ± 0.0009 0.7613 ± 0.0009 0.6141 ± 0.0022 0.5469 ± 0.0020 0.6584 ± 0.0018 18.7753 ± 0.0523 0.4423 ± 0.0019
SE 0.7975 ± 0.0011 0.7566 ± 0.0013 0.6078 ± 0.0027 0.5388 ± 0.0023 0.6509 ± 0.0025 18.7774 ± 0.0599 0.4510 ± 0.0029
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Fig. 7. Comparative evaluation of the best performing models (with and without fuzzy similarity modeling) and the state-of-the-art model.

fuzzy Similarity (TAGS) model, modeled with LR as OvR, consis-
tently outperforms more complex vector space and topic models.
Furthermore, it can be observed from Fig. 7 that, the model’s
performance is higher when nursing notes are processed with
similarity, than when processed without similarity.

4.4. Discussion

In clinical tasks such as disease prediction, capturing true/false
positives and true/false negatives is of utmost importance, due
to the critical nature of the task itself. As can be seen from the
results in Tables 4 and 5, the AUROC metric captures the hit and
miss rates, while AUPRC captures the number of true positives
from positive predictions. AUPRC, unlike AUROC, varies with the
change in the ratio of target classes in the data, and hence is more
revealing while evaluating imbalanced data [100]. From Table 3,
it can be observed that the dataset is highly class imbalanced,
and hence AUPRC is more informative than AUROC. It can be
seen that our approach outperforms the existing state-of-the-art
method [1] in these metrics, indicating the significant decrease in
the false positives and false negatives. F1-measure captures both
precision and recall of the prediction, while MCC score serves as
a balanced measure even with class imbalance, as it takes into
account true positives, false positives, and false negatives. More
specifically, in healthcare applications like disease or diagnosis
prediction, false negatives (prediction miss, i.e., a disease which
is present, but not diagnosed) are likely to cause more harm than
false positives (false alarm) and CE captures these false negatives.
LRL performs a pairwise label comparison to determine the loss of
prediction. Existing works have benchmarked their performance
using only AUROC and AUPRC metrics. Since all the metrics used
in this research are very relevant and essential in understanding
the proposed model’s predictive power, we benchmark these
promising results for MIMIC-III database.

Furthermore, the state-of-the-art work by Purushotham et al.
[1] is built on structured EHRs that are modeled in the form of fea-
ture sets to make clinical predictions. It is a fact that the richness
and abundance of information captured by unstructured nursing
notes are often lost in the structured EHRs coding process [18].
Our proposed TAGS model combines the fuzzy similarity based
data cleansing and aggregating approach with a term weighting
scheme that captures the importance and rarity of clinical con-
cepts, to model the informally written clinical nursing text into a
clinically relevant and usable format effectively. From the results,
it can be seen that more complex data modeling approaches such
as Doc2Vec and HDP, in contrast to the TAGS model, fail to capture
all the discriminative features of the clinical nursing notes needed
for the machine learning classifier to learn and generalize. We

observe that using the TAGS model, risk stratification can be
achieved well in advance, with an overall accuracy of 82.4%. Also,
it can be noted that token-based similarity processing of nursing
notes yields higher performance in comparison to that processed
without similarity. These promising results emphasize the need
for reduction in redundancy and anomalous data for relieving
the cognitive burden and improving the clinical decision-making
process. CDSSs built on the predictive capabilities of TAGS could
be suitable for patient-centric and evidence-based treatments,
resulting in reduced mortality rates and better risk assessment.

5. Concluding remarks

In this paper, vector space and topic modeling approaches
for multi-label classification of unstructured nursing notes were
presented, which capture the semantic information in the nurs-
ing notes effectively and leverage such information for disease
prediction. The nursing notes were aggregated using a fuzzy
token-based similarity matching approach, on which several clas-
sification models were built. Exhaustive benchmarking experi-
mentation results on the nursing notes of the MIMIC-III database
were presented. We demonstrated that fuzzy token-based sim-
ilarity processing of nursing notes provides optimal data repre-
sentation and eliminates anomalous and redundant data, in turn,
improving the clinical decision-making process. Furthermore, we
observed that the TAGS model consistently outperformed other
complex vector space and topic modeling approaches by effec-
tively capturing the discriminative features of the nursing notes.
The TAGS model also achieved superior predictive performance
when benchmarked against the state-of-the-art method with
7.79% improvement in terms of AUPRC and 1.24% improvement
in terms of AUROC.

The improvement in prediction accuracy though small, is still
significant, as our model utilizes unstructured clinical text, in
contrast to the state-of-the-art model. Thus, the dependency on
availability of structured EHRs for building CDSSs can be elimi-
nated, which is advantageous in countries with low EHR adoption
rates. The experimental results highlight the richness of informa-
tion that our model was able to capture from the clinical nursing
notes, highlighting the viability of using unstructured clinical data
in disease prediction applications. As a part of future work, we
intend to validate the proposed TAGS model on real-time clinical
data and enhance the prediction capabilities further, focusing
on the need for time-aware prediction architectures in hospital
scenarios. Furthermore, we aim at exploring the power of deep
learning architectures in clinical prediction tasks such as disease
prediction, length of stay prediction, hospital readmission, and
phenotype classification.
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