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a b s t r a c t

Understanding and modeling the behavior of polymers and composites at a wide range of quasi-static
and high strain rates is of great interest to applications that are subjected to dynamic loading condi-
tions. The Standard Linear Solid model or Prony series frameworks for modeling of strain rate dependent
behavior are limited due to simplicity of the models to accurately represent a viscoelastic material with
multiple relaxations. This work is aimed at developing a technique for manipulating the data derived
from dynamic mechanical analysis to obtain an accurate estimate of the relaxation modulus of a material
over a large range of strain rate. The technique relies on using the time-temperature superposition
principle to obtain a frequency-domain master curve, and integral transform of this material response to
the time domain using the theory of viscoelasticity. The relaxation function obtained from this technique
is validated for two polymer matrix composites by comparing its predictions of the response to uniaxial
strain at a prescribed strain rate to measurements taken from a separate set of tension experiments and
excellent matching is observed.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic mechanical analysis (DMA) is a widely used technique
in the polymer science fields for characterizing thermal transitions
in materials. It has traditionally been used primarily for the
detection of thermal transitions, and associated properties such as
glass transition temperature (Tg), polymer blend miscibility and
composite interfacial bonding [1e10]. Recent works have focused
on expanding the utility of the DMA technique to other applications
such as to determine the properties of heterogeneousmaterials and
for determination of crack location in composites [11e13]. In these
existing cases, storage (E0) and loss (E00) moduli measured through
DMA are interpreted with respect to the material microstructure.

The focus of this work is to determine the strain rate sensitivity
of materials by developing a transform to convert the frequency
domain DMA results to time domain. Such a transform can signif-
icantly improve the usefulness of DMA results in materials and
mechanics fields by providing themodulus at awide range of strain
rates, which is required in modeling and simulation studies on
ltmann).
dynamic loading of structures. There are numerous difficulties in
determining strain rate sensitivity using traditional testing. First, a
large number of specimens are required to be tested at awide range
of strain rates. Second, universal testing machines do not have the
response rates to measure load and deformations accurately at
higher rates. This is particularly challenging in composite materials
because the linear elastic region is often small and composites may
undergo brittle failure before only a handful of data points can be
captured at moderate strain rates. High strain rate properties of
materials are studied experimentally [14e20] using techniques
such as the tensile Hopkinson bar for use in analytical studies for
structures and foams [21]. The use of multiple techniques for
different strain rate regimes and unavailability of cross-correlation
between properties obtained from quasi-static and dynamic test
methods has emerged as a significant limitation. A central chal-
lenge to experimental characterization by traditional methods is
that over small ranges of strain rate (a few orders of magnitude)
many properties may appear to vary linearly with the logarithm of
the strain rate (i.e. follow a power law) [22,23], while over a wider
range this is usually not the case [24,25]. Extrapolation of the trends
observed in the low-moderate strain rate regime to high strain
rates can lead to significant error. This work explores the use of an
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alternative method for predicting strain rate sensitivity in polymers
and composites: using time-temperature superposition (TTS) of
dynamic mechanical analysis (DMA) data to determine the fre-
quency domain response over a sufficiently wide range that it can
be transformed to the time domain relaxation function.

Using the DMA transform technique of Zeltmann et al. [26],
predictions of the strain rate sensitivity of the modulus of high
density polyethylene (HDPE) matrix fly ash cenosphere reinforced
composites called syntactic foams are computed and verified
against results from tensile testing. Various properties of syntactic
foams have been widely studied in the literature [27e29], and
experimental studies are available on the high strain rate behavior
of syntactic foams [30]. This method does not rely on an a priori
form for the constitutive model, as often used in modeling strain
rate sensitivity [31]. This work also explores further the application
of the method, including using the Kramers-Kronig relations to
compute an associated loss modulus function that provides a better
indication of whether sufficient information has been captured to
accurately represent the response. From the loss modulus master
curve one can find the center of the transition, which can then be
used to determine the critical strain rate at which the transition
causes a significant curve in the strain rate sensitivity of viscoelastic
properties.

This work aims at providing a resource for simulation and
modeling efforts by providing a more sophisticated means of
characterizing the dynamic response of the material and by
correlating the elastic and viscoelastic properties. The results of the
DMA transform technique can be utilized directly in many existing
mechanical models [32e36] through the elastic-viscoelastic cor-
respondence principle and for many other polymer matrix com-
posites systems of interest [37e41].

This work uses fly ash hollow particles dispersed in HDPE to
create a type of composite known as syntactic foam [42,43]. This
class of composite materials has been widely studied for its me-
chanical properties and strain rate sensitivity [43,44]. Particulate
composites such as the syntactic foams studied in this work are an
ideal model system for exploring this transformation method
because their mechanical properties are isotropic, so the properties
measured in bending in the DMA are assumed to be the same as
those measured in tension in the strain rate sensitivity experi-
ments. Since the measurements are all taken on bulk properties,
more complex systems such as those with viscoelastic fillers in a
viscoelastic matrix are also able to be treated by this method, so
long as they are within the linear elastic regime. Nevertheless, the
transformation method discussed here is not limited to isotropic
materials; in the case of anisotropy the material functions in
different directions would be determined from separate measure-
ments and combined using just as in the familiar theory of linear
elasticity.
2. Experimental

2.1. Materials

HDPE of grade HD50MA180 supplied by Reliance Polymers,
Mumbai, India, is used as the matrix material. The HDPE had a melt
flow index of 20 g/10 min (190�C/2.16 kg) and a mean molecular
weight of 97,500 g mol�1. Cenospheres of CIL-150 grade, supplied
by Cenosphere India Pvt. Ltd., Kolkata, India, are used as hollow
fillers. Cenospheres are used in the as-received condition, without
any surface treatment. Chemical, physical and sieve analysis results
on the same type of cenospheres have been reported previously
[45]. The cenospheres primarily comprise of alumina, silica, cal-
cium oxide and iron oxides.
2.2. Sample fabrication

Cenospheres are used in 20 and 40 wt% in HDPE to fabricate two
types of syntactic foams named HDPE20 and HDPE40, respectively,
on a polymer injection molding (PIM) machine (Windsor, 80 ton
capacity). Operating and processing parameters of the PIMmachine
were optimized in a set of earlier studies [23,46e48] and are set at
160 �C temperature and 30 kg/cm2 (2.9 MPa) pressure. Samples of
dimensions 60 � 12.7 � 3.3 mm3 (length � width � height) are
molded. The length of the specimens is later reduced by cutting
with a diamond saw to 35 mm for DMA testing. Samples for tensile
testing are also injection molded, with their geometry following
ASTM D638.

2.3. Dynamic mechanical analysis

Dynamic mechanical analysis is conducted using a TA In-
struments (New Castle, DE) Q800 DMA. Specimens are tested in the
single cantilever configuration with a span length of 17.5 mm.
Testing is conducted in the strain control mode with a maximum
displacement of 25 mm. This displacement is achievable within the
load limits of the machine at all temperatures for all the tested
specimens. This ensures that the full specified strain is achieved
throughout the entire test.

DMA testing is conducted in two phases: (a) using the temper-
ature sweep mode at constant frequency of 1 Hz and (b) using the
frequency sweep mode at a series of constant temperatures. In the
temperature sweep test, the temperature is ramped from �100 �C
to 130 �C at a rate of 1 �C/min. At least three specimens of each type
are tested in this phase. In the frequency sweep testing, the tem-
perature is stepped from �10 �C to 130 �C in increments of 5 �C. At
each temperature step the specimen is soaked for 8 min to ensure
thermal equilibrium. The dynamic properties are measured at 20
discrete frequencies logarithmically spaced between 1 and
100 Hz at each temperature step. Testing is halted if E0 drops below
10 MPa, in order to prevent melting of the specimen in the clamp.
At least three specimens of each type are tested in this phase. The
results of temperature and frequency sweeping are combined using
the time-temperature superposition (TTS) principle to generate
master curves describing the behavior of syntactic foams over a
wider range of frequencies.

2.4. Tensile testing

Tensile testing is conducted using an Instron 4467 universal test
system. The specimen geometry conforms to ASTM D638. Strain
data is collected using an Instron 100 gage length extensometer
attached to the test specimen. Tests are conducted with the
crosshead speed set to give initial strain rates of 10�5-10�2 s�1,
which are taken as the nominal strain rates for the tests. At least
five specimens of each material type are tested at each strain rate.

2.5. Scanning electron microscopy

A Hitachi S3400 N scanning electron microscope is used for
imaging of the syntactic foam microstructure. Specimens are
sputter coated with gold using sputter coater to improve conduc-
tivity and prevent charging.

3. Results

Scanning electron micrographs of freeze-fractured surfaces of
the syntactic foams are shown in Fig. 1. Fly ash cenospheres are
observed to be distributed uniformly throughout the syntactic
foam. Various factors such as matrix porosity entrapment, particle



Fig. 1. Scanning electron micrographs of (a) HDPE20 and (b) HDPE40 freeze-fractured surfaces, showing uniform distribution of hollow particles. Particle fracture during processing
does not appear to be significant.
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crushing and quality of particle-matrix interface depend on the
specimen fabrication method. These factors affect the mechanical
properties, including elastic and viscoelastic properties, of syntactic
foams. Extensive literature is available on all these factors for HDPE/
cenosphere syntactic foams as well as numerous other types of
syntactic foams. However, that information is not replicated here
because the focus of this work is to examine if a transform can be
developed to convert the frequency domain DMA results to time
domain data to estimate the elastic modulus at various strain rates
for these composites. Effect of various factors would be similar on
tensile and DMA results and the developed transform should not be
dependent on the material quality.
3.1. Tensile testing

A representative set of stress-strain curves for the HPDE resin
are shown in Fig. 2 at 10�5 to 10�2 s�1 strain rates. These curves do
not show distinct elastic and plastic regions. In addition, the effect
of strain rate is clearly visible due to the viscoelastic nature of the
material. Representative stress-strain curves for the HDPE/fly ash
syntactic foams at strain rates from 10�5 to 10�2 s�1 are shown in
Fig. 3. The syntactic foams show an initial nearly linear region up to
about 0.5% strain, after which yielding occurs. The modulus in the
initial elastic region and the yield stress increase with the strain
rate, while the strain at yielding decreases. Amore detailed analysis
of the effect of processing parameters and composition on the
Fig. 2. Representative stress-strain curves for neat HDPE at various strain rates.
tensile strength and failure strain can be found in the literature
[46,47]. In syntactic foams, the matrix is usually assumed to be the
only strain rate sensitive component, as the ceramic particles
commonly used have insignificant damping compared to the
matrix.
3.2. DMA temperature sweep

Results from the temperature sweep at 1 Hz are shown in Fig. 4
and Fig. 5 for HDPE20 and HDPE40, respectively. Both syntactic
foams have a peak in the loss modulus at about 37 �C, which is due
to the a-transition in HDPE [49]. Based on the loss modulus peak or
the increase in tan d, the onset of this transition is at about 0 �C. The
transition continues until the HDPE is melted. At �100 �C there is
evidence of another peak in the loss modulus, though the data do
not include low enough temperatures to fully capture this peak. The
peak in HDPE at �110 �C is generally associated with the glass
transition. Since the HDPE is above its Tg andwithin the a-transition
range at room temperature, strong strain rate sensitivity in its
mechanical properties are expected.
3.3. DMA frequency sweep and time-temperature superposition

Following the temperature sweep, frequency sweeps are con-
ducted from 1 to 100 Hz at stepped temperatures from �10 to
130 �C. A set of representative frequency sweeps for HDPE20 is
presented in Fig. 6a. These frequency sweeps are combined using
the time-temperature superposition (TTS) principle by shifting the
various frequency sweeps along the frequency axis so that they
form a single master curve [50]. No vertical shifting of the curves is
employed in the TTS procedure. Representative master curves ob-
tained for the two types of syntactic foams are shown in Fig. 6b. One
step change in the storagemodulus is observed in themaster curve.
The glass transition whose onset was observed at the lowest tem-
peratures in the temperature sweep does not appear to have been
captured here. Because the experiments are conducted using liquid
nitrogen cooling, the total run time is limited. Since frequency
sweeps require dwelling at constant temperature and substantial
soaking times, the minimum temperature that can be reached
before the cooling system is depleted is higher than for a constant
frequency experiment.



Fig. 3. Representative stress-strain curves for (a) HDPE20 and (b) HDPE40 at various strain rates.

Fig. 4. Temperature sweep at 1 Hz for HDPE20 syntactic foam: (a) E0 and E00 and (b) tand.

Fig. 5. Temperature sweep at 1 Hz for HDPE40 syntactic foam: (a) E0 and E00 and (b) tand.
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4. Discussion

4.1. Transformation to time-domain

Using the TTS principle, E0 is found over a sufficiently wide range
of frequencies to adequately characterize a viscoelastic function of
the material. This frequency-domain viscoelastic function can, us-
ing an appropriate transformation, be converted to any of the other
viscoelastic functions which may be more useful for engineering
and design purposes. From E0, and using the linear theory of
viscoelasticity, the time domain relaxation modulus E(t) can be
found using [51]

EðtÞ ¼ 2
p

Z∞

0

E0ðuÞ
u

sinðutÞdu (1)

where u and t represent angular frequency and time, respectively.



Fig. 6. (a) Representative set of frequency sweeps for HDPE20 and (b) storage modulus
master curves constructed using 25 �C as the reference temperature for HDPE syntactic
foams.
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Since this is an improper integral, the experimental data must be
extrapolated to zero and infinite frequencies. To do so the storage
modulus master curve at a chosen temperature is fitted to a
sigmoidal function of log(u) having the form

E0ðuÞ ¼ a tanhðbðlogðuÞ þ cÞÞ þ d (2)

where a, b, c, and d are the fit coefficients and log(u) is the natural
logarithm. The fit coefficients and the goodness of fit are given in
Table 1. A fit of this form imposes that there is one smooth step
transition in the E0 curve, corresponding to one peak in E00, and that
the behavior is asymptotic as frequency goes to zero or to positive
infinity. For the case where the experimental data captures multi-
ple transitions, a mixture of functions of this form can be applied,
and the basis of the analysis in the following paragraphs would still
apply. Such choice satisfies the physically required positive and
bounded behavior of the relaxation function at zero and infinite
frequencies [51] if d > a. However as the HDPE is above its Tg its
behavior is like that of a viscoelastic liquid (i.e. E0(u)¼ 0) and fitting
Table 1
Fit coefficients from the single-sigmoidal fit of the storage modulus master curve
(Equation (2)), with E0 in MPa and u in radians/sec.

Material a b c d R2

HDPE20 1224.9 0.06155 3.6566 1167.3 0.9993
HDPE40 1276.1 0.05935 4.1236 1193.9 0.9992
of the data yields d z a. The frequency at which E0(u) ¼ 0, and
below which E0 is negative, is

ujE’¼0 ¼ exp½�bc� atanhðd=aÞ
b

� (3)

which is of the order of 10�16 Hz for both syntactic foams.While it is
simple to enforce that E0(u) ¼ 0 in the curve fitting, this yields a
poorer fit in the moderate frequency ranges which are most
important to the response. In the unconstrained fit, the frequency
at which the function is negative is sufficiently small that the
negative E0 will not substantially affect the resulting relaxation
function, so the parameters from the unconstrained fit are used in
the subsequent analysis.

The Kramers-Kronig (K-K) relations can be used to obtain the
loss modulus function E00(u) that corresponds to a given function
for E0(u) via the integral transform [52]

E
00 ðuÞ ¼ 2u

p

Z∞

0

E0ðlÞ � E0ðuÞ
l2 � u2

dl (4)

which can be approximated by

E
00 ðuÞzp

2
dE0ðuÞ
d ln u

(5)

Though the transform could be integrated numerically, and
more accurate but complex approximations exist [53], this simple
form has been found to be widely applicable [51,54] and allows the
use of an analytical form using the fitting function selected here.
Based on the approximation of the Kramers-Kronig relations, the
sigmoidal storage modulus function yields the loss modulus
function

E
00 ðuÞ ¼ pab

2
sechðbðlogðuÞ þ cÞ2 (6)

which will be referred to as the “K-K prediction.” The frequency at
which this is maximal, uT, and which is the typical definition of the
location of the transition, is found to be

uT ¼ exp
�
1
c

�
(7)

Thus one can obtain a frequency-temperature pair that corre-
sponds to a transition. The transition temperature corresponding to
this transition at another frequency can be found using the WLF
equation and its experimentally determined coefficients [55]. Since
transition temperatures are usually defined at 1 Hz, this method
could be used to find transitions that are below the temperature
range of the test equipment by using the higher frequency data and
TTS to extend the range. The magnitude of the extension of the
temperature range by this techniquewould depend on the TTS shift
factors, which quantify the relationship between changes in fre-
quency and changes in temperature. The shift factors outside the
experimental temperature range can be estimated by the WLF [56]
or Arrhenius equations, as applicable. The fit parameter b is related
to the breadth, or “sharpness” of the transition.

The K-K prediction of the loss modulus curve is compared to the
experimentally determined loss modulus master curves in Fig. 7.
The loss modulus master curves are constructed by shifting the loss
modulus curves from the frequency sweeps using the shift factors
determined from shifting the storage modulus curves. At fre-
quencies below the peak, excellent agreement is observed between
the prediction and the master curve. However, above the peak the
K-K prediction tends towards zero while the master curve remains



Fig. 7. Comparison of the experimental loss master curves at 25 �C with the predictions of the approximate K-K relations (Equation (6)), using the coefficients of the fit function for
(a) HDPE20 and (b) HDPE40.
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higher. This is likely due to the presence of another peak at higher
frequencies (lower temperatures) than what was captured in the
frequency sweep experiments. The use of the K-K prediction in
comparison to the experimental loss modulus master curve is a
more sensitive means to assess the goodness of fit, since transitions
near the minimum and maximum frequency are difficult to discern
from the storage modulus master curve. Such deviations appear
clearly on the loss modulus master curve since the loss modulus
shows peaks at these transitions.

The transform in Equation (1) is applied to the storage modulus
fitting function by integrating numerically, to yield the time
domain relaxation function for the material. The integral is the
product of a positive and decreasing functionwith a sinusoid, so the
improper integral can be converted to the summation of an alter-
nating series whose terms are the integral evaluated between the
zeroes of the sinusoid. An accelerated convergence approach can
then be used to approximate the infinite summation.

The relaxation function generated using the room temperature
master curve is shown in Fig. 8. The relaxation function can be
observed to satisfy the requirements of fading memory and
nonnegative stored and dissipated energy as expressed by Ref. [57]

E(t)�0, dE(t)/dt � 0, d2E(t)/dt2 � 0 (8)

within the range of times displayed. Since d < a in the fitted
functions, at some time the relaxation function will violate the first
condition and yield a negative value for E(t). However, this cross-
over is observed to happen at around 1014 s (about 3 million years),
Fig. 8. Relaxation functions for HDPE syntactic foams at 25 �C.
well beyond practical time scales.
The time-domain relaxation function determines the stress

history generated by a specified strain history (for the one-
dimensional case) according to [51]

sðtÞ ¼ E � dε ¼
Zt

�∞

Eðt � tÞdεðtÞ
dt

dt (9)

where s, ε and t represent stress, strain and time variable used for
integration, respectively. In anisotropic materials, this becomes a
tensor expression (see Ref. [51]). However, we assume that the
syntactic foams used in this work are isotropic as the reinforcing
particles are spherical and uniformly distributed. In fiber-
reinforced composites, DMA measurements would need to be
performed in different orientations to build the relaxation function
tensor, which could be used for arbitrary states of strain.

For constant strain rate deformation with a strain rate of _ε

beginning at t ¼ 0, which is the idealized deformation state in a
standard tension test, the convolution integral simplifies to

sðtÞ ¼ _ε

Zt

0

EðtÞdt (10)

and the corresponding strain is obviously

εðtÞ ¼ _εt (11)

From this procedure, the linear viscoelastic response of the
material at a constant strain rate can be determined. From the
stress-strain relationship that results, relevant material properties
can be derived.

Since the elastic response of HDPE is not perfectly linear, the
predictions are compared with the results from tension experi-
ments for HDPEmatrix syntactic foams using the secantmodulus at
a prescribed strain. The 0.5% secant modulus derived from the DMA
transform technique are compared with the results from the ten-
sion experiments in Fig. 9. The DMA transform line is shown only
for one specimen but multiple specimens were tested and they
showed consistent behavior. Excellent agreement is observed for
both syntactic foams between the secant modulus and DMA
transformation results. This method is not expected to be affected
by factors such as imperfect interface in the composite, particles
crushed during composite fabrication or air entrapment in the
matrix because both the DMA measurements and the tensile test



Fig. 9. Strain rate sensitivity of (a) HDPE20 and (b) HDPE40 compared to results from tensile experiments.
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results will be affected similarly by such factors. Therefore, the
DMA transformed results should still match with the tensile test
data. In composites containing low volume fraction of particles,
segregation of particles may be a concern that can provide a large
variability in the test results. However, segregation or microstruc-
tural inhomogeneity would only require testing a larger number of
specimens for both tests as per the routine statistical procedures
due to large standard deviation values for a batch of specimens.
Successful application of the transform developed in this work
eliminates the need for conducting a large number of tensile test
specimens at a wide range of strain rates. The curve of modulus
with respect to strain rate captured through this transform can be
used in modeling and simulation studies.

5. Conclusions

In this work, integral transform of dynamic mechanical datawas
used to convert the frequency spectrum obtained from time tem-
perature superposition into a time domain relaxation function.
Using the relaxation function, the linear viscoelastic response to a
given strain history can be obtained. Predictions of the response in
constant strain rate uniaxial deformationwere compared to tension
experiments and excellent agreement was observed. In addition,
approximations to the Kramers-Kronig relations were used to
obtain awell-matched estimate of the loss modulusmaster curve at
frequencies up to the transition. Comparison of the loss master
curve with the K-K prediction provides a better indication of the
appropriateness of the fit function, as transitions near the edge of
the experimental frequency range cause a small kink in the storage
modulus curve versus peaks in the loss modulus.
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