
J. Vis. Commun. Image R. 46 (2017) 23–32
Contents lists available at ScienceDirect

J. Vis. Commun. Image R.

journal homepage: www.elsevier .com/ locate/ jvc i
Perceptually lossless coder for volumetric medical image dataq
http://dx.doi.org/10.1016/j.jvcir.2017.03.006
1047-3203/� 2017 Elsevier Inc. All rights reserved.

q This paper has been recommended for acceptance by Zicheng Liu.
⇑ Corresponding author.

E-mail address: chandrika.bk@manipal.edu (B.K. Chandrika).
B.K. Chandrika a,⇑, P. Aparna b, David S. Sumamb

aManipal University, Manipal Institute of Technology, Department of Electrical and Electronics Engineering, 576104, India
bNational Institute of Technology Karnataka, Department of Electronics and Communication Engineering, Surathkal 575025, India
a r t i c l e i n f o

Article history:
Received 1 September 2016
Revised 2 January 2017
Accepted 3 March 2017
Available online 6 March 2017

Keywords:
Image compression
Visual perception
Human visual system
Bilateral symmetry
MRI and CT images
a b s t r a c t

With the development of modern imaging techniques, every medical examination would result in a huge
volume of image data. Analysis, storage and/or transmission of these data demands high compression
without any loss of diagnostically significant data. Although, various 3-D compression techniques have
been proposed, they have not been able to meet the current requirements. This paper proposes a novel
method to compress 3-D medical images based on human vision model to remove visually insignificant
information. The block matching algorithm applied to exploit the anatomical symmetry remove the spa-
tial redundancies. The results obtained are compared with those of lossless compression techniques. The
results show better compression without any degradation in visual quality. The rate-distortion perfor-
mance of the proposed coders is compared with that of the state-of-the-art lossy coders. The subjective
evaluation performed by the medical experts confirms that the visual quality of the reconstructed image
is excellent.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

In recent years, advancement in imaging modalities like MRI,
CT, and Positron Emission Tomography (PET) has greatly influ-
enced the diagnosis and treatment of diseases. Early detection
and accurate diagnosis of a medical condition calls for improved
quality and quantity of medical data. Thus, increase in image reso-
lution, data volume and improved inter-slice distance results in an
enormous volume of image data. Analysis and diagnosis require
storage of data. For applications such as tele-medicine and tele-
radiology, it is often required to transmit the data over long dis-
tance communication channel in shortest possible time. Thus, it
is very crucial to compress these huge volume of medical image
data for storage and/or transmission. On the other hand, these
medical data cannot afford to lose any visually significant informa-
tion which otherwise would lead to wrong diagnosis of any critical
pathological condition. Hence, it is important to maintain a balance
between compression efficiency and the quality of the recon-
structed image data.

A number of 2-D medical image compression algorithms have
been reported in literature that treat each slice independently
and compress the image one by one. The inter-slice distance would
typically vary from 5 mm to 0.5 mm in current technologies
required to exploit the inter-slice redundancy. To cope with the
compression requirements, it is very important to extend the com-
pression technique to volumetric MRI data, thus addressing the
inter-slice correlation. A number of 3-D lossless compression
involving prediction techniques and 3-D transformations are avail-
able in the literature to eliminate slice correlation for volumetric
medical image data. Taquet [1] used Part-2 of Joint Photographic
Experts Group (JPEG) 2000 to compress medical image by exploit-
ing the correlation among adjacent images. In this, 1-D reversible
5/3 wavelet transform is applied across image slices for the entire
volume followed by JPEG 2000 on the resulting transformed slices.
In [2], all MRI slices are de-correlated using lossless Karhunen
Loeve Transform (KLT) to exploit inter-slice redundancy. Later, spa-
tial redundancy of each KLT slice is eliminated by applying JPEG-LS
image coder. Menegaz and Thiran [3] also focused on the develop-
ment of a fully 3-D wavelet based coding system featuring 3-D
encoding/2-D decoding functionality.

Since most of the medical image slices are relatively symmetri-
cal, Sanchez et al. [4] implemented a compression algorithm which
exploits the anatomical symmetries present in the structural med-
ical images. They used 2-D Integer Wavelet Transform (IWT) to
de-correlate the data, an intraband prediction method to reduce
the energy of the sub-bands exploiting the inherent symmetry pre-
sent in the medical image and an embedded block coder to achieve
high lossless compression gain. This algorithm was modified by
adding an inter-slice differential pulse-code modulation prediction
method to exploit the correlation between slices [5]. Amraee et al.
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[6] eliminates both intra-slice and inter-slice correlations with
block matching routines considering symmetrical characteristics
of these images. To eliminate inter-slice correlation, authors have
first predicted the pixels of one half of the image, using the corre-
sponding pixels in the other half based on symmetric nature of
medical image. To exploit inter-slice correlations, successive slices
are paired and the same method is applied. Pizzolante et al. [7]
have suggested a low complexity, reversible 3-D compression
algorithm for CT and MRI slices that exploits spatial and slice
redundancy using 3-D linear prediction.

Lossless or reversible compression techniques are more pre-
ferred by medical professionals as every detail that can be per-
ceived by a medical expert is very significant in the diagnosis of
any pathological condition. However, lossless methods for com-
pression of medical images reported in literature including JPEG-
Lossless (JPEG-LS) [8,9] don’t promise good compression efficiency.
On the other hand, a number of lossy methods have been proposed
that provide high compression but at the cost of quality degrada-
tion which is unacceptable by the medical experts. High Efficiency
Video Coding (HEVC) is a new standard for video compression. Per-
formance of this video coding is superior to other video coding
standards [10,11]. Hence, this technique is also applied to medical
images in picture archiving and communications systems (PACS)
[12,13]. However many times HEVC is required to operate at higher
bitrates to meet the quality constraint.

So majority of the lossless or lossy compression algorithms
available for medical image data do not completely fulfill the
quality-compression requirement. Hence, there is a need to have
an intermediate system with compression efficiency close to that
of lossy and quality close to that of lossless compression system.
This can be achieved easily by exploiting HVS characteristics to
remove visually insignificant data without losing any diagnosti-
cally significant data. But vision based compression of medical
images, is still a major challenge. The paper by Wu et al. [14] used
this approach to compress MRI, CT and computed radiography
medical images by embedding visual pruning function into JPEG
2000 coding framework. However this coding technique is devel-
oped for 2-D medical images.

From the above study, it has been observed that there is a need
to propose a novel method that would combine removal of sym-
metrical redundancies, removal of inter-slice redundancies, and
at the same time removal of visually/diagnostically insignificant
data based on HVS. With this in mind, we have proposed a novel
technique based on human perception that guarantees a quality
very much close to that of lossless methods and at the same time
low bitrates close to that of lossy methods. The proposed perceptu-
ally lossless image coding (PLIC) provides greater compression gain
than lossless coding schemes while producing images without any
visible loss. The proposed perceptually lossless compression
method for 3-D MRI and CT image data embeds Just Noticeable
Distortion (JND) profile with symmetry based lossless image com-
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Fig. 1. Block diagram of t
pression technique different from [14] to remove visually redun-
dant information. In the proposed method, two types of JND
models are combined with block matching algorithm and their
performances are compared. Along with this, we also compare
the results with lossless compression techniques. Rest of the paper
is structured as follows. Symmetry based perceptually lossless
image coder (PLIC) is discussed in Section 2, in which background
luminance and texture based JND models are used to eliminate
perceptual redundant information. Simulation results are given
in Section 3.

2. Proposed method

Block diagram of the proposed method consisting of Quantizer,
Symmetry detector, JND profile estimator, Inter-slice block match-
ing, Intra-slice block matching and Arithmetic coding is shown in
Fig. 1. Detailed explanation of each of these blocks is presented
in the following subsections.

Proposed JND profile estimator calculates the visibility thresh-
old value for all the image slices in spatial domain. This quantizer
removes the visually redundant data. A block matching unit fol-
lowing this removes the inter-slice redundancy. Symmetry detec-
tor block checks the presence of symmetry in each slice and if
present would feed it to the intra-slice block matching unit.
Intra-slice block match routine is applied on residual data of each
slice to improve bit rate if symmetry is present in the image plane.
Finally, the image residue and the displacement vectors generated
by block matching are compressed using arithmetic coding. A feed-
back from the reconstructed image is used for computing the
Visual Information Fidelity (VIF) which is used to fix the quantiza-
tion weighting factor q0 as explained in Section 2.2. This algorithm
is simulated with two types of JND estimators as explained below.

2.1. JND profile estimator

Medical image compression demands for high visual quality
close to that of lossless methods for medical examination. At the
same time, good compression efficiency like lossy methods are also
desirable. To achieve high visual quality with good compression
performance, it is very important to utilize the HVS characteristics.
Exploiting HVS characteristic guarantees removal of visually
insignificant data without altering any diagnostically significant
data. JND profile is employed to exploit these perceptual/visual
redundancies which provides a visibility threshold of distortion
for each pixel. Reconstruction errors in the images are unnotice-
able below this threshold. Among the available spatial domain
and transform domain JND models in the literature [15], two spa-
tial domain JNDmodels are used in this work.Visibility threshold in
first model (JND model-1) is dependent on average background
luminance around the pixel and spatial gradient in the background
luminance. Visibility threshold in second model (JND model-2) is
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Fig. 3. Mask for calculating the weighted gradient wgðx; yÞ in four directions.
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dependent on average background luminance, spatial luminance
gradient and texture masking.

2.1.1. JND Model-1
Perceptual redundancies present in images are primarily due to

the disparity in sensitivity of HVS to the differing levels of contrast
and luminance variation in the spatial domain. While applying the
feature of HVS to the image, the visibility threshold is the most
important measure for expressing perceptual redundancy. Visibil-
ity threshold of coding deformity is the magnitude of the stimulus
at which degradation becomes just visible or just unnoticeable. The
visibility threshold for gray scale images depend on many factors.

Among them, two factors namely Average Background Lumi-
nance around the pixel to be considered and Spatial Variation in the
background luminance basically affect the images in the spatial
domain. Regarding the first factor, it has been proved that human
visual perception is sensitive to luminance contrast rather than the
absolute luminance value [16]. Due to the presence of ambient illu-
mination surrounding the display, the distortion in very dark
regions tend to be less seen than that is present in regions of better
luminance. According to Weber’s law, with lower background
luminance, the Weber fraction (the ratio of just noticeable lumi-
nance difference to stimulus luminance) increases as the back-
ground luminance decreases. In the case where the background
luminance is high, the Weber fraction remains constant with the
increasing background luminance. So high perceptibility threshold
is assigned to either very bright or dark areas and low values in
regions of medium gray values [17]. The second factor indicates
that the increase in the spatial heterogeneity in the background
luminance reduces the visibility of stimuli which is referred as spa-
tial masking.

In our work, the pixel based perceptual model [18] has been
selected to measure the perceptual redundancy that depend on
the above discussed factors which are computed for every pixel.
Average background luminance blðx; yÞ and maximum weighted
gradient of average background luminance wgðx; yÞ surrounding
the pixel pðx; yÞ are defined as follows:

blðx; yÞ ¼ 1
32

X5
a¼1

X5
b¼1

pðx� 3þ a; y� 3þ bÞLða; bÞ; ð1Þ

gradkðx; yÞ ¼
1
16

X5
a¼1

X5
b¼1

pðx� 3þ a; y� 3þ bÞGkða; bÞ; ð2Þ

wgðx; yÞ ¼ maxð gradkðx; yÞj jÞ; k ¼ 1;2;3;4; ð3Þ
for 1 6 x < R and 1 6 y < C where R and C are respectively height
and width of the image. A weighted low pass mask
Lða; bÞ; a; b ¼ 1; . . . ;5, as given in Fig. 2 is used to evaluate average
background luminance in 5� 5 window. The maximum weighted
gradient of background luminance wgðx; yÞ around the pixel in four
directions is found in the same 5� 5 window using mask Gkða; bÞ as
shown in Fig. 3 for k ¼ 1; . . . ;4 and a; b ¼ 1; . . . ;5.

Visual model developed from blðx; yÞ and wgðx; yÞ for the calcu-
lation of JND profile is summarized by the following equations:
1 1 1 1 1
1 2 2 2 1
1 2 0 2 1
1 2 2 2 1
1 1 1 1 1

Fig. 2. Mask L for calculating average background luminance.
smðblðx; yÞ;wgðx; yÞÞ ¼ wgðx; yÞaðblðx; yÞÞ þ bðblðx; yÞÞ; ð4Þ

aðblðx; yÞÞ ¼ 0:0001blðx; yÞ þ 0:115; ð5Þ

bðblðx; yÞÞ ¼ k� 0:01blðx; yÞ; ð6Þ

v thðblðx; yÞÞ ¼ T0ð1� ðblðx; yÞ=127Þ0:5ÞÞ þ 3; for blðx; yÞ � 127
cðblðx; yÞ � 127Þ þ 3; for blðx; yÞ > 127

(

ð7Þ

JND1ðx; yÞ ¼ maxðsmðblðx; yÞ;wgðx; yÞÞ;v thðblðx; yÞÞÞ; ð8Þ
where aðblðx; yÞÞ and bðblðx; yÞÞ are background luminance depen-
dent functions. sm in Eq. (4) calculates the spatial masking effect.
v th in Eq. (7) calculates the visibility threshold due to the back-
ground luminance. Maximum value of sm and v th gives the distor-
tion threshold value JND1ðx; yÞ in JND model-1 for the pixel at
ðx; yÞ position. The constants T0; c and k are taken as 17; 3

128 and
0:5 respectively for a viewing distance of 6 times the image height
[18].

2.1.2. JND Model-2
Previous perceptual model considers only luminance part in an

image to determine JND profile. In this perceptual model, along
with effects of luminance adaptation, edge accommodative texture
masking in spatial domain is also added to meet the HVS character-
istic better [19]. An increase in the texture heterogeneity in the
background will accommodate more reduction in the visibility of
distortion and is referred as texture masking. Accordingly, textured
area can mask more deformity than smooth regions. Also error
inserted in edge regions is more prominent compared to non-
edge areas due to the reality that edge texture drags more atten-
tion from a classic HVS. So this modified model explores both edge
and non-edge regions along with luminance masking and texture
masking.

Perceptual model reflecting the above stated factors is
expressed as:

JND2ðx;yÞ ¼ v thðblðx;yÞÞ þ tmðx;yÞ � Cg �minðv thðblðx;yÞÞ; tmðx;yÞÞ;
ð9Þ

where JND2ðx; yÞ is the distortion threshold value in JND model-2 at
pixel ðx; yÞ;v thðblðx; yÞÞ is visibility threshold due to background
luminance as defined earlier, tmðx; yÞ is texture masking and Cg is
the gain reduction component due to overlapping effect in masking



Fig. 4. Symmetry detection: (a) Original image. (b) Image with predominant axis of
symmetry.
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of two basic masking factors for gray level image. Value taken in
simulation is 0.3 for viewing distance of approximately 6 times of
the image height [19].

Texture masking which considers edge information also is
defined as:

tmðx; yÞ ¼ ewgðx; yÞWðx; yÞ; ð10Þ
where wgðx; yÞ denotes maximum weighted average of background
luminance gradient around the pixel at ðx; yÞ as defined earlier. e is a
control parameter and is set as 0.117. Wðx; yÞ is edge related weight
of the pixel at ðx; yÞ and it is computed by Canny edge detector fol-
lowed by a Gaussian low-pass filter given by:

Wðx; yÞ ¼ Eðx; yÞ � g; ð11Þ
Eðx; yÞ is edge map of image pðx; yÞ and is obtained with Canny
detector with threshold of 0.5. g is a 7� 7 kernel size Gaussian
low pass filter with standard deviation of 0.8 to remove noise [20].

2.2. Quantizer

Proposed quantizer depends on the JND profile of the image. In
Fig. 1, f ðx; yÞ is the pixel value of input image at ðx; yÞ position and
f qðx; yÞis the corresponding reconstructed pixel value. f qðx; yÞ is
given by:

f qðx; yÞ ¼ qo � JNDðx; yÞ � rðx; yÞ; ð12Þ

and

rðx; yÞ ¼ round
f ðx; yÞ

qo � JNDðx; yÞ
� �

; ð13Þ

qo is quantization weighting factor and JNDðx; yÞ is either
JND1ðx; yÞ or JND2ðx; yÞ value. Selection of qo to have good compres-
sion efficiency and visual quality is discussed in Section 3.5.

2.3. Symmetry detection

Human body exhibits bilateral symmetry which is preserved in
most of the medical image slices. Function of the proposed symme-
try detector is to determine the prominent axis of bilateral symme-
try if it exists in the medical image slices. It is achieved by finding
collection of mirror feature points [21] in 2-D medical image slices.
Using scale invariant feature transform [22], an array of feature
points fpi are identified where fpi ¼ ðxi; yi; hiÞ describes its location
in ðx; yÞ co-ordinates and its orientation as hi.

First a feature descriptor di associated with each feature point is
created followed by generation of a set of mirrored descriptors mi

corresponding to di. It is realized through reflecting the each image
about the x (or y) axis and determining the feature point descrip-
tors mi for the mirrored image. Every mirrored feature point is a
matching feature point of fpi and hence mi is the reflected form
of di. Descriptors di and mi contain the best matching points pj

and pk that are clustered together to choose a possible symmetry
axis. This axis passes perpendicularly through the midpoint of
the line joining pj and pk. If there are many such potential axis of
symmetry, one dominant axis of symmetry is selected on the basis
of symmetry magnitude for each pair as predominant axis of sym-
metry. The major axis of symmetry present in one slice of a med-
ical image is illustrated in Fig. 4.

2.4. Block matching algorithm

As shown in Fig. 1, there are two separate block matching stages
in our proposed method. Conventional block matching routine is a
way of locating the best match for the macro-blocks in its adjacent
image slice. Conventional block matching routine is modified to
improve the compression ratio.

2.4.1. Inter-slice block matching
Medical image slices generated by imaging modalities are gen-

erally cross sections of human body with slices that are parallel to
one another separated by a small inter-slice distance. Inter-slice
distance would typically be in the range of 5–0.5 mmwhich results
in correlation between the adjacent slices. Inter slice block match-
ing routine is used to improve bit rate by removing these redun-
dancies in slice direction. Current image slice Ii is split into non
overlapped blocks of 8� 8 and a search window of size 16� 16
is defined in the previous image slice Ii�1. Most of the medical
images have clinically irrelevant background with pixel values of
zero. This particular case is considered to improve the efficiency
of the compression algorithm by checking for values in 8� 8 block.
If all values are zero, block match routine is not applied. If all pixel
values are not zero in 8� 8 block, block match routine is applied to
search for a best match in search window. Since there is correlation
between the two successive image slices there must be a best
match for each 8� 8 block in the search window. Sum of Absolute
Difference (SAD) given by Eq. (14) for each match is computed.

SADðx; y; r; sÞ ¼
X7
l¼0

X7
m¼0

jIiðxþ l; yþmÞ � Ii�1ðxþ r þ l; yþ sþmÞj

ð14Þ
where ðx; yÞ is the position of the current block and ðr; sÞ is the dis-
placement of the current block in Ii relative to the block in the pre-
vious slice Ii�1.

Minimum value of SAD decides the best match. Corresponding
block matching residual and displacement vector is taken for fur-
ther processing. In case, minimum SAD value is greater than sum
of all pixel values in the current 8� 8 block, pixel values in the
8� 8 block are saved instead of saving difference of pixel values
in reference window and search window. This particular case is
represented by a different displacement vector to assist decoder
while reconstructing the image.

2.4.2. Intra-slice block matching
If there is symmetry in the current image plane which is pre-

dicted by symmetry detector, inter-slice block matching residual
image is split along axis of symmetry. Intra-slice block matching
routine is applied on inter-slice block matching residual image.
This step is bypassed in case there is no symmetry. Intra-slice block
matching is same as inter-slice block matching.

2.5. Entropy coding

Entropy coding is the final lossless step involved to remove the
statistical redundancies present in the data. In this method,
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entropy coding is achieved by context adaptive binary arithmetic
coding (CABAC). CABAC is applied on block matching residual
image from inter-slice block matching unit or from intra-slice
block matching unit and corresponding displacement vectors.
Arithmetic coding tries to evaluate the probability with which cer-
tain characters appear and optimize the length of the code.
Another advantage of arithmetic coding over other entropy coders
is the convenience of adaptation, i.e., update of probability tables
as the data is processed.

3. Results and discussions

3.1. Medical data set

The proposed algorithm is tested on a number of image volume
data sets obtained from various sources. However, we have pre-
sented the results for a total of 704 slices of dataset obtained from
Mallinckrodt Institute of Radiology, Image processing lab [23]. The
MRI and CT data sets have dimensions of 256� 256 with 8 bit per
pixel. Table 1 gives the details of the MRI and CT test image data
base.

3.2. Metrics for evaluating compression algorithms

Most of the lossy compression algorithms are evaluated by
objective metrics such as Peak Signal to Noise Ratio (PSNR) and
Relative Error, even though many a time they do not correlate well
with subjective quality sensed by the HVS. Visual Signal to Noise
Ratio (VSNR), VIF and Structural Similarity Index (SSIM) are some
of the HVS based quantitative performance metrics available in
the literature [24–26] to evaluate the quality of the reconstructed
medical images. The proposed PLIC use VSNR, VIF, SSIM along with
PSNR to evaluate the quality of the reconstructed image.

� VSNR [27] operates via two stage approach. In the first stage,
contrast detection threshold is computed with wavelet based
models of visual masking and visual summation to determine
the visibility of distortion in the distorted image. If the distor-
tions are below the threshold of detection, VSNR =1 (i.e. dis-
torted image is deemed to be of perfect visual fidelity). If the
distortions are above the threshold, VSNR value is calculated.
Table 1
Details of medical images used in the study [23].

Serial number Image History

1. CT Skull Tripod fract
2. CT wrist Healing scaphoid d
3. CT carotid Internal carotid d
4. CT Aperts Aperts syndr
5. MRI Liver t1 Normal
6. MRI Liver t2 Normal
7. MRI sag head Left exophtha
8. MRI ped chest Congenital heart

Table 2
Comparison of bitrates of methods without and with JND models.

Image Without modification in block match

Inter-slice block match Inter-slice & Intra-slice block match Inter-

1 2.020 1.983
2 1.370 1.360
3 2.158 2.112
4 1.228 1.207
5 2.402 2.391
6 1.946 1.916
7 1.894 1.884
8 1.628 1.618
� SSIM [28] is based on the assumption that HVS is sensitive to
structural information and there is structural dependency
among neighboring pixels in the image. This metric estimates
the similarity/difference between two images by combining
three components of HVS such as brightness, contrast and
structure. SSIM index between two images p and g is given by
the following expressions [28]:
SSIMðp; gÞ ¼ Iðp; gÞcðp; gÞsðp; gÞ ð15Þ
where Iðp; gÞ is luminance component, cðp; gÞ is the contrast
component and sðp; gÞ is the structural component. If images p
and g are identical, value of SSIMðp; gÞ ¼ 1 and are close to each
other SSIMðp; gÞ value also close to 1.

� VIF [29] quality measure is based on correlation distortion, con-
trast distortion and luminance distortion. In this quality assess-
ment, the amount of information that can be extracted by brain
from the original image is first measured. Later, loss of the same
information in the presence of reconstructed (distorted) image
is measured. VIF value calculated between original image and
its copy is exactly one. For contrast enhanced images, VIF value
is more than one. For blurred or compressed images VIF, value
lies between 1 and 0.

3.3. Implementation details

The proposed method is implemented in Matlab� 2015a 8.5.0
on an Intel� CoreTM i7 Processor. Simulation results for the two
JND models discussed are evaluated. Algorithm using JND model-
1 is referred as perceptually lossless image coder-1 (PLIC-1) and
the algorithm using JND model-2 is referred perceptually lossless
image coder-2 (PLIC-2) for further discussions.

3.4. Effect of using JND models in PLIC-1 and PLIC-2

Compression performance of the proposed method in the
absence and presence of JND model is given in Table 2. Column 2
and 4 in Table 2 gives the average bit rate after applying only
inter-slice block match algorithm without and with modifications
in conventional method. There is an improvement of 10.92% in
average bit rate by only with inter-slice block matching algorithm.
Column 3 and 5 in Table 2 give the average bit rate after applying
Number of slices Image data size

ure 192 256 � 256 � 8
issection 176 256 � 256 � 8
issection 64 256 � 256 � 8
ome 96 256 � 256 � 8

48 256 � 256 � 8
48 256 � 256 � 8

lmos 16 256 � 256 � 8
disease 64 256 � 256 � 8

With modification in block match PLIC-1 PLIC-2

slice block match Inter-slice & Intra-slice block match

1.783 1.766 1.767 1.652
1.163 1.152 1.150 1.137
1.683 1.654 1.544 1.508
1.035 0.989 0.783 0.777
2.383 2.353 2.286 2.282
1.795 1.794 1.841 1.791
1.868 1.775 1.572 1.558
1.645 1.592 1.336 1.336



Table 3
Bit rate and VIF for minimum and maximum value of qo .

Image set PLIC-1 PLIC-2

bppmax bppmin VIFmax VIFmin bppmax bppmin VIFmax VIFmin

1 1.8131 1.7311 0.9750 0.8498 1.7652 1.6121 0.9811 0.8824
2 1.2294 1.1339 0.9598 0.8192 1.1586 1.1112 0.9600 0.7986
3 1.7382 1.3294 0.9881 0.8776 1.7362 1.2973 0.9900 0.8903
4 0.8810 0.8056 0.9757 0.8719 0.8777 0.7984 0.9770 0.8771
5 2.3992 2.2752 0.9537 0.7789 2.4006 2.2658 0.9539 0.7825
6 1.9894 1.7907 0.9800 0.8679 1.9483 1.7625 0.9866 0.8852
7 1.6166 1.5339 0.9281 0.7331 1.6223 1.5414 0.9287 0.7137
8 1.5076 1.1476 0.9540 0.6350 1.5110 1.1431 0.9540 0.6365

Fig. 5. Variation of VIF and CR with qo: for (a) PLIC-1 compression technique. (b) PLIC-2 compression technique.

Table 4
Rate-distortion performance of PLIC-1 and PLIC-2.

Image set PLIC-1 PLIC-2

PSNR (dB) VSNR (dB) VIF SSIM bpp PSNR (dB) VSNR (dB) VIF SSIM bpp

1 50.15 46.29 0.9426 1 1.767 51.42 47.94 0.9565 1 1.652
2 48.98 53.53 0.9145 1 1.150 49.05 53.56 0.9169 1 1.137
3 52.89 50.88 0.9700 1 1.544 53.46 50.89 0.9710 1 1.508
4 52.14 56.37 0.9481 0.9994 0.783 52.28 56.42 0.9503 0.9994 0.777
5 42.64 46.69 0.8927 0.9947 2.286 42.67 46.69 0.8937 0.9947 2.282
6 50.53 46.98 0.9508 1 1.841 51.20 47.04 0.9597 1 1.791
7 46.39 55.32 0.8543 1 1.572 46.42 55.35 0.8550 1 1.575
8 43.30 54.29 0.8334 0.9914 1.336 43.32 54.28 0.8337 0.9914 1.336
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inter-slice block match and intra-slice block match algorithm if
symmetry is present in slice, without and with modifications in
conventional method. There is an average improvement of
12.18% in average bit rate in overall performance of lossless com-
pression algorithm with modifications in block match routine.
Fig. 6. Visual clip of original and reconstructed CT Skull images with PLIC-2
compression technique (slice number of image is 40) at bpp = 1.652;
PSNR = 51.42 dB; SSIM = 1; VIF = 0.9565.
3.5. HVS based performance evaluation

Algorithm is evaluated for different values of quantization
weighting factor qo ranging from 0.2 to 1 in steps of 0.1. This
demonstrates that as the value of qo increases, quality of recon-
structed image decreases and compression gain increases. Corre-
sponding maximum and minimum value of bit rate and VIF are
tabulated in Table 3. By measuring the quality of reconstructed
image, value of qo can be adjusted.

Normalized Compression Ratio (CR) and VIF are plotted for
range of qo values from 0.2 to 1 as shown in Fig. 5. As value of qo

increases, CR increases and VIF decreases. Nearest value of qo

where CR and VIF curves meet is considered the best value to get
both good bit rate and visual quality. Value of qo is found to be
0.5 for all data sets except for MRI ped chest. Value of qo ¼ 0:4 is
used for MRI ped chest to have good bit rate and visual quality
as seen from the graph.



Fig. 7. Visual clip of original and reconstructed MRI Liver t1 images with PLIC-2
compression technique (slice number of image is 20) at bpp = 2.282;
PSNR = 42.67 dB; SSIM = 0.9947; VIF = 0.8937.

Fig. 8. Visual clip of original and reconstructed CT Wrist images with PLIC-2
compression technique (slice number of image is 20) at bpp = 1.137;
PSNR = 49.05 dB; SSIM = 1; VIF = 0.9169.
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By varying the value of q0 in Eq. (12), various bit rates can be
obtained for various quality of reconstructed image. Quality is
measured with PSNR as well as HVS based metrics like VSNR, VIF
and SSIM metrics. The rate-distortion performance comparison
for PLIC-1 and PLIC-2 are shown in Table 4. SSIM yields the best
Table 5
Objective and subjective evaluation of PLIC-2; score allotted: excellent-5; very good-4; go

Image bpp Objective measu

PSNR (dB) VIF

CT Skull; Slice-1 1.651 51.41 0.956
CT Skull; Slice-20 1.651 51.41 0.956
CT Skull; Slice 50 1.652 51.42 0.956
CT wrist; Slice 15 1.137 49.05 0.916
CT wrist; Slice 30 1.136 49.05 0.916
CT wrist; Slice 50 1.137 53.56 0.916
CT carotid; Slice 10 1.510 50.88 0.971
CT carotid; Slice 30 1.509 50.89 0.971
CT carotid; Slice 50 1.511 50.89 0.971
CT Aperts; Slice 20 0.775 56.41 0.951
CT Aperts; Slice 40 0.776 56.41 0.951
CT Aperts; Slice 60 0.775 56.40 0.951

MRI Liver t1; Slice 05 2.280 42.66 0.893
MRI Liver t1; Slice 25 2.281 42.67 0.893
MRI Liver t2; Slice 05 1.791 51.20 0.959
MRI Liver t2; Slice 40 1.790 51.20 0.959
MRI sag head; Slice 5 1.572 46.40 0.855
MRI sag head; Slice 10 1.574 46.41 0.855
MRI ped chest; Slice 25 1.335 43.31 0.833
MRI ped chest; Slice 40 1.336 43.32 0.833
performance indicator of image quality and it gives the closest
match to the subjective quality [30]. A sample of original
medical image slice from each data sets and corresponding
reconstructed image with PLIC-2 compression technique is shown
in Figs. 6–8.

Subjective evaluation was performed in order to confirm the
visual quality of the reconstructed data. Six observers were from
the medical field which included radiologists and radiographers.
A questionnaire was prepared for all the dataset listed in the
Table 1. Test condition set for the image data was at quantization
weighting factor qo of 0.5. The objective quality and the subjective
score at the specified bit rate for each of the data used for subjec-
tive evaluation is listed in Table 5. The observers were shown the
original and reconstructed image and were asked to rate the qual-
ity on a scale of 1–5. A score of 1 represents poor and 5 represents
excellent. The medical experts were satisfied with the quality of
reconstructed image and have confirmed that there is no visual
impairment that would hinder the medical diagnosis.
3.6. Performance comparison with lossless coders

Although, the proposed method is a perceptually lossless
method, we compare its compression performance with that of
3-D lossless compression techniques- namely Context based Adap-
tive Lossless Image Coder (CALIC) [31], 3-D JPEG [32], 3-D EZW
[23], 3-D CB EZW [23], Medical Images Lossless Compression
(MILC) [7], HEVC Intra mode [13], HEVC random access mode
[13] and PLC [33]. Table 6 compares the bitrates of PLIC-1 and
PLIC-2 with other lossless compression methods.

CALIC is an adaptive predictive model used for the lossless com-
pression of static 2-D images even though it is computationally
complex. In this technique, there is no effort to remove redundancy
in slice direction. 3-D EZW use 3-D wavelet transform to remove
statistical dependency in all three directions. 3-D CB-EZW algo-
rithm employs context modeling. PLC is a symmetry and differen-
tial pulse-code modulation based perceptually lossless image
coder for volumetric compression of MR and CT medical images.
Fig. 9 shows the percentage increase in bit rate with reference
method against the algorithm yielding the best bit-rate for each
of the test data sets. The results show that the removal of percep-
tual redundancy and dependency in the slice direction significantly
od-3; average-2; poor-1.

re Score

SSIM Radiologists score Radiographers score

1 5 5
1 5 5
1 5 5
1 5 5
1 5 5
1 5 5
1 5 5
1 5 5
1 5 5

0.999 5 5
0.999 5 5
0.999 5 5
0.993 5 5
0.994 5 5
1 5 5
1 5 5
1 5 5
1 5 5

0.9912 5 5
0.9914 5 5



Table 6
Comparison of bit rates (bpp) of PLCs with other methods.

Image CALIC[31] 3-DEZW [23] 3-DCB EZW [23] 3-D JPEG [32] MILC [7] HEVC Intra [13] HEVC RA [13] PLC [33] PLIC-1 PLIC-2

1 2.725 2.357 2.200 3.112 2.030 3.083 1.905 2.028 1.767 1.652
2 1.691 1.394 1.272 1.652 1.066 2.195 1.155 1.131 1.150 1.137
3 1.654 1.601 1.527 1.965 1.358 2.198 1.586 1.406 1.544 1.508
4 1.047 1.060 0.987 1.238 0.819 1.289 0.825 0.903 0.783 0.777
5 3.047 2.545 2.398 3.125 2.196 3.742 2.391 1.921 2.286 2.282
6 2.243 1.944 1.822 2.622 1.759 2.811 1.725 1.766 1.841 1.791
7 2.585 2.322 2.227 2.758 2.097 2.732 1.873 1.669 1.572 1.558
8 2.810 2.176 2.022 2.768 1.655 3.352 1.700 1.742 1.336 1.336
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PLC
HEVC RA
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Fig. 9. Percentage increase in bit rate with reference method against the algorithm yielding the best bit-rate for each test data set.
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improves performance. The proposed methods show better perfor-
mance when compared to CALIC, EZW, CB EZW, 3-D JPEG and MILC
for most of the test data sets. The bit rate is improved by 46.44%
and 49.06% on average in case of PLIC-1 and PLIC-2 respectively
compared to 2-D based CALIC. If one takes the PLIC-2 as the refer-
ence for average increase in percentage bit rate, PLIC-1 yields
almost similar result, since the difference between the two is
2.25%. MILC coder provide result with an average difference in
bit rate of 8.12%. The average difference increases up to 19.83%
and 63.47% for 3-D CB EZW and 3-D JPEG coder. Comparison of
PLIC-2 coder with HEVC Intra and HEVC-RA coder provide an aver-
age difference in bit rate of 79.81% and 10.29% respectively.
Table 7
Comparison of PSNR of JPEG-2K Part 1, JPEG-2K Part 2, PLIC-1 and PLIC-2 for various bitra

Image set J2K-P1 J2K-P2

bpp PSNR (dB) bpp PSNR (d

1 1.664 49.17 1.684 49.17
2 1.261 53.78 1.281 52.89
3 1.702 55.99 1.707 55.97
4 0.914 56.85 0.901 56.97
5 1.957 49.20 1.977 49.30
6 2.240 55.96 2.260 55.84
7 1.590 48.23 1.592 48.86
8 1.559 48.46 1.579 48.52
3.7. Performance comparison with lossy coders

The performance of the algorithms is also compared with lossy
state-of-the-art coders like JPEG2000 Part 1 and JPEG2000 Part 2.
The rate-distortion value for each of the dataset and the methods
are given in Tables 7–9. Kakadu 7.4 version software is used for
the implementation of JPEG-2KP1 and JPEG-2KP2 [34]. From the
values in the table, it is clearly seen that PLIC-1 and PLIC-2 give a
better quality either at nearly same or lower bitrates. Tables 8
and 9 show that the quality of the reconstructed image of our coder
has better quality in terms of HVS metrics without any perceivable
visual distortion.
tes.

PLIC-1 PLIC-2

B) bpp PSNR (dB) bpp PSNR (dB)

1.654 50.87 1.648 50.59
1.229 52.93 1.224 53.01
1.7384 58.23 1.736 59.24
0.881 56.50 0.877 56.62
2.399 47.23 2.400 47.28
1.790 55.12 1.762 55.89
1.616 50.13 1.622 50.15
1.507 48.66 1.511 48.68



Table 8
Comparison of SSIM of JPEG-2K Part 1, JPEG-2K Part 2, PLIC-1 and PLIC-2 for various bitrates.

Image set J2K-P1 J2K-P2 PLIC-1 PLIC-2

bpp SSIM bpp SSIM bpp SSIM bpp SSIM

1 1.664 0.99001 1.684 0.99002 1.654 1 1.648 1
2 1.261 0.9977 1.281 0.9976 1.229 1 1.224 1
3 1.702 0.9976 1.707 0.9986 1.7384 1 1.736 1
4 0.914 0.9963 0.901 0.9970 0.881 1 0.877 1
5 1.957 0.9926 1.977 0.9937 2.399 1 2.400 1
6 2.240 0.9988 2.260 0.9979 1.790 1 1.762 1
7 1.590 0.9967 1.592 0.9983 1.616 1 1.622 1
8 1.559 0.9918 1.579 0.9918 1.507 1 1.511 1

Table 9
Comparison of VIF of JPEG-2K Part 1, JPEG-2K Part 2, PLIC-1 and PLIC-2 for various bitrates.

Image set J2K-P1 J2K-P2 PLIC-1 PLIC-2

bpp VIF bpp VIF bpp VIF bpp VIF

1 1.664 0.9151 1.684 0.9151 1.654 0.9405 1.648 0.9489
2 1.261 0.9704 1.281 0.99703 1.229 0.9767 1.224 0.9825
3 1.702 0.9780 1.707 0.9784 1.7384 0.9881 1.736 0.99
4 0.914 0.9784 0.901 0.9792 0.881 0.9757 0.877 0.9770
5 1.957 0.9528 1.977 0.9535 2.399 0.9537 2.400 0.9539
6 2.240 0.9863 2.260 0.9841 1.790 0.98 1.762 0.9866
7 1.590 0.9199 1.592 0.9207 1.616 0.9281 1.622 0.9287
8 1.559 0.9170 1.579 0.9170 1.507 0.954 1.511 0.9540
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4. Conclusion

In this paper, we have proposed two 3-D perceptually lossless
coders for medical image dataset. Inter-slice block matching
applied removes any redundancies between the adjacent slices,
thus addressing the volumetric coding of image data. Since most
of the medical images have inherent bilateral symmetry, these
are removed by a symmetry detector and intra-slice block
matching.

In this work, two JND models based on HVS have been proposed
to remove perceptual redundancies. Visibility threshold in JND-1
depends on average background luminance around the pixel and
spatial gradient in the background luminous gradient, where as
JND-2 depends on an additional texture masking. From the results,
it has been shown that additional compression is achieved by using
texture masking in JND-2. As the work proposes to remove percep-
tually redundant data, we have used HVS based quality metrics like
VIF, SSIM and VSNR to evaluate the quality of the reconstructed
image. Optimum value of quantizer threshold q0 is chosen by eval-
uating the rate-distortion performance of the two PLICs. The qual-
ity measures like PSNR, VSNR, VIF and SSIM for various bitrates
computed for PLIC-1 and PLIC-2 show that these achieve good
compression for higher values of PSNR and VSNR. SSIM in most
of the cases are 1 or very close to 1, indicating that human eye
can not distinguish between original and reconstructed image.

The compression performance of PLIC-1 and PLIC-2 is compared
with that of lossless coders like CALIC, 3-D-EZW, 3-D CB EZW,
MILC, HEVC Intra, HEVC-RA and PLC. From the results obtained, it
is observed that our method achieves better compression without
introducing any perceivable loss. Also rate-distortion performance
comparison of PLIC-1 and PLIC-2 has been made with that of lossy
state-of-the-art coders like JPEG2000 Part 1 and JPEG2000 Part 2.
PSNR, VSNR,VIF and SSIM for various bitrates for each of the meth-
ods were calculated. From these, it has been observed that our
method provides lower or same bitrates for a better quality of
reconstructed image.

Thus by using JND models, we have achieved perceptually loss-
less compression without any loss of diagnostically significant data
which will be a big milestone in the medical field. Future extension
of this work can be to adapt this to a lossless-to-lossy framework
by introducing scalability. Scalability is desirable for field like
tele-medicine where in the medical experts can download the data
at very low bitrates but can get more information when required at
higher bitrates. Moreover as there is no difference between original
and compressed images, subjective evaluation is rated as excellent
by radiologists.
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