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Abstract. Lubricants with variable viscosity are assuming importance for their applications in

polymer industry, thermal reactors and in biomechanics. With the bearing operations in machines

being subjected to high speeds, loads, increasing mechanical shearing forces and continually

increasing pressures, there has been an increasing interest to use non-Newtonian fluids character-

ized by an yield value. The most elementary constitutive equation in common use that describes

a material which yields is that of Bingham fluid. In the present work, the problem of a circular

squeeze film bearing lubricated with Bingham fluid under the sinusoidal squeeze motion has been

analyzed. The shape and extent of the core for the case of sinusoidal squeeze motion has been

determined numerically for various values of the Bingham number. Numerical solutions have

been obtained for the bearing performances such as pressure distribution and load capacity for

different values of Bingham number, Reynolds number and for various amplitudes of squeeze

motion. The effects of fluid inertia, non-Newtonian characteristics, and the amplitudes of squeeze

motion on the bearing performances have been discussed.
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1 Introduction

Recently, it has been emphasized that in order to analyze the performance of

bearings adequately, it is necessary to take into account the combined effects of

fluid inertia and non-Newtonian characteristics of lubricants. In most squeeze

film bearings, the effects of fluid inertia forces become significant with increase

in squeeze velocity as well as film thickness.

The effects of fluid inertia forces and non-Newtonian characteristics of lubri-

cants in the squeeze film bearings have been examined by several investigators,

(Tichy and Winer [8], Covey and Stanmore [2], Gartling and Phan-Thien [4],

Donovan and Tanner [7], Huang et al. [6], Usha and Vimala [9]) but there are

few papers attempting to describe the combined effects of fluid inertia forces

and non-Newtonian characteristics of lubricants (Elkough [3], Batra and Kan-

dasamy [1]) . Even these works are without considering the sinusoidal motion

of the squeeze film bearing. With sinusoidal squeeze motion, Usha and Vimala

[10] have applied the energy integral approach to find the behavior of curved

squeeze film bearing using a Newtonian lubricant. Hashimoto and Wada [5]

have examined the effects of fluid inertia forces in a squeeze film bearing with

sinusoidal motion lubricated using a power law fluid.

In the present work, the problem of a squeeze film bearing lubricated with

Bingham fluid under the sinusoidal squeeze motion of Circular plates has been

analyzed. During the operations of the bearings, the maximum viscous shearing

stresses arise in the region between the plates. Therefore, theremay be a region in

the filmwhere the shearing stresses do not exceed the yield value of the lubricant

and thereby a core with zero velocity gradient is formed. The flow occurs only in

the region where the shear stress exceeds the yield value. The shape and extent

of the core has been determined numerically for various values of the Bingham

number for the case of sinusoidal squeeze motion. The flow is confined to the re-

gion between the core and the circular plates of the bearing. Numerical solutions

have been obtained for the bearing performances such as pressure distribution

and load capacity for different values of Bingham number, Reynolds number

and for various amplitudes of squeeze motion. The properties of the squeeze

film are investigated through the inertial and non-Newtonian effects on the load

capacity of the bearing for various sinusoidal conditions.
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2 Mathematical formulation of the problem

The geometry of the problem is as shown in Fig. 1. We consider an isothermal,

incompressible, steady flow of a time independent Bingham fluid squeezed be-

tween two circular plates separated by a distance h. Let 2R be the diameter of the
bearings approaching each other with a squeeze velocity vs under a normal load

W . We consider cylindrical polar co-ordinates (r, θ, z)with axial symmetry and
the origin fixed at the center of the lower plate. Here r represents the distance
measured along the radial direction and z along the axis normal to the plates.
Let vr and vz represent velocity components in the radial (r ) and axial directions
(z) respectively. Let p denote the pressure and ρ the density of the fluid. It is

assumed that there is no sliding motion of the two plates.

Figure 1 – Geometry of the squeeze film bearing.

The constitutive equation of a Bingham fluid is given by,

τi j = 2

(
η1 + η2

I 12

)
ei j ,

(
1

2
τi jτi j ≥ η22

)
(1)

where τi j are the deviatoric stress components, η1 and η2 are constants named

the plastic viscosity and yield value respectively, ei j represents the rate of defor-
mation components and I = 2ei j ei j is strain invariant.
In those regions of the film, where the shear stress is less than the yield value,

there will be core formation, which will move with constant velocity vc. Let the

boundaries of the core be given by z = h1(r) and z = h2(r) as shown in Fig. 2.
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Figure 2 – Shape of the core.

Applying the basic assumptions of lubrication theory for thin films, the gov-

erning equations for the above squeeze film system, including inertia forces, is

given by:

ρ

(
vr

∂vr

∂r
+ vz

∂vr

∂z

)
= −∂p

∂r
+ ∂τr z

∂z
(2)

∂p
∂z

= 0 (3)

1

r
∂(rvr )

∂r
+ ∂vz

∂z
= 0 (4)

τr z = η2 + η1

(
∂vr

∂z

)
(5)

The above equations (2), (3) and (5) together with the continuity equation (4),

are to be solved under the following boundary conditions:

vr = 0 at z = 0, h

vz = −vs at z = h

vz = 0 at z = 0

p = pa at r = R

(6)

vr and
∂vr
∂z are continuous at z = h1(r) and z = h2(r). Here pa is the atmo-

spheric pressure.
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3 Solution to the problem

The integral form of the continuity equation, also called the equation of squeeze

motion is given by,

2πr
∫ h

0

vr dz = πr2vs (7)

Averaging the inertia terms in the momentum equation (2) by assuming it to

be a constant over the film thickness (Hashimoto andWada [5]), and performing

integration by parts in the resulting equation using the continuity equation (4)

and boundary conditions, we get,

ρ

h

[
r
2

(
∂vs

∂t

)
+ ∂

∂r

∫ h

0

v2r dz + 1

r

∫ h

0

v2r dz
]

+ dp
dr

= ∂τr z

∂z
(8)

Here, we introduce the following modified pressure gradient:

f ≡ ρ

h

[
r
2

(
∂vs

∂t

)
+ ∂

∂r

∫ h

0

v2r dz + 1

r

∫ h

0

v2r dz
]

+ dp
dr

(9)

Hence, from equations (8) and (9), we have,

∂τr z

∂z
= f (10)

As the modified pressure gradient is independent of the coordinate z, equa-
tion (10) can be integrated as follows:

τr z = f z + c1 (11)

Substituting τr z from equation (11) into equation (5) and integrating the result-

ing equations using the boundary conditions (6), we get the velocity distribution

in the two flow regions separating the core region as,

vr = f
η1

(
z2

2
− h1z

)
in 0 ≤ z ≤ h1(r) (12)

vr = f
η1

(
z2

2
− h2

2
− h2z + h2h

)
in h2(r) ≤ z ≤ h (13)

and the core velocity as,

vr = vc = − f
η1

(
h21
2

)
= − f

η1

(
(h − h2)2

2

)
in h1(r) ≤ z ≤ h2(r) (14)
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From equation (14), we have,

h1(r) = h − h2(r) (15)

Considering the equilibrium of an element of the core in the fluid, we get,

f = −2η2
H

(16)

where

H = H(r) = h2(r) − h1(r) (17)

represents the thickness of the core.

Using the velocity equations (12), (13), (14) and the equation of squeeze mo-

tion (7), we get,

f = − 12rη1vs
H 3 − 3h2H + 2h3 (18)

Eliminating f from equations (16) and (18), we get an algebraic equation for
determining the thickness of the core as,

H 3 − 3
[
h2 − 2rη1vs

η2

]
H + 2h3 = 0 (19)

Further, Substituting for f from equation (18) in the velocity equations (12),
(13) and (14), we get,

vr = 6rvs(h − H − z)z
(h − H)2(2h + H)

in 0 ≤ z ≤ h1(r) (20)

vr = 3rvs
2(2h + H)

in h1(r) ≤ z ≤ h2(r) (21)

vr = 6rvs(h − z)(−H + z)
(h − H)2(2h + H)

in h2(r) ≤ z ≤ h (22)

Substituting vr from equations (12), (13) and (14) into equation (9), we obtain

the following equation for pressure gradient:

dp
dr

= f − ρr
2h

(
∂vs

∂t

)

− 63H 2 + 198Hh + 144h2 − 21r HH ′ − 6rhH ′

20(H + 2h)3)
(

ρv2s r
h

) (23)
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where

H ′ = dH
dr

= dh2
dr

− dh1
dr

(24)

Let us introduce the sinusoidal squeeze motion on the film thickness as

h = h0 + a cos(w f t) (25)

where h0 is the mean film thickness, a is amplitude of oscillation, w f is the

frequency and t is time of oscillation.
Then, the squeeze velocity and squeeze acceleration are given respectively, as,

vs = −∂h
∂t

= aw f sin(w f t) (26)

and
∂vs

∂t
= aw2

f cos(w f t) (27)

The following non-dimensional quantities are introduced:

A = a
h0

, z∗ = z
h0

, h∗ = h
h0

, r∗ = r
R

, v∗
r = vr

Rw f
,

H ∗ = H
h0

, V ∗
s = vs

h0w f
, T = w f t, B = η2h0

Rw f η1
,

P = h20 p
η1w f R2

, Pa = h20 pa
η1w f R2

, � = ρh20w f

η1
,

(28)

where B is called the Bingham number of the fluid and � is the Reynolds num-
ber for the squeeze film.

Using the non-dimensional quantities stated above in the equations (25), (26)

and (27), we get

h∗ = 1+ A cos T =⇒ V ∗
s = −∂h∗

∂T
= A sin T =⇒ ∂V ∗

s

∂T
= A cos T (29)

Then, the non-dimensional form of equation (19) can be expressed as

(H ∗)3 − 3
[
(1+ A cos T )2 + 2A sin Tr∗

B

]
H∗ + 2(1+ A cos T )3 = 0 (30)

The core thickness is determined from the above algebraic equation. The root

H ∗(r∗, B, A, T ) of equation (30), which is positive and smaller than unity, de-

termines the shape of the yield surface. The value of the root for a particular
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material for a given Bingham number can be obtained for various values of r∗,
A and T using any numerical iterative technique.
Further, non-dimensional forms of velocity equations (20), (21) and (22) are

given as follows:

v∗
r = 6r∗V ∗

s (h∗ − H∗ − z∗)z∗
(h∗ − H∗)2(2h∗ + H ∗)

in 0 ≤ z∗ ≤ (h∗ − H ∗)
2

(31)

v∗
r = 3r∗V ∗

s

2(2h∗ + H ∗)
in

(h∗ − H ∗)
2

≤ z∗ ≤ (h∗ + H∗)
2

(32)

v∗
r = 6r∗V ∗

s (h∗ − z∗)(−H ∗ + z∗)
(h∗ − H ∗)2(2h∗ + H∗)

in
(h∗ + H∗)

2
≤ z∗ ≤ h∗ (33)

The velocity profiles along radial direction can be obtained by substituting the

values of r∗, h∗, z∗, A, T in the above equations.
Non-dimensionalising equation (23), and integrating it using the boundary

conditions, we obtain the following expression for pressure distribution:

P − Pa =
∫ r∗

1

[ −12r∗A sin T
(H∗)3 − 3(1+ A cos T )2H∗ + 2(1+ A cos T )3

]
dr∗

−
∫ r∗

1

[ �r∗A cos T
2(1+ A cos T )

]
dr∗ −

∫ r∗

1

[ �r∗(A sin T )2

20(1+ A cos T )

]
�dr∗

(34)

where

� ≡ �(H∗, H∗′, A, T, r∗)

=
[
63H∗2 + 198(1+ A cos T )H∗ + 144(1+ A cos T )2 − 21r∗H∗H∗′ − 6r∗(1+ A cos T )H∗′

(H∗ + 2(1+ A cos T ))3

]
(35)

and

H ∗′ = 2A sin T H ∗

B
{
(H∗)2 − [

(1+ A cos T )2 + 2r∗A sin T
B

]} (36)

The pressure distribution of the squeeze film bearing can be determined for

different values of Bingham number, squeeze Reynolds number, amplitude and

time by integrating equation (34) numerically.

The load capacity of the circular squeeze film bearing is then given by,

W =
∫ 1

0

(P − Pa)r∗dr∗ (37)
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The integral in equation (37) can be evaluated numerically, for various values

of squeeze Reynolds number, amplitude, time and for materials with different

values of Bingham number.

4 Results and Discussion

The behavior of core thickness (H ∗) for various values of amplitude (A), time (T )
and non-Newtonian characteristics (B) at every point of radius (r∗) is computed
and the results are given inFigs. 3-6. The core thickness ismaximumat the center

of the plates and decreases towards the periphery. The core formation decreases

with the increase of time for a constant Bingham number and amplitude. Further,

it has been found that the thickness of the core increases when the Bingham

number increases for a constant time value and amplitude.
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Figure 3 – Core thickness variation along the radius for A = 0.2.

The velocity profiles along the radial direction (r∗) have been plotted for var-
ious values along the axial direction (z∗) at a constant amplitude for different
time values and non-Newtonian characteristics in Figs. 7-11. In Figs. 7-9, the

shape of the profile is observed to be the same for increase in time of oscillation

although the maximum value of velocity is found to increase with the increase of

time. In Figs. 9-11, the region of constant velocity in the curve is observed to be
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Figure 4 – Core thickness variation along the radius for A = 0.4.
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Figure 5 – Core thickness variation along the radius for A = 0.6.

increasing with the increase of the non-Newtonian characteristic B. In limiting
case as B tends to zero, the velocity profile is that of a Parabola, which represents
a newtonian fluid.
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Figure 6 – Core thickness variation along the radius for A = 0.8.
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Figure 7 – Velocity profile for A = 0.6, T = 0.3333, B = 5.

The results of load capacity calculated for various values of Reynolds number,

Bingham number, time and amplitudes are graphically shown in the Figs. 12-

15. We find that the load capacity of the bearing increases as Reynolds number
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Figure 8 – Velocity profile for A = 0.6, T = 0.5000, B = 5.
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Figure 9 – Velocity profile for A = 0.6, T = 0.6667, B = 5.

increases for a particular Bingham fluid at a particular amplitude but the rate

of increase of the load capacity due to inertia is found to be less for fluids with

high Bingham number. This means that the effect of inertia is small for high
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Figure 10 – Velocity profile for A = 0.6, T = 0.6667, B = 10.
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Figure 11 – Velocity profile for A = 0.6, T = 0.6667, B = 15.

non-Newtonian characteristic values. Moreover, for a constant amplitude and

Bingham number the load capacity of the bearing increases with the increase

of time up to an optimum point, beyond which it starts decreasing with further

increase in time. The effects of both inertia forces and non-Newtonian charac-
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Figure 12 – Load capacity variation with time for A = 0.2.
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Figure 13 – Load capacity variation with time for A = 0.4.

teristics on the load capacity are more significant as the amplitude of the squeeze

motion increases.

To the best of our knowledge, no work is available for squeeze film bearing

under sinusoidal motion with time-independent non-Newtonian fluids having

yield stress. For the case of constant squeeze motion, the present results are

found to be in agreement with the results obtained by Batra and Kandasamy [1].
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Figure 14 – Load capacity variation with time for A = 0.6.
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Figure 15 – Load capacity variation with time for A = 0.8.

Acknowledgement. The authors would like to thank the reviewers for their

valuable comments.

REFERENCES

[1] R.L. Batra and A. Kandasamy, Inertia effects in rheodynamic lubrication of a squeeze film
bearing. Wear, 131 (1989), 273–282.

Comp. Appl. Math., Vol. 26, N. 3, 2007



396 RHEODYNAMIC LUBRICATION OF SQUEEZE FILM BEARING

[2] G.H. Covey and B.R. Stanmore, Use of parallel-plate plastomer for the characterization of
viscous study with a yield stress. J. Non-Newtonian Fluid Mech., 8 (1981), 249–260.

[3] A.F. Elkouh, Fluid inertia effects in non-Newtonian squeeze films. ASME Trans. J. Lub.
Tech., 98 (1976), 409–411.

[4] D.K. Gartling and N. Phan-Thien, A numerical simulation of a plastic flow fluid in a parallel
plate plastomer. J. Non-Newtonian Fluid Mech., 14 (1984), 347–360.

[5] H. Hashimoto and S. Wada, The effects of Fluid Inertia Forces in Squeeze Film Bearings
Lubricated with Pseudo-plastic Fluids. Bulletin of JSME, 29 (1986), 1913–1918.

[6] D.C. Huang, B.C. Liu and T.Q. Jiang, An analytical solution of radial flow of a Bingham fluid
between two fixed circular disks. J. Non-Newtonian Fluid Mech., 26 (1987), 143–148.

[7] E.J. O’Donovan and R.I. Tanner, Numerical study of the Bingham Squeeze film problem. J.
Non-Newtonian Fluid Mech., 15 (1984), 75–83.

[8] J.A. Tichy andW.O.Winer, Inertial considerations in parallel circular Squeeze film bearings.
ASME Trans. J. Lub. Tech., 92(4) (1970), 588–592.

[9] R. Usha and P. Vimala, Inertia effects in circular squeeze films containing a central air bubble.
Fluid Dynamics Research, 26 (2000), 149–155.

[10] R. Usha and P. Vimala, Curved squeeze film with inertial effects-energy integral approach.
Fluid Dynamics Research, 30 (2002), 139–153.

Comp. Appl. Math., Vol. 26, N. 3, 2007


