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Segmentation of Intra-Retinal Cysts From
Optical Coherence Tomography Images Using a

Fully Convolutional Neural Network Model
G. N. Girish , Bibhash Thakur , Sohini Roy Chowdhury , Abhishek R. Kothari , and Jeny Rajan

Abstract—Optical coherence tomography (OCT) is an
imaging modality that is used extensively for ophthalmic
diagnosis, near-histological visualization, and quantifica-
tion of retinal abnormalities such as cysts, exudates, retinal
layer disorganization, etc. Intra-retinal cysts (IRCs) occur in
several macular disorders such as, diabetic macular edema,
retinal vascular disorders, age-related macular degenera-
tion, and inflammatory disorders. Automated segmentation
of IRCs poses challenges owing to variations in the acquisi-
tion system scan intensities, speckle noise, and imaging ar-
tifacts. Several segmentation methods have been proposed
in the literature for IRC segmentation on vendor-specific
OCT images that lack generalizability across imaging sys-
tems. In this paper, we propose a fully convolutional network
(FCN) model for vendor-independent IRC segmentation. The
proposed method counteracts image noise variabilities and
trains FCN models on OCT sub-images from the OPTIMA
cyst segmentation challenge dataset (with four different
vendor-specific images, namely, Cirrus, Nidek, Spectralis,
and Topcon). Further, optimal data augmentation and model
hyperparametrization are shown to prevent over-fitting for
IRC area segmentation. The proposed method is evaluated
on the test dataset with a recall/precision rate of 0.66/0.79
across imaging vendors. The Dice correlation coefficient of
the proposed method outperforms that of the published al-
gorithms in the OPTIMA cyst segmentation challenge with
a Dice rate of 0.71 across the vendors.

Index Terms—Optical coherence tomography, segmen-
tation, retinal cyst, cystoid macular edema, convolutional
neural networks, deep learning.
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I. INTRODUCTION

R ETINAL disorders pose a significant health challenge in
the current era. Macular edema is a leading cause of visual

impairment in the working population. It affects central vision,
thereby impacting reading, writing, fine motor activities and
driving. Macular edema results from vascular incompetence,
leading to fluid leakage into the retina [1]. This extravasated
fluid accumulates in retina tissue into multiple interconnected
labyrinthine cavities. In cross-sectional views, these fluid spaces
can be observed as round or oval empty spaces and are referred
to as cysts, even though this is a misnomer. These ‘intra-retinal
cysts’ (IRC) are seen in macular edema associated with several
eye disorders such as age-related macular degeneration, dia-
betic retinopathy, retinal vein occlusion, etc. Also, studies have
demonstrated that cystoid macular edema is strongly associated
with visual loss, and the volume of cystic fluid space, and their
relative location in retinal micro-structure may correlate with
the degree of visual impairment [2].

Optical Coherence Tomography (OCT) is a non-invasive tech-
nique that uses low coherence light for resolving internal struc-
tures of biological tissues [3]. OCT is widely used for the di-
agnosis of several ocular diseases and visualization of retinal
structures such as retinal layers, cysts, exudates, and sub-retinal
fluid. OCT produces a large amount of volumetric data; analyz-
ing these images completely for locating cysts and measuring
specific volumes is time-consuming as well as it requires expert
annotations. Automated segmentation methods can assist the
ophthalmologists for better interpretation and quantification of
retinal features to enhance diagnosis and decision making in the
treatment of retinal pathologies.

Over the past few years, several automated IRC segmentation
methods have been proposed in the literature. Retinal cyst
segmentation has been performed using 3D volumetric ap-
proaches [4]–[8] as well as 2D B-scan approaches [2], [9]–[19].
Recently, a benchmark study [20] was conducted to analyze
the performance of different automated IRC segmentation
methods. To the best of our knowledge, the existing methods are
dependent on vendor-specific acquisition systems and require
human intervention to determine acquisition and visualization-
specific parameters. Additionally, segmentation of fluid-filled
spaces in retinal volumes across different OCT vendors is
a challenging task due to the variations in the noise levels
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Fig. 1. Sample OCT B-scans of retina from four different vendors (Image courtesy: OPTIMA cyst challenge dataset [21]). (a) Cirrus (b) Nidek
(c) Spectralis (d) Topcon.

and pixel intensities across scans [see Fig. 1]. The proposed
method addresses these challenges posed to the development
of automated vendor independent cyst segmentation methods.

Recent forays into the usage of Convolutional Neural Net-
works (CNNs) for biomedical image segmentation have shown
significant improvements over other approaches [22], [23].
CNNs are a specific variant of standard neural network models,
which take an image as an input and perform repetitive convolu-
tion operations to abstract features specific to the segmentation
task. The learnable weights and biases of the neurons serve as
convolution filters. These filters may be arranged in different
ways to design architectural variants for various segmentation
problems. One such significant CNN model used in a variety of
different medical image segmentation tasks, is the U-Net archi-
tecture proposed by Ronneberger et al. [24]. U-Net is a fully
convolutional network (FCN), such as the one popularized by
Long and Shelhammer [25], where, if an image is provided as
the input, the output obtained is its corresponding segmentation
mask. Milletari et al. [26] further expanded this concept and
converted their model to accept 3D image stacks as input. They
also introduced the concept of residual connections described in
the widely cited ResNet architecture [27]. The self-learning and
abstract feature learning capabilities of CNNs for distinguishing
subtle spatial variations motivate our choice of FCN in vendor-
independent cyst segmentation tasks. So far, FCNs have not
been utilized for IRC segmentation from vendor-independent
OCT scans.

This paper makes two key contributions. First, a customiz-
able state-of-the-art FCN model is presented that is capable
of automated IRC area segmentation from OCT images across
vendor-specific imaging systems. We analyze the sensitivity of
model parameters, such as number of layers and kernel dimen-
sions, towards the IRC area segmentation goals. We observe
that an optimally parametrized model can achieve higher re-
call rate of 0.66 while preserving the precision rate of 0.79
across multiple vendor data, when compared to state-of-the-art
methods. Second, the importance of OCT image pre-processing
by image noise suppression using Gamma noise models, sub-
retinal region of interest (ROI) segmentation and optimal data
augmentation methods are presented. We observe that image
pre-processing and domain-specific data augmentation methods

significantly prevent model over-fitting while ensuring general-
izability across vendor-specific imaging systems.

The rest of the paper is organized as follows. In Section II the
methods and data are discussed. In Section III the experimental
setups are explained. Experimental results are presented and
discussed in Section IV. Finally, conclusions and discussions
are drawn in Section V.

II. METHODS AND DATA

The proposed method comprises of two stages, namely: pre-
processing stage that includes image noise removal and retinal
layer segmentation, followed by IRC segmentation stage. OCT
scans are inherently affected by speckle noise, that influences
the performance of automated IRC segmentation methods. The
initial pre-processing module suppresses speckle noise and im-
proves the IRC segmentation performance. The two method-
ological stages are described below.

A. Pre-processing: Denoising and Sub-retinal Layer
Segmentation

OCT scans contain varying degrees of speckle noise as in
other medical imaging modalities like ultrasound. The work in
[28] experimentally showed that OCT images with presence of
noise can be approximated with a Gamma distribution. Moti-
vated by this work, we implement the approach given in [29] as
Unbiased Fast Non Local Means (UFNLM) to denoise the OCT
image data set. First, each input image is denoised with a Fast
NLM (FNLM) method proposed in [30] followed by the sub-
traction of bias due to speckle. Here, the bias term is estimated
from the noisy image using the maximum likelihood method
described in [28], [29],

B̂e = ρ̂ML · β̂ML (1)

where B̂e is the estimated bias and ρ̂ML, β̂ML are the estimated
shape and scale parameters (of the Gamma distribution) from
the noisy image. Since the shape and scale parameters can be
assumed to be consistent throughout all regions in an input OCT
image, they can be estimated from any homogeneous image
region (where the underlying intensity is constant). If we assume
that many such piece-wise homogeneous regions may exist, then
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TABLE I
AUTOMATICALLY ESTIMATED BIAS VALUE ‘B̂e ’ AND SMOOTHING PARAMETER
‘h’ ON DIFFERENT VENDOR OCT SCANS CONSIDERED IN THIS STUDY FOR

SPECKLE NOISE REDUCTION

Vendor Smoothing Parameter (h) Bias Value (B̂e )

Cirrus 10 15
Nidek 15 26
Spectralis 10 32
Topcon 10 9

ρ and β can also be estimated as [28], [29],

ρ̂ML = mode
{
ρML(i,j )

}
, β̂ML = mode

{
βML(i,j )

}
(2)

where, ρ̂ML and β̂ML represent the estimated values of ρ and β,
respectively, for each pixel at location (i, j) using a neighbor-
hood of size [m × n]. In this work, the neighborhood window
size is empirically determined as [5 × 5]. Finally, the FNLM
algorithm is executed with the following parameters: search
window and similarity window sizes of the filter are [11 × 11]
and [7 × 7], respectively. The smoothing parameter h is empiri-
cally estimated across vendors. The estimated bias parameter B̂e

and smoothing parameter h for images acquired with different
vendors are reported in Table I.

Following the image denoising process, sub-retinal layer seg-
mentation provides information regarding morphology varia-
tions and thickness of the layers. This information is utilized
to refine the IRC segmentation results. In this work, the Iowa
Reference Algorithm [31]–[33] is used to segment 11 different
retinal layers. As intra-retinal cysts are prone to occur in the
retinal area enclosed by Internal Limiting Membrane (ILM) to
Boundary of Myoid and Ellipsoid of Inner Segments (BMEIS)
layers, the OCT B-scans are cropped by delimiting this region
as the ROI.

After delimiting the ROI of the OCT scans, contrast enhance-
ment is performed using CLAHE [34] to increase the intensity
difference between the cystic and non-cystic regions. Kernel
size of ( 1

8 )th of the image width and height and clip limit of
0.01 is used for CLAHE.

B. Cyst Segmentation: FCN Model

The FCN model [25] accepts denoised sub-retinal layer re-
gions of OCT images as input and produces a prediction score
matrix that is then used to construct a binary output mask corre-
sponding to segmented cyst regions. Our FCN model is inspired
by Ronneberger’s U-Net architecture [24] that captures both
local and global features from an input image to construct an
accurate segmentation map. While global features indicate the
exact location and relative size of the cystic region, the local
features determine the exact cyst boundaries.

The proposed architecture follows a multi-stage two-phase
approach. The first phase performs convolutions in five stages.
Every stage has two convolutional layers followed by a down-
sampling layer with max-pooling operation to garner a larger
receptive field. The second phase aims to revert the activations
of the first phase to the original resolution. This up-sampling is

performed with trainable deconvolution layers in 4 stages, thus
enabling end-to-end predictions regarding the location of IRCs.
For accurate segmentation both local and global features are
taken into consideration. Thus, the features extracted from the
previous stages, in phase one, are forwarded and concatenated
with the features in the corresponding output of up-sampled
stages in phase two. The advantage of this architecture is that
every pixel is considered as an individual training sample with
per-pixel back-propagation error. This process significantly in-
creases the size of the training data set, thereby avoiding model
over-fitting.

The proposed network architecture is shown in Fig. 2. The
model is designed to process images of size [256 × 512]. The
convolution filter width and height ([ω × η]) is chosen as [3 ×
3] across the entire network. This filter size is motivated by
prior work [35] to ensure discriminative feature learning from
pixel neighborhood while ensuring low parametrization when
compared to larger filter sizes.

In the analysis/down-sampling phase, there are two [3 × 3]
convolutions before a [2 × 2] max-pooling layer which reduces
the resolution of the image exactly by half. All convolutions
are followed by a Rectified Linear Unit (ReLU) activation func-
tion and batch normalization operation. The addition of batch
normalization [36] speeds up the network training and con-
vergence process. The number of filters (k) in each convolu-
tional layer also doubles after every stage. The second phase of
the network up-samples the activations using deconvolution or
fractionally-strided convolution. It follows a path symmetric to
the down-sampling path but the pooling operations are replaced
with deconvolutions. The final layer in the network is a [1 × 1]
convolution layer. The loss function of the network is computed
by pixel-wise sigmoid activation function over the output of
the final [1 × 1] layer with the binary cross entropy loss, which
maps the input to a probability map having the same dimensions
as the input image. The loss function of the network for a single
input image with nout pixels is given in (3),

L = −
nout∑

i=1

(ti log (si) + (1 − ti) log (1 − si)) (3)

where ti is the actual binary output (target) and si is the predicted
binary output for the pixel i. The sigmoid activation function s
applied on weighted sum of the inputs and the final output y are
given in (4).

si =
1

1 + e−yi
, yi =

n∑

j=1

xjwji (4)

Here, n signifies the number of neurons present in the layer
just before the sigmoid activation. Hence, the model output
represents a pixel-wise likelihood of being cystic or non-cystic.
The resulting binary image mask is then compared with the
actual target t cyst mask, and with the aid of the loss function
L, model weights are updated such that the loss is minimized
for subsequent epochs. Thus, the FCN model is trained.

The proposed model [see Fig. 2] is designed with 18 total
convolutional layers (denoted by red arrows in Fig. 2) across
the two phases. The number of filters (k) for the 2 starting
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Fig. 2. The proposed network architecture. The FCN model comprises of 18 convolutional layers with the number of kernels varying from 16 to
256.

TABLE II
DATASET DESCRIPTION

Vendor Train set Test set Total number of B-scans per volume

Cirrus 4 4 128–200
Nidek 3 3 7–128
Spectralis 4 4 7–49
Topcon 4 4 128

layers are assigned as 16. After each pooling layer, the number
of filters are doubled for the next 2 convolutional layers. There
are 4 pooling layers, making the maximum number of filters in
a convolutional layer to be 256. In the up-sampling phase, the
number of convolutional filters is reduced by half after every
up-sampling operation. Similar to the first phase, this is also
performed 4 times, leaving the last 2 convolutional layers with
k = 16 filters each. This is followed by a [1 × 1] convolutional
layer with a filter to produce a [256 × 512] sized output image
mask, to match the input dimensions.

C. Data

To evaluate the performance of the proposed method, exper-
iments are conducted on the benchmarked OPTIMA cyst seg-
mentation challenge dataset [21]. The OPTIMA cyst challenge
dataset contains OCT scans with cystoid macular edema ob-
tained using four different vendors, namely Zeiss Cirrus, Nidek,
Spectralis Heidelberg and Topcon [21]. This dataset consists of
separate training and test subsets. Each OCT volume is acquired
over 6 × 6 mm of the macula and foveal center from subjects
with CME. Table II shows the dataset description. A sample
OCT B-scan frame from each vendor is shown in Fig. 1.

III. EXPERIMENTAL SETUP

The proposed FCN architecture is implemented in Keras
1.0 [37] with Tensorflow back-end on a workstation with a
64-bit Ubuntu operating system, Intel Xeon Processor E5-2600
(Intel, Mountain View, CA), solid state hard drive, 128 GB of

TABLE III
DIFFERENT FCN ARCHITECTURES FORMED BY VARYING NUMBER OF

LAYERS

# Layers Starting Filter Size (ω × η × k) Depth # Parameters

4 3 × 3 × 64 0 112,513
6 3 × 3 × 64 1 367,809
10 3 × 3 × 64 2 1,866,817
14 3 × 3 × 64 3 7,707,457
18 3 × 3 × 64 4 31,054,145

RAM and the NVIDIA Quadro K2200 GPU with 4 GB dedi-
cated memory.

A. FCN Model Training and Hyper-parametrization

Model hyper-parameters need to be optimally tuned for the
final objectives. In the context of FCNs, the most important
parameters/hyper-parameters that need to be optimized include:
the number of weights and biases in the network, the number
of layers, the number of filters/kernels in each layer and the
learning rate of the model. The best combination of these pa-
rameters is identified by performing grid-search using the hold-
out method [38]. Finally, the test data set is used for trained
model performance analysis. Several experiments have been
designed to validate the FCN model architecture as described
in Section II-B. As described in [24], two convolutional layers
are always followed by a max-pooling layer or a deconvolution
layer. Keeping this feature constant and the number of filters as
described in [24], the number of layers can be varied for different
architectures. An overview of these architectures are presented
in Table III. Here, Depth signifies the number of max-pooling
layers, parameters signify the number of weights and biases in
the network, and layers specify the convolutional layers.

For experimental evaluation of the FCN parameters on the
various architectures, one volume from each vendor is extracted
from the training set to act as the validation set, i.e., the train-
ing and validation sets contain 11 and 4 volumes, respectively.
First, these 3D OCT volumes are separated into 2D B-scans,
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which constitute training data of 1243 B-scans and validation
data of 433 B-scans across all the vendors. As discussed in the
Section II-A, only the ROI between the ILM and BMEIS sub-
retinal layers are considered for intra-retinal cyst segmentation.
All the images are then resized using bilinear interpolation to
a standard resolution of [256 × 512]. After resizing, the OCT
scans are normalized to zero mean and unit variance.

The FCN network is trained with the binary cross-entropy loss
function (refer (3)). The Adam optimizer [22], which is a variant
of stochastic gradient descent, is used to update the weights. The
default hyper-parameters used for this optimizer are: β1 = 0.9,
β2 = 0.999, ε = 1 × 10−8 . The learning rate is empirically cho-
sen as 3 × 10−4 based on a short random search. Initial network
weights are assigned according to the He initializer [39]. No
other pre-trained weights are used in the process. The FCN net-
work is trained from scratch completely on the train data set.
Nevertheless, the train data comprises of relatively less number
of samples to train a full-scale FCN. Hence, data augmenta-
tion is applied to generalize the model and reduce over-fitting.
Several data augmentation schemes are evaluated for their im-
pact on training loss and model convergence. These include im-
age gradient enhancement, edge enhancement, brightness and
contrast variations. However, we observe that augmented data
generated by horizontal flipping, random shear, height, width
and zoom shifts are best for IRC segmentation tasks. This ob-
servation is intuitive since domain knowledge suggests cysts
to have variable shapes, structures and orientations but simi-
lar appearance with respective to neighboring tissues. Thus, we
observe that domain-specific data augmentation process is key
to a generalizable FCN model. The data transformations for
augmentation are performed on-the-fly during training, thereby
alleviating storage concerns. The proposed model is trained up
to 120 epochs, beyond which, no further change in loss function
is observed.

Fig. 3 shows the training process for various FCN model
architectures. Depth 0, 1, 2 models [see Fig. 3(a)–(c)] exhibit
limited learning capabilities and the training loss does not re-
duce significantly. Depth 3, 4 models [see Fig. 3(d) and (e)] can
be further investigated for their receptive fields. The receptive
field is defined as the effective area of the original input image
covered by a convolution filter [40]. If the convolution filter
size is kept the same throughout the network, the receptive
field of a filter increases after every pooling operation. This
is because the resolution of the image is reduced, but the size
of the filter remains the same. Even though both Depth 3 and
Depth 4 models converge to a lower training loss, we choose the
latter one for its higher receptive field, which can account for
more features. However, in Depth 4 model the rate of change
in loss function demonstrates some over-fitting trends. Keeping
this Depth 4 as constant, the number of parameters can be
varied by changing the number of filters in each layer, thereby
reducing over-fitting. Table IV shows the number of parameters
in the different architectures formed at Depth 4 by varying the
starting filter size, and Fig. 4 shows their training processes,
respectively. We observe that both k = 32 and k = 16 starting
filter sizes converge to low training losses with significantly
less over-fitting trends. Thus, the model with a fewer number of

Fig. 3. Loss Value vs. Epoch graphs for FCN model Depth: [0, 1, 2, 3,
4] architectures after model training. Blue: Training Loss. Red: Validation
Loss. (Plotted in Log Scale). (a) Layers = 4, Depth = 0. (b) Layers = 6,
Depth = 1. (c) Layers = 10, Depth = 2. (d) Layers = 14, Depth = 3.
(e) Layers = 18, Depth = 4.

TABLE IV
ARCHITECTURES DESIGNED BY VARYING NUMBER OF FILTERS IN Depth 4

Starting Filter Size (ω × η × k) # Parameters

3 × 3 × 64 31,054,145
3 × 3 × 32 7,771,297
3 × 3 × 16 1,946,705

Fig. 4. Loss Value vs. Epochs graphs for Depth 4 architecture with
different starting filter sizes. Blue: Training Loss. Red: Validation Loss.
(Plotted in Log Scale). (a) Layers = 18, Depth = 4, Starting Filter
Size k = 16. (b) Layers = 18, Depth = 4, Starting Filter Size k = 32.
(c) Layers = 18, Depth = 4, Starting Filter Size k = 64.

parameters is chosen as the final architecture, because of higher
generalizability and low over-fitting trends. The proposed
Depth 4 FCN model requires 338 seconds to train per epoch
(total 1234 samples in the training data), and 0.06 seconds per
test image (total 909 samples in the test data) for prediction.
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TABLE V
MEAN (STANDARD DEVIATION) OF PRECISION AND RECALL OF THE PROPOSED METHOD ON DIFFERENT VENDOR OCT SCANS

Vendor G1 G2 G1 ∩ G2

Precision Recall Dice Precision Recall Dice Precision Recall Dice

Cirrus 0.71 (0.21) 0.61 (0.38) 0.62 (0.35) 0.71 (0.21) 0.61 (0.38) 0.62 (0.35) 0.67 (0.18) 0.66 (0.40) 0.63 (0.35)
Nidek 0.83 (0.02) 0.75 (0.23) 0.77 (0.15) 0.81 (0.01) 0.75 (0.24) 0.76 (0.14) 0.74 (0.03) 0.80 (0.25) 0.75 (0.11)
Spectralis 0.82 (0.09) 0.62 (0.09) 0.71 (0.08) 0.84 (0.09) 0.64 (0.11) 0.72(0.10) 0.79 (0.09) 0.69 (0.10) 0.74 (0.09)
Topcon 0.82 (0.09) 0.70 (0.17) 0.75 (0.13) 0.82 (0.08) 0.73 (0.14) 0.77 (0.11) 0.76 (0.11) 0.78 (0.13) 0.77 (0.12)
Overall 0.79 (0.12) 0.66 (0.22) 0.71 (0.20) 0.80 (0.12) 0.67 (0.22) 0.72 (0.19) 0.74 (0.12) 0.73 (0.23) 0.72 (0.19)

IV. RESULTS AND ANALYSIS

Segmentation results of the proposed method is compared
with manually graded ground-truth (GT) provided with dataset
images (ascertained by two trained ophthalmologists). We used
pixel-wise analysis for calculating True Positives, False Posi-
tives and False Negatives. True Positives (TP) are defined as
true cystic pixels detected by the algorithm, False Positives (FP)
are defined as pixels identified as cysts by algorithm that were
not actually cysts, and False Negatives (FN) are defined as true
cystic pixels that are undetected by the algorithm. Precision and
recall metrics are computed for each of the OCT volumes in the
test dataset against GT from two independent graders (G1 , G2)
and their intersection (G1 ∩ G2). Precision and recall metrics
are given as:

Precision =
TP

TP + FP
, Recall =

TP
TP + FN

(5)

To assess the correlation accuracy of the segmentation, Dice
coefficient is computed between segmented results of the algo-
rithm (Detected) and ground truths (GTs) for each test OCT
volume. Dice coefficient is computed as [41]:

Dice coefficient = 2 · |Detected ∩ GT|
|Detected| + |GT| . (6)

Table V shows the mean precision, recall and Dice coefficient
results of the proposed method against G1 , G2 and G1 ∩ G2 . It
can be noticed that the proposed method gave highest mean
recall rate on scans obtained from Nidek vendor compared to
other vendors (0.75 on G1 , 0.75 on G2 and 0.80 on G1 ∩ G2).
The precision of the proposed method is stabilized across the
three vendors (Nidek, Spectralis and Topcon). In case of Dice
coefficient, scans obtained from Nidek and Topcon result in
higher correlation on G1 (0.77 and 0.75, respectively) and G2
(0.76 and 0.77, respectively) compared to other two vendors
(Cirrus and Spectralis). On Cirrus scans, precision, recall and
Dice correlation rates are lower compared to other vendors due
to high-intensity variations and noise.

Also, we observe variations in the results obtained against
G1 , G2 and G1 ∩ G2 , due to inter-observer variability between
manually annotated GTs. The scan intensity variations and reti-
nal vessel shadows often increase the difficulty in cyst identifi-
cation and delineation for human graders, thus accounting for
such inter-observer variability. We observe a variable degree of
inter-observer variability across vendors for the IRC segmenta-
tion task.

Qualitative results using the proposed segmentation method
are shown in Figs. 5 and 6. Images in the first column of these
figures show original scans from different vendors, the second
column show GTs provided by G1 ∩ G2 , and the third column
show the result of the proposed FCN model, respectively. We
observe that due to intensity variations on the sample Cirrus
scan, the boundary between individual cysts are ill-defined [see
Fig. 5(a)]. Hence, the proposed segmentation method merges
individual cysts into larger cystic region due to small intensity
variations in the boundaries of cysts [see Fig. 5(c)]. In the sam-
ple Nidek scan, the proposed method over-segments the cystic
structures by merging two cysts into a single large cyst, thereby
resulting in false positive [see Fig. 5(d) and (f)]. In case of
sample Topcon and Spectralis scans [see Fig. 5(g) and (j)], the
proposed method finely segments the cystic structures when
compared to the other two vendors owing to the clear boundary
between the cystic structures [see Fig. 5(i) and (l)].

Fig. 6 shows the limited segmentation performance results of
the proposed method on different vendor scans. For the sample
Cirrus scan [see Fig. 6(a)–(c)], the proposed method unable to
detect cysts due to low intensity variations between the cysts and
neighboring non-cystic regions. In the sample Nidek scan [see
Fig. 6(d)] the boundary between cysts beside the larger cysts
is relatively unclear and the cyst merges with the outer nuclear
layer (ONL). Here, the model ignores the cyst by misclassifying
it as ONL layer [see Fig. 6(e) and (f)]. In the sample Spectralis
scan, the grader had marked a non-cystic region as cystic re-
gion on right to the foveal center. Here, the proposed method
shows its robustness to such instances by not segmenting this
region [see Fig. 6(g)–(i)]. The proposed method segments 6
FPs in the sample Topcon scan due to intensity variations [see
Fig. 6(j)–(l)]. These limiting results demonstrate the vital role of
scan intensity variations towards OCT cyst segmentation tasks.

The Dice coefficient using the proposed method when com-
pared with the published OPTIMA Cyst Segmentation Chal-
lenge results [21] are shown in Table VI. Here, the method pro-
posed by de Sisternes et al. [42], uses 34 handcrafted features
to train a machine learning model. While designing appropri-
ate features manually across imaging vendors may be manually
tedious and insufficient task, we observe that the designed fea-
tures unable to encompass all the OCT scan variations. In [11],
a cascaded CNN working on multiple resolutions is used to
segment the IRC. This method takes a lot of time to train 3 dif-
ferent networks independently. Moreover, the selection of patch
sizes is found to impact the final segmentation results. Another
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Fig. 5. Results of proposed method on different vendor scans against the GT from G1 ∩ G2 . (a) Sample B-scan of Cirrus Vendor. (b) Ground
truth. (c) Segmented output. (d) Original B-scan of Nidek Vendor. (e) Ground truth. (f) Segmented output. (g) Sample B-scan of Spectralis Vendor.
(h) Ground truth. (i) Segmented output. (j) Sample B-scan of Topcon Vendor. (k) Ground truth. (l) Segmented output.

Fig. 6. Limiting segmentation results by the proposed method for each vendor, against the GT from G1 ∩ G2 . (a) Sample B-scan of Cirrus Vendor.
(b) Ground truth. (c) Segmented output. (d) Sample B-scan of Nidek Vendor. (e) Ground truth. (f) Segmented output. (g) Sample B-scan of Spectralis
Vendor. (h) Ground truth. (i) Segmented output. (j) Sample B-scan of Topcon Vendor. (k) Ground truth. (l) Segmented output.

TABLE VI
COMPARISON MEAN (STANDARD DEVIATION) OF DICE COEFFICIENT OF THE

PROPOSED METHOD AGAINST THE RESULTS OF OPTIMA CYST
SEGMENTATION CHALLENGE ON ALL VENDOR OCT VOLUMES (TEST SET)

Method G1 G2 G1 ∩ G2

de Sisternes et al. [42] 0.68 (0.15) 0.67 (0.14) 0.69 (0.15)
Venhuizen et al. [11] 0.61 (0.19) 0.60 (0.19) 0.59 (0.19)
Oguz et al. [4] 0.60 (0.15) 0.59 (0.15) 0.60 (0.14)
Esmaeili et al. [5] 0.55 (0.27) 0.55 (0.27) 0.55 (0.28)
Haritz et al. [10] 0.23 (0.15) 0.23 (0.15) 0.23 (0.15)
Proposed Method 0.71 (0.20) 0.72 (0.19) 0.72 (0.19)

method involving two-stage graph-cut segmentation approach
is proposed in [4], where the cost function for the graph-cut
algorithm is computed using initial intra-retinal layer segmen-
tation results. Since segmentation of inner retinal layers is more
prone to error on pathological images than on normal ones, the
cost function is found to be impacted significantly. Haritz et al.
[10] initially identified candidate cyst regions using a center-
surround difference technique. In this method, local descriptors
are extracted from cystic regions and classified using random
forest classifiers. Nonetheless, this rule-based method is found to
fail while segmenting small cyst regions. Esmaeili et al. [5] pro-
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posed automated IRC segmentation method using 3D curvelet
transform and K-SVD dictionary learning approaches. However,
this method is proposed and validated only on Spectralis vendor
OCT scans of the challenge dataset. Generalizing this method
for vendor-independent IRC segmentation might affect the dic-
tionary learning process and performance because of the higher
level of noise present in other OCT vendor (Cirrus, Nidek, and
Topcon) scans.

The method proposed in this paper uses a pre-processing
module to equalize the OCT images across vendors. Next, the
FCN model automatically captures both micro and macro-level
features for better characterization of cystic structures. Thus,
the proposed method outperforms reported challenge results
with highest Dice rate (0.71 on G1 , 0.72 on G2 and 0.72 on
G1 ∩ G2) with an improvement of 3% on ground truth pro-
vided by G1 and 5% on G2 compared to results reported in de
Sisternes et al. [42]. Additionally, we observe slight variations
in the segmentation results for the comparative methods on the
ground-truth provided by both graders due to inter-observer
variabilities.

We also conducted experiments to study the influence of noise
and the results are depicted in Section I of the Supplementary
material. It can be observed that there is 50% improvement in
Dice coefficient by using denoised images instead of raw noisy
images. Further, to demonstrate generalizability of the proposed
method, the publicly available Duke DME dataset [14] images
are used to test the proposed trained FCN model in Section II
of the Supplementary material. We observe that without any ad-
ditional training and fine-tuning, the proposed method achieves
Dice coefficient of 0.53 on the Duke DME dataset. Due to the
limited size of the Duke DME data set, the proposed FCN model
was not retrained further to fit these images.

V. CONCLUSION AND DISCUSSION

This work presents an FCN model-based vendor indepen-
dent IRC area segmentation technique. The FCN model is cus-
tomized for IRC area segmentation by utilizing denoised retinal
OCT images to train it from scratch. Sensitivity analysis of
the model hyper-parameters demonstrates that deeper networks
exhibit better feature learning capabilities than shallower net-
works while higher receptive fields induce higher training losses
that may lead to model over-fitting. The proposed optimal FCN
model with lower receptive field (starting filter size 16) and
Depth 4 results in a computationally efficient yet robust vendor-
independent model for IRCs. Additionally, domain-specific data
augmentation methods are found to improve model training and
convergence rates. The proposed model is evaluated qualita-
tively and quantitatively on OPTIMA cyst challenge dataset.
The results demonstrate that the proposed method efficiently
segments the IRCs by providing mean Dice rate of 0.71 on
scans obtained across four different vendors.

Future works may be directed towards cystic boundary
detection or cyst counting tasks by suitably modifying the
FCN parameters, goals and loss functions. It is noteworthy that
for area-based segmentation tasks, penalizing FP pixels more
than FN pixels in the loss function will lead to smaller cysts

getting missed while over detections and merged cysts will be
observed for higher penalization of FNs over FPs. Future efforts
can be directed towards the implementation of such modified
proposed architectures for the detection of sub-retinal cysts,
pigment epithelial detachments and other macular degenerative
pathologies.
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