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Abstract 
 

For any edge � � �� of an isolate free graph ���, 	
, 〈�
��〉 is the subgraph 

induced by the vertices adjacent to  u  and  v  in G.  We say that an edge x,  e-

dominates an edge   y  if � ∈ 〈�
��〉  . A set � ⊆ 	  is an Edge-Edge Dominating 

Set  (EED-set) if every edge in 	 � �  is  e-dominated by an edge in L. The edge-

edge domination number  �����
  is the cardinality of a minimum  EED-set. We 

find the relation ship between the new parameter and some known graph 

parameters.  

 

Keywords: Edge-Edge Dominating sets (EED sets), Strong Edge-Edge 

Dominating sets (SEED sets) 



5526                                                          R. S. Bhat, S. S. Kamath and S. R. Bhat 

 
 

1 Introduction 
 

For any undefined terminologies refer [3]. Degree of an edge  � � ��,  deg (x)   

is the number of edges adjacent to the edge x.  Equivalently deg(x) = deg (u) +  

deg (v) - 2. Unless specified otherwise by a graph we mean a simple undirected  

isolate free and isolate edge free graph. For any edge � � ��,���
 �
�� ∈ 	|�	��	������ !	!"	�#   and  �
�� � ���
 ∪ ��#.   And 〈�
��〉 is the sub 

graph induced by ���
 ∪ ���
.  
The strong weak domination was first introduced by Sampathkumar and 

Pushpalatha [12].  For any two adjacent vertices  u and  v in a graph %�&, '
, (  

strongly (weakly) dominates  v  if deg (u) ≥ deg(v)  (deg (u) ≤ deg (v)).  A set 

) ⊆ & is a dominating set (strong dominating set [SD-set], weak dominating set 

[WD-set] respectively) of  G  if every  * ∈ & � )  is dominated (strongly 

dominated, weakly dominated respectively) by some ( ∈ ). The domination 

number ,�%
 (strong domination  number ,-�%
, weak domination number	,.�%
 
respectively) is the minimum cardinality of a  dominating set (SD- set, WD-set 

respectively) of G. Similarly, this concept is extended to coverings , independent 

sets and matchings by S.S.Kamath and R.S.Bhat [2, 4 and  5]. Sampathkumar and 

P.S.Neeralagi [10, 11] defined the neighbourhood sets and line neighbourhood 

sets as follows. A set / ⊆ &  is a neighbourhood  set  (n- set)   if  % �
⋃ 〈1
*�〉2∈3 . A set 4 ⊆ '   is a Line neighbourhood  set  (ln- set) if	% �
⋃ 〈1
5�〉6∈7 . The neighbourhood  number  89 � 89�%
  [line neighbourhood  

number 89: � 89: �%
] is the  cardinality of a minimum n-set [ln-set] of G. Mixed 

domination was introduced in  1985 by R.Laskar and Ken Peters [8] and then in 

1992 by, Sampathkumar and S.S.Kamath [9]. An edge x,  m- dominates  a vertex  

v  if  * ∈ 1
5�.  A set 4 ⊆ '  is an Edge Vertex Dominating set (EVD-set) if 

every vertex in   G  is  m-dominated   by an edge in L. The edge vertex domination 

number ,;2�%
  is the minimum cardinality of an EVD-set. Strong (weak) Edge 

vertex domination studied by R.S.Bhat et.al [1] and Vertex Edge domination is 

studied by S.S. Kamath and R.S.Bhat [6].  

 

 

2. Strong /Weak Edge Edge Dominating sets  
 

 Let 5, < ∈ ',  of an isolate free graph %�&, '
 then the edge x,  e-

dominates an edge   y  if   < ∈ 〈1
5�〉. An edge x  strongly (weakly) e-dominates 

an edge   y  if < ∈ 〈1
5�〉  and  deg (x) ≥ deg (y) (deg (x) ≤ deg(y)). 

A set  4 ⊆ ' is an Edge-Edge Dominating set  (EED-set) if every edge in  

E - L is e-dominated by an edge in L. The edge-edge domination number  γee(G)  

is the minimum cardinality of an EED-set. A set 4 ⊆ '  is a Strong Edge-Edge 

Dominating set  (SEED-set) [Weak Edge-Edge Dominating set (WEED-set)] if 

every edge in ' � 4  is strongly (weakly) e-dominated by an edge in L. The strong  
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(weak) edge-edge domination number ,-;;�%
		�,.;;�%

  is the minimum 

cardinality of a SEED-set (WEED-set).  

We observe that  the definition of  EED set is a restatement of the 

definition of  line neighbourhood set  and hence we have ,;; � 89: .   In [9] it is 

proved that ,;2 = ,;; .  Therefore we have ,;2 = ,;; � 89:  .  Since every SEED set  

and WEED set is an EED set we have  ,;; = ,-;; and ,;; = ,.;;.   

              

 A set 4 ⊂ ' is said to be Full Edge-Edge  dominating set (FEED set) if    

every edge in L is e-dominated by an edge in ' � 4. A set 4 ⊂ ' is said to be a 

Full Strong Edge-Edge Dominating set (FSEED-set) [Full Weak Edge-Edge 

Dominating set  (FWEED-set)] if  every edge in L, is weakly (strongly) e-

dominated by an edge in ' � 4. The FEED number  ?;;�%
  (FSEED number 

?-;;�%
, FWEED number ?.;;�%
 respectively ) is the maximum cardinality of a 

FEED set (FSEED set, FWEED set respectively). 

Example 1. Here, ,;;�%@
 � ,-;;�%@
 � ,.;;�%@
 � 3. The dotted edges in 

Fig.1a, Fig.1b represent the both ,;;- set as well as ,-;; -set and the dotted edges 

in Fig.1c is a ,.;; -set. More over  ?;;�%@
 � ?.;;�%@
 � ?-;;�%@
 � 6.  The dark 

edges in each figure form ?;; -set, fwee -set and  fsee -set respectively. We also 

observe that  ,;2�%@
 � 2 D 3 � ,;;�%@
. 

 

 

Fig 1.a      Fig 1.b            Fig 1.c 

 For any  (, *	in G  the distance between u and *, E�(, *
 is the length of a 

shortest path between u and v.  Let , < ∈ ', F ∈ & , and 5 � (* then the distance 

between the vertex  a  and edge x, is defined as E�5, F
 � min	�E�(, F
, E�*, F
# 
and the distance between the two edges  E�5, <
 � min	�E�<, (
, E�<, *
#. This 

concept of distance between a vertex and an edge plays an important role in EED 

sets.  

Remark 1.  If L is a minimal EED set of an isolate  edge free graph G, then E - L 

is also an EED set of G.  

 

 

3.  Main Results 

Our first result gives a necessary and sufficient condition for a set 4 ⊆ ' to 

be an EED set of G in terms of distance between a vertex and an edge. 

Proposition 1. Let %�&, '
 be any graph without isolated edges. A set	4 ⊆ ' is an  

G1 
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EED set of G if, and only if, for every edge < � (* in ' � 4, there exists an edge 

5 ∈ 4 such that E�5, (
 = 1 and E�5, *
 = 1. 

 

Proof.  (⇒)  Let L be an EED set of G. Then since G is a graph without  isolated 

edges, every edge   < � (* in ' � 4 is e-dominated by some edge 5 ∈ 4. Hence 

both (, * ∈ 1
5�.  This implies that both  E�5, (
 = 1 and E�5, *
 = 1 hold as 

desired.        

(⇐) Let 4 ⊆ ' and for every edge < � (* in ' � 4, there exists an edge 5 ∈ 4 

such that E�5, (
 = 1 and E�5, *
 = 1. Suppose L is not an EED set of G, then 

there exists at least one edge K � FL ∈ ' � 4 such that z is not e-dominated by 

any edge in L. Then at least one of the conditions E�5, F
 M 2 or E�5, L
 M 2 

holds, a contradiction to our assumption.  

We shall next give a necessary and sufficient condition for minimality of an EED set.   

 

Theorem 2.   

(a)   A set L is a minimal EED set of G  if, and only if,  for any  5 ∈ 4 one of      

the following two conditions holds.                                                

(i) No edge in L  e-dominates the edge x. (ii)There exists a  < ∈ ' � 4 such that  y  

is uniquely e -dominated by the edge x.            

(b)  A set  L  is a minimal SEED set (WEED set)  of  G  if, and only if,  for any 

5 ∈ 4 one of the following two conditions holds.                             

(i)  No edge in L strongly (weakly) e-dominates the edge x.  (ii) There exists an 

edge < ∈ ' � 4 which is uniquely strongly (weakly) e-dominated by the edge x.   

Proof. Assume L is a minimal EED set. Then for every 5 ∈ 4, 4 � �5#  is not an 

EED set. This means that there exists a < ∈ ' � 4 such that y is not e-dominated 

by any edge in 4 � �5#. Then either  < � 5			NO		< ∈ ' � 4.                                     

Case 1. If < � 5:  Then x is not e-dominated by any edge in L. Hence condition 

(i)holds. Case 2. If  < ∈ ' � 4:  Then   y is not e-dominated by any edge in 

4 � �5# and y is  e-dominated by L, together imply that  y  is uniquely e-

dominated by the edge x. Hence condition (ii) holds.  Conversely, suppose  L is an 

EED set and for any 5 ∈ 4 one of the following two conditions stated in the 

Proposition holds. We show that L is a minimal EED set. Then there exists a 

5 ∈ 4,  such that 4 � �5# is an EED set. This implies that x is e-dominated by an 

edge in L. That is x does not satisfy condition (i). Also if  4 � �5# is an EED set, 

then every edge in  ' � 4  is e-dominated by some edge in 4 � �5# . This implies 

that x does not uniquely e-dominate any edge in  ' � 4. That is x does not satisfy 

condition (ii)-a contradiction to our assumption. Part (b) can be proved with the 

similar argument, hence we omit the proof.  
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Proposition 3. Let %�&, '
 be any graph. For any set 4 ⊂ ', 

(i) L is an EED set if, and only if, ' � 4 is a FEED set.           

(ii) L is an SEED (WEED) set if, and only if, ' � 4 is a FWEED (FSEED) set.  

Proof. We prove (i) only. The proof of (ii) is similar. If L is an EED set then 

' � 4  is a FEED set follows from Remark 2. Conversely if L is a FEED set then 

every edge in L is e-dominated by some edge in ' � 4. Clearly the edges in ' � 4 

are e-dominated by them selves. Hence ' � 4 is an EED set.   

 

Proposition 4. Let %	�	P, Q
 be  any graph. Then 

   γ;; 		R			?;; 			� 		Q        (1) 

   γ-;; 		R 			?.;; 			� 		Q        (2) 

   γ.;; 		R			?-;; 			� 		Q            (3) 

 

Proof.  Let L be a minimum EED set of G. Then from Proposition 4, we have  

' � 4 is a FEED set. Therefore  ?;; M |' � 4| � Q � ,;;  …      (i).  On the other 

hand if L is a maximum FEED set, again from Proposition 4, ' � 4 is an EED set 

of G. Hence ,;; = |' � 4| � Q � ?;;  …   (ii). Now  (1) follows from (i) and (ii). 

Similarly the results (2) and  (3) follow.     

 

 

4. EE-degree, SEE-degree and WEE-degree 
        

Several types of new degree are defined in [7]. The Edge-Edge degree (EE-

degree) of an edge 5 ∈ ', E;;�5
  is the number of edges e dominated by x.  

Equivalently E;;�5
 is the number of edges in 1〈
5�〉. Strong Edge-Edge degree 

(SEE-degree) of an edge 5 ∈ ', E-;;�5
  is the number of edges strongly  e-

dominated by  x.  Similarly WEE-deg (x) is 		E.;;�5
 defined.  With respect to 

these degrees we get the following new graph parameters. Maximum EE-degree 

∆;;�5
, minimum EE-degree T;;�5
, Maximum SEE-degree ∆-;;�5
, minimum 

SEE-degree T-;;�5
, Maximum WEE-degree ∆.;;�5
, minimum WEE-degree 

T.;;�5
. An Edge x is called SEE-Silent (WEE-Silent), if 

E-;;�5
 � 0	�E.;;�5
 � 0
. A set 4 ⊂ '  is said to be SEE-Silent set (WEE-

Silent set) if for every edge 5 ∈ 4, E-;;�5
 � 0	�E.;;�5
 � 0
. The  SEE-Silent 

(WEE-Silent)   number V-;; � V-;;�%
	�V.;; � V.;;�%

  is the maximum 

cardinality of a SEE-silent set of %.  

5. Bounds on γγγγee, γγγγsee and γγγγwee  

 
We now get some  bounds in terms of  ∆;;and  ∆.;;.                     

 

 Proposition 5.  For any �P, Q
 graph %, 
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                                  W X∆YYZ = ,;; = ,-;; = Q � V-;;    (4) 

 

                                			W X
∆[YY

Z = ,.;; = Q � V.;;       (5)             

Further the above bounds are sharp.   

 

Proof.  The lower bound in (4) is proved in [7]. Let    4 ⊆ ' be a V-;;  -set of %. 

Since every edge in 4 is a SEE-Silent,  no edge in 4 strongly e-dominate any edge 

in %. Therefore '	 � 	4 is a SEED set of %. Hence  ,-;; = |'7| � Q � V-;;. With 

similar argument we can prove the upper bound in (5). Since an edge in % can 

weakly e-dominate at most  ∆.;;  edges and it self, we need at least 
X

∆[YY
   edges to 

weakly e-dominate all the edges. This implies the lower bound in (5).  The above 

bounds are sharp as the upper bound in (4) is attained for \] and \̂   and the upper 

bound in (5) is attained for \]. 
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