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Abstract
Tin oxide (SnO2) nanoparticles undergo the volume expansion during an electrochemical cycle. This
volume expansion leads to discontinuities in the formofmicrocracks in the electrodematerial. The
problemof charge transportation associatedwith thismicrocracking limits the application of SnO2 in
the energy storage application such as supercapacitors. The present work approached to solve this
problemby incorporating theMoS2 nanosheets alongwith the SnO2 nanoparticles. The SnO2

nanoparticles are functionalized onto the surface of theMoS2 nanosheets by the ligand exchange
process. TheMoS2 nanosheets act as the supportmaterial for the SnO2 nanoparticles. The electrode
material prepared using SnO2 nanoparticles and nanocomposite of SnO2 functionalizedMoS2
nanosheets are tested by cyclic voltammetry and galvanostatic charge-dischargemeasurements. The
specific capacity of theMoS2–SnO2 nanocomposite is calculated to be 61.6 F g−1 which is 4.4 fold
higher than that of bare SnO2 nanoparticles. The improvement in the electrochemical performance of
SnO2 is attributed to the high surface area and the charge transportation provided by theMoS2
nanosheets.

1. Introduction

In recent years,most of the researches are focussed on to improve the performance of the energy generation and
storage devices. The supercapacitors are being evolved as a promising energy storage device for the future. The
supercapacitors possess some superior qualities than their peers, namely batteries. Unlike batteries, the charging
and discharging process is faster for the supercapacitors.With the higher power density and longer life time than
the batteries [1], the supercapacitors will play amajor role in the field of energy storage in the coming years.
Recently, themetals oxides (Sn,Mn, Ti, Co) are being explored for such applications [2–5]. Tin oxide (SnO2) is a
potential electrodematerial in energy storage applications, due to its low cost, high theoretical capacity and high
electronmobility. However, there is a concern associatedwith the SnO2 electrode that needs to be addressed.
The volume expansion of the SnO2 particles during the electrochemical process hinders the performance of the
SnO2 electrode [6]. Charge transfer in the SnO2 electrode is affected due to the discontinuity caused by the
volume expansion [7]. This results in reduction in the capacitance value of the SnO2 electrode. To address this
issue, the two-dimensionalmaterials like graphene are used alongwith SnO2 nanoparticles to facilitate charge
transportation [8].

Molybdenumdisulfide (MoS2) is amaterial having fascinating properties, like, high surface area, higher
ionic conductivity thanmetal oxides [9] and goodmechanical flexibility [10]. It is widely used in gas sensors,
supercapacitors, batteries, hydrogen evolution reactions and electronic applications [11–15]. TheMoS2
nanosheets are synthesised either by bottom-up approaches, such as hydrothermal, chemical vapour deposition
(CVD) or by top-down approaches, like, ballmilling,mechanical exfoliation and liquid phase exfoliation [12,
16–19]. Among them, liquid phase exfoliation is the simple and high yielding route to prepare theMoS2
nanosheets. The solvents such as ethanol, dimethylformamide (DMF), N-Methyl-2-pyrrolidone (NMP) are
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used to exfoliate the bulkMoS2 particles into nanosheets [19, 20]. TheMoS2 nanosheets are proved to improve
the electrochemical performance ofmaterials like Co3O4, polyethylene dioxythiophene (PEDOT), polyaniline
(PANI) andMn3O4 [5, 21–23]. So, it is presumed that the electrochemical stability of the SnO2 could be
improved by usingMoS2 nanosheets alongwith the SnO2 nanoparticles.

There are very limited studies reported focussing on the supercapacitor applicationwith the combination of
MoS2–SnO2 phases as nanocomposite [24]. The hydrothermalmethod is thewidely used technique to prepare
MoS2–SnO2 nanocomposite [25]. But it requires the temperature as high as 220 °C to produce nanosheets of
MoS2. In the present work, we have used a ligand exchange process to prepareMoS2–SnO2 nanocomposite.
Here, the SnO2 nanoparticles are functionalized on to the surface of theMoS2 nanosheets at room temperature.
The route is expected to be energy saving and producing theMoS2–SnO2 nanocomposite whichwill serve as a
good supercapacitor electrodematerial.

2. Experimental details

2.1. Synthesis ofMoS2 nanosheets
TheMoS2 nanosheetswere prepared by ultrasonication-assisted liquidphase exfoliationmethod [26]. All the
chemicals are of analytical grade purchased from reputedmanufacturers. Firstly, 150mgof polyvinylpyrrolidone
(PVP,MW∼40,000)was dissolved in 10ml ethanol. Then, 30 mgof bulkMoS2 powder (AlfaAesar, 325mesh)
was added into the preparedPVP solution. Themixture ofMoS2 andPVP in ethanolwas ultrasonicated
(Power=50W, f=33 kHz) for 4 h to exfoliateMoS2 nanosheets. After the exfoliationprocess, the exfoliated
MoS2 sheetswhich remained on topof the solutionwere transferred to the centrifugal tubes forwashing. The
productwasmixedwith acetone and centrifuged at 7000 rpm for 20min. After removing the supernatant,
isopropyl alcohol (IPA)was added to the precipitate. The productwas again centrifuged at 8000 rpm for 20min.
Finally, thewashed productwas collected and suspended in IPA for storing.

2.2. Synthesis of SnO2nanoparticles
The SnO2 nanoparticles were synthesised by following thework reported in the literature [27]. First, 1 g of tin
chloride pentahydrate (SnCl4.5H2O)was dissolved in 10 ml of ethylene glycol (EG). It was followed by the
addition of 250 mg of ammonium chloride, 250 mg of ammonium acetate and 30 ml de-mineralized (DM)
water in a round bottom flask. Then, theflaskwas heated to 90 °C in the oil bath for 2 h. The synthesised product
waswashed byDMwater and ethanol. Then it was dispersed in ethanol.

2.3. Functionalization ofMoS2 nanosheets with SnO2 nanoparticles
The knowndensity ofMoS2 nanosheets dispersionwas added into a vial containing the knownweight of SnO2

nanoparticles dispersion. Then the twomaterials were well dispersed together by using ultrasonication bath.
After the ultrasonication, thematerials were allowed to get settled down at the bottomof the vial. Then the
supernatant liquidwas removed and thematerials settled at the bottomwere used for our study. Likewise, five
different compositions ofMoS2–SnO2 nanocomposites were preparedwith varying theweight ratio ofMoS2
nanosheets (0.5%, 1%, 2.5%, 5%and 10%) to SnO2 nanoparticles. The camera images of each step involved in
this preparation process are shown infigure 1.

2.4.Materials characterization
The structural characterization and phase identificationwere performed by using x-ray diffractometer (XRD;
JEOL, JDX 8)withCuKα (λ=0.154 nm) radiation at the scan rate of 1°min−1. Themorphological features
were studied by usingfield emission scanning electronmicroscope (FESEM;Carl Zeiss Sigma) and transmission
electronmicroscope (TEM; JEOL, JEM-2100). The Raman spectra of bulk and exfoliatedMoS2were obtained by
using Raman spectrometer (Horiba Jobin-Yvon, labRAMHR)with an excitationwavelength of 532 nm. The
surface chemistry of thematerials was analysed by using x-ray photoelectron spectrometer (XPS; Thermo
scientific,Multilab 2000) instrument (MgKα x-ray, 200Was excitation source). The particle size of SnO2

nanoparticles was determined by using particle size analyser (Malvern Zeta Sizer, NanoZS). The Specific surface
area and pore size distributionwere analysed by Brunauer–Emmett–Teller (BET) andBarrett–Joyner–Halenda
(BJH)method using surface area analyser (Microtrac, BELSORPMax).

2.5. Electrochemical studies
Electrochemical studies were carried outwith a standard three-electrode cell using SP-150 electrochemical
workstation (BioLogic, France). Platinumwire and saturated calomel electrode (SCE)were used as the counter
electrode and reference electrode, respectively. Theworking electrodewas prepared as follows: 4.5 mg of
nanocomposite was added into 250 μl water/ethanol (2:1 v/v) solution containing 15 μl Nafion (5 wt%). The
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abovemixture was ultrasonicated for 15 min to obtain a homogeneousmixture. 50 μl of the preparedmixture
was drop cast on a graphite electrode (10 mmdiameter rod). The calculatedmass of the active electrodematerial
was 1.1 mg cm−2. The aqueous solution of 2 MKOHwas used as the electrolyte.

3. Results and discussion

Figures 2(a), (b) show the FESEMmicrographs of the bulkMoS2 powder and exfoliatedMoS2 nanosheets. The
bulk powder consisted of several layers of theMoS2 stacked one above the other. The FESEMmicrograph of
exfoliated nanosheets revealed that the bulkMoS2 powderwas exfoliated into nanosheets. The synthesised SnO2

nanoparticles (figure 2(c)) showed the spherical-likemorphologywith size in the range of 10–35 nm. Figure 2(d)
shows the FESEMmicrograph of theMoS2–SnO2 nanocomposite prepared by the ligand exchange process. The
SnO2 nanoparticles were functionalized over the surface of theMoS2 nanosheets. The SnO2 nanoparticles were
firmly attached on to the surface of theMoS2 nanosheets. Figure 3 shows the schematic diagram explaining the
functionalization ofMoS2 nanosheets with SnO2 nanoparticles by the ligand exchange process.

A thin layer of PVPmolecules, from the exfoliation step, would still present onto the surface of theMoS2
nanosheets even after washing process because of C-S andO-S bonding between PVP andMoS2 [28]. Also, this
PVP ligand attachedwithMoS2 nanosheets kept nanosheets separated from each other. On the other hand,
ammonium ions fromammonium salts during the synthesis process coordinatedwith the SnO2 nanoparticles.
These ammonium ions act as the surfactant to control the growth of the nanoparticles [27].When theMoS2
nanosheets and SnO2 nanoparticles weremixed together (figures 1(b), (c)), the ammonium ions attachedwith
the SnO2 nanoparticles strip off the PVPmolecules from the surface of theMoS2 nanosheets. Subsequently, the
vacant sites left by the stripped PVPmolecules were occupied by SnO2 nanoparticles. The ammonium ions
present over the SnO2 nanoparticles would help them to anchor onto the surface of theMoS2 nanosheets [27].
Likewise, the SnO2 nanoparticles were decorated or functionalized on the surface of theMoS2 nanosheets. This
functionalization process by exchanging the ligands is energy efficient compared to hydrothermal which
involves high temperature and pressure [16].

Once the PVPmolecules were replaced by SnO2 nanoparticles from theMoS2 surface, theMoS2 nanosheets
functionalizedwith SnO2 nanoparticles were started to settle down as the precipitate (figures 1(e), (f)). The
supernatant containing these PVPmolecules was removed out and the obtained precipitate was used for our
present studies.

Figure 1.Camera images show the steps involved in the preparation ofMoS2–SnO2 nanocomposite.
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Figure 4(a) shows the TEMmicrograph of the exfoliatedMoS2 nanosheets. The exfoliated nanosheets
contain only a few layers ofMoS2. The lattice distance of 0.27 nm ismeasured from the high-resolution TEM
image shown infigure 4(b). It is attributed to (100) plane ofMoS2. The SAEDpattern (insetfigure 4(a)) revealed
the hexagonal lattice structure of theMoS2 nanosheets. The TEMmicrograph of the synthesized SnO2

nanoparticles showed infigure 4(c) affirmed the spherical-likemorphology of the synthesised product. The
lattice distances (interplanar spacing) in SnO2 nanoparticles weremeasured to be 0.34 nmand 0.26 nm. These

Figure 2. SEMmicrograph of the (a) bulkMoS2 powder, (b) exfoliatedMoS2 nanosheets, (c) synthesised SnO2 nanoparticles,
(d)MoS2–SnO2 nanocomposite.

Figure 3. Schematic diagram explains the functionalization ofMoS2 nanosheets with SnO2 nanoparticles.
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valueswerewellmatched to (101) and (110) planes of the SnO2, respectively. Figure 4(d) shows the TEM
micrograph of theMoS2–SnO2 nanocomposite. The SnO2 nanoparticles can be seen functionalized on the
surface of theMoS2 nanosheets.

TheXRDpatterns of bulkMoS2 powder and exfoliatedMoS2 nanosheets are shown infigure 5(a). TheXRD
pattern of bothmaterials belongs to theMolybdenite-2H phase (JCPDS#006-0097). Themaximum intensity
was observed for the peak belonged to (002) plane for bothmaterials. But the peaks of (103) and (105) planes
appeared for the bulk powderwere absent for the exfoliated nanosheets. Also, the peak of (002) planewas
broader for the exfoliated nanosheets compared to the bulk powder. This indicates the reduction in the thickness
of theMoS2 nanosheets after the exfoliation process. Figure 5(b) shows theXRDpatterns of SnO2 nanoparticles
andMoS2–SnO2 nanocomposite alongwithMoS2 nanosheets. Three peakswere observed at the angle of 26.2°,
33.8° and 51.2° for SnO2 nanoparticles which are attributed to (110), (101) and (211)planes of SnO2 (Cassiterite,
JCPDS#041-1445). TheXRDpattern ofMoS2–SnO2 nanocomposite exhibited the peaks of both SnO2 and
MoS2 phases.

The Raman spectra of bulkMoS2 andMoS2 nanosheets are shown in the figure 6. The characteristic Raman
vibration peaks of E12g andA1g for bulkMoS2 are observed at 383 cm

−1 and 407 cm−1, respectively [29].When
thickness of theMoS2 sheet decreases, the E

1
2g peak belonging to in-plane sulfur-molybdenum vibration shifts to

higher frequency, whereas, the A1g peak belonging to out-plane sulphur vibration shifts to lower frequency [29].
The exfoliatedMoS2 nanosheets exhibited E

1
2g andA1g peaks at 384 cm

−1 and 405.5 cm−1, respectively. The
frequency gap between twoRaman peaks of the exfoliatedMoS2 nanosheets was reduced to 21.5 cm

−1 from
24 cm−1. This is the indication that the bulkMoS2was exfoliated to nanosheets with few layers thickness [30].

Figure 4.TEMmicrograph of the (a)MoS2 nanosheets (inset: SAEDpattern), (b) Lattice image of theMoS2 nanosheet, (c) SnO2

nanoparticles (inset: SAEDpattern), (d)MoS2–SnO2 nanocomposite.
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Figure 7(a) shows the particle size distribution chart of SnO2 nanoparticles obtained from the particle
analysis test. It is observed that the average size of the synthesised SnO2 nanoparticles was calculated as 17.7 nm.
Almost 90%of the particles fall in the size range of 10–21 nmwith rest of the particles fall in the size range of
25–37 nm. Figure 7(b) shows theNitrogen adsorption-desorption curve and pore size distribution (Inset) of the
MoS2 nanosheets. The adsorption-desorption isothermwith a small hysteresis loop indicates that the isotherm
is a type IV isotherm as defined by the IUPAC [31]. The pore size distribution curve shows the peaks at the pore
size of 6.2 nm, 8.2 nm and 14 nmwith themean pore size of 7.7 nm. This indicates themesoporous nature of the
driedMoS2 nanosheets powder [31]. The specific surface area (Sa) of theMoS2 nanosheetsmeasured by BET
methodwas 17.5 m2 g−1. This Sa value ofMoS2 nanosheets wasmarginally larger than the previously reported
values [31, 32].

In the XPS survey spectrumofMoS2–SnO2 nanocomposite (figure 8(a)), the presence of peaks
corresponding toMo, Sn, S, O,N andC elements were observed. The high-resolutionXPS spectrumofMo 3d
region (figure 8(b)) exhibited two peaks at binding energies 229.4 and 232.4 eV belonged to 3d5/2 and 3d3/2,
respectively. These binding energies were corresponding to the+4 oxidation state ofMo. Also, a broad peak
corresponding to S 2 swas observed at 226.5 eV in the same spectrum. The high-resolutionXPS spectrumof Sn
3d region is shown infigure 8(c). Two peaks at 487.4 and 495.8 eVwere observed. Thesewere belonged to 3d5/2
and 3d3/2 of Sn (+4 oxidation state), respectively. TheXPS spectrumof S is shown infigure 8(d). TheXPS
spectrumof S 2 s regionwas resolved into a doublet peak, with the binding energies 162.2 and 163.2 eV
corresponding to 2p3/2 and 2p1/2 of S, respectively. The above results confirm the presence ofMoS2 and SnO2

without any other oxidation products [25].

Figure 5.XRDpattern of (a) bulkMoS2 powder and exfoliatedMoS2 nanosheets, (b) exfoliatedMoS2 nanosheets, SnO2 nanoparticles
andMoS2–SnO2 nanocomposite.

Figure 6.Raman spectrumof bulkMoS2 powder and exfoliatedMoS2 nanosheets.
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The cyclic voltammetry (CV)was performed for SnO2 andMoS2–SnO2 between the potential value range of
−0.2 V to 0.8 V. TheCVplots are showed infigure 9(a). CV curves for all samples showed the double layer
supercapacitor behavior with semi rectangular shape curve. This result was in accordance with the previously
reported results [2, 12]. Fromfigure 9(a), it was observed that the output current density of theMoS2–SnO2

nanocomposite is higher than the output current density of the bare SnO2 nanoparticles. During the
electrochemical process the SnO2 nanoparticles undergo the volume expansion that lead to increase in the

Figure 7. (a)Particle size distribution of SnO2 nanoparticles, (b)Nitrogen adsorption-desorption curve ofMoS2 nanosheets; Inset:
Pore size distribution.

Figure 8. (a)XPS spectrumofMoS2–SnO2 nanocomposite, high resolutionXPS spectrumof (b)Mo3d, (c) Sn 3d, (d) S 2p.
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particle size. The increase in the particle size leads tomicrocracks between the SnO2 particles [6, 7]. The
formationmicrocracks and reduction in the surface area were the reasons for the lowperformance of the SnO2

nanoparticles. Addition of theMoS2 nanosheets bridged the SnO2 nanoparticles and provided the high surface
area for the ion transportation between electrode and electrolyte. So, a gradual increase in the output current was
observedwith respect to increase in theMoS2 to SnO2 ratio. The 5%MoS2–SnO2 nanocomposite exhibited the
highest current density amongst all the electrodematerials. But the current density started to decrease when the
MoS2 ratiowas increased to 10%. So it is concluded that the 5% is the optimumMoS2–SnO2 ratio for the
supercapacitor application. Figure 9(b) shows theCV curves of 5% theMoS2–SnO2 nanocomposite at scanning
speeds of 10, 20, 30, 50 and 100 mVs−1 respectively. The obtainedCV curves for all the scanning speeds are
showing semi rectangular curve corresponding to double layer capacitance.

Figure 9(c) shows the galvanostatic charge-discharge curve of the SnO2 and theMoS2–SnO2 nanocomposite.
The charge-discharge studywas performedwithin the potential of−0.2 V to 0.8 V at an applied current of
1 A g−1. The obtained charge-discharge curves are linear and triangular in shape. This indicated the capacitance
nature of the used electrodematerials. The discharge time of the SnO2 nanoparticles was 14 s, whereas, the
MoS2–SnO2 nanocomposite showed longer discharge time. The discharge timewas increased from24 s for 0.5%
MoS2–SnO2 to 61 s for 5%MoS2–SnO2.

Asmentioned earlier, the SnO2particleswould go through volumeor size changeduring the electrochemical
process [6, 7]. Thiswould lead tomicrocracks in the SnO2 electrode. Thediscontinuities formedby this cracks
would affect the charge transportation. But, when theMoS2nanosheetswere introducedwith the SnO2

nanoparticles, thenanosheets acted as a conductive pathway between the SnO2nanoparticles. This is explained
schematically infigure 10. TheMoS2 nanosheetswould anchor the SnO2nanoparticleswithin its surface and
bridge the neighboring SnO2nanoparticles, electrically to help the charge transfer easier during the charge-
discharge process [22]. The large surface area ofMoS2 nanosheets leads to effective interaction between the
electrode and the electrolyte. Thus, the electrochemical performance (CVcurve area anddischarge time)was
increased for theMoS2–SnO2nanocomposite. But, itwas noticed that the increasing theMoS2 ratio beyond 5% the
discharge time started to decrease.When the ratio of theMoS2was increased above the optimumvalue, the

Figure 9.Cyclic voltammetric curves of (a) bare SnO2 nanoparticles andMoS2–SnO2 nanocomposite at scanning speed of 30 mV s−1,
(b) 5%MoS2–SnO2 at different scanning speeds, between applied potential range of−0.2 V to 0.8 V, (c)Galvanostatic charge-
discharge curves of the SnO2 and theMoS2–SnO2 at constant current density of 1 A g−1, (d)Charge-discharge curves of 5%
MoS2–SnO2 at different current values.
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discharge time started to decrease because of the reduction in active SnO2material. So it is concluded that the 5% is
theoptimumratio in theMoS2–SnO2nanocomposite. This is also in accordancewith the cyclic voltammetry
study.

TheNyquist plot obtained from the electrochemical impedance spectroscopy (EIS) is shown infigure 11. EIS
was performed over the frequency range of 0.1 Hz to 100 kHz for bare SnO2 and 5%MoS2–SnO2 are compared.
A straight linewas observed for bothmaterials at lower frequency region.However, the slope of 5%MoS2–SnO2

nanocomposite was higher than that of the bare SnO2 nanoparticles. This proves that the electronic resistance of
theMoS2–SnO2 nanocomposite was lower than that of the bare SnO2 nanoparticles. It indicated that the
MoS2–SnO2 nanocomposite exhibitedmore ideal capacitor behavior than the bare SnO2 nanoparticles. The
high-frequency regionwas enlarged and shown as inset image. The curves tend to show a very small loop, the
characteristics of charge transfer resistance, at higher frequency region. It is attributed to low charge transfer
resistance of the electrode [33]. The solution resistance is the value at which the curve is intersectingwith real
axis. The values were almost equal for 5%MoS2–SnO2 nanocomposite and SnO2 nanoparticles with 3.67 and
3.6Ω respectively.

Figure 11.Nyquist curve of SnO2 and 5%MoS2–SnO2 nanocomposite (Inset: Plot ismagnified at high frequency region).

Figure 10. Schematic representation of themicrocracks in the SnO2 electrode andMoS2 nanosheets bridging themicrocracks.
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The specific capacitancewas calculated from the charge-discharge curve by the following equation [22],

C I . t m . V 1s d= D( ) ( ) ( )

where, ‘Cs’ is the specific capacitance (F g
−1), ‘I’ is the discharge current (A), ‘td’ is the discharge time (s), ‘m’

is themass of the electrodematerial (g) and ‘ΔV’ is the potential window. The values of Cs for SnO2 and
MoS2–SnO2were plotted and shown in figure 12(a).

The specific capacitance (Cs) of bare SnO2 nanoparticles was calculated to be 14 F g
−1. The specific

capacitance value of the SnO2was increased after the addition of theMoS2 nanosheets. The high surface area and
easy the charge transportation between the electrodematerial and electrolyte were the reason for the increased
vaue of specific capacitance. The 5%MoS2–SnO2 nanocomposite showed the highest specific capacitance value
of 61.6 F g−1 which is 4.4 times greater than that of bare SnO2 nanoparticles.

The capacitance retention curve of 5%MoS2–SnO2 over the charge-discharge of 1000 cycles is shown in
figure 12(b). TheMoS2–SnO2 showed very good cyclic stability by retaining 90%of its original capacitance even
after 1000 number of charge-discharge cycles. This indicates that the electrochemical performance of the SnO2

nanoparticles is improved by the addition of theMoS2 nanosheets with the SnO2. The reasons for the
improvement in the performance are, (1)TheMoS2 nanosheets provided good support and conductive path in
the electrodematerial when themicrocracks are formed due to volume expansion of SnO2; (2)The high surface
area offered to the electrode in the formof nanosheetsmade it easier for the ion transportation between
electrolyte and electrode.

4. Conclusions

TheMoS2–SnO2 nanocomposite was prepared by functionalization of SnO2 nanoparticles onto the surface of
theMoS2 nanosheets by ligand exchange process. The specific capacitance of the bare SnO2 nanoparticles
calculated from galvanostatic charge-discharge was 14 F g−1. The low specific capacity of SnO2was due to the
discontinuity in the electrodematerial caused by the formation ofmicrocracks. The problemofmicrocracks was
solved by incorporating SnO2 nanoparticles on the surface of theMoS2 nanosheets. TheMoS2 nanosheets acted
as a conducting bridge between the SnO2 nanoparticles to help in charge transportation during the charge-
discharge process. Also the nanosheets provided helped to improve the interaction between the electrolyte and
electrodematerial. Thus, the specific capacitance of theMoS2–SnO2 nanocomposite was increased to 61.6 F g−1.
By improving the electrochemical performance of SnO2, the preparedMoS2–SnO2 nanocomposite paves away
to develop low-cost energy storage devices for the future.
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