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An NC system that machines a curved shape at fixed depth of cut 
experiences time-varying cutting forces due to the ‘curvature 

effect’-the material removal rate is higher than nominal in 

concave regions, and lower in convex regions. A curvature- 

dependent feedrate function that automatically compensates for 
this effect is formulated, and it is shown that, for Pythagorean- 
hodograph (PH) curves, the periodic real time computation of 

reference points in accordance with this function can be 
analytically reduced to a sequence of root-finding problems for 
simple monotone functions. Empirical results from an implementa- 

tion of this variable-feedrate interpolators on an open-architecture 
CNC milling machine are presented and compared with results 
from fixed-feedrate interpolators. The curvature-compensated 

feedrate scheme has important potential applications in ensuring 
part accuracy and in optimizing part programs consistent with a 
prescribed accuracy. 0 1998 Elsevier Science Ltd. All rights 

reserved. 

Keywords: Pythagorean hodographs, CNC interpolators, feed- 
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INTRODUCTION 

The prevailing practice in CNC machining of complex 
shapes is to use G code part programs22 in lieu of the ~XUCI 
tool path descriptions; this amounts to approximating the 
tool paths by linear/circular segments that are compatible 
with interpolators ‘hard-wired’ in the CNC system. The 
problem of driving machine tools directly from analytic 
curve definitions, by means of software interpolators in an 
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‘open architecture’ CNC system, has recently attracted 
much attention 2.7.20.?1,23.2h.27,30 The proposed schemes, 
however, are also inherently approximate since they rely 
on truncated Taylor series-typically, only the linear term 
is retained-to generate the reference points* required by 
the control algorithm. Such methods are unsuited to curves 
with uneven parameter flow or curvature distributions, and 
they cannot be readily adapted to accommodate variable- 
feedrate specifications. 

The qvrhagorean-hod~graph (PH) CUWPS are a novel 
family of free-form parametric curves 15, compatible with 
the Bkzier/B-spline representations of CAD systems, 
whose intrinsic algebraic structure allows the computational 
difficulties of free-form curve interpolators to be largely 
circumvented. In the present context, the key property dis- 
tinguishing PH curves from ‘ordinary’ polynomial curves is 
the fact that their arc lengths, curvatures. and offsets depend 
vationully on the curve parameter. This permits an analytic 
reduction of certain integrals that express the distance tra- 
velled along a PH curve at constant or variable feedrate 
during one sampling interval of the CNC system. Conse- 
quently, one may formulate CNC interpolators for machin- 
ing free-form curves that are extremely accurate, efficient, 
robust, and flexible. 

The algorithmic details of PH curve CNC interpolators 
were described in Ref 16, and preliminary results from an 
implementation on an open-architecture CNC machine were 
reported in Ref ‘). Our emphasis here is on an interpolator 
that ,yields a particular curvature-dependent feedrate, 
motivated by practical machining issues. The cutting force 
exerted between the tool and workpiece is of primary con- 
cern in ensuring the accuracy of machined profiles-it influ- 
ences tool deflection and wear, deformation of the 
workpiece, and heat generation. Limiting the cutting force 
within prescribed bounds is thus a key requirement for part 
accuracy and tool longevity. 

j:The reference points do lie exactly on the curve, but their distribution 
along it is not rigorously consistent with the specified feedrate-i.e., the 
tool path geometry is accurate, but the desired feedrate function is only 
approximately realized. 
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Varying material removal ratcx along ;I 2D tool path may 
be a signiticant SOLII’CC of’ cuttin, 0 force I Cations. These 
varying rates COLII~ hc incurred hy ;I \~iable depth of 
cut-i.e., thickness 01‘ the material strip to be removed, 
perpendicular to the tool path--or CVCII. in the case of 
fixed depth of cut. by non-linearity 01‘ the tool path through 
‘curvature’ effects (aee Section 3 below). Such variations in 
the volume removal rate may be cfl’ectively cancelled out by 
continuous compensatory fecdratc adiustment using an 
‘intelligent’ CNC interpolation algorithm. For the PH 
curves, in particular, the formulation 01‘ such algorithms is 
eminently tractable: the required refcrencc points can be 
accurately and efficiently generated with very modest 
CPU resources. 

The automatic selection of feedrates in accordance with 
the part geometry and corresponding tool paths has been 
the focus of earlier studies ‘x.7x.2c). These variable feedrates 
have been implemented in the context of traditional G code 
descriptions, however, using a feedrate post-processor pro- 
gram that specifies the proper feedrate for each linear or 
circular segment of the cutting path’*. The use of G code 
part programs entails sacrificing knowledge of the exact tool 
path curvature, and attempts to vary the feedrate to allow for 
curvature are thus unavoidably compromised (in fact, the 
curvature becomes infinite at the junctures of linear G code 
segments). 

We shall adopt the following plan for the remainder of 
this paper. In Section 2, a brief synopsis of the distinguish- 
ing properties of PH curves is presented. A curvature- 
dependent feedrate function that, under appropriate 
conditions, yields constant volume removal rate at fixed 
depth of cut is formulated in Section 3, and it is shown 
that PH curves are admirably suited to a realization of this 
variable feedrate through a simple real-time interpolation 
algorithm. Speed and force measurements from an imple- 
mentation of this interpolator on an ‘open-architecture’ CNC 
milling machine are presented in Section 4. Finally, in 
Section 5 we assess these results and identify avenues for 
further investigation. 

in .$ means that the arc-length function s(t) is also a poly- 
nomial. Furthermore, the curvature is given by the rational 
function 

K(l) = 2 u(Ov’(4) - u’(&(E) 

&E) 
(2) 

Thus, for example, a PH quintic is obtained by substituting 
Bernstein-form quadratic polynomials 

u(F) =+,(I - ‘9’+ Ul2(1 -FE +u*t2, 

v(4)= v,(l - 4)'f 1']2(1 - E)[ $“& 

into eqn (1) and integrating. The BCzier control points of 
this curve can then be expressed in terms of the coefficients 
L(~~, 111, u2 and 11~). vi. v2 as 

I, 2 
Pt = PO + -(% - L’O> 2uov,), 

5 

1 
P?=PI + $wl - vovl~~ovl +u,voL 

2 
p3 = pz + -(II: - 4,2u,v,) 

IS 

I 

1 

p5 = p4 + $i - v;, 2u2v2) 

where p. is an arbitrary integration constant. The quartic 
a(4) defining the parametric speed of this curve is specified 
by the Bernstein coefficients 

‘To = LL; + v(‘,, 

Cl = U()Ul + VOl’~, 

2 7 1 

PYTHAGOREAN-HODOGRAPH CURVES 
g2 = $Ui + 1’:) + $UoUz + V,V2), 

We adopt the nomenclature and units used”-” in earlier 
studies, namely: 

t = time (s), 
s = curve arc length (mm), 
4 = curve parameter (dimensionless), 
u = ds/d< = ‘parametric speed’ (mm), 
K = curvature (mm-‘). 
V = dsldt = feedrate along curve (mm s-l). 

Given polynomials Ed and v(4) without common non- 
constant factors and m = max(deg(u),deg(v)) 2 1, a regular 
PH curve r(E) = (x(i),y(4)) of degree n = 2m + 1 is defined, 
module a choice of origin, by the hodograph 

-u’(F) = &) - &9, Y’(5) = 244M4) (1) 

These are elements of a Pythagorean triple of 
polynomials-they satisfy 

X”(l) +.v”({) = a’(4) 

and the arc length s(f) is the quintic corresponding to the 
indefinite integral of o(t)-it has Bernstein coefficients 

sg = 0 and ,sL = i ‘2’ ai for k= 1, . . ..S 
J j=O 

We focus on PH quintics here, since they are well-suited to 
practical design applications-the above formulae 
generalize readily to PH curves of other (odd) degrees. 
Complete details on the construction and ~~$.$&on of 
PH curves? may be found in the references ’ ’ ’ ’ . 

The interpolator described below is specific to PH curves. 
As noted above, these curves are fully compatible with the 
BCzierlB-spline representations of CAD systems. Not all 
Bkzier/B-spline curves are PH curves, however, and to 

u(E) = k’(l)1 = u’(t) + v*(E) being the ‘parametric speed’ 
of r(t), i.e., the rate of change ds/d.$ of arc length with 
respect to the parameter. The fact that a is a polynomial 

t We consider only the [polynomial PH curves here. The rational PH 
curves24.25 are less suitable for real-time CNC interpolation, since their 
arc lengths are not, in general, rational expressions in the curve parameter. 
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take full advantage of the latter it is essential that path 
planning (e.g., for complex surfaces) be done directly in 
terms of PH curve motions and associated feedrate 
functions. Preliminary results in this regard, for the case 
of contour machining, are described in Ref “; and in Ref ” 
a system of G codes for describing PH curves and feedrate 
functions is presented. The latter is designed to be compa- 
tible with the established conventions for ‘ordinary’ (linear/ 
circular) G codes, allowing the two to be freely mixed. 

CURVATURE-DEPENDENT FEEDRATE 

We now consider the formulation of a CNC interpolator 
capable of driving a machine tool along a Pythagorean- 
hodograph curve at a feedrate determined by the local 
curvature. The form of curvature dependence is selected so 
as to yield, at constant depth of cut, an (approximately) 
constant rate of volume removal. This is motivated by 
simple models of the milling process’x, in which the cutting 
force is proportional to the volume removal rate. Reduced 
variations of the cutting force are expected to yield 
machined profiles of enhanced dimensional accuracy and 
surface finish. 

It is perhaps not obvious that, for curved paths, fixed 
feedrate and depth of cut do not imply a constant material 
removal rate (MRR). In ‘concave’ regions the remaining 
material strip curves around the tool, incurring higher 
MRR than for a linear cut, while in ‘convex’ regions it 
curves away from the tool, causing a lower MRR.$ A quan- 
titative description of this effect, which is primarily of inter- 
est for tinish cuts on strongly-curved tool paths-i.e., the 
radius of curvature is comparable to the tool radius-is 
formulated below. 

Feedrate function 

Consider a tool path defined by the PH curve r(C;) with 
tangent t = r’/lr’I. normal n= t X z, and curvature 
K = lr' t -‘)(I-’ X r”). z, where z is a unit vector orthogonal to 
the plane of r(t). We note that K is negative or positive 
according to whether n points toward or away from the 
center of curvature. The desired part shape is described by 
the offset 

r,,(t) = r(4) + dni4) (3) 

at distance d, the tool radius, from r(4). The material that is 
to be removed, at depth of cut 6, lies locally to the right of 

the curve (in the direction of n) as we traverse it with ,$ 
increasing. Thus, positive curvature corresponds to a ‘con- 
cave’ cut, and negative curvature to a ‘convex’ cut. 

For feedrate V. and depth of cut 6, the volume removal 
rate along a linear path (assuming unit thickness) is simply 
V& Consider now an anticlockwise circular path of radius 
r-an annular volume r(r + d)’ - a(r + d - 6)’ is removed 
in time 2ar/Vo (Figure I), and hence the rate of volume 
removal is V&l + (d - $)lrl. Similarly, for a clockwise 
circular path, an annular volume a(r - d + S)2 - a(r - d)’ 
is removed in time 2v/Vo, corresponding to a rate 
V&1 - (d- @r]. Since K is l/r for the anticlockwise 

$ Physically, such MRR variations incurred by the tool path curvature will 
be manifested by larger/smaller material chips issuing from concave/con- 
vex tool path regions. when all machine parameters-feedrate, spindle 
speed, tool type. etc.-are held constant. 

Is 

6 

tool oc3 r r 

too1 

Figure 1 Annular volume removed (shaded regions) by a tool of radius d 
on a circular path of radius Y with depth of cut 6. The anticlockwise path 
(left) defines an ‘interior’ cut, and the clockwise path (right) an ‘exterior’ 
cut 

circle and -l/r for the clockwise circle (and 0 for the 
linear path) we can express the material removal rate in 
all these instances as V&l + K(d - !$)I. 

Consider now the PH curve r(E) as a tool path. Approx- 
imating this curve by its osculating circle at each point, we 
infer that ‘curvature effects’ incur a varying volume 
removal rate V& 1 + K(,$)(d - $)] along it, where ~(0 is 
the curvature (eqn (2)) of r(E). Conversely. to maintain an 
approximately constant volume removal rate, the feedrate 
must be continuously varied in accordance with the curva- 
ture-dependent function 

‘(‘) = 1 + K([)(d - $) 

Note that 0 < d - $ < d, since 0 < 6 < 2d. In order for the 
offset curve (eqn (3)) to define a smooth part shape without 
self-intersections ‘I, the curvature of the path r(4) must 
satisfy K([) > - l/d for [ E [O,l]. When this condition 
holds, eqn (4) yields a finite positive feedrate along the 
entire curve. 

The variable feedrate (eqn (4)) deviates appreciably from 
the nominal value VO only when the curvature magnitude 
IK(~)I is not small compared to Il(d - @-i.e., when the 
(magnitude of the) radius of curvature of r(4) is not large 
compared to the tool radius d minus one-half the depth of 
cut 6. Assuming that 6 (< 2d, this occurs at tight ‘corners’ in 
the tool path, of curvature magnitude comparable to l/d. 
Note that when 6 = 2d, the tool is always fully immersed 
and eqn (4) reduces to a constant feedrate. 

A form equivalent to eqn (4) was previously suggested in 
Ref I”, though only as a means to avoid singularities in an 
inverse curvature feedrate specification: its physical basis 
(constant volume removal rate) was not recognized therein, 
and the formulation of interpolation algorithms was not 
pursued. 

CNC interpolation algorithm 

The simplest interpolators compute reference points corre- 
sponding to a fixed feedrate VO along a curve for a given 
sampling interval At. For a PH curve, this amounts to 
finding the unique real roots of the polynomial equations 

~([~)=kAs for k= 1,2, .._, (5) 

where As = V,At. Taking the parameter value Ek-, of the 
preceding reference point as a starting approximation, a few 
Newton-Raphson iterations usually suffice. The Bernstein 
forms of s(E) and its derivative a({) are preferred for 
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numerical stability “-efficient evaluations may be 
obtained by writing (for a PH quintic) 

s(F) =p3&p2 + J:,pq + S,q2) + (.LJ? + igq + S,q’)q3 

where p = 1 - .$ and q = l denote barycentric coordinates 
on E E [O,l 1 and So, . . ., Ss are scaled Bernstein coeffi- 
cients 14, i.e., the appropriate binomial coefficients are 
absorbed into so,...,.ss. Here p’, pq, q’ are to be computed 
only once; similar methods may be used for o(E) and .x(t), 

?G). 
Now for the feedrate function defined by eqn (4) and 

sampling interval At, the parameter value tk identifying 
the k-th reference point must satisfy 

t 
a(4) 
----dt=kAr 

I) V(4) 

Substituting eqn (2) and eqn (4) into the above gives 

(6) 

EL Ek 

(2d - 6) s J‘ 
u(4) dl = kV,At 

0 

u(C)v’(C)-p(g) d,$ + 

0 

and by writing r#~(.$) = v(l)lu(.$) and noting that a(l) = u’(4) 
-t ~~(4) = .r’($J, these integrals can be resolved to obtain the 
equation 

F(tk) = (2d - @[tan ~ ’ $(Ek) - tan- ’ c$(O)] 

+ s&) - kV,At = 0 (7) 

This is a transcendental equation for Ek, which must be 
solved numerically. Note that 2 tan-’ r$(l) is just the tan- 
gent-angle (measured from the x-axis) of the PH curve r(4). 
The treatment of the arctangent function in eqn (7) deserves 
special attention-if F is to be a continuous function, it is 
not permissible to simply take - a/2 < tan-’ 4(l) 5 + 7r/2 
(say) for all ,$. Rather, we must add jr, where j is chosen 
among - 1, 0, +1 so as to minimize5 the value of 
Itan-’ (b(tk) - tan’ d(tp-,) + j,l, to ensure continuity of 
F. 

The integrand in eqn (6) is positive when I > - l/d 
for l E [O,l] and F is then a monotone function-this 
guarantees that eqn (7) has a unique real root. The derivative 
of F can be written as 

F’(h) = dtd1 + K(C;d(d - ;&)I 

if, for example, Newton-Raphson iterations are used to 
determine its root. A good starting approximation for ik is 
given by 

(0) 
Fk =4r-I + 

V,At 

a(& - , )]l + K(& ~ I )(d - is)] 
(8) 

where g 1_I is the converged parameter value for the pre- 
ceding reference point. Typically, a few iterations suffice for 
convergence of tk to machine precision. 

The total time T required to traverse the PH curve r(l) at 
the variable feedrate (eqn (4)) is obtained by integrating 
u(.$)lV(t) from .$ = 0 to 1. This gives 

T= 
S + %m(d - $5)X 

VU 
(9) 

S; We assume that V,)At is sufficiently small. 

where the rotation index of r(4) is defined” by 

tan’ 4(I)-tan-’ $(O) 
= 

It- - G#G) 

Here, the Cauchy index Ii+(l) of the rational function d(t) 
= v(t)lu([) on the interval t E [O,l] is equal’” to the 
number of poles at which 4 jumps from -x to +m. minus 
the number at which it jumps from +m to --oc1, as 4 increases 
from 0 to 1. It can be computed by inspecting the sign of the 
quantity tl(F)lu’(t) at each odd-multiplicity root of u on 
(0,l). 

Now T is not, in general, an integer multiple N of the 
sampling interval At. A traversal of the curve in a whole 
number of steps of duration At may be realized by modify- 
ing V. somewhat-namely, we take 

A’,=1 
S + 2r(d - ;6)% 

Vo At 
- +0.5] 

steps at the feedrate (eqn (4)) with V. replaced by the 
slightly different value 

T 
v,, = v, ~ 

N,At 

Figure 2 shows the feedrate variation (eqn (4)) for a single 
PH quintic segment. We assume a tool radius d = 0.125 and 
depth of cut 6 = 0.025; the distance between the two curve 
endpoints is 1. Note how the feedrate falls to -44% of the 
nominal value (for a straight cut) in the concave region of 

2.0 

g 1.5 
C 
.g 
.g 
2 1.0 

B 
E 
f 0.5 

0.0 
0.0 0.5 1.0 1.5 2.0 

arc length s 

Figure 2 Feedrate variation along a PH-curve tool path in accordance 
with the curvature-dependent function (eqn (4)) to give a constant volume 
removal rate. Here r(f) is the PH quintic tool path, its offset r,X{) is the 
desired part shape, and the dotted curve indicates the depth of cut above 
r,,([) to be removed 
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0.0 
0.0 0.2 0.4 0.6 0.8 

arc length s 

1.0 1.2 
_J 

Figure 3 Another example of the feedrate function (eqn (4)) for a PH 
quintic 

the curve, and subsequently grows to - 162% in the convex 
region. 

A second PH quintic example is shown in Figure 3. Here 
we choose a tool radius d = 0.1 and depth of cut 6 = 0.04 
(the distance between the curve endpoints is again 1). The 
feedrate dips to -52% of V, in the concave region, and then 
rapidly climbs to - 185% of V,) in the convex region. In 
Figure 4 we illustrate the non-uniform sequence of 
reference points along this curve in accordance with the 
feedrate function (eqn (4)) and a fixed At, as generated by 
the interpolation algorithm described above. 

Note that the geometrical model used to derive the fee- 
drate function (eqn (4)) requires that the osculating circle be 
a ‘sufficiently accurate’ approximation to the curve at each 
point. A quantitative characterization of this condition is 
given in Appendix A-this can be checked to ensure that 
the feedrate (eqn (4)) will indeed give an (approximately) 
constant material removal rate. 

The derivation of a more precise constant-MRR feedrate 

: 

,, . . . . ..“‘........., 

.’ ...-.. 
“..... 

Figure 4 Non-uniform distribution of reference points along the PH 
quintic of Figure 3 in accordance with the feedrate function (eqn (4)). 
The solid curve is the offset at the tool radius d, and the dashed curve 
shows the depth of cut 

function would incur a far more cumbersome expression 
than eqn (4), and it is improbable that a rigorous real-time 
interpolation algorithm could be formulated for such a com- 
plicated feedrate dependence. From a practical perspective, 
it would not be warranted: we shall see below that the 
simple feedrate function (eqn (4)) easily cancels most of 
the machining-force variation under typical conditions. 
Note, however, that although eqn (4) will yield precisely 
constant MRR only under the conditions described in 
Appendix A, the actual realization of this feedrate variation 
by the CNC interpolator algorithm is essentially exact. 

EXPERIMENTAL RESULTS 

The experiments have been performed on a 3 hp CNC 
milling machine with interpolators implemented for two 
axes. To allow a detailed evaluation of the machine 
performance, the original control system was replaced by 
a 33 -MHz 80486-based PC incorporating our own software 
interpolator and controller, and custom-made hardware 
components such as a pulse-width-modulation (PWM) 
board.7 In addition, incremental linear encoders and 
tachometers are used to provide table position and motor 
speed feedback. The hardware components and control 
computer are interfaced through a digital I/O board, an 
analog-to-digital converter (ADC), and a quadrature 
decoder board. The system has a controller sampling 
interval of 0.01 s. and a basic length unit (BLU)-as 
defined by the position encoders-of 0.01 mm. 

The controller compares instantaneous position measure- 
ments from the encoders with reference points generated by 
the interpolator. To emphasize the influence of the interpo- 
lation scheme (rather than the control algorithm) on the 
machine performance, a simple proportional (P) controller 
was used in the experiments. At each sampling time, the 
actual feedrate along the curve is the magnitude of the velo- 
city sector whose components are measured by the tach- 
ometers. To compare with the specified feedrate variation, 
we must express the latter as a function of the elapsed time t, 
rather than the curve parameter 4, as in eqn (4), or arc length 
s, as in Figures 2 and 3. This is accomplished-for plotting 
purposes, at least-by noting that, with the feedrate func- 
tion (eqn (4)). t is given in terms of 4 by 

(2d - @[tan- ’ q5({) - tan ~ ’ c+(O)] + s(t) 
t(E) = ~__ 

V0 
(10) 

the arctangent function being interpreted in accordance with 
the convention previously described in Section 3.2 above. 

In the CNC interpolator, just two Newton-Raphson itera- 
tions starting from the initial approximation (eqn (8)) were 
found to be more than adequate for real-time computation of 
the reference points to machine precision. Although eqn (7) 
involves a transcendental function, the calculations are 
easily within the scope of the modest (33 MHz) CPU used 
to control the CNC machine. 

Tachometer measurements 

Runs were performed on the two PH quintics shown in 
Figurc,s 2 and 3-in each case, the distance between the 

‘I Earlier experiments with this CNC system have been reported in Refs 9 
and “, 
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0’ I I I I I I I 
0 2 4 6 0 10 12 14 16 16 

time (set) 

Figure 5 Measured time variation offeedrate for the PH quintic in Fi,p~rr 2, from tachometer readings. The smooth curve illustrates the desired variation for 
a constant volume removal rate, as described by eqns (4) and (I 0) 

curve endpoints was scaled to 3600 BLU (36 mm). In the 
first case a nominal (zero curvature) feedrate V. = 5 mm/s 
was chosen; for cutting parameters (d,6) = (0.125,0.025) the 
quantity d - $6 is 405 BLU and the time (eqn (9)) needed to 
traverse the curve is T = 17.82 s In the second example, 
we take V. = 4 mm/s, and for (d,6) = (0.1,0.04) we have 
d - $3 = 288 BLU and T = 12.75 s The size of the curves 
and duration of the experiments are chosen to satisfy 
constraints on the memory available for real-time storage of 
encoder and tachometer readings. 

Figure 5 compares the actual feedrate, as obtained from the 
tachometer readings, with the time-dependence of feedrate 
described by eqns (4) and (10) for the first example. The 
data shown here are from a single run-a comparison of 
results from several independent runs suggests that the 
observed fluctuations are primarily measurement noise 
rather than physical variations. Apart from the initial accel- 
eration (and slight overshoot) from rest, the overall feedrate 
variation is seen to be in good agreement with eqn (4), 
although there does seem to be a small systematic lag between 
the expected and actual feedrate. The use of a more sophisti- 
cated control algorithm, and allowance for the initial accel- 
eration period, will probably eliminate this discrepancy. 

Figure 6 shows corresponding measurements for the PH 
curve in Figure 3. Although this example incurs much 
greater acceleration between the concave and convex por- 
tions of the curve, the system still faithfully reproduces the 
specified feedrate function. The discrepancy between the 
desired and actual feedrate variations does not appear to 
be simply a time lag in this case. 

Note that the feed acceleration A = dVldt is obtained by 
applying d/dr = (V/a)d/dE to eqn (4)-this gives 

V,%W(d - ;@ 
A(t) = - [l + K(l)(d - fh)]’ 

(11) 

where ic is the arc-length derivative of curvature; see eqn ( 16) 
in Appendix A. This is plotted in Figure 7 for both curves. 

Dynamometer measurements 

To monitor machining force variations, a Kistler piezo- 
electric dynamometer was mounted on the machine table 
and used to record the x and y force components while 
cutting 6061-aluminum. For these experiments, the PH 

8 I 

0 2 4 6 a 10 12 14 

time (set) 

Figure 6 Measured time variation of feedrate for the PH quintic in Figure 3 
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0 2 4 6 6 10 12 14 16 16 

time (WC) 

Figure 7 The feed acceleration Ceqn C I I)) for the PH quintics in Figwes -7 c~nd 3 

quintic tool path shown in Figure 3 was adopted, with the employed in these experiments, with an axial depth of cut 
distance between the endpoints scaled to 2 inches -3 mm into the aluminum stock. Figure 8 shows the resul- 
(50.8 mm). The stock was first rough-cut using a 5 inch tant force in the cutting plane, as measured by the dynam- 
diameter tool, leaving a & inch depth of cut (6 = 4.76 mm) ometer with a sampling frequency of 25 Hz. The spikes in 
above the desired part shape. The part was then finish-cut these data represent successive engagements of the cutting 
with the same tool (d = 6.35 mm) using PH-curve edges with the workpiece. Since it is difficult to identify 
CNC interpolators for both the variable feedrate (eqn (4)) trends in the mean cutting force from the raw measure- 
with V. = 5 mm/s, and a constant 5 mm/s feedrate. ments, we also present moving averages of them-obtained 

A two-flute cutter and spindle speed of 1400 rpm were with a l-s ‘sampling window’-in Figure 8. 
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Figure 8 Measured cutting force for the PH quintic in F~~uw 3 with: (left) fixed feedrate and (right) the curvature-dependent feedrate function (eqn (4)). The 
upper graph5 indicate the instantaneous force in the cutting plane sampled at 25 Hz, and the lower graphs are I-s moving averages of these data 
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Figure 9 Averaged cutting force for the PH curve shown in Figure 3, based on a sampling frequency of 250 Hz and I-s smoothing interval, for both a 
constant feedrate and the curvature-dependent feedrate function (iqn (4)) 

In the smoothed data for the constant feedrate case, an 
increase of the mean force on entering the ‘concave’ region 
of the curve in Figure 3, and a subsequent decrease when 
traversing the ‘convex’ region, is clearly apparent. In this 
case, the mean force varies by a factor of -2. In the run 
with the feedrate function (eqn (4)), on the other hand, these 
variations are almost precisely cancelled out, and systematic 
fluctuations of the mean force are no more than - 10% about 
the nominal value (note that the initial ‘rise’ and final ‘decay’ 
in the averaged graphs are artifacts of the smoothing process). 

The two-flute cutter and 1400 rpm spindle speed corre- 
spond to a 46.7 Hz frequency of engagement of the tool 
cutting edges with the workpiece. Since this exceeds the 
force-measurement sampling frequency of 25 Hz, one may 
be concerned that the data in Figure 8 are influenced by 
aliasing effects. To verify that this is not so, the experiments 
were repeated using a 250 Hz sampling frequency. Figure 9 
shows the averaged data (with 1 -s smoothing) from these runs, 
excluding the initial and final l-s intervals. The trend is iden- 
tical to that in Figure 8: the constant-feedrate run exhibits a 
substantial increase/decrease of mean cutting force in the con- 
cave/convex curve regions, while the variable feedrate (eqn 
(4)) effectively cancels out these variations. 

CONCLUDING REMARKS 

We have shown that PH curves admit the formulation of 
simple real-time CNC interpolators that compensate for 
varying material removal rates at a fixed depth of cut 
through curvature-dependent feedrates. The performance of 
these interpolators has been verified through implementa- 
tion on an open architecture11 CNC milling machine. The 
curvature-dependent feedrate was accurately realized using 
a simple P control algorithm, and it effectively cancelled 
variations of the mean cutting force due to ‘curvature 
effects’ when machining aluminum at fixed depth of cut. 

11 The implementation of this PH curve interpolator does not, in fact, require 
a fully open-architecture system-it is only necessary that the software 
interface between the interpolator and control algorithm be clearly specified 
and accessible. 
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The control over machining forces afforded by this inter- 
polator is expected to provide improvements in the surface 
finish and dimensional accuracy of precision machined 
parts. This is accomplished by low-level software changes 
in the control computer, based on the tool-path geometry, 
without the need for addition of sophisticated sensors or 
complex control algorithms. Although we have considered 
only variations in the material removal rate due to varying 
curvature at a fixed depth of cut, it is also possible to for- 
mulate PH-curve interpolators that compensate for specified 
variable depth-of-cut functions. Finally, note that the vari- 
able-feedrate capability of PH-curve interpolators-see 
also Ref 9 and Ref ” -may prove valuable in optimizing 
overall machining times for part programs, consistent with 
specified constraints on machining forces, part accuracy, 
and surface finish. 
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APPENDIX A: OSCULATING-CIRCLE 
APPROXIMATION 

The feedrate function (eqn (4)) for constant material 
removal rate is based on local approximation of the curve 
by its osculating circle, and is valid only if this approxima- 
tion is sufficiently accurate over lengths comparable to the 
tool radius. We now derive a quantitative characterization of 
this condition. 

An analytic curve can be developed in a power series in 
its arc length s measured from a chosen point rcl with tangent 
to and normal no as 

r(s) - r(, = 
K:, 3 

s - --s- + . 
6 

2.? + Z? + . 
2 6 

no 

(12) 
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Figure 10 Verification of the inequality (eqn (15)), describing the accuracy of the osculating-circle approximation, for the PH curves shown in F&~-es 2 
anll3 

where K,, and ice denote the curvature and its arc-length 
derivative at ro. Now the osculating circle at r. has radius 
p. = ~/IQ and center r. - pono, and is thus described by c(s) 
= r. $ p. sin f& - po(l -- cos @no with e=s/p, = K()s. 

Expanding trigonometric terms in power series, we obtain 

2 3 

c(s) - r,) = s - zs’ + . . %s’ - %s4 + . . 
2 24 

no 

(13) 

Comparing eqns (12) and ( 13), we see that the deviation 
between points of equal arc length s from r. along the 
osculating circle and the given curve is 

c(s) - r(s) = $?no + O(sJ) (14) 

The tool ‘samples’ r(E) on a length scale --d. Thus, as a rough 
criterion that the osculating circle at each point satisfactorily 
approximates the curve, we require that It(s) - r(s)1 << d for 
s 5 d. This gives the condition 

;ik,,ld2 < 1 (15) 

where, in terms of the polynomials ~(4) and v(E), we have 

ic = < = 2(U’ + V2)(W” - U”V) - S(Uzf’ + VV’)(UL” - U’l’) 

(T (L42 + \J)4 

(16) 

Note, however, that at a vertex (a point of extremum curva- 
ture), ic=O and the deviation of r(4) from its osculating 
circle is described by the higher-order terms in eqn (14)- 
these are typically of much smaller magnitude. 

To be confident that the feedrate function (eqn (4)) does 
yield an approximately constant volume removal rate along 
the PH-curve tool path, one must check that the inequality 
(eqn ( 15)) is satisfied along the curve. Figure 10 shows that 
this condition does indeed hold for the PH quintics in 
Figures 2 and 3. 
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