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Plant-based compounds or phytochemicals such as alkaloids, glycosides, flavonoids,

volatile oils, tannins, resins, and polyphenols have been used extensively in traditional

medicine for centuries and more recently in Western alternative medicine. Extensive

evidence suggests that consumption of dietary polyphenolic compounds lowers the

risk of inflammatory diseases. The anti-inflammatory properties of several phyto-

chemicals are mediated through ligand-inducible peroxisome proliferator-activated

receptors (PPARs), particularly the PPARγ transcription factor. Inflammatory bowel

disease (IBD) is represented by ulcerative colitis, which occurs in the mucosa of the

colon and rectum, and Crohn's disease (CD) that can involve any segment of gastroin-

testinal tract. Because of the lack of cost-effective pharmaceutical treatment options,

many IBD patients seek and use alternative and unconventional therapies to alleviate

their symptoms. PPARγ plays a role in the inhibition of inflammatory cytokine expres-

sion and activation of anti-inflammatory immune cells. The phytochemicals reported

here are ligands that activate PPARγ, which in turn modulates inflammatory

responses. PPARγ is highly expressed in the gut making it a potential therapeutic tar-

get for IBDs. This review summarizes the effects of the currently published phyto-

chemicals that modulate the PPARγ pathway and reduce or eliminate colonic

inflammation.
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1 | INTRODUCTION

Plant-based compounds or phytochemicals such as alkaloids, glyco-

sides, flavonoids, volatile oils, tannins, resins, and polyphenols have

been used extensively as bioactive compounds in commercial, indus-

trial, and medicinal applications (Vikram, Chiruvella, Ripain, & Arifullah,

2014). One popular definition of phytochemicals (of the Kingdom

Plantae) is “bioactive non-nutrient plant compounds in fruits, vegeta-

bles, grains, and other plant foods that have been linked to reducing

the risk of major chronic diseases” (Liu, 2004).

Polyphenolic compounds are an important group of phytochemi-

cals commonly found in plant-based food sources (Manach, Scalbert,

Morand, Remesy, & Jimenez, 2004). Numerous lines of evidence sug-

gest that the consumption of polyphenolic-rich dietary foods is bene-

ficial in lowering the risk of several diseases (Scalbert, Manach,

Morand, Remesy, & Jimenez, 2005) such as neurodegenerative dis-

eases (Bhullar & Rupasinghe, 2013; Ebrahimi & Schluesener, 2012),

diabetes (Babu, Liu, & Gilbert, 2013), cancer (Nishiumi et al., 2011),

and inflammatory disorders (Gonzalez et al., 2011; Lambert, Hong,

Yang, Liao, & Yang, 2005). Studies using polyphenol derivatives have

also been demonstrated to inhibit a variety of biochemical pathways,

including phospholipase A2, cyclooxygenase, lipoxygenase, and

nuclear factor-κB (NFκB) activation (Santangelo et al., 2007). These

data suggest that the effect of polyphenols encompass more than just

antioxidant activity. The anti-inflammatory effects of many polyphe-

nols are mediated through activation of peroxisome proliferator acti-

vated receptors (PPARs), particularly PPARγ.

PPARs are members of the nuclear receptor superfamily that, act-

ing as ligand-inducible transcription factors, play an important role in

the control of expression of genes involved in various physiological pro-

cesses. There are three different, highly homologous subtypes of PPAR:

PPARα, PPARδ (also referred to as PPARβ), and PPARγ, each encoded

by different genes and with different tissue expression and ligand selec-

tivity (Tontonoz & Spiegelman, 2008). Of these three subtypes, PPARγ

was the first to be identified and the most widely studied (Agostini

et al., 2018; Monsalve, Pyarasani, Delgado-Lopez, & Moore-Carrasco,

2013; Yun, Han, & Park, 2018). A large number of genes are under the

influence of PPARγ, several of them involved in energy, carbohydrate,

and lipid metabolism. PPARγ is activated by ligand binding that induces

conformational changes in the receptor molecule. The ligand-PPARγ

complex activates retinoid X receptors, recruits co-activators containing

histone acetylase activity, and binds to peroxisome proliferator

response element gene promoters, leading to changes in gene tran-

scription. PPARγ is activated by both synthetic, dietary, and polyphenol

ligands (Kliewer et al., 1997; Nolte et al., 1998; Wang et al., 2014;

Weidner et al., 2012), which inhibit inflammatory pathways by inter-

acting with NFκB (Kelly et al., 2004) and activating protein-1 (AP-1)

(Yamazaki et al., 2007), signal transducer and activator of transcription

(STAT; Linard, Gremy, & Benderitter, 2008), and nuclear factor-

activated T cell (Yang et al., 2000). PPARγ is expressed in various tis-

sues in the body including liver, kidney, pancreas, and immune cells, but

high amounts are found in adipose tissue and colon (Braissant, Foufelle,

Scotto, Dauca, & Wahli, 1996; Dubuquoy et al., 2006). Thus, PPARγ

plays a critical role in regulating intestinal inflammation. Studies have

shown that both synthetic and natural PPARγ ligands have beneficial

effects in experimental colitis models (Adachi et al., 2006; Bassaganya-

Riera et al., 2004; Camuesco et al., 2005; Kohno, Suzuki, Sugie, &

Tanaka, 2005; Su et al., 1999), thus making them plausible drug devel-

opment targets for inflammatory bowel disease (IBD). Even though the

effect of PPARγ ligands in treatment of diabetes and other diseases is

positive, side effects such as weight gain, fluid retention, and increased

risk of heart failure (Ciudin, Hernandez, & Simo, 2012) have prevented

their long-term use (Home, 2011).

IBD is represented by ulcerative colitis (UC) that occurs in the inner

lining of the colon (large intestine) and rectum and Crohn's disease

(CD) that can involve any segment of gastrointestinal tract. IBD is char-

acterized by chronic or relapsing immune activation and inflammation

within the gastrointestinal tract (Rubin, Shaker, & Levin, 2012). The eti-

ology of IBD remains unclear, but infectious, genetic susceptibility,

immunological, and psychosomatic factors appear to contribute to the

onset of disease and exacerbation of symptoms during relapse (Sun

et al., 2019). The prevalence of IBD is increasing and currently affects

about 150–250 persons per 100,000 of the populations in developed

nations. It can greatly diminish quality of life because of pain, vomiting,

and diarrhea and also increase the risk of colorectal cancer; the latter

particularly in the case of UC (M'Koma, 2013). The current therapy for

IBD relies on the use of sulfasalazine, corticosteroids, and immunosup-

pressive agents, such as azatriopine together with biological therapy

using humanized anti-tumor necrosis factor alpha (TNFα) antibody

administration as a mainstream treatment to downregulate aberrant

immune responses and inflammatory cascades (Bots, Gecse, Barclay, &

D'Haens, 2018). However, adverse effects of these drugs over pro-

longed treatment periods, and the high relapse rate of IBD, limit their

use (Reinglas, Gonczi, Kurt, Bessissow, & Lakatos, 2018). Because of

the lack of cost-effective pharmaceutical treatment options, many IBD

patients seek and use unconventional therapies with the hope of

increased beneficial effect. It is estimated that 40% of IBD patients use

some form of herbal or dietary supplements (Head & Jurenka, 2004).

Few studies have investigated the role of diet and polyphenols on IBD

prevention and treatment (Lee et al., 2015; Shapiro, Singer, Halpern, &

Bruck, 2007). With increased focus, it seems reasonable to assume that

herbal medicines could provide alternative therapy as well as to

become valuable sources for drug discovery and development targeted

at inflammatory diseases. The majority of medicinal plant extracts used

for inflammation primarily target the arachidonic acid pathway. How-

ever, recent reports suggest that some natural products exhibit shown

anti-inflammatory effect through activation or modulation of PPARγ,

and these may be valuable for a variety of inflammatory conditions

(Ortuno Sahagun, Marquez-Aguirre, Quintero-Fabian, Lopez-Roa, &

Rojas-Mayorquin, 2012).

The present detailed literature survey has uncovered extensive

information on the effects of phytochemical PPARγ agonists on car-

bohydrate and fat metabolism (Goto, Takahashi, Hirai, & Kawada,

2010; Ortuno Sahagun et al., 2012) as well as computational

approaches to the discovery of phytochemical ligands for PPARα and

PPARγ, which shed more light on the PPAR pathway in general
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(Lewis, Bassaganya-Riera, & Bevan, 2010). However, until now, there

has been no extensive review focused on the effects of phytochemi-

cal agonists of PPARγ in the arena of IBDs. Bertin, Dubuquoy, Colo-

mbel, and Desreumaux (2013) reported that several PPAR modulators

have promising effects both in vitro and in vivo inflammation models

without toxicity. Some of these compounds are being evaluated in

clinical trials. It is widely accepted that phytochemicals, acting as

ligands for PPARγ, can modulate inflammatory responses and help to

prevent inflammatory responses and pathologies (Hirai et al., 2010;

Martin, 2010). It is conceivable that this novel approach to treatment

of IBD may provide increased efficacy with reduced side effects.

2 | METHODOLOGY

2.1 | Search method

The organized searchable electronic collections of resources including

PubMed, Scopus, Google, and Google scholar were used to search with

the key words like “IBD,” “colitis,” “intestinal inflammation,”

“phytochemical,” “plant,” “natural product,” “plant-based nutraceuticals,”

“bioactive molecules,” “phytochemicals,” and “PPARγ agonist.” This

review highlights studies carried out using in vivo and in vitro experimen-

tal IBD models, as well as clinical trials in IBD patients, involving phyto-

chemical modulation of the PPARγ pathway, published between

1990–2019. This review also highlights the perceived merits of those

phytochemicals for potential use in clinical settings for IBD in particular.

The source of phytochemicals, the models used, and the effect/mecha-

nisms reported are presented in Table 1, whereas the chemical structures

of these phytochemicals are presented in Figure 1.

2.2 | Evaluation of compounds for “Lipinski rule of
five” for distinguishing between drug-like and
nondrug-like molecules

Molecular properties of each phytochemical were calculated on the

basis of Lipinski's rule and its components. Lipinski rule of five (i.e., a

molecule with a molecular mass less than 500 Da, no more than

5 hydrogen bond donors, no more than 10 hydrogen bond acceptors,

and an octanol–water partition coefficient log P not greater than 5).

Theoretical values for miLogP and topological polar surface area

(TPSA) were calculated using commercially available Molinspiration

software. The calculated values are presented in Table 2.

3 | PHYTOCHEMICALS INVOLVED WITH
PPARγ ACTIVITY IN IBD

3.1 | 2,3,5,40-Tetrahydroxystilbene-2-O-beta-D-
glucoside

2,3,5,40-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG), extracted

from rhizome of Polygonum multiflorum Thunb, is a traditional Chinese

medicinal herb that has been used for thousands of years as a tonic

and to treat skin depigmentation diseases, inflammatory diseases, and

age-related disease (Ling & Xu, 2016). Wang, Zhao, Han, Chen,

and Wang (2008) showed that THSG could ameliorate colon damage

and with a reduced damage score and improved free radical scaveng-

ing effects in experimental colitis models. Zeng, Xiao, Chang, and

Wang (2011) have reported that THSG could attenuate acetic acid-

induced colon lesions and reduced NFκB-induced inflammatory medi-

ators such as TNFα, interleukin (IL)-6, and cyclooxygenase-2 (COX-2)

dose dependently.

3.2 | 2-Hydroxyethyl-5-chloro-
4,5-didehydrojasmonate

2-Hydroxyethyl-5-chloro-4,5-didehydrojasmonate is a stability-

improved analog of methyl jasmonate—a natural cyclopentanone

lipid belonging to the jasmonates family of plant oxylipin stress hor-

mones (oxygenated fatty acids; Cesari et al., 2014). 2-Hydroxyethyl-

5-chloro-4,5-didehydrojasmonate was shown to increase the pro-

duction of anti-inflammatory cytokines including IL-2 and IL-4 as

well as the proliferative factor, granulocyte-macrophage colony-

stimulating factor (GM-CSF); inhibit the activation of mitogen-

activated protein kinases (MAPKs) and NFκB; and thereby reduce

intestinal inflammation by increasing the transcriptional activity of

PPARγ (Choo et al., 2015).

3.3 | Abscisic acid

Abscisic acid (ABA; a 15-C weak acid) is one of the “classical”

ubiquitious plant hormones. It is also produced by certain phyto-

pathogenic fungi, bacteria, and metazoans ranging from sea sponges

to humans (Finkelstein, 2013). ABA was found to ameliorate colitis

and to reduce colonic leukocyte infiltration and inflammation. These

improvements were associated with downregulation in vascular cell

adhesion marker-1, E-selectin, and mucosal addressin adhesion

marker-1 expressions (Guri, Hontecillas, & Bassaganya-Riera, 2010).

Further, ABA was shown to improve colonic histopathology and

upregulate expression of epithelial lanthionine synthetase C-like pro-

tein 2 expression (a novel therapeutic target) which is an upstream

target of the PPARγ pathway (Hontecillas & Bassaganya-

Riera, 2012).

3.4 | Alliin

Alliin (S-allyl cysteine sulfoxide) is an organosulfur compound from

garlic with potent antioxidant, cardioprotective, and neuro-

protective effects (Martins, Petropoulos, & Ferreira, 2016). Alliin

suppresses expression of malondialdehyde, myeloperoxidase

(MPO), inducible nitric oxide synthase (iNOS), and inflammatory

factors such as MAPK and inhibits the phosphorylation of PPARγ

(Shi et al., 2017).
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3.5 | Amorfrutins

Amorfrutins are isoprenoids isolated from the fruits of Amorpha

fruticosa and edible roots of Glycyrrhiza foetida (licorice). They are

used as traditional medicine and show potent antidiabetic properties

by binding to PPARγ and thereby activating its downstream pathways

(Weidner et al., 2012). Amorfrutins A attenuate expression of inflam-

matory marker genes macrophage inflammatory protein 3α, IL-8, and

growth-regulated oncogene-α through binding to PPARγ in HT-29

cells (Fuhr, Rousseau, Plauth, Schroeder, & Sauer, 2015), and thus,

in vivo studies in IBD are warranted.

3.6 | Andrographolide

Andrographolide, a diterpenoid lactone, isolated as a major bioactive

constituent of Andrographis paniculata, has shown potent anti-

inflammatory and anticancer effects (Shi et al., 2017).

Andrographolide sulfonate inhibits helper T cell (Th)1/Th17 response

and reduces activation of p38 MAPK and NFκB in

2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis (Liu et al.,

2014). The inhibitory effects on Th1/Th17 responses and the promot-

ing effects on Th2 responses of andrographolide were confirmed in

peripheral blood mononuclear cells from UC patients (Zhu et al.,

2018). Furthermore, the andrographolide-lipoic acid conjugate, AL-1

alleviated colon injury by decreasing expression of p-p65, p-nuclear

factor of kappa light polypeptide gene enhancer in B-cells inhibitor

alpha, and COX-2 and increasing expression of PPARγ (Yang et al.,

2016). Another derivative, 3,14,19-triacetyl andrographolide, down-

regulated the phosphorylation of p38 MAPK, extracellular signal-

regulated kinases (ERK), and c-Jun N-terminal kinase (JNK; Gao et al.,

2018). These promising data support a role for andrographolide in the

prevention of UC.

3.7 | Bergenin

Bergenin (also known as cuscutin), a trihydroxybenzoic acid glycoside,

is the C-glucoside of 4-O-methyl gallic acid isolated from plants such

as Bergenial crassifolia, Corylopsis spicata, Caesalpinia digyna, Mallotus

japonicus, and Sacoglottis gabonensis (Bajracharya, 2015). Bergenin

alleviates TNBS-induced colitis damage by reducing expression of

pro-inflammatory proteins and cytokines via regulation of pSTAT3

and NFκB signaling, and by inhibiting the (nucleotide-binding domain,

leucine-rich repeat family) pyrin domain containing 3/ASC

inflammasome pathways (Lopes de Oliveira et al., 2019). Additionally,

F IGURE 1 Chemical structures of phytochemicals that are involved in PPARγ activation
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bergenin activates PPARγ, upregulates SIRT1, inhibits NFκB-p65 acet-

ylation and nuclear translocation, thereby suppressing the release of

pro-inflammatory cytokines (Wang et al., 2017). These reports indi-

cate a promising role in the prevention of IBD.

3.8 | Cannabidiol

Cannabidiol (CBD) is a nonpsychotropic phytocannabinoid component

of industrial hemp and cannabis cultivars that exerts a wide range of

pharmacological effects through interactions with endocannabinoid

receptors in mammals. (Burstein, 2015). CBD prevents reactive

enteric gliosis induced by lipopolysaccharide (LPS) in mice and that

induced by LPS + interferon gamma (IFN-γ) in cultured biopsies from

UC patients, through the massive reduction of astroglial signaling neu-

rotrophin (S100B) and reduced TNFα expression. But these effects

were reversed when CBD was administered with GW9662, a potent

PPARγ antagonist, indicating direct interaction of CBD with the

PPARγ receptor (De Filippis et al., 2011).

3.9 | Conjugated linoleic acid

Conjugated linoleic acid (CLA) is a family of isomers of linoleic acid

found mostly in meat and dairy products derived from ruminants. In a

porcine bacterial colitis model, CLA decreases mucosal damage and

maintains cytokine profiles (IFN-γ and IL-10) and lymphocyte subset

distributions (i.e., cluster of differentiation (CD4)+ and CD8+;

Hontecillas et al., 2002). In the dextran sodium sulfate model in mice,

CLA ameliorates colitis through a PPARγ-dependent mechanism.

(Bassaganya-Riera et al., 2004). In the porcine bacterial colitis model,

inhibition of colitis correlated with induction of colonic PPARγ and its

responsive gene PPARγ-coactivator-1α and downregulation of TNFα

(Bassaganya-Riera & Hontecillas, 2006). Probiotic bacteria produced

CLA in the gut targets macrophage PPARγ to suppress colitis

(Bassaganya-Riera et al., 2012) and also decreases COX-2 levels

(Bassaganya-Riera, Viladomiu, Pedragosa, De Simone, & Hontecillas,

2012). Furthermore, a CLA-enriched diet prevents the colon shorten-

ing, reduces expression of iNOS and NFκB, and increases expression

of PPARγ and trefoil factor 3 (a stable secretory protein expressed in

TABLE 2 Evaluation of compounds for “Lipinski rule of five” to distinguishing between drug-like and nondrug-like molecules

Compound

Molecular

mass

Hydrogen bond

donor

Hydrogen bond

acceptor miLogP TPSA

Number of violation of

Lipinski rule

2,3,5,40-Tetrahydroxy-stilbene-2-O-

β-D-glucoside
404 7 8 1.26 150.83 —

Abscisic acid 250 2 4 1.55 74.60 —

Alliin 192 3 4 −2.42 80.39 —

Amorfrutin A 340 4 2 4.97 66.76 —

Andrographolide 250 3 5 1.05 86.99 —

Bergenin 334 5 9 −2.09 145.91 —

Cannabidiol 314 2 2 7.14 40.46 1

Conjugated linoleic acid 280 1 2 7.09 37.20 1

Curcumin 368 2 6 2.30 93.07 —

Geniposide 384 5 8 −0.39 136.68 —

Geraniol 154 1 1 3.20 20.23 —

Isoliquiritigenin 256 3 4 2.77 77.75 —

Magnolol 266 2 2 4.80 40.46 —

Oroxyloside 468 5 11 0.82 176.12 1

Glycyrrhizin 822 8 15 2.65 257.81 3

Oxylipins 296 1 3 5.92 49.83 1

Punicic acid 278 1 2 6.60 37.30 1

Resveratrol 228 3 3 2.99 60.68 —

Tetramethylpyrazine 136 0 2 1.12 25.78 —

Verbascoside and acteoside 624 9 15 −0.45 245.29 3

α-Eleostearic acid 278 1 2 6.60 37.30 1

β-Caryophyllene 204 0 0 5.17 0.00 1

Bold Values: Molecules with a topological polar surface area (TPSA) of greater than 140 Å2 tend to be poor at permeating cell membranes.

Note: Lipinski's rule of five is used to evaluate the drug-likeness. An orally active drug has no more than one violation of Lipinski's rule of five. Molecules

with a topological polar surface area (TPSA) of greater than 140 Å2 tend to be poor at permeating cell membranes and tend to exhibit less bioavailability.
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gastrointestinal mucosa that appears to play a protective role in the

mucosa) in the colon (Borniquel, Jadert, & Lundberg, 2012). Collec-

tively, these results show that CLA recruits PPARγ-associated anti-

inflammatory pathways to counteract colitis damage.

3.10 | Curcumin

Curcumin is a polyphenol derived from Curcuma longa plant that has

been used extensively in complementary and alternative medicine

(Keihanian, Saeidinia, Bagheri, Johnston, & Sahebkar, 2017). Curcumin

prevents and improves the wasting and histopathologic signs of

TNBS-induced colonic inflammation, respectively (Jian et al., 2005;

Jian, Wang, Mai, Zhang, & Lai, 2004; Sugimoto et al., 2002). In addi-

tion, curcumin reduces neutrophil infiltration and lipid peroxidation

and decreases serine protease activity in colon. Curcumin also reduces

the levels of nitric oxide, COX-2, and O(2)
(−) associated with the favor-

able expression of iNOS and Th1 (IL-1, IL-12, IFN-γ, and TNFα) and

Th2 (IL-4 and IL-10) cytokines and increases PPARγ and prostaglandin

E2 (PGE2) levels (Jiang, Deng, Zhang, & Xia, 2006; Ukil et al., 2003;

M. Zhang, Deng, Zheng, Xia, & Sheng, 2006). Curcumin attenuates the

activation of toll-like receptor (TLR)-4, MyD88, p38 MAPK, and NFκB

and the inhibition of p38 MAPK signaling (Camacho-Barquero et al.,

2007; Lubbad, Oriowo, & Khan, 2009; Salh et al., 2003) and reduces

carbachol-induced contraction (Lubbad et al., 2009). Curcumin inhibits

IL-27 expression via the TLR-4/NFκB signaling pathway (Zeng, Zhan,

Liao, Chen, & Lv, 2013). Furthermore, curcumin reduces TNFα, IL-2,

IL-12 p40, IL-17, and IL-21 levels (Zhao et al., 2016) and exhibits anti-

inflammatory effects by enhancing suppressor of cytokine signaling

1 expression and inhibiting Janus kinase/STAT pathway (Zhang et al.,

2016). By modulating the Janus kinase/STAT/suppressor of cytokine

signaling pathway, curcumin suppresses the activation of dendritic

cells and restores immunologic balance to effectively treat experimen-

tal colitis (Zhao et al., 2016). Curcumin decreases the density CD8

+ CD11c + cells in spleen and Peyer's patches (gut-associated lym-

phoid tissue usually found in the lowest portion of small intestine) and

the expression of major histocompatibility complex II, CD205, CD40,

and CD40L, whereas intercellular adhesion molecule-1 was also

inhibited (Zhao et al., 2017).

Curcumin reduces histological signs of colonic inflammation in

Mdr1a−/− mice—a spontaneously develop intestinal inflammation,

predominantly in colon, with pathology similar to IBD (Nones et al.,

2009). In addition, key transcription factors and other regulatory mol-

ecules (ERK, FN1, TNFSF12, and PI3K complex) activated in inflamma-

tion were downregulated by dietary intervention with curcumin

(Cooney et al., 2016). Curcumin was able to attenuate

2,4,6-dinitrobenzene sulfonic acid-induced colitis in mice, by acting as

a transient receptor potential cation channel subfamily V member

1 (TRPV1) agonist with reductions in both the macroscopic and histo-

logical damage scores (Martelli et al., 2007). In IL-10 gene-deficient

mice (another murine model for IBD), curcumin was shown to have

anti-inflammatory effects mediated through a reduced production of

potent pro-inflammatory mucosal cytokines (Ung et al., 2010).

In dextran sodium sulfate (DSS)-induced colitis model, curcumin

reduces disease activity index, histological colitis score, MPO activity,

and NFκB activation (Deguchi et al., 2007; Jia et al., 2011) and

decreases TNFα, NO levels & cyclin dependent kinase 4, cylinD1

levels as well as STAT3 signaling (Arafa, Hemeida, El-Bahrawy, &

Hamada, 2009; Liu et al., 2013; Yang et al., 2013). Curcumin inhibits

the p38MAPK signaling pathway, thereby reducing the release of

TNFα (Li, Li, He, Chen, & Shi, 2015). Additionally, curcumin maintains

S-nitrosylation levels and inhibits the activity of inhibitor of nuclear

factor kappa-B kinase subunit beta (Kao, Hu, Wu, & Kong, 2016). Cur-

cumin has been shown to alleviate the hyperalgesia associated with

experimental colitis (Yang et al., 2017). At least in part this effect is

mediated by reducing the colonic expression of TRPV1 and partly by

inhibiting the phosphorylation of TRPV1 in nociceptive neurons

projecting from the dorsal root ganglia (Yang et al., 2017). Essential

turmeric oils of curcumin were shown to upregulate the anti-

inflammatory cytokines including IL-10 and IL-11 as well as forkhead

box P3 in the colon (Toden, Theiss, Wang, & Goel, 2017).

TNFα-colitis is characterized by hemorrhagic edema and crypt

abscesses massively infiltrated by inflammatory cells, namely neutro-

phils. Curcumin attenuates the hallmarks of oxidative stress, neutro-

phils influx, and reactive oxygen species-related cellular and

histological damages (Mouzaoui, Rahim, & Djerdjouri, 2012). In the

acetic acid-induced colitis model, curcumin decreases colonic injury,

and this is associated with decreased inflammatory reactions, lipid

peroxidation, and apoptotic cell death, as well as suppression of the

p38- and JNK-MAPK signaling pathways (Topcu-Tarladacalisir et al.,

2013). Curcumin also increases colonic PGE2 and IL-10 concentra-

tions (Gopu et al., 2015). The colitis in 2,4,6-trinitrobenzene sulfonic

acid-treated BALB/c mice is believed to be a mixed

Th1/Th2-derived cytokine response. In contrast in SJL/J mice, which

lack natural killer T cells, the colitis is Th1-mediated. Interestingly,

curcumin has no protective effect against TNBS-induced colitis in

SJL/J mice (Billerey-Larmonier et al., 2008). Similarly, curcumin dem-

onstrates only limited effectiveness on Th-1-mediated colitis in IL-

10(−/−) mice, with moderately improved colonic morphology

(Larmonier et al., 2008).

Curcumin has been reported as a promising and safe medication

for maintaining remission in randomized, multicenter, double-blind,

placebo-controlled trial in UC patients (Hanai et al., 2006). In another

study, curcumin showed a significantly better outcome in terms of

clinical response, clinical remission, and improvement on endoscopy in

a single-center pilot trial (Singla et al., 2014). In combination with

mesalamine (5-aminosalicylic acid), curcumin showed beneficial

effects inducing both clinical and endoscopic remission in patients

with mild-to-moderate active UC, with no apparent adverse effects

(Lang et al., 2015). In contrast, however, a low dose oral curcumin

(450 mg/day) was not effective in inducing remission in mild-to-

moderate cases of UC (Kedia et al., 2017). Considering the efficacy of

curcumin in human subjects, it would be reasonable to speculate that

this common spice could have excellent prospects for further pharma-

ceutical and/or nutraceutical development as a drug or efficacious

supplement for colitis.
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3.11 | Geniposide

Geniposide, an iridoid glycosideextracted from the fruit of Gardenia

jasminoides Ellis, is present in nearly 40 species belonging to various

families, especially the Rubiaceae, which is known to have anti-inflam-

matory, antioxidative, antidiabetic, neuroprotective, hepatoprotective,

and cholagogic effects (Shan et al., 2017). Geniposide reduces the

DSS-induced increase of the nuclear factor of kappa light polypeptide

gene enhancer in B-cells inhibitor and NFκB-p65 protein phosphoryla-

tion and attenuates DSS-induced reduction of PPARγ (Shan et al.,

2017). In addition, geniposide downregulates COX-2, iNOS, and myo-

sin light-chain kinase (− a serine/threonine-specific protein kinase that

phosphorylates myosin light chain kinase expression and increases

expression of the tight junction proteins (occludin and ZO-1), and

expedites adenosine 50 monophosphate-activated protein kinase

phosphorylation (Xu et al., 2017).

3.12 | Geraniol

Geraniol is a terpene occurring in the essential oils of several aromatic

plants like palmarosa, ninde, rose, and citronella oils (Cho, So, Chun, &

Jeon, 2016). Geraniol appears to exert its antioxidant, anti-inflamma-

tory, and immunosuppressive effects by modulating the Wnt/GSK-

3β/β-catenin, p38MAPK, NFκB, and PPARγ signaling pathways

(Soubh, Abdallah, & El-Abhar, 2015). Furthermore, geraniol inhibits

NFκB-p65-DNA binding as well as nuclear factor of kappa light poly-

peptide gene enhancer in B-cells inhibitor alpha phosphorylation, deg-

radation, and subsequent increase in nuclear translocation

(Medicherla et al., 2015). In addition, geraniol was shown to have

multi-target effects that simultaneously targeted dysbiosis, local, and

systemic inflammation and mucosal damage via suppression of COX-2

and inflammatory cytokines (De Fazio et al., 2016). The effects and

molecular mechanisms that mediate the anti-inflammatory activity of

geraniol warrant further exploration.

3.13 | Glycyrrhizin

Glycyrrhizin (triterpenoid glycoside or saponin) is the primary sweet-

tasting constituent found in licorice root, Glycyrrhiza glabra L

(Spinks & Fenwick, 1990). The glycyrrhizin derivative, diammonium

glycyrrhizinate, reduces inflammatory injury via inhibition of NFκB,

TNFα, and intercellular adhesion molecule-1 in the colon (Yuan et al.,

2006). Glycyrrhizic acid suppresses lipid peroxidation and expression

of TNFα and IL-1β in the TNBS-induced colitis model (Liu et al., 2011).

Topical application of glycyrrhizin ameliorates the production of pro-

inflammatory cytokines and chemokines, such as IL-1β, TNFα, IL-6,

cytokine-induced neutrophil chemoattractant-2 and -3, monocyte

chemoattractant protein 1, macrophage inflammatory protein 3α, tis-

sue inhibitor of metalloproteinases-1, fractalkine, ciliary neurotrophic

factor, leptin, and GM-CSF (Kudo, Okamura, Zhang, Masuo, & Mori,

2011). In another study, glycyrrhizin-inhibited inflammatory media-

tors, including IL-6 and cytokine-induced neutrophil chemoattractant-

3 and MPO activity (Lee et al., 2013). Dipottasium glycyrrhizate,

another glycyrrhizin derivative, inhibits high mobility group box 1 pro-

tein activity (secreted by immune cells like macrophages and mono-

cytes), thereby reducing intestinal inflammation. Glycyrrhizate also

decreases iNOS and COX-2, as well as NO and PGE2 levels in the

DSS–colitis models (Vitali et al., 2013; Vitali et al., 2015). Furthermore,

glycyrrhizin reduces macroscopic and microscopic lesions and reduces

expressions of PPARγ and TNFα (Sethuraman et al., 2015). It is inter-

esting to speculate that glycyrrhizin could be developed for pharma-

ceutical and/or nutraceutical therapeutic use in the treatment of

colitis.

3.14 | Isoquiritigenin

Isoliquiritigenin (ISL) is a bioactive ingredient isolated from the roots

of plants belonging to licorice, including Glycyrrhiza uralensis, Mongo-

lian glycyrrhiza, G. glabra, and other family members (Peng et al.,

2015). ISL inhibits PGE2 and IL-6 signaling in colitis-associated tumor-

igenesis via obstruction of M2 macrophage polarization (Zhao et al.,

2014). ISL suppresses the phosphorylation of ERK1/2 and p38 and the

activation of NKκB (Choi et al., 2016). In addition, ISL increases the

levels of probiotics, particularly butyrate-producing bacteria

(Butyricicoccus, Clostridium, and Ruminococcus; Wu et al., 2016). ISL is

an attractive nutraceutical candidate for prevention of colitis.

3.15 | β-Glucans

The β-glucans are a family of β-D-glucose polysaccharides found in the

cell walls of cereals, bacteria and fungi. A study of the β-glucans from

Shiitake mushrooms (Lentinus edodes) in the DSS-induced colitis

model in mice revealed that it suppressed the inflammatory response,

reduced expression of iNOS, TNFα, IL-1β, and IL-6 and production of

NO, and blocked the phosphorylation of JNK/ERK1/2 and p38 and

Elk-1 and PPARγ at serine112 (Shi et al., 2016).

3.16 | Magnolol

Magnolol (5,50-di-2-propen-1-yl-2,20-Bichavicol) is a hydroxylated

biphenyl lignan found in the bark of Magnolia officinalis or in Magnolia

grandiflora (Ranaware et al., 2018). Magnolol reduces expression of

colonic pro-inflammatory cytokines (TNFα, IL-1β, and IL-12) by

increasing the expression of PPARγ (Shen et al., 2018). Magnolol also

downregulates NFκB-p65 mRNA and TLR-4 protein expression in the

TNBS–colitis model (Zhang, Fu, & Tang, 2018).

3.17 | Oroxyloside

Oroxyloside is a metabolite of oroxylin A from the root of Scutellaria

baicalensisis (H. B. Li & Chen, 2005). Oroxyloside attenuates inflamma-

tion in the DSS-induced colitis model. It reduces the body weight loss,
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colon length shortening, and colonic pathological damage, inhibits

inflammatory cell infiltration and decreases MPO and iNOS activities.

Oroxyloside inhibits NFκB pathway activation through PPARγ

(X. Wang et al., 2016). However, additional mechanistic studies are

warranted to elucidate the pronounced in-vivo effects of oroxyloside.

3.18 | Oxylipins

Oxylipins are a family of oxygenated products formed from poly-

unsaturated fatty acids by cyclooxygenases and lipoxygenases which are

widely distributed in animals, plants, mosses, algae, bacteria and fungi

(Avila-Roman, Talero, Rodriguez-Luna, Garcia-Maurino, & Motilva, 2016).

Oxylipins down-regulate COX-2 and iNOS by inhibition of the NFκB sig-

naling pathway (Avila-Roman et al., 2014). (Avila-Roman et al., 2014).

Oxylipins are agonists of PPARγ and activation results in NFκB/PPARγ

co-localization in the cytoplasm, interfering with the nuclear translocation

of NFκB, thereby reducing the transcription of pro-inflammatory genes

(Avila-Roman, Talero, de Los Reyes, Garcia-Maurino, & Motilva, 2018).

3.19 | Punicic acid

Punicic acid is a bioactive compound of pomegranate seed oil that has

gained wide attention for its therapeutic potential (Shabbir et al.,

2017). Punicic acid is potent inhibitor of TNFα-induced priming of

reactive oxygen species production and MPO release by neutrophils

(Boussetta et al., 2009). Punicic acid ameliorates colitis in IL-10−/−

mice and in DSS-induced colitis in mice by suppressing TNFα and

NFκB activation while inducing the immunoregulatory cytokine trans-

forming growth factor β1. Macrophage-specific deletion of PPARγ

caused a complete abrogation of the protective effect of punicic acid,

indicating direct activation of PPARγ (Bassaganya-Riera et al., 2011).

Because of these potent effects, investigation of the effectiveness of

this compound in human IBD is warranted.

3.20 | Resveratrol

Resveratrol is a natural polyphenol found in grapes, red wine, grape

juice, and several species of berries (Nunes, Danesi, Del Rio, & Silva,

2018). Resveratrol activates PPARα and PPARγ in a number of cell-

based reporter assays (Inoue et al., 2003). Resveratrol was shown to

upregulate HO-1 and germ cell-less mRNA levels in cytokine-

stimulated HT-29 cells. Further, resveratrol increased nuclear levels of

PPARγ in cytokine-stimulated cells (Serra, Almeida, & Dinis, 2016).

These novel findings suggest the further development of resveratrol

as a natural drug candidate for the treatment of IBD.

3.21 | Tetramethylpyrazine

Tetramethylpyrazine (ligustrazine) is a compound isolated from

Ligusticum wallichii, which has been extensively used for Chinese

herbal medicine for centuries (Zhao, Liu, & Chen, 2016).

Tetramethylpyrazine decreases MPO activity and expression of TNFα,

iNOS, NFκB-p65, and COX-2, as well as increasing in PPARγ produc-

tion (He et al., 2012). Tetramethylpyrazine also suppresses colitis

through inhibition of NFκB translocation, with subsequent inhibition

of pro-inflammatory factor production (Lu et al., 2014). In addition, it

was shown to inhibit transcription factors such as transcription factor-

AP-1 and nuclear factor of activated T cells (Zhao, Liu, & Chen, 2016).

Considering these findings, tetramethylpyrazine has significant poten-

tial for future therapeutic utility in the amelioration of colitis.

3.22 | Verbascoside (also known as acteoside)

Verbascoside is a member of a large family of phenylpropanoid glyco-

sides that are widespread in the plant kingdom. Phenylethanoid ver-

bascoside, isolated from Plantago lanceolata L. decreases IL-10, TNFα,

IFN-γ, and GM-CSF secretion in acute colitis animal models

(Hausmann et al., 2007). Verbascoside reduces the progression of

colon injury and microscopic and macroscopic indications of colitis

brought about by the suppression of NFκB and activation of the pro-

active form of metalloproteinase (MMP)-2 and pro-MMP-9 (Mazzon

et al., 2009). In addition, verbascoside weakens the anti-inflammatory

activity in PPARα knockout mice and inhibits neutrophil infiltration,

intestinal permeability, and colon injury (Esposito et al., 2010). Ver-

bascoside ameliorates these inflammatory pathways, thus substantiat-

ing its putative preventive effect in colitis.

3.23 | α-Eleostearic acid

α-Eleostearic acid is isolated from tung and bitter gourd seed oils. Sev-

eral health benefits have been attributed to this compound (Yuan,

Chen, & Li, 2014). α-Eleostearic acid was shown to decrease macro-

phage infiltration and initiate both PPARγ-dependent and

-independent pathways that significantly impedes the progression of

disease activity index and lesions of intestine (Lewis et al., 2011).

3.24 | β-Caryophyllene

β-Caryophyllene (BCP) is a natural bicyclic sesquiterpene present in

significant amounts in natural products for example, clove oil, cinna-

mon leaves, and copaiba balsam and has marked anti-inflammatory

activity (Meeran et al., 2019). Cho et al. (2007) have shown that BCP

reduces colon inflammation and prevents the increases in MPO activ-

ity and IL-6 expression in a mouse model of DSS-colitis. BCP exhibits

anti-inflammatory effects involving cannabinoid type-2 and the

PPARγ pathways (Bento et al., 2011). Furthermore, BCP reduces the

expression in colon tissue of inflammation-related genes, including

cytokines and chemokines (Ccl2, Ccl7, Ccl11, Ifitm3, IL-1β, and IL-28);

TNF receptor superfamily member 1B or 12A and TNF receptor 2;

acute-phase proteins (S100a8, Saa3, and Hp); adhesion molecules

(Cd14, Cd55, Cd68, Mmp3, Mmp10, Sema6b, Sema7a, and Anax13);
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and signal regulatory proteins (Cho et al., 2015). Collectively, these

results suggest that BCP has multiple anti-inflammatory effects

targeting pathways that contribute to experimental colitis.

4 | PLANT PRODUCTS INVOLVED WITH
PPARγ ACTIVITY IN IBD

4.1 | Portulaca extract

Portulaca oleracea L. (POL) is a traditional Chinese herb praised for its

rich multi-minerals, proteins, α-amyrin, β-carotene, terpenoids, vita-

mins, and fatty acids (Uddin, Juraimi, Ali, & Ismail, 2012). In addition to

its use as an edible plant, it is also considered valuable for alleviating a

wide spectrum of diseases (Iranshahy et al., 2017). Yang et al. (2016)

have demonstrated that POL decreases oxidative stress and the

colonic expression of pro-inflammatory cytokines and TNFα and

NFκB-p65 in the murine model of DSS colitis. POL alleviates DSS-

colitis through regulation of inflammatory reaction, apoptosis, and

PPARγ level (Kong et al., 2018). In addition, POL extract was more

effective than sulfasalazine in preventing the increase concentrations

of TNFα, IL-6, and IL-1β in the mouse model DSS colitis. Similarly, the

POL extract was more effective than sulfasalazine in decreasing NO

production in cultured macrophages (Kim et al., 2018).

4.2 | Zanthoxylum bungeanum pericarp

Zanthoxylum bungeanum Maxim. (Rutaceae) is a popular food additive

and traditional Chinese herbal medicine commonly referred to as

HuaJiao and widely distributed in Asian countries. It has been used in

the treatment of abdominal pain, toothache, dyspepsia, vomiting, diar-

rhea, ascariasis, and eczema (Xiang et al., 2016). The essential oil

obtained from pericarp of Zanthoxylum bungeanum alleviates colitis

through regulation of suppression of pro-inflammatory mediators and

regulation of the NFκB and PPARγ pathways. The extract also

inhibited (nucleotide-binding domain, leucine-rich repeat family) pyrin

domain containing 3, ASC, and caspase-1 production in a dose-

dependent manner, resulted in reduction in IL-1β release into the

colon in murine experimental colitis (Zhang et al., 2017).

5 | DISCUSSION

UC, a subtype of IBD characterized by colonic mucosal inflammation,

causes significant morbidity in the affected individuals (Harbord et al.,

2017). UC is commonly considered to be severe than Crohn's disease

because it is less frequently associated with development of fistulas

and abscesses. However, UC causes a similar deterioration in quality

of life. Though the cause of UC is not fully understood, it is widely

accepted that there is an interaction between diverse factors, such as

an immune system disturbance, genetic predisposition, and environ-

mental factors, that activate a damaging immune response in the

intestine (Salaritabar et al., 2017). Current treatment options for UC

include the use of 5-aminosalycilates, corticosteroids, thiopurines,

TNFα inhibitors, and α4β7 integrin blockers. (Panes & Alfaro, 2017).

Unfortunately, long-term usage of these drugs has been found to lead

to severe toxicities (Saxena et al., 2014). As mentioned earlier,

because the etiology of UC has not been fully identified, no standard

treatment protocol has been established thus far, based on the

reported biological effects. In this context, phytochemicals reviewed

here may indeed, have promising utility as supplements, drugs, and

even topical agents and that deserve increased attention from the

medical community.

The gut microbiota contains many types of bacteria, viruses, and

fungi that normally coexist in a balanced microenvironment (Dieterich,

Schink, & Zopf, 2018). Imbalance of that milieu and gut dysbiosis in

general has been associated with various health problems, including

IBD (Hasan & Yang, 2019; Kho & Lal, 2018). When dextran sodium

sulfate-induced colitis mice are treated with Lactobacillus paracasei,

PPARγ activity is upregulated, and intestinal integrity is restored

(Simeoli et al., 2015). Bifidobacteria produce short-chain fatty acids,

such as butyrate, which are ligands for PPARs. In turn, PPARγ sup-

ports maintenance of commensal bacteria such as Candida albicans

and Bacteroides fragilis (Hasan, Rahman, & Kobori, 2019). Conse-

quently, PPARγ activates β-defensin-1-mediated immunity, which

constitutes another intestinal anti-inflammatory mechanism (Peyrin-

Biroulet et al., 2010). Microbiota-activated PPARγ-signaling also pre-

vents dysbiotic expansion of pathogenic Escherichia and Salmonella by

reducing the bioavailability of respiratory electron acceptors to

Enterobacteriaceae in the lumen of the colon (Byndloss et al., 2017).

These studies suggest that the normal gut microbiota activates the

intestinal PPARγ in the maintenance of intestinal mucosal

homeostasis.

Further detailed studies are required to elucidate the precise

interactions of PPARs and the regulation of microbiota in the mainte-

nance of gut mucosal integrity (Hasan et al., 2019). Gut microbiota-

driven PPARγ-mediated activation may provide better treatment for

IBD. Indeed, microbiota-based therapeutic concepts are gradually

changing from a focus on altering dietary habits to a focus on modu-

lating microbiota (Borody & Khoruts, 2011) and ingesting probiotic

strains to produce helpful short-chain fatty acids (Koh, De Vadder,

Kovatcheva-Datchary, & Backhed, 2016). Antibiotics affect the bal-

ance of the gut microbiota but co-administration of plant products

can normalize the microbial imbalance by reduced intrusion of patho-

gens and increased probiotics such as Lactococcus, Lactobacillus, Bacil-

lus, and Pseudomonas (Wu & Tan, 2019). Resveratrol reduces levels of

Enterobacteria while improving the availability of Bifidobacteria and

Lactobacilli in the DSS-induced colitis rat model (Larrosa et al., 2009).

Another phytochemical, quercetin restores the gut host-microbe rela-

tionship, that in turn results in alleviating colitis through rebalancing

the anti-inflammatory effects and bactericidal capacity of macro-

phages (Ju et al., 2018). Curcumin is also efficacious in influencing the

composition of our gut microbiota and intestinal permeability with

suppression of inflammation and oxidative stress (Lopresti, 2018).

Complex beneficial phytochemical and gut interactions reflect the
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microbial conversion of plant products into potently bioactive mole-

cules that are better absorbed than the native compounds in many

disease conditions (Espin, Gonzalez-Sarrias, & Tomas-Barberan, 2017;

Guo et al., 2015; Kim, 2015; Wu & Tan, 2019). In this context, phyto-

chemicals and their positive influence on gut microbiota highlighted in

this review will pave way for different approaches in treating IBD and

perhaps other inflammatory conditions.

Understanding the role of PPARγ in the intestine will give better

insight about its function. PPARγ is an important member of the

nuclear receptor family and can be found in a variety of cells. PPARγ

is highly expressed in the colon, adipose tissue, and to a lesser degree

in macrophages. It participates in regulation of inflammation and

mucosal damage in UC lesions (Vetuschi, Pompili, Gaudio, Latella, &

Sferra, 2018) and also in the regulation of intestinal inflammation

induced by bacteria (Lefebvre et al., 1998). PPARγ is a member of a

family of ligand activated nuclear receptors, and for its activation,

PPARγ binds with another nuclear receptor, retinoid X receptor, and

this heterodimer then binds to specific DNA sequences called peroxi-

some proliferator response elements, located in the gene promoter

region (Kliewer, Umesono, Noonan, Heyman, & Evans, 1992). These

two nuclear factors play an important role in the regulation of inflam-

matory signaling by altering expression of kinases and blocking tran-

scriptional activation by NFκB and thus inhibit production of

inflammatory cytokines such as IL-6 & TNFα, chemokines, and adhe-

sion molecules as well as proliferation of inflammatory cells

(Desreumaux et al., 2001).

PPARγ has been extensively shown to decrease the expression of

TNFα. TNFα is an important cytokine in regulating immune cell function

and also acting as a macrophage and neutrophil chemoattractant.

Although this cytokine has an important role in the killing of bacteria,

excessive expression unfortunately promotes chronic inflammation

results in other poor health effects, such as rapid weight loss. In human

neutrophils, TNFα actually increases PPARγ mRNA and protein expres-

sion, likely as a compensatory mechanism or a feedback loop (Reddy

et al., 2008). THSG, berberine, CAPE, cavidine, CLA, and punicic acid

have all shown potential for interfering with TNFα activity and

production.

Macrophages can transform to pro-inflammatory (M1) or anti-

inflammatory (M2) phenotypes in response to invading pathogen. But

these deviations are not fully understood (Atri, Guerfali, & Laouini, 2018).

It is well documented that infective products such as LPS or TH1 cyto-

kines, such as TNFα and IL-6, can polarize macrophages into the

pro-inflammatory (M1) pathway, leading to further pro-inflammatory

cytokine release which is responsible for the inflammatory cascade that

disperses attacking microbes (Atri et al., 2018; Shapouri-Moghaddam

et al., 2018). In contrast, TH2 cytokines such as IL-4 and IL-13 channel

the macrophage release towards the M2 pathway, which releases anti-

inflammatory cytokines involved in tissue repair and remodeling

(Biswas &Mantovani, 2010; Mosser & Edwards, 2008).

Along with TNFα, several ILs are produced in response to inflam-

matory stimuli. IL-6 is a component of the acute inflammatory

response. PPAR agonists were reported to decrease local production

of IL-6 in the intestine (Celinski et al., 2011; Zingarelli et al., 2003) as

well as IL-8 production (Yin, Hou, Li, Wang, & Kang, 2014). IL-8 is a

key chemokine for neutrophil trafficking and broadly expressed by a

multitude of cell types, including macrophages, and induced by a vari-

ety of inflammatory stimuli (Croasdell et al., 2015). IL-1β is also pro-

duced to promote acute inflammation and is reduced by PPAR

agonists in a PPARγ-dependent manner (Heming et al., 2018). The

broad-ranging effects of PPARγ ligands on pro-inflammatory cyto-

kines may be due to PPARγ effects on the NFκB pathway, as PPARγ

has been shown to decrease NFκB expression. Most of the phyto-

chemicals listed in this review have been shown to suppress pro-

inflammatory cytokines and modulate intracellular transduction in

inflammatory pathways.

In addition to its effects on NFκB, PPARγ activation also inhibits

expression of other transcription factors, such as AP-1, activator of

transcription (STAT-1), and the expression of adhesion molecules, such

as intercellular adhesion molecule 1, as well as the matrix

metalloproteinase, MMP-9 (Vetuschi et al., 2018). During inflammation

in UC, PPARγ directly regulates expression of pro-inflammatory genes

in a ligand-dependent manner, by antagonizing the activities of other

transcription factors such as families of NFκB and AP-1 (Bertin et al.,

2013). The efficacy and mechanisms of recently reported phytochemi-

cals in experimental UC are reviewed and highlighted here. However, it

is important to note that phytochemical bioavailability is a major limit-

ing factor to achieve desired concentration in the target tissues. The

gut microbiota plays a major role in transforming ingested phytochemi-

cals, but other critical factors such as hydrophilicity and lipophilicity also

influence the bioavailability (Carrera-Quintanar et al., 2018). A few phy-

tochemicals highlighted in this review such as andrographolide (45 mg/

kg), geraniol (50 mg/kg), glycyrrhizin (300 mg/kg) and β-caryophyllene

(100 mg/kg), curcumin (300 mg/kg), and resveratrol (240 mg/kg) have

been reported to reach effective concentrations on target tissues when

used a different doses (Chen et al., 2014; He et al., 2018; Hou et al.,

2005; Pavan et al., 2018; Scalbert et al., 2005; Walle, 2011). Before

investigating a phytochemical for its efficacy, the bioavailability cannot

be accurately predicted. However, analysis by “Lipinski's rule of five”

provides some insight in as much as; it helps distinguish between drug-

like and nondrug-like molecules to evaluate drug-likeliness (Lipinski,

Lombardo, Dominy, & Feeney, 2001). Molecules with a topological

polar surface area of greater than 140 Å2 tend to be poor at permeating

cell membranes. Phytochemicals listed in this review such as

2,3,5,4-tetrahydroxy-stilbene-2-O-β-D-glucoside, bergenin, cyaniding-

3-glucoside, geniposide, glycyrrhizin, and verbascoside showed TPSA

score of greater than 140 Å2 thus, these phytochemicals are likely to

exhibit low bioavailability (Table 2). To overcome the bioavailability

issue, employing drug delivery system using nanoparticles, cyclodex-

trins, niosomes, liposomes, and implants may be helpful before under-

taking any in-depth mechanistic studies.

6 | CONCLUSIONS

IBDs are a major health problem worldwide, characterized by markedly

diminished quality of life because of pain, vomiting, diarrhea, fatigue, and
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increased the risk of colorectal cancer. The incidence of IBD is increasing.

Because of inadequate efficacy and serious side effects of current thera-

pies, many patients with IBD turn to alternative medicine sources to alle-

viate their symptoms with some degree of success. It is clear from recent

studies that phytochemicals that modulate PPARγ expression or activity

may be valuable in mitigating inflammatory diseases with less side effects

than currently used drugs. Several of these compounds warrant further

investigation. It should be noted that although bioavailability may be a

problem in treating systemic inflammatory diseases, being localized to

the intestinal mucosa, IBD represents a rather unique situation where

local concentrations of ingested compounds may be adequate to pro-

duce a therapeutic response even when general bioavailability is com-

promised. As such, animal models of IBD are particularly useful in

development of therapeutics that may have good topical properties.

These natural compounds might also represent the blueprints for molec-

ular modeling that may result in development of synthetic compounds

with increased anti-inflammatory efficacy combined with reduced

unwanted side-effects. Randomized controlled trials are urgently needed

in finding better phytochemical compounds or combinations of such

compounds to treat and prevent IBD.
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