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ABSTRACT 

 

Any engineering structure is subject to various internal and external factors which 

may cause wear or malfunction due to deterioration, an incorrect construction process, 

lack of quality control or environmental effects.  To be able to observe these changes 

in the material and to react in a proper way before serious damage is caused, the 

implementation of a damage identification system is crucial.  In the past, many 

methods have attempted to identify damage by solving an inverse problem, which 

inevitably needs an analytical model. However, often the construction of these 

analytical model requires considerable effort in building a mathematical framework 

with acceptable level of accuracy and reliability which makes these approaches less 

attractive. In order to circumvent this complexity, this work presents a 

computationally efficient approach in structural damage identification (SDI) using 

high dimensional model representation (HDMR). 

In general, most of the structural systems are simulated with the help of finite 

element (FE) models to predict static as well as dynamic behaviour of the systems 

with different boundary conditions.  Therefore the FE models have to be in tune with 

the experimental observation to facilitate any modifications in the systems so that the 

future responses can be accurately predicted, and subsequently utilized in design 

optimization. Thus, finite element model updating (FEMU) is effective in improving 

the correlation between predicted and observed ones by correcting the inaccurate 

modelling assumptions. 

The proposed methodology involves an integrated finite element modeling, 

development of response surface model using HDMR, establishment of objective 

function, and minimization of the function using genetic algorithm.  An attempt has 

been made to reduce the computational effort with increase in the accuracy of updated 

parameters.  

The proposed methodology is applied in model updating of a simulated beam 

and an existing reinforce cement concrete (RCC) box culvert structure. The results 

have demonstrated that the HDMR based FEMU is a good candidate featuring 

computational efficiency.  Further to validate the proposed methodology in SDI, three 



case-studies (an experimental beam, a frame structure and a bridge structure) have 

been considered.  The damage patterns, locations and severity obtained using the 

proposed methodology are compared with the experimental results available in 

literature, and are found to be in good agreement. Based on the study conducted, it 

can be concluded that the HDMR based FEMU in SDI is computationally efficient. 

 

Keywords: Finite element analysis; High dimensional model representation; Model 

update; Response surface method; Structural damage identification. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

In order to improve the safety and serviceability of any civil engineering structures, 

the present condition of the structures should be known. A periodical inspection 

facilitates to understand the condition of the structures which involves structural 

modifications, repairs and/or reconstructions. In economical point of view, 

maintenance and repair cost will be less than the reconstruction of major structural 

components which are distressed/damaged or the entire structure. The most 

commonly adopted method to detect damages is carried out by visual inspection using 

non-destructive methods. The process of implementing a damage detection strategy 

for aerospace, civil and mechanical engineering structures is referred to as structural 

health monitoring (SHM). Monitoring and early damage detection in a structure 

depends on the ability of an SHM technique implemented into the engineering 

system, where it aims to give a diagnosis of the state of the constituent materials of 

different parts, and of the full assembly of these parts constituting the structure as a 

whole at every moment during the life of a structure. Damage is defined as the 

changes in the physical properties introduced into a system that adversely affect 

current or future performance of the system, which occurs due to natural or man-made 

cause. SHM is considered as an efficient approach of non-destructive evaluation 

(NDE), which involves the utilization of smart materials, sophisticated sensors, data 

transmission mechanisms, and usage of advanced processing techniques having more 

computational power for monitoring a structure of interest. The implementation of 

SHM results in reduction of inspection costs, possibility to better understand the 

behaviour of structures under dynamic loads, seismic protection, observation in real 

or near real-time of the structural response and evolution of damage, so that it is 

possible to produce post-disaster scenarios and support rescue operations. Thus, SHM 
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is a multidisciplinary field, where a number of different skills and institutions can 

work together in order to increase the performance and reliability of structural 

systems. Figure 1.1 presents the organisation of a typical a SHM system in detail 

(Balageas et. al. 2006). 

 

Fig. 1.1 Principle and organization of a SHM system 

1.1 STRUCTURAL HEALTH MONITORING 

The motivation of SHM in various applications of engineering field involves 

maximum utilization of structure over a period of time with better serviceability and 

improved maintenance without any major damage of structural components, or failure 

of the entire structural systems, thus improving safety and reliability.  The various 

applications of SHM is shown in Fig.1.2, and a brief application of SHM is discussed 

below (https://www.hbm.com/en/5530/structural-health-monitoring). 

 Civil engineering structures (ie, bridges, buildings, tunnels, etc.) are 

designed to resist enormous amount of applied loads and forces due to 

natural disasters. With the application of SHM the structure is monitored 
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by material testing and load assessment, measurement of displacements, 

deflections and rotations for extending the performance of the structure. 

 Application of SHM in railway industry includes, fatigue analysis of 

structural members and railway components (ie, wheels and axels), remote 

monitoring of tracks, measurement of forces and mechanical stresses, and 

data determination for life cycle cost calculations. 

 In wind energy sector, SHM is useful in condition monitoring of the 

critical components (ie, rotor blades, drivetrains, inverters) which are 

subjected to extreme mechanical stresses. 

 In oil and gas industry, SHM has important role in pipe line monitoring 

using fibre optic strain sensors, and also in efficient measurement of drive 

power using torque transduces in gas compressor stations. 

 

Fig. 1.2 Applications of SHM 

The design of SHM system is influenced by different parts as follows (Hejll 

2007). 

 The structural phenomena to be studied (cracking, settlements, etc.) 
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 The evaluation method 

 The model used to evaluate the cause-effect (i.e., knowledge of 

geometrical, material, load data, etc.) 

The SHM and the damage identification are gaining larger importance in civil 

engineering. It is also defined as the use of in-situ, non-destructive sensing and 

analysis of structural characteristics in order to identify any damages. In addition, it 

defines the location, estimates the severity, and evaluates the consequences on the 

residual life of the structure. In the field of structural engineering and design, with 

respect to aging of steel and reinforced concrete (RC) structures, safety has become 

the most important criterion. Prolonging the life of the structure is the major role of 

SHM techniques by detecting the damages in the initial stages only.  

The structural dynamic behaviour can be represented by many terms such as 

natural frequencies, Eigen values, damping ratio, and frequency response functions. 

From the dynamic analysis we can understand and evaluate the responses, and these 

can be modified as per the requirements of engineering design, if required. The 

dynamic analysis of structures can be done through either experimental route or by 

using theoretical approach. In most of the cases, performing experimental 

investigation requires more time and effort, and sometimes tedious due to extensive 

procedure. Hence, theoretical approaches such as classical methods and finite element 

method (FEM) are preferred. Classical methods are having limited applications, 

which include the application in simple structural elements like plates, shells, beam 

elements, laminates, composites, etc. For modelling and predicting the dynamic 

behaviour of structures with complex shapes, boundary and loading conditions, FEM 

is preferred (Sehgal and Kumar 2015). 

1.2 MODEL UPDATE 

In most of the cases where simplifications and assumptions are made while defining 

the loads, modeling the joints and boundary conditions, optimizing the mesh pattern, 

and characterising the damping, there exists a conflict with the results obtained from 

FEM and the experimental observations. Inaccurate response prediction from finite 

element (FE) model leads to difficulties in understanding the dynamic behaviour of 
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the system. In order to overcome this drawback, model updating techniques have 

emerged to aid the FE model predictions with good accuracy, so that the vibrational 

behaviour of FE model matches with the actual dynamic response obtained 

experimentally. Modification of uncertain parameters to make certain analytical 

responses in tune with the experimental observations is the key role that can be 

considered as inverse method in finite element model updating (FEMU). 

In the model updating procedure, the experimental results are considered as 

targets, and the inputs of FE model are updated to obtain accurate parameters. Dealing 

with FE model modifications, performing multiple runs needs more computational 

effort and time. Hence to reduce the complexity, FE model is replaced with an 

approximate mathematical expression which relates predetermined FE inputs and 

outputs. Model updating methods may be classified as sensitivity or direct methods 

(Sehgal and Kumar 2015). Sensitivity type methods rely on a parametric model of the 

structure and the minimization of some penalty function based on the error between 

the measured data and the predictions from the model. The alternative is the direct 

updating methods that change complete mass and/or stiffness matrices, although the 

updated models obtained are often difficult to interpret for health monitoring 

applications. 

The concept of FEMU has been applied to build efficient formulations for the 

analysis of structural damages, for the investigation of material properties based on 

NDE characterization, and for the design based on dynamic responses. Applications 

of FEMU techniques can be found in various industries like, airport, automobile, 

power plants, bridges, multi-storey steel/RCC structures, mechanical tools and 

equipment etc. 

1.3 STRUCTURAL DAMAGE IDENTIFICATION 

The SHM applications have an important role in the field of composites and aircraft 

industries. A significant amount of work has been conducted using SHM techniques 

to determine the various defects, damages and critical size of damage, which 

influences the strength and life of composite structures. Among the various NDE 

methods, the important ones are as follows: visual inspection; optical methods; Eddy 
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current; ultrasonic inspection; laser ultrasonic; acoustic emission; vibration analysis; 

radiography; thermography and Lamb waves (Balageas et al. 2006). Each method has 

its own advantages and limitations. For instance, offshore platforms can be analysed 

using visual examination. The acoustic emission technique plays an important role in 

the inspection of secondary structures in nuclear reactor core, and in case of ultrasonic 

method of SHM, it is necessary to know the damage location a priori, and it renders 

the structure unavailable throughout the length of the test. Many of the NDE methods 

can be applied only at the certain period of time. Application of impedance-based 

health monitoring techniques has gained importance, as the conventional NDE 

methods might be very tedious, expensive, or unreliable. Hence, automated NDE 

techniques are developed to enable real time health monitoring of civil engineering 

structures. While in operations, the techniques are embedded with built-in diagnostic 

system, which can be placed at desired and inaccessible locations. This built-in 

diagnostic system utilizes impedance-based damage detection technique, which uses a 

smart piezoelectric ceramic material (PZT). The PZT patches have been bonded to the 

surface of the structural member of interest or at critical locations, which will detect 

any changes in the structural/ mechanical impedance due to external loads (Park et al. 

2000). 

Vibration based techniques are rapidly expanding in the field of structural 

damage identification (SDI). In vibration based SHM techniques, the use of natural 

frequencies is considered as the most important diagnostic parameter in assessment of 

structural behaviour, since natural frequencies are sensitive to the modification in the 

structural integrity. Hence, by conducting systematic periodical measurement of 

changes in frequencies, the structure can be monitored. This method is more reliable, 

and less expensive, and hence it can be carried out frequently (Salawu 1997). The 

vibration based technique is based on the basic idea that, for any structure subjected to 

dynamic loads, the frequencies, mode shapes and modal damping are functions of the 

mass, damping and stiffness which constitute the physical properties of the structure. 

Hence, changes in these physical properties result in changes in modal properties 

(Doebling et al. 1998).  
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In most of the cases, all the structural systems are subjected to various dynamic 

loads. Hence, study of those parameters, which affect the dynamic behaviour of 

structural systems, is an interesting area of research. In order to evaluate the accurate 

dynamic parameters of intact and damage state of structural component or structure as 

a whole, an efficient and cost effective tool is required to localize and quantify the 

damage scenarios. Further, based on the dynamic response parameters, the method is 

subdivided into modal analysis, time domain, frequency domain and impedance 

domain (Zou et al. 2000). Among the various NDE techniques, vibration based 

techniques have greater importance in identifying structural damages in the past 

decade, and also greater advancements in instrumentation have been achieved. 

Changes in the dynamic behaviour of any structural system due to localized damage is 

associated with the reduction in stiffness, increase in damping, decrease in natural 

frequencies, and variation of modes. Certain dynamic responses could not be 

measured in the field experiments due to various causes. Hence, using FEM, any 

complex structures can be modelled by considering all the degrees of freedom, so that 

the exact dynamic behaviour can be assessed and quantified (Dutta and Talukdar 

2004). Damage detection using inverse methods is carried out by various researchers. 

A brief overview of the use of inverse methods in damage detection and location, 

using measured vibration data is available in Friswell (2007). 

Development of statistical model plays an important role in enhancing the SHM 

process, and there is a lot of scope in this field since least attention is given to 

implementation of statistical models in current and previous applications of SHM. 

Generally, in all the engineering systems, a set of responses are dependent on certain 

selected parameters, and a change in these parameters results in change in behaviour 

of the systems. In majority of the cases, these parameters influence the type, location 

and severity of the damage. In order to assess the changes in the selected features to 

identify the damaged system, the statistical models can be effectively utilized. The 

algorithms used to develop statistical model need data from both the undamaged and 

the damaged structures. The statistical pattern recognition algorithms are generally 

classified as supervised and unsupervised learning. Group classification and 

regression analysis are supervised learning algorithms. Response surface (RS), 

metamodeling, linear discriminants, neural networks (NN) and genetic algorithms 
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(GA) fall under the supervised learning. Unsupervised learning methods include 

control chart analysis and novelty detection methods (Sohn et al. 2001). 

Metamodeling has been widely used for design optimisation, where surrogate models 

are built and applied in various engineering problems (Zhao et al.2011). Additionally, 

surrogate models are utilized in the analysis of stochastic structures, where the 

statistical properties of dynamic variables are obtained accurately. One of the methods 

adopted by Liu et al. (2015) deals with problems in load identification for stochastic 

structure by combining the Gegenbauer polynomial approximation and regularization 

method.  The response surface method (RSM) is widely adopted in many fields owing 

to its numerical efficiency. Nonetheless, the RSM is time consuming for large-scale 

applications, and sometimes indicates large errors in the calculation of the sensitivity 

of the parameters.  In order to overcome these problems, an improved method called 

high dimensional model representation (HDMR), which is basically a dimension-

reduction technique widely used in kinetic chemistry and structural reliability areas, is 

widely used in many areas of specializations. 

1.4 NEED FOR THE PRESENT WORK 

In general, most of the structural systems are simulated with the help of FE models to 

predict static as well as dynamic behaviour of the systems with different boundary 

conditions.  Therefore, the FE models have to be in tune with the experimental 

observation to facilitate any modifications in the systems so that the future responses 

can be accurately predicted, and subsequently utilized in design optimization. Thus, 

FEMU is effective in improving the correlation between predicted and observed ones 

by correcting the inaccurate modelling assumptions. 

Many damage detection methods have attempted to identify damage by solving 

an inverse problem, which inevitably needs an analytical model. However, often the 

construction of these analytical model requires considerable effort in building a 

mathematical framework with acceptable level of accuracy and reliability which 

makes these approaches less attractive. In order to circumvent this complexity, a 

computationally efficient approach in SDI using HDMR is presented in this thesis. 
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1.5 THESIS ORGANISATION 

The proposed methodology involves an integrated FE modeling, development of RS 

model using HDMR, establishment of objective function, and minimization of the 

function using GA in order to identify the damages by updating the FE model.  An 

attempt has been made to reduce the computational effort, with increase in the 

accuracy of updated parameter. The thesis is organised as follows.  

i) The first chapter describes a brief introduction to SHM, applications and 

importance of SHM in SDI.  Various damage identification methods have 

been mentioned including NDE and vibrations based methods. Importance of 

FEMU in SHM and damage identification has been discussed along with the 

need of the present study. 

ii) The second chapter presents a detailed review of relevant literature on FEMU, 

SDI and HDMR, followed by summary of literature and objectives of the 

proposed research work. 

iii) The third chapter demonstrates the application of HDMR concepts in model 

updating. Two numerical examples (simply supported beam and box culvert) 

have been presented to verify the efficient application of HDMR in FEMU. 

iv) The fourth chapter presents a detailed study on HDMR based damage 

identification. A simulated numerical example of simply supported beam with 

assumed damages is considered. To substantiate the merit of the method, three 

case studies are considered from the literature to validate the proposed 

methodology. 

v) The last chapter presents the conclusions based on the key findings from the 

present work, and also the scope for the future work.  



10 

 



11 

CHAPTER 2 

 

 

LITERATURE REVIEW 

 

 

A detailed review of relevant articles in the field of SDI is presented in this chapter. 

Also, the importance of FEMU in SDI with respect to various techniques is explored. 

The developments in RSM including HDMR is also reviewed and presented. The 

literature study has mainly focused on three major groups (i.e., FEMU, SDI and 

HMDR) by highlighting the research gaps. Figure 2.1 summarizes a brief list of 

relevant articles reviewed in these areas.  

2.1 FINITE ELEMENT MODEL UPDATING 

In the modern applications of engineering and science, most of the effort and time has 

been invested in developing numerical models based on finite element approach. 

These necessity models have greater importance in predicting the responses of the 

systems which will be utilized in model assessments, understanding the behaviour of 

structures under untested loading conditions or modified structural configurations, 

SHM and SDI. FEM is a numerical tool based on the numerous assumptions and 

simplifications (Rombach 2004). Hence, there exists a lack of correlation between 

predicted and experimental observations due to inaccuracies in numerical models. The 

three model errors which are considered as the main cause of inaccuracies in 

numerical models prediction are the model structure error, the model parameter error 

and the model order error (Mottershead and Friswell 1993). The model structure error 

is due to uncertainty in model parameters and input data, where accuracy of a model 

structure depends on availability of field data. A framework which integrates 

quantitative and qualitative uncertainty to estimate the impact of model structural 

uncertainty model predictions was developed by Refsgaard et al. (2006).   
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The nonlinear behaviour associated with the engineering systems may also 

lead to model structure error. The possibility of occurring the model parameter error is 

due to incorrect parameters and boundary conditions selected and applied to the given 

model. The model parameter error occurs, when there is a limited amount of data 

available to estimate the parameters. This error can be estimated using confidence 

intervals, bootstrap technique and Bayesian estimation. In most of the finite element 

modeling procedures, assumptions are made in order to simplify the model, and the 

model parameter errors are expected to occur in case of inaccurate assumptions. 

 

Fig. 2.1 Summary of articles 

HDMR 
Response Surface 

methods 

Sensitivity based 

FEMU 

Structural Damage 

Identification 

Damage signatures  

(Wang et al. 2001) 

 

Damage functions 

(Teughels and Roeck 

2004) 

 

Modal flexibility 

residuals (Jaishi and 

Ren 2006) 

 

Damage 

parameterization 

(Fang et al. 2008) 

 

Multi-objective 

optimization, PSO 

(Perera et al. 2010) 

HDMR in inverse 

reliability analysis 

(Balu and Rao 2013) 

 

Development of 

HDMR (Rabitz and 

Alis 1999) 

 

Hybrid HDMR 

(Tunga and Demiralp 

2006) 

HDMR in uncertainty 

analysis  

(Balu and Rao 2012) 

 

RS-HDMR 

(Mukhopadhyay et al. 

2016) 

RSM  

Fang and Perera (2009) 

RSM and GA  

(Deng and Cai 2010) 

Generalised RSMU 

(Shahidi and Pakzad 

2014) 

RSM and D-Optimal 

design  

(Perera 2011) 

 

DOE Methods 

(Mukhopadhyay et al. 

2015) 
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The model order errors which arise in the discretization of complex systems 

can result in a model of insufficient order. The model order may be considered as a 

part of the model structure.  The main objective of model updating is to improve the 

correlation of results between the predicted and the observed by correcting the 

inaccurate modelling assumptions, and not by making other alteration to the model. 

Usually the parameters like mass, stiffness and damping of the numerical model are 

modified so that they will be in tune with the experimental test results. With the good 

correlation between the predicted and experimental observations, the application of 

FE model can be utilized in future response prediction confidently. 

The FEMU emerged and became prominent in 1990s. Application concepts of 

FEMU techniques have gained a greater importance in the field of design and 

maintenance of mechanical and civil engineering structures in order to improve the 

performance of the products of engineering design. The procedure used to update the 

model is called the FEMU (Friswell and Mottershead 1995). The FEMU techniques 

can be broadly classified into direct and iterative techniques (Sehgal and Kumar 

2015). Several FEMU techniques have been developed by different researchers on 

direct techniques (Baruch and Bar-Itzhack 1978; Berman and Nagy 1983; Bucher and 

Braun 1993; Friswell et al. 1998; Modak et al. 2002; Fang et al. 2011; Li et al. 2016) 

and iterative techniques (Collins et al. 1974; Levin and Lieven 1998; Modak et al. 

2000; Marwala 2005; Jaishi and Ren 2007).  

Imregun et al. (1995b) developed a formulation for FEMU using frequency 

response function (FRF), and applied for simple beam structure. The study was 

carried out to find the effectiveness of updating technique by considering noise and 

incomplete experimental data. Stability and convergence were also studied in 

numerical simulations, where free–free beam model was considered with known 

modeling errors using measured and simulated FRF data. Model updating based on 

FRF data was further extended by Imregun et al. (1995a), and the method was applied 

for a plate–beam structure consisting of 500 degrees of freedom, and after several 

iterations, initial FRF is updated. Hence, a better correlation with measured FRF has 

been obtained which was within engineering accuracy. From FRF based model 

updating method, it was concluded that, updating of FE model can be done by 
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measured data if the size of FE model is relatively small and ratio of measurement co-

ordinates to the total number of degrees of freedom has to be high about 10%. Inverse 

Eigen sensitivity method (IESM) was applied by Lin et al. (1995) to update the 

analytical models of engineering structures. The IESM was improved by addressing 

the drawbacks of classical IESM methods, which are having slower convergence, and 

the calculated coefficients are based on modal data only. The improved IESM utilized 

both experimental and analytical modal data to obtain the Eigen sensitivity 

coefficients, which are found to be in tune with the true values. Also the method was 

further investigated for the case where measured coordinates are incomplete, and 

applied to FEMU of planar truss structure.  

Structural model updating based on experimental data was carried out by 

Sanayei et al. (1997). The results based on the experiments performed on small scale 

steel frame model were presented to support the displacement equation error function, 

displacement output error function, and strain output error function methods of 

structural parameter estimation using static non-destructive test data. Parameters of 

the structural elements were updated using experimental static measurements and the 

stiffness of structural components was considered as unknown parameter. To evaluate 

the unknown stiffness, the measurements obtained from static displacements and 

static strains are used, and errors are reduced by weight factors obtained from analysis 

of variance of measured data. The parameters were identified with good accuracy 

having low deviation with respect to true values.Atalla and Inman (1998) presented 

NN based model updating using frequency domain data. A similar study was 

conducted by Chang et al. (2000) where concept of adaptive NN for model updating 

was applied to suspension bridge and verified both numerically and experimentally.  

A correlation-based model updating algorithm was proposed to update large structural 

dynamics models using measured response functions by Grafe (1998). The 

formulations developed are independent of number of measurements used, and are 

resistant to measurement noise. Kenigsbuch and Halevi (1998) presented a 

generalised reference basis approach of updating an analytical model from 

experimental data. The optimization was carried out using general weighting matrices. 

Accurate parameters like mode shapes or natural frequencies are taken while updating 
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the other parameters and constrained optimization problem has been solved in order to 

obtain the updated parameters.  

Levin and Lieven (1998) utilized GA and simulated annealing (SA) as 

optimization algorithms for dynamic FEMU, and proposed a new variant for SA 

called blended-SA algorithm, which performs better than GA. The algorithms 

developed are based on probabilistic search approach, which are efficient in capturing 

the global minimum from the set of local minima, and comparison has been made 

between GA and SA algorithms. The choice of updating parameters has a greater 

impact on the accuracy of the results obtained during the optimisation process. 

Brownjohn and Xia (2000) investigated the application of sensitivity-based model 

updating technique to the dynamic assessment of the Safti Link Bridge, a curved 

cable-stayed bridge in Singapore. From the investigation, it was concluded that the 

dynamic properties obtained by the finite element analysis (FEA) for the complex 

structures such as the Safti Link Bridge, are not always consistent with the measured 

results due to the modelling errors and the uncertainties in the structure. Therefore, it 

is necessary to improve the FE model for successful dynamic assessment of the 

structure. Hence, the model updating is a feasible and effective technology for 

improvement of the FE model by modification of the parameters with uncertainties 

existing in the structure based on the prototype testing data. 

Modak et al. (2002) used IESM and the response function method (RFM) of 

analytical model updating in their study. A detailed comparison of these two 

approaches of model updating was made on the basis of computer simulated 

experimental data. The main objective was to study the convergence of the two 

methods and the accuracy in the prediction of required corrections in a FE model. The 

updated models were compared on the basis of some error indices constructed to 

quantify error in the predicted natural frequencies, mode shapes and response 

functions. From the study it was concluded that RFM seems to have worked better 

than the IESM for the case of incomplete experimental data. In order to understand 

the structural behaviour and identify the parameters, the FEMU technique was 

implemented to upgrade the existing highway bridge by conducting field dynamic 

testing.  
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Using FEMU techniques, a practical method was performed to assess the load 

carrying capacity by utilizing the experimental data in order to upgrade and strengthen 

the bridge. Also, the influence of girder stiffness on post-performance of guard rail in 

the bridge was identified (Brownjohn et al. 2003). Particle swam optimization (PSO) 

technique was utilized in FEMU by Marwala (2005). Bayesian probabilistic approach 

to structural model updating associated with uncertainties was proposed by utilizing 

the measured dynamic responses (Katafygiotis et al. 1998). A model updating 

approach for linear structural models called Bayesian model updating based on Gibbs 

sampler was proposed by Ching et al. (2006). This method not only updates the 

optimal estimate of the structural parameters, but also updates the associated 

uncertainties. Further the Gibbs sampler approach was applied to the health 

monitoring of existing structures with high-dimensional uncertain parameters which 

was effective in detecting location of the damage in an instrumented structure.  

Eigen frequency residual and modal strain energy residual were used as two 

objective functions of the multi-objective optimization in FEMU (Jaishi and Ren 

2007). Selection of updating parameters was done based on predetermined concepts 

of dynamic behaviour and sensitivity study. This FEMU technique based on Eigen 

frequency and modal strain energy detected the damage effectively when applied to a 

simulated simply supported beam with an assumed damage. Further the method was 

applied to update on-field precast continuous box girder-bridge under working 

conditions. In FE model applications, finding complex FRF and complex mode 

shapes will be difficult when damping matrices are not accounted in FEMU 

techniques. A method of FEMU by considering damping as a parameter was carried 

out by Arora et al. (2009), wherein the damping matrix was identified by the updated 

mass and stiffness matrices. The method was applied for a numerical beam with 

viscous damping. The method was more useful when dealing with complex updating 

parameter based FEMU, and a better matching of complex FRF with experimental 

data was found. 

Response surface (RS) models or meta-models are considered as most efficient 

models in approximating the multivariate input-output relationships of a physical 

system, which are utilized to update the FE models by replacing the time consuming 
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physical based computer models. Developing RS models for model updating mainly 

involves implementing various sampling techniques with the aid of design of 

experiments (DOE) parameter screening, where important parameters to be updated 

are selected by screening out the non-significant ones and constructing the quadratic 

polynomial RS. In FEMU, setting-up of an objective function, selecting updating 

parameters and using robust optimization algorithm are the three crucial steps. The 

FEMU in structural dynamics based on RSM was carried out by Ren and Chen 

(2010), and applicability of the RSM was illustrated by considering a full scale 

precast box-girder bridge, which was tested under operational vibration conditions. 

Results showed faster convergence with RSM based FEMU than conventional 

sensitivity based FEMU methods.  Bridge model updating using RSM and GA was 

proposed by Deng and Cai (2010), where parameters were updated using the GA by 

minimizing the objective function. Numerical simulations were done using the 

experimental design combinations of parameters and corresponding responses from 

the structure of interest. Second-order RS equations were developed, and in order to 

get accurate parameter values, third order RS equations were utilized to develop 

objective function.  The residuals between measured and predicted responses 

constituted an objective function, and updated parameters were obtained by 

optimizing the function.  

Generalized response surface model updating (GRSMU) method was developed 

by Shahidi and Pakzad (2014), where methodology was explained to formulate an 

iterative based model updating in time domain state. Also the method was 

implemented to update nonlinear FE model. A numerical case-study was carried out 

considering a steel frame with global nonlinearity. Well prediction of unknown 

parameters was observed using GRSMU in conjunction with optimization in 

simulation case studies. The case studies with large estimation error were also 

evaluated using GRSMU, where noise level was low.  Xiao et al. (2014) presented a 

new model-updating method for updating the multi-scale FE model of a long-span 

bridge. The objective functions for model updating included both modal frequencies 

and multi-scale influence lines (ILs). The results showed that the differences between 

the measured and the computed modal frequencies, and between the measured and 

computed multi-scale ILs were all reduced after using the model-updating method. 
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The comparison of the additional measured modal frequencies and ILs with the 

corresponding computed results further confirmed the quality of the model-updating 

method. 

An automated FEMU technique was developed using data obtained from a set 

of non-destructive tests conducted on a laboratory bridge model, where both stiffness 

and mass parameters were updated at the element level, simultaneously. This 

approach was utilized in software packages for automated and systematic FEMU 

(Sanayei et al. 2015). Updating a structural model is as an optimization problem, 

where parameters minimize the errors between the model and the actual structure. In 

optimization, chances of obtaining the multiple solutions are more, and hence finding 

the global minimum has its own importance. A combination of GA with sequential 

niche technique was proposed to increase the chance of finding the global minimum 

that best describes the system (Shabbir and Omenzetter 2016). Testing, modeling and 

updating of laboratory and bridge structure was carried out, where laboratory structure 

consists of four columns supporting the stainless plate, and bridge considered was a 

full scale cable stayed bridge. To obtain FRF, the spectral analysis was carried out. 

Further the sequential niche technique was applied for updating the numerical space 

frame structure. Model updating using sequential niche technique in combination with 

GA yielded with satisfactory results.  

Pacini et al. (2017) utilized a computationally efficient modal nonlinear 

identification technique in FEMU, and experimentally demonstrated the ability to 

capture typical structural nonlinearity. Gautier et al. (2017) proposed a FE based 

subspace fitting approach to identify the structural parameters based on the variance 

analysis for model updating, where the data-related covariance was propagated to the 

updated model parameters through first-order sensitivity analysis, and vibration 

signals were used to demonstrate the accuracy and practicability of the method. In 

recent past, Bayesian techniques have been widely used in FEMU (Boulkaibet et al. 

2017). In order to update an FE model, the Bayesian formulation requires the 

evaluation of the posterior distribution function. For large systems, this function is 

difficult to solve analytically. In such cases, the use of sampling techniques often 

provides a good approximation of this posterior distribution function. The hybrid 
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Monte Carlo method is a classic sampling method used to approximate high-

dimensional complex problems. 

2.2 STRUCTURAL DAMAGE IDENTIFICATION  

The FEMU applications have been extensively utilized in identifying the damage in 

civil engineering structures and health monitoring of existing bridges. In the past 

decade, model updating techniques have been extended not only to detect, but also to 

localize and quantify the structural damage. In the FE model, the damage is 

represented by a reduction of the stiffness properties of the elements, and by tuning 

the FE model to the measured modal parameters, the damages can be identified. The 

most common type of detecting the damages is by visual inspections. However, this 

method requires skilled labours, and in order to access various key structural load 

bearing components, dismantling of the ancillary components is must which leads to 

the consumption of additional time, cost and effort. Further, in case of damages 

detected in later stages, additional repairs and maintenance operations will become 

important concerns to rectify the damages.  

Wang et al. (2001) developed an algorithm based on static test data and changes 

in natural frequencies. The method was improved by proper definition of measured 

and predicted damage signatures. Teughels et al. (2002) proposed a sensitivity-based 

FEMU method using experimental modal data to assess the damage including 

localization and quantification, where damage pattern was represented by a reduction 

factor of the element bending stiffness. Damage functions were used in order to 

reduce the number of unknown variables. Teughels and Roeck (2004) extended the 

use of damage functions in order to approximate the stiffness distribution, and 

optimization was done using the trust region strategy in the implementation of the 

Gauss–Newton method. The damage in the highway bridge was identified by 

updating the Young’s modulus and the shear modulus whose distribution over the FE 

model were approximated by piecewise linear functions. Damage detection based on 

modal flexibility residuals (i.e., one of the sensitivity based FEMU techniques) was 

carried out by Jaishi and Ren (2006). For minimization of developed objective 

function and damage identification, the optimization algorithm was utilized which 
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also considered the effect of noise. The method was found susceptible to change in 

the physical properties of the structure. Hence, the method identified the damage 

location and severity with acceptable accuracy, and the crack pattern in the damaged 

structure were similar to experimental observations. The complexity of finding the 

damage in the structure increased when all the elements of FE model became 

updating parameters in the SDI process. Ding et al. (2017) carried out the SDI based 

on the modified artificial bee colony (ABC) algorithm using modal data, and 

compared the method with other evolutionary algorithms. 

Fang et al. (2008) investigated a RC frame, which was tested in the laboratory 

for damage identification using damage parameterization. Further, RSM was adopted 

by Fang and Perera (2009) to identify the damage. The quantification of structural 

damage mainly depends on the quality of the damaged model and its ability to 

describe the structural property changes due to damage in a physical meaningful way 

(Link and Weiland 2009). Two different model updating techniques were summarized 

in conjunction with damage identification using multi-model updating: first was based 

on classical modal residuals by updating undamaged and damaged models 

simultaneously, and second by updating the models using residuals composed of 

measured and analytical time histories. The PSO method was utilized in damage 

identification problems based on multi-objective FE updating procedures by 

considering modelling errors and its performance was compared with GA (Perera et 

al. 2010). 

Damage identification by RS based model updating using D-optimal design was 

carried out by Fang and Perera (2011). The advantage of D-optimal design is that, 

updating of FE model can be done effectively with minimum number of numerical 

sample when the availability of samples is limited. Before updating, the non-

significant parameters are screened out using D-optimal design, and FE models are 

replaced with first order RS models. These RS models are used to predict the dynamic 

behaviour of undamaged and damaged structures.  The method was applied to a 

numerical beam, tested RC frame and full scale bridge by considering Young’s 

modulus, section inertia as input parameter and modal frequency was the only output 

response. An improved PSO algorithm eas developed for FEMU using experimentally 
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obtained natural frequencies by Mohamed et al. (2013), where the inverse diagnostic 

optimization procedure was adopted to detect and localise the crack in beams using 

frequency measurements. Additionally, the damages were detected by reducing the 

number of elements in FE model, where adaptive meshing was used to detect smaller 

damage cracks in beams. A comparative assessment of the damage identification 

capability of different DOE methods like 2k factorial design, central composite design 

(CCD), Box-Behnken design, D-optimal design and Taguchi’s orthogonal array 

design was carried out by Mukhopadhyay et al. (2015).  

A framework for SHM and SDI of civil structures was presented by Ebrahimian 

et al. (2016), which involves integration of advanced mechanics-based non-linear FE 

model updating using batch Bayesian estimation approach technique to estimate time-

invariant model parameters used in the FE model. Non-linear FEMU was carried out 

in order to minimize the discrepancies between predicted and measured response time 

histories by considering excitations as input and dynamic responses as output. The 

updated FE model was further utilized to identify, localize and quantify the damage 

and to predict the remaining useful life of the structure. The application of non-linear 

FEMU method was validated by considering realistic structural FE models of a bridge 

pier and a moment resisting steel frame. 

Single and multiple damage assessment was done for spring mass damper 

system, a beam and a composite bridge deck. From the comparative study, it was 

concluded that D-optimal design and CCD are efficient DOE methods for SDI. 

Sensitivity based parameter screening was done using RSM by 2k factorial and D-

optimal design. The concepts of random sampling high dimensional model 

representation (RS-HDMR) were utilized to develop damage identification algorithm 

under the influence of noise, and also for the purpose of parameter screening, a global 

sensitivity analysis based on RS-HDMR was adopted by Mukhopadhyay et al. (2016). 

A damage identification methodology based on multivariate adaptive regression 

splines in conjunction with a multi-objective goal-attainment optimization algorithm 

was developed for the web core fibre reinforced polymer (FRP) composite bridges, 

and was validated for several single and multiple damage cases (Mukhopadhyay 

2016). Real-time vibration-based structural damage detection using one-dimensional 
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convolutional neural networks was studied by Abdeljaber et al. (2017). The method 

adopted performs vibration-based damage detection and localization of the damage in 

real-time. The advantage of this approach is the ability to extract optimal damage-

sensitive features automatically from the raw acceleration signals. A new sensitivity-

based damage detection method was proposed to identify and estimate the location 

and severity of structural damage using incomplete noisy modal data. The accuracy 

and performance of the sensitivity method were numerically examined by a planner 

truss by incorporating incomplete noisy modal parameters and FE modeling errors 

(Entezami et al. 2017). Damage detection using power spectral density of structural 

response using FEMU approach was investigated both numerically and 

experimentally which adopts sensitivity based damage detection methodology. The 

method can be used to detect damages in lower frequency ranges with acceptable 

accuracy (Pedram et al. 2017). Roy (2017) adopted the vibration-based damage 

localization technique using mode shape slope and curvature, and formulated the 

expressions for the derivatives of mode shapes. Damage functions were used in order 

to reduce the number of unknown variables. 

2.3 HIGH DIMENSIONAL MODEL REPRESENTATION 

In engineering design, spending excessive amount of time on physical experiments or 

expensive simulations makes the design costly and lengthy. The severity increases 

when the design problem has a large number of inputs, or of high dimension. The 

HDMR is a powerful method in approximating high dimensional, expensive, and 

black-box problems (Rabitz and Alis 1999). It is a set of quantitative model 

assessment and analysis tools for improving the efficiency of deducing high 

dimensional input–output system behaviour stimulated by applications in chemistry. 

The HDMR is an approximation tool, which expresses the input and output 

relationships of complex and computationally burdensome models to form a function 

having hierarchical correlation expansions. A family of nonparametric multivariate 

approximation functions were developed in order to understand the hierarchy of 

correlations amongst the input variables (Rabitz et al. 1999). A well-ordered mapping 

strategy was developed among the inputs and outputs. Alis and Rabitz (2001) 

assumed that the data was randomly scattered over the entire domain and formulated 
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HDMR expressions. Their prediction was that the dimensionality of the function was 

not dependent on the number of samples needed for representation to a given 

tolerance, which was the efficient means to perform high dimensional interpolation. It 

was recognised and concluded from the various studies that, only lower order 

interaction effect between the input variables will have an effective impact upon the 

output responses of a precise and explicit physical system.  

The HDMR can be applied for various well-defined physical systems by making 

use of this property to develop a specific, ordered mapping between inputs and 

outputs. The HDMR approximation techniques are very useful in many domains if 

they can represent the output to good accuracy at sufficiently low orders. Two specific 

HDMR expansions are developed, i.e., analysis of variance HDMR (ANOVA-

HDMR) for statistical applications and second the cut-HDMR expansion. ANOVA-

HDMR has its application in statistics which utilize the computation of 

multidimensional integrals, where cut-HDMR does not necessitate the computation of 

any integrals to represent the output of a physical system. A rapid convergence in cut-

HDMR approximations is found comparable to ANOVA-HDMR where 

approximation function can be obtained in more efficient manner. In a monomial 

based preconditioned HDMR method (Li et al. 2001), higher order terms of cut-

HDMR expansions are expressed as lower order terms with monomial multipliers. 

Here additional input-output samples are used, where there is an inadequacy in the 

approximations given by the first and second order cut-HDMR correlated functions, 

which avoid the utilisation of higher order terms. The concept of HDMR is used to 

build simplified and efficient meta-model by replacing the original model which is 

complex and nonlinear in nature. The inputs may be in the form variables such as 

initial boundary conditions, control variables as per field data, functions and its 

parameters and response of the system or solutions would be the output variables (Li 

et al. 2002). This mathematical assumption can dramatically reduce the sampling 

effort in representing the multivariate function.  

Sobol (2003) investigated mathematical models described by multivariable 

functions, theorems and examples on model functions with separated variables, and 

global sensitivity indices for approximations. In the study, the testing of the two 
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important assumptions in HDMR was done, i.e., a model can be approximated by 

using arbitrary reference points and fault in approximations caused due incorrect 

choice of reference points. Theorems and examples related to ANOVA HDMR, finite 

difference HDMR, model functions with separated variables, and highest order 

approximations for functions with separated variables were discussed by considering 

many numerical examples. 

Kaya et al. (2004) developed a computer program that computes individual 

components of HDMR resolution of a given multivariate function, and also 

calculateed the global sensitivity indices. Numerical experiments were considered, 

where HDMR functions and sensitivity indices were computed, and examined the 

effect of variables of different sets on the function outputs. In further experiments, the 

closeness of HDMR approximation with the real functions was estimated. The kernel 

function was taken as the main part of the developed algorithm where it receives a set 

of inputs and returns corresponding output value as integrals. The advantage of the 

algorithm developed was that, it can generate HDMR functions of zeroth order to nth 

order. However, the program can be used for only model where explicit forms are 

known and models with simple symbolic integration. 

For partitioning the given multivariate data into low-variate data, HDMR and 

generalized high dimensional model representation (GHDMR) methods are utilized. 

The above two methods worked well when multivariate data was additive in nature, 

and if multivariate data has multiplicative in nature then factorized high dimensional 

model representation (FHDMR) can be used. But when the nature of multivariate data 

and the sought multivariate function will have hybrid nature i.e., neither additive nor 

multiplicative, hybrid high dimensional model representation (HHDMR) was 

obtained to get the best value for the hybridity parameter (Tunga and Demiralp 2006). 

Chowdhury et al. (2008) utilized the technique of HDMR approximation to obtain an 

equivalent continuous function by replacing univariate or a multivariate piece-wise 

continuous function. They concluded that the HDMR is a powerful approximation 

tool to obtain equivalent continuous function from univariate and multivariate piece-

wise continuous function even when the original function is characterized with 

sudden peak and fall in the domain. A dramatic reduction in approximation error can 
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be found in first order HDMR approximation with increase in number of samples or 

with utilization of higher order (second) HDMR. And also from this study, it was 

suggested to use Moving least square (MLS) interpolation scheme rather than 

Lagrange interpolation, where approximation error can be drastically reduced from 

MLS. A data partitioning method (Tunga 2011), which chooses the arbitrarily 

distributed points from the given grid, constructs an approximate analytical structure 

by interpolation at those chosen points of the grids by utilizing HDMR expansions to 

partition the given multivariate data. The above method was used to increase the 

approximation quality particularly for hybrid and purely multiplicative nature 

structures. 

In recent years, the application of HDMR has been extended to uncertainty 

analysis.  When the uncertainties are represented in terms of fuzzy membership 

functions, analysis of response of the structures is done using HDMR based RS 

models (Balu and Rao 2012). Implicit and explicit fuzzy analysis procedures are 

developed using integrated FE modelling and HDMR based RS generation. It was 

concluded that HDMR approach is mathematically elegant and computationally less 

expensive for the approximation of fuzzy FE response quantity. In inverse reliability 

analysis (Balu and Rao 2013), the HDMR is used to get the explicit expressions 

without requiring the derivatives of the response functions with respect to uncertain 

variables, and fast fourier transform (FFT) techniques are used to obtain the unknown 

design parameters.  It was concluded that optimum number of sample points in 

approximating the HDMR component functions was the most important criterion. 

Moreover, to capture the nonlinearity outside the domain of sample points, very small 

number of sample points should be avoided during approximation and thereby 

affecting the estimated solution. Efficient uncertainty analysis was performed for 

estimating the possibility distribution of structural reliability in presence of mixed 

uncertain variables (Balu and Rao 2014).  

Stochastic free vibration analysis of angle-ply composite plates using RS-

HDMR approach has been carried out (Dey et al. 2015) by developing a meta-model 

to express stochastic natural frequencies of the system, and performance of RS-

HDMR has been compared with full-scale Monte Carlo simulation results. An 



26 

efficient hybrid method based on RS-HDMR and GA coupled with a local 

unconstrained multivariable minimization function was investigated by 

Mukhopadhyay et al. (2015) for optimization of FRP composite web core bridge deck 

panels. The application of HDMR in stochastic multiscale modelling conjunction with 

multi-element least square approach was carried out by Jiang and Li (2015). A local 

least square HDMR was constructed in subdomains which are constructed by 

adoptive decomposition of randomly chosen main domains.  These local HDMRs are 

represented by a finite number of orthogonal basis functions defined in low-

dimensional random spaces, where the coefficients are determined using least square 

methods. Hence a global approximation HDMR was obtained by summation of all the 

local HDMR approximations. 

An efficient uncertainty quantification scheme for frequency responses of 

laminated composite plates was investigated by bottom up surrogate based approach 

using general-high dimensional model representation (GHDMR) for achieving 

computational efficiency in quantifying uncertainty (Dey et al. 2016). The uncertainty 

based quantification using GHDMR is applied on laminated composite structure 

having complex configuration. Effect of noise on quantification of uncertainty of 

natural frequency was estimated using GHDMR. Convergence study on frequency 

amplitude was done for combined variation of ply orientation and the method was 

validated using FEA.  A critical comparative assessment has been done by Dey et al. 

(2017) for different meta-models including polynomial regression, Kriging, D-optimal 

design, for stochastic natural frequency analysis of composite laminates. It was found 

that regression based analysis using D-optimal design was proved to be a better 

technique when there is individual as well as combined variation of parameters. 

However, the artificial neural network (ANN) was found to be computationally more 

expensive compared to other meta models. Further in order to construct an efficient 

HDMR expansion, concept of support vector regression has been adopted by Li et al. 

(2017) which enables efficient construction of high dimensional models with 

satisfactory prediction accuracy from a modest number of samples. 
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2.4 SUMMARY OF LITERATURE REVIEW 

The SHM is an important process in SDI of civil engineering structures. Various 

techniques like vibration based and impedance based techniques have their 

applications in real-time monitoring of engineering structures. Many researchers in 

the literature have focused on the improvements with respect to the computational 

efficiency in the damage identification apart from the studies on the utilization of 

conventional NDE techniques. In the modern analysis of systems in engineering and 

science, much effort has been invested in developing the complex FE models. The 

main purpose of such models is to predict the responses of the system to disturbances 

and the design advantage gained by the modifications in the configurations. But there 

will be a lack of correlation between predictions and observations due to the 

inaccuracies in numerical models.  

Model updating is concerned with the correction of FE models and it is rapidly 

developing technology. A number of techniques, as discussed in the literature review, 

has been developed for model updating including sensitivity based techniques. 

Further in the past decade, RSM based FEMU technique has become an important 

tool in place of conventional methods, where response equations are developed with 

the aid of CCD, and the optimization has been carried out using various optimization 

techniques (i.e., GA, NN, and PSO). Further, in order to reduce the computational 

effort of RSM, D-optimal design became popular. In order to increase the 

computational efficiency, and to reduce the complexity of modeling the real life 

structures, the FEMU techniques are adopted. Also the FEMU techniques are further 

utilised to identify the structural damages for various structures including bridges. 

The choice of the input and output features of the system to be updated is the 

key aspect of FEMU process. Initially, before proceeding to the FEMU process, the 

parameters which affect the output response of the systems are found by parameter 

screening procedure. From the literature, it was found that, in majority of the case 

studies the variation of parameters (like the Young’s modulus, the second moment of 

area, and the density) affects the dynamic behaviour of systems, and dynamic 

response measured is the fundamental natural frequency of the system. Most of the 

methods are validated by considering the experimental responses as the target results 
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and thereby updating the FE model by incorporating the predicted values of the 

parameters obtained using the FEMU techniques. The updated parameters are 

obtained by optimizing the objective function developed, which is nothing but the 

difference between the response equations developed by the approximation technique 

and the experimental results of interest. The FEMU has also been carried out by 

considering the non-linearity associated with the FE model. 

In order to address the severity in the design problems having large inputs or 

high dimension, an approximation technique called HDMR has been developed to 

study the input-output relationships of a system under consideration. The concepts of 

HDMR have been implemented in uncertainty analysis, inverse reliability analysis, 

and stochastic free vibration analysis and applied to frame and bridge structures. 

Hence, the concepts of HDMR have been applied in model updating in the 

proposed methodology. The FEMU is carried out by considering the simulation 

studies, and the study is further extended to the SDI. The methodology is validated 

using case studies from the literature. 

2.5 OBJECTIVES OF RESEARCH WORK 

Based on the literature review, the objectives of the present research work are as 

follows. 

1. To utilize the concepts of HDMR for the best experimental design of the 

parameters to be updated, so as to obtain explicit function interrelating the 

responses and the parameters. 

2. To optimize the objective function using genetic algorithm for obtaining the 

updated parameters. 

3. To apply the HDMR based model updating technique in structural damage 

identification. 
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CHAPTER 3 

 

 

MODEL UPDATING USING HDMR 

 

 

In any physical system, the output/response depends on the input variables. Therefore, 

it is necessary to learn the input-output mapping for understanding the behaviour of 

any physical system. The outputs of most physical systems are mathematically well 

behaved and the scarcity of the data is usually compensated by additional assumptions 

on the function. The HDMR is a particular family of representations where each term 

in the representation reflects the individual or cooperative contributions of the inputs 

upon the output. The main assumption for most well defined physical systems is that 

the output can be approximated by the sum of these hierarchical functions whose 

dimensionality is much smaller than the dimensionality of the output. The present 

investigation is focused on applying concepts of HDMR is in FEMU by considering 

the simulation study.   

3.1 HDMR 

The HDMR is an assumed form of mathematical expression in which the higher order 

correlated effects of the inputs are expected to have negligible effect on the output 

(Rabitz et al. 1999). This mathematical assumption can dramatically reduce the 

sampling effort in representing the multivariate function. HDMR has a variety of 

applications where an efficient representation of multivariate functions arises with 

scarce data (Alis and Rabitz 2001). 

Hence, HDMR is regarded as a general set of quantitative model assessment 

and analysis tools for capturing the high-dimensional relationships between sets of 

input and output model variables. It is a very efficient formulation of the system 

response, if higher order variable correlations are weak, allowing the physical model 
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to be captured by the first few lower order terms. In HDMR background there stands 

the simple observation: only low-order correlations amongst the input variables have 

a significant impact upon the outputs. Such a presumption permits expressing single 

multi-dimensional mapping as a sum of many low dimensional mappings. Its main 

advantages are finite order of expansion and rapid convergence for “well-defined” 

systems. The concepts behind HDMR aim to capitalize on the latter observations that 

realistic physical systems generally do not call for an exponentially growing number 

of samples to prescribe their input-output relationships. The HDMR technique can be 

applied to complex models of nonlinear nature, where an efficient and accurate 

simplified model to reflect the original model can be developed.  

Depending on the method adopted to determine the component of functions of 

HDMR there are two particular HDMR expansions: ANOVA-HDMR and cut-

HDMR. ANOVA-HDMR is useful for measuring the contributions of the variance of 

individual component functions to the overall variance of the output. On the other 

hand, cut-HDMR expansion is an exact representation of the output in the hyperplane 

passing through a reference point in the variable space. Applications of the HDMR 

tools can dramatically reduce the computational effort needed in representing the 

input-output relationships of a physical system. HDMR applications include: 

 Construction of a computational model directly from laboratory/field data 

 Creating an efficient fully equivalent operational model to replace an 

existing time consuming mathematical model 

 Identification of key model variables and their interrelationships 

 Assessment of global uncertainties, quantitative risks etc. 

 Solving inverse problems 

 In the fields of chemical kinetics, radiative transport, materials discovery, 

molecular physics, statistical analysis, and financial and econometrics  

3.2 HDMR EXPANSIONS 

The HDMR expansions introduced here are especially useful for the purpose of 

representing the outputs of a physical system when the number of input variables are 
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large. The notion of “high” dimensionality is system-dependent, with some situations 

being considered high for practical reasons at 3 5N , while others will only reach 

that level of complexity for 10N or more. For a high dimensional system, an output 

 f x is commonly a function of many input variables  1 2, , ,  Nx x xx with 210n  

or larger. The HDMR approximations should not be viewed as first- or second-order 

Taylor series expansions nor do they limit the nonlinearity of ( )f x . Furthermore, the 

approximations contain contributions from all input variables. Thus, the infinite 

number of terms in the Taylor series is partitioned into finite different groups, and 

each group corresponds to one HDMR component function. The HDMR expresses the 

output as a hierarchical correlated function expansion in terms of the input variables 

as: 

 
       
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i i j N i j k N

N N

f f f x f x x f x x x

f x x x

x
 (3.1) 

where, 0f denotes the mean response to  f x which is a constant. The function 

 i if x  is a first-order term expressing the effect of variable ix  acting alone, although 

generally nonlinearly, upon the output  f x . The function  ( , )ij i jf x x  is a second-

order term that describes the cooperative effects of the variables ix  and jx upon the 

output  f x . The higher order terms give the cooperative effects of increasing 

numbers of input variables acting together to influence the output. The last term 

 12   1 2, , , N Nf x x x  contains any residual dependence of all the input variables locked 

together in a cooperative way to influence the output. To determine the component 

functions in Eq. (3.1), cut-HDMR procedure is used in approximating a univariate or 

a multivariate piece-wise continuous function with an equivalent continuous function.  

Using the cut-HDMR method, first a reference point  1 2,  Nc c cc  is defined in the 

variable space. The expansion functions are determined by evaluating the input-output 

responses of the system relative to the defined reference point c  along associated 

lines, planes, sub-volumes, etc. (i.e. cuts) in the input variable space. This process 

reduces to the following relationship for the component functions in Eq. (3.1): 
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  0  f f c  (3.2) 

     0 ,   
j i

i i if x f x fc  (3.3) 

        1 2 1 2

1 2

,

      0 , , ,   
j j i i

ij i j i i i i j jff x x x x f x f x fc  (3.4) 

By evaluating the response quantities at all sample points of each variable including 

the reference point the following expressions are obtained. 

    1 1 1, ,..., ,, ,..., j i j

i i i i Nf x f c c x c cc  (3.5) 

    1 2 1 2 1 2

1 2 1 1 1 2 2 2

,

1 1 1 1 1, , ... ,, , , ..., , , , ...,   
j j i i j j

i i i i i i i i Nf x x f c c x c c x c cc  (3.6) 

Using the Lagrange interpolation or the moving least squares interpolation yields Eq. 

(3.7) and Eq. (3.8) for first-order and second-order expressions respectively as 

follows. 
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1
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(3.8) 

By summing up the interpolated values of HDMR expansion terms from zeroth order 

to the highest order retained in keeping with the desired accuracy, the first- and 

second order approximations of the functions are as follows. 
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The shape/interpolation function   j ix  and  
1 2 1 2

,j j i ix x using the Lagrange 

interpolation is defined as: 
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(3.12) 

HDMR expressions are obtained by evaluating the component functions in Eq. (3.1), 

which can be utilized to replace the original, complex, and expensive methods 

efficiently without compromising with the accuracy of the model. Expression for first-

order approximation with uniformly distributed sample points (n) given by 

       1 / 2,  3 / 2,..., ,..., 3 / 2,  1 / 2i i i i i i i i iµ n µ n µ µ n µ n           , where 

3,5,7n  are deployed along the variable axis ix with mean ( i ) and standard 

deviation ( i ) through the reference point. The sampling scheme for first-order 

HDMR for a function having one variable  x and two variables  1 2 and x x  is shown 

in Fig. 3.1 (a) and (b), respectively. Similarly, Fig. 3.2 represents sampling scheme for 

second-order HDMR for a function with two variables. 

 

(a)                                         (b) 

Fig. 3.1. Sampling scheme: First-order HDMR: (a) function with one variable ( )x and (b) 

function with two variables  1 2 and x x  

xc
1xc

2x
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Fig. 3.2. Sampling scheme: Second-order HDMR  

3.3 MODEL UPDAITNG USING HDMR 

This section explains the proposed approach of utilizing the concepts of HDMR in 

model updating adopted for damage identification. FEMU has been carried out using 

first order HDMR approximation functions. The HDMR based SDI procedure 

consists of six steps as presented in Fig. 3.3.  

 

Fig. 3.3 Flow chart of HDMR based model updating and damage identification 
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In feature selection, the material properties, such as the Young’s modulus, the density, 

and the geometric properties, are usually adopted as the input parameters in model 

updating. And, for the output features, time and frequency domain features are two 

feasible options. In parameter screening, non-significant inputs that have least 

influence on output responses are screened out using regression analysis. Further, 

HDMR response equations are developed to map the input-output relationships. 

Objective functions are built using HDMR response equations, which are optimized 

using GA to obtain the updated parameters. Further the updated FE model is utilized 

for structural damage identification. 

3.4 NUMERICAL EXAMPLES 

Two numerical examples are considered in order to study the efficiency of HDMR in 

predicting the updating parameters of interest. Without any physical tests, the 

damages are assumed at specific locations and response quantities are evaluated for 

further investigations. 

3.4.1 Example 1: Simply Supported Beam 

To illustrate the applicability of HDMR technique in FEMU, a simply supported 

beam (Deng and Cai 2010) is considered for the present simulation study. This 

example demonstrates how RS generation can be done using proposed HDMR, in 

conjunction with the GA in order to obtain accurate parameters. The cross section and 

material property of the beam is assumed to be uniform throughout its length. Three 

parameters, the Young’s modulus ( )E , the density ( ) and the Poisson’s ratio ( )  of 

the material, are chosen as the input parameters. Figure 3.4 shows the beam 

considered for the present study, which is divided in to 15 elements.  

 

Fig. 3.4 Simply supported concrete beam 

1 2 3 4 5 6 10 12 8 11 13 15 14 7 9 

6 m 

200 N 200 N 
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The span and cross section of the beam are taken as 6 m and 200 mm × 200 mm 

respectively. For the simulation study Young’s modulus  E , density     and 

Poisson’s ratio    are taken as 20 GPa, 2,400 kg/m3 and 0.2 respectively 

For the present case, it is assumed that, elements at location 4 and 8 are 

damaged. The initial values of E at two locations (4 and 8) are taken as 20 GPa and ρ 

as 2,400 kg/m3 respectively. Assuming a unit change for each of the three parameters 

to be 50%, 50%, and 20% of the baseline values respectively, the first three natural 

frequencies from the modal analysis and the deflection at the bottom of the section 

near the mid span of the beam from the static test are obtained as responses. 

3.4.1.1 Response surface generation 

For development of approximation equation, number of variable (N) for the static test 

is taken as 3 and number of sample points (n) as 3. The function evaluations required 

for developing first order HDMR approximation equation is  1 1n N  . Hence seven 

function evaluations are performed using FEA package. Considering first-order 

HDMR approximation technique: 

        1 2 3 0 0

1

  , , 1


    
N

i i

i

f f x x x f f x N fx  (3.13) 

          0 1 1 2 2 3 3 0  1     f f f x f x f x N fx  (3.14) 

  0 1 2 3    , ,f f c c c  (3.15) 

              1 2 3 1 2 3 1 1 2 2 3 3 0  , , , , 1      f f x x x f c c c f x f x f x N fx  (3.16) 

where 
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Therefore, from Eq. (3.17) 
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Let 1 2 3, ,c c c  be the reference points where output response of the system is 

evaluated. The values of 1 2 3, ,c c c  are taken as 20 GPa, 20 GPa and 2200 kg/m3 

respectively. 1 2  3 , ,x x x  are the three parameters considered i.e., E at two locations  (4 

and 8) , and ρ of beam respectively, where 1 2 3
1 1 1, ,x x x are three sample points taken as 

10 GPa, 20 GPa, 30 GPa respectively. Similarly  1 2 3
2 2 2 10,20,30, ,x x x  GPa and 

1 2 3
3 3 3 (1920,2200,2880), ,x x x  kg/m3. Using the above values, the required responses 

are found out using FEA for the component functions in Eq. (3.18) which constitute 

the approximation function.  

Hence, 

   1 2 3

1, , 10,20,2200 7.11 Hzf x c c f   

   1 2 3

2 , , 10,20,2200 7.32 Hz f x c c f  

   1 2 3

3, , 1920,20,2200 7.39 Hz f x c c f
 

   1 2 3, , 20,20,2200 7.32 Hz f c c c f  

Using Lagrange Interpolation function, 

     2

1 1 1 1 1 1  20 30 0.005  30 2.5 0.05       x x x x x  

     2

2 1 1 1 1 1  10 30 0.01  3 0.4 0.01        x x x x x 
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     2

3 1 1 1 1 1  10 20 0.005  0.15 0.15 0.005       x x x x x  

From Eq. (3.16) and Eq. (3.19), 
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  2

1 1 1 1,   192.448 15.955 0.31875  f x c x x  

Similarly, all the component functions are obtained using Eq. (3.20) and (3.21) as: 

   2

2 2 2 2,    185.562 15.394 0.3082  f x c x x  

  2

3 3 3 3
,   3.119 0.23 0.009   f x c x x  

Substituting the component functions in Eq. (3.19), the expression for first response 

i.e., first natural frequency  1Y  is obtained as follows. 

 

2

1 2 3 1

2 2

2 3

1    360.252 15.955 15.394 0.223 0.3192

0.308 0.0088

    

 

Y x x x x

x x
 (3.22) 

Similarly using the above procedure, approximation functions for second natural 

frequency  2Y third natural frequency  3Y and the deflection at mid span  4Y are 

obtained as follows. 

 

2

2 1 2 3 1

2 2

2 3

    1457.93 61.451 65.3054 1.03054 1.2303

1.30613 0.05452

Y x x x x

x x

    

 
 (3.23) 

 

2

3 1 2 3 1

2 2

2 3

    3215.443 141.238 138.429 3.6532 2.8267

2.77145 0.20964

Y x x x x

x x

    

 
 (3.24) 

 

2

4 1 2 3 1

2 2

2 3

    380.4051 15.386 17.003 4.209346 0.3075

0.3394 0.8162

Y x x x x

x x

    

 
 (3.25) 

3.4.1.2 Optimization using GA 

Since no physical tests are conducted, an assumption has been made that the damage 

in numerical beam at locations 4 and 8 is due to reduction in E from 20 GPa to 15 and 



39 

12 GPa respectively with an assumed value of   as 2,200 kg/m3. The reduction of E 

and   at location 4 and 8 are taken as true values. An objective function is then built 

up which is nothing but the difference between the responses predicted from HDMR 

approximation function and the true values. 

The responses considered for the present simulation case are natural frequencies 

from the first three modes from modal analysis and deflection at the mid-span of the 

beam due to application of the static loads, which are found to be 6.954, 28.459, 

69.916Hz, and 7.249 mm, respectively. Further, the effect number of HDMR response 

quantities required to build an objective function for accurately predicting the values 

of the updating parameters is studied. Four objective functions are built with each 

function having one to four response quantities, and are shown below. 

  
21

1  6.954objF Y   (3.26) 

    
2 22

1 4  6.954 7.249   objF Y Y
 

(3.27) 

 
     

2 2 23

1 2 4   6.954 28.459 7.249     objF Y Y Y
 

(3.28) 

 
       

2 2 2 24

1 2 3 4   6.954 28.459 69.916 7.249       objF Y Y Y Y  (3.29) 

The updated parameters obtained by minimising the all the four objective 

function with different number of response equations are presented in Table 3.1.  

Results from Table 3.1 indicate that the number of responses needed in objective 

function should be at least no less than the number of parameters to be identified. 

Hence, for 4

objF  case, updated parameters are close to true values. Further the study is 

extended to utilize HDMR response equations in FEMU. 

In order to know the effect of number of sample points on the accuracy of the 

updated parameters, same simulated beam as shown in Fig. (3.4) is considered and in 

this case, the responses considered are first four natural frequencies of the beam. Also 

the efficiency of HDMR is compared with the RSM in terms of difference values with 

respect to true parameters, and number of function evaluations. 

 



40 

Table 3.1 Identified values of parameters using GA 

Objective 

Function 

Identified values  

Parameters 
True 

Value 

HDMR 

1st Order 

1

objF  x1 (GPa) 15 18.98 

 
x2 (GPa) 12 15.46 

  x3 (103 kg/m3) 2.2 2.57 

2

objF  x1 (GPa) 15 15.52 

 
x2 (GPa) 12 19.29 

  x3 (103 kg/m3) 2.2 2.3 

3

objF  x1 (GPa) 15 14.31 

 
x2 (GPa) 12 21.5 

  x3 (103 kg/m3) 2.2 2.48 

4

objF  x1 (GPa) 15 15.94 

 
x2 (GPa) 12 11.55 

  x3 (103 kg/m3) 2.2 2.65 

Before proceeding to RS generation, a three factor CCD with 18 trials (i.e., 

eight corner points, six star points and four replicates at centre points) are utilized to 

perform the simulation study (Deng and Cai 2010). Parameter screening has been 

carried out using regression analysis to find the percentage contribution of each 

parameter to the total variance of the output. From the initial values, the parameter 

bounds (±1) are fixed to ±30%. Frequencies from the first four modes is evaluated 

using numerical simulations, and screening results are presented in Fig. 3.5. From the 

screening results, the values of E and    are considered for further investigation, and 

  is screened out as it has zero contribution towards the total variance.  
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Fig. 3.5 Parameter screening results 

Based on the assumption that the beam is damaged at element locations 4 and 

8, the true values are as follows. 4 15 GPaE  , 8 12 GPaE   and 3

4,8 2200 kg/m  . 

Further in order to obtain the true values of the parameters  4 8 4,8,   and E E  , the 

concept of model updating using HDMR is applied to the numerical beam. Let 

1 2 3, ,c c c  be the reference points where output response of the system is evaluated. The 

values of 1 2 3, ,c c c  are taken as 20 GPa, 20 GPa and 2200 kg/m3 respectively. The 

beam is updated by considering different number of sample points (ie, 3,5& 7n ). 

The HDMR approximation equations for first four natural frequencies are developed. 

Then an objective function which is the difference between the responses obtained 

(natural frequencies: 6.951 Hz, 10.771 Hz, 28.415 Hz and 35.667 Hz) based on the 

true parameter values  4 15 GPaE  , 8 12 GPaE   and 3

4,8 2200 kg/m   and the 

HDMR response equations.  Table 3.2 shows the responses obtained from function 

evaluations. 

 
       

2 2 2 2

1 2 3 46.951 10.771 28.415 35.667      F Y Y Y Y
obj

 (3.30) 

where 1 2 3 4, ,  and Y Y Y Y  denote the HDMR response equations, for first four natural 

frequencies. 

The objective function developed in Eq. (3.30) is optimized using GA by defining the 

lower and upper bounds of three parameters ( 4E , 8E  and 4,8 ) as [10 GPa, 10 GPa, 

1920 kg/m3] and [30 GPa, 30 GPa, 2880 kg/m3] respectively. Numerical beam is 
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investigated by updating the model for 3,5& 7n  in order to minimize the errors of 

all the parameters. The sample points for 3,5& 7n considered are within the 

parameter bounds. Results obtained for all the sample points are compared with RSM 

(Deng and Cai 2010). 

Table 3.2 Responses for development of HDMR expression (Beam example) 

 ,1 1 1, ...,..., , , 

j

i i i Nf c c x c c  
1  

(Hz)

f
 

2  

(Hz)

f
 

3  

(Hz)

f
 

4  

(Hz)

f
 

 10,20,2400f  7.04 10.84 27.24 34.49 

 13.33,20,2400f  7.15 11.07 28.00 35.40 

 16.66,20,2400f  7.21 11.22 28.51 36.02 

 20,20,2400f  7.25 11.32 28.87 36.47 

 23.33,20,2400f  7.28 11.40 29.14 36.81 

 26.66,20,2400f  7.31 11.47 29.35 37.08 

 30,20,2400f  7.33 11.50 29.52 37.29 

 20,10,2400f  6.82 10.61 28.82 36.06 

 20,13.33,2400f  7.02 10.95 28.85 36.26 

 20,16.66,2400f  7.16 11.17 28.86 36.38 

 20,23.33,2400f  7.32 11.44 28.88 36.54 

 20,26.66,2400f  7.38 11.52 28.89 36.59 

 20,30,2400f  7.42 11.59 28.90 36.63 

 20,20,1920f  7.40 11.52 29.26 37.03 

 20,20,2080f  7.35 11.45 29.13 36.84 

 20,20,2240f  7.30 11.33 29.00 36.65 

 20,20,2560f  7.21 11.26 28.75 36.29 

 20,20,2720f  7.16 11.20 28.62 36.11 

 20,20,2880f
 

7.12 11.14 28.50 35.93 

Table 3.3 presents the variation of values obtained using HDMR, and the 

second- and third-order RSM (Deng and Cai 2010). The model updating using 

HDMR with 5n   results in less absolute error of 0.5%, 1.71% and 0.07% for 4E , 
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8E  and 4,8  respectively, which is more accurate than the results reported using 

conventional RSM (Deng and Cai 2010). Also, the computational effort is calculated 

in terms of number function evaluations required for construction of the functions. 

Table 3.3 Variation of values (Error percentage) for Beam 

Variables True 

Values 

% Error 

RSM  

(Deng and Cai 2010) 

HDMR 

Second order Third order n=3 n=5 n=7 

4E  (GPa) 15 5.99 2.22 3.59 0.50 0.45 

8E  (GPa) 12 13.31 0.55 4.7 1.71 1.70 

4,8 (kg/m3) 2200 0.55 0.91 0.19 0.07 0.06 

Table 3.4 presents the number of function evaluations required for RSM and HDMR 

methods.  The conventional RSM requires 18 function evaluations whereas the 

HDMR requires only 7 function evaluations, and provides more accurate prediction 

than the RSM.  In the proposed work, number of sample points in an axis considered 

for evaluation is increased to investigate the parametric study.  

Table 3.4 Computational effort (Beam Example) 

  

 RSM  

(Deng and Cai 2010) 

HDMR 

Second Order Third Order 3n  n=5 n=7 

# Fn. 

Evaluations 
18 18 7 13 19 

It is observed that the increase in number of sample points results in more accurate 

prediction of results. However, a little more computational effort is required which is 

still less than the RSM. Therefore, the proposed approach is able to obtain the 

accurate parameters with less computational effort. 

3.4.2 Example 2: Reinforced Concrete Box Culvert 

The concept of HDMR based model updating has been applied for an existing RC box 

culvert located at Surathkal, India. Over the RC box culvert a four lane highway 

traffic flow is present which is along the length of the culvert. The RC box culvert has 

an expansion joint, hence two box culvert structures are present, each providing a path 
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for traffic traveling in one direction. Hence only one box culvert is considered for the 

present investigation. The RC box culvert structure under study has a total width of 54 

m, where expansion joint is located a 27 m and length of each span measures 6 m, and 

both the thickness of deck slab and RC wall are 0.8 m.  Based on the configuration of 

the box culvert, a numerical model was created using a commercial FE software. A 

fixed boundary condition has been assigned between RC slab and vertical wall 

system. Similar to the simply supported beam study, the box culvert is assumed to 

have damages or stiffness changes due to moving load of the vehicle at two locations, 

(location A and location B) one at the middle of first span and second at the corner of 

the second span as shown in Fig. 3.6. Three parameters are considered as variables 

i.e., Young’s modulus of concrete at location A  AE , Young’s modulus of concrete 

at location B  BE  and the density of concrete at two locations  A,B . 

 

Fig. 3.6 Finite element model of RC box culvert 

For the simulation study, the values of E ,  , and  are taken as 30 GPa, 0.2, 

and 2,500 kg/m3 respectively. Truck loadings are considered as per IRC: 3-1983 and 

type of vehicle considered is Type 3-S2. Let 1 2  3 , ,c c c be the reference point (30 GPa, 

30 GPa, 2500 kg/m3) where output responses of the system is evaluated. It is assumed 

that damages have occurred at location A and location B, and the true values for the E 

at two locations are taken as 25 GPa and 22 GPa. The true value for ρ is taken as 

2,300 kg/m3.  
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The expressions for first, second and third natural frequencies are developed using 

first-order HDMR as follows. 

 

5 6 10 6 30 6 5 7 5

1 1 2 3 1 2

20 5 4 6 4 16 4 3

3 1 2 3 1

4 3 12 3 2 2 9 2

2 3 1 2 3

1

  3.97 10 6.22 10 2.35 10 0.069 1.133 10

5.832 10 0.468 8.388 10 7.29 10 17.8

3.22 10 3.62 10 356.63 0.0068 8.97 10

3701.3 0.0

   

  

  

        

       

       

 

Y x x x x x

x x x x x

x x x x x

x 5

2 3749 1.896 10 15563  x x

(3.31) 

 

5 6 9 6 18 6 5 7 5

2 1 2 3 1 2

14 5 4 5 4 11 4 3

3 1 2 3 1

4 3 7 3 2 2 4 2

2 3 1 2 3

1 2

  6.76 10 1.51 10 1.03 10 0.011 2.76 10

1.55 10 0.827 2.04 10 9.68 10 30.27

7.88 10 3.20 10 606.19 0.0165 5.94 10

6291.4 0.178

   

  

  

        

       

       

 

Y x x x x x

x x x x x

x x x x x

x x 30.585 26694 x

 (3.32) 

 

5 6 19 6 5 9 5

3 1 3 1 2

15 5 4 6 4 11 4

3 1 2 3

3 5 3 7 3 2 2

1 2 3 1 2

4 2

3 1 2

8.47 10 3.88 10 0.0147 8.00 10

5.899 10 1.036 1.266 10 3.711 10

37.91 7.83 10 1.23 10 759.163 0.0023

2.31 10 7878.9 0.0331 0.2302

  

  

 









 

     

     

     

  

x

Y x x x x

x x x x

x x x x

x x x x3 33224

 (3.33) 

The HDMR functions are developed for deflection at the center of each span (Y4 and 

Y5). Deflections are taken on the upper portion of the concrete slab where moving 

loads are considered. The response functions for deflection at center of the first span 

are developed using first-order HDMR as follows. 

 

8 6 33 6 5 5 29 5

4 1 3 1 3

4 25 4 3 21 3 2

1 3 1 3 1

18 2 15

3 1 3

8.390 10 5.333 10 1.456 10 8.094 10

0.001 5.101 10 0.0375 1.708 10 0.7518

3.207 10 7.803 3.199 10 32.834

   

 

 

       

      

     

Y x x x x

x x x x x

x x x

 (3.34) 

 

8 6 11 6 33 6 5 5

5 1 2 3 1

9 5 29 5 4 7 4

2 3 1 2

25 4 3 3 21 3

3 1 2 3

2 4 2 18

1 2

9.165 10 1.777 10 5.421 10 1.590 10

3.466 10 8.228 10 0.001 2.711 10

55.186 10 0.041 1.083 10 1.737 10

0.821 2.312 10 3.260 10

   

  

 

 

       

      

      

    

Y x x x x

x x x x

x x x x

x x 2

3 1 2

15

3

8.524 0.002

3.252 10 35.834

 

  

x x x

x

 (3.35) 

The HDMR approximation equations for five responses are developed i.e., first three 

natural frequencies and deflection at the center of two spans of box culvert. Then an 

objective function is developed which is the difference between the responses 

obtained (21.319 Hz, 36.251 Hz, 45.328 Hz, 0.159 mm, 0.157 mm) based on the true 
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parameter values  A A,B,  and BE E ,and the HDMR response equations. The objective 

function is as shown in Eq. (3.36): 

 

     

   

2 2 2

1 2 3

2 2

4 5

23.319 36.251 45.328

0.159 0.157




    

  

Y Y Y
F

obj
Y Y

 (3.36) 

where 1 2 3,  and Y Y Y denote the first three natural frequencies of the bridge, 4Y denotes 

deflection at center of first span, and 5Y  denotes the deflection at center of second 

span obtained using HDMR. 

The objective function developed in Eq. (3.36) is optimized using the GA by 

defining the lower and upper bounds as [30 GPa, 30 GPa, 2500 kg/m3] and [45 GPa, 

45 GPa, 3000 kg/m3] respectively. The predicted values and the percentage variation 

of true values of AE , BE  and A,B for 3,5& 7n are presented in Table 3.5. 

The values of absolute errors diminish when sample points (n) are increased 

from 3 to 5 n n and converges at sample point 7n .  It is observed that for 7n , 

the error with respect to A,B  is only 0.26% while for AE and BE , it is around 2.63% 

and 2.21% respectively. Since there is no significant improvement in reduction of 

percentage error between 5 and 7 n n , the optimum number of sample points is 

considered as 5.  The function evaluations required for the HDMR functions are 7, 13 

and 19 for 3,5& 7n respectively.  It is observed that the increase in the number of 

sample points results in more accurate prediction of results, but with a little more 

computational effort.  

Table 3.5 Variation of values (Error percentage) for Box-culvert 

Variables 
True 

Values 

% Error 

3n  5n  7n  

AE  (GPa) 25 35.88 2.64 2.63 

BE  (GPa) 22 6.16 2.32 2.21 

A,B (kg/m3) 2300 13.04 0.28 0.26 
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In order to make the parameters in Eq. (3.36) dimensionless, the normalization 

procedure is tested. Since the identified parameters are insensitive to the 

normalization procedure, the results are not presented. Therefore, the methodology 

proposed is suitable for accurate prediction of parameters for model update, and the 

method is computationally efficient. Hence the HDMR based FEMU is further 

employed in SDI.   

3.5 SUMMARY  

The concept of HDMR is applied to update the FE model in order to obtain the 

accurate parameters. Two numerical simulations (a simulated simply supported beam 

and an existing RC box culvert) have been carried out. In the numerical simulations, 

damages are assumed at particular locations due to reduction of stiffness. From the 

simulation study, the applicability of HDMR in FEMU has been studied by 

conducting a parametric study with respect to number of sample points. And the 

results of the proposed method are compared with conventional RSM. 
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CHAPTER 4 

 

 

STRUCTURAL DAMAGE IDENTIFICATION 

USING HDMR 

 

 

In order to validate the proposed methodology, HDMR based FEMU is applied to find 

out the damage pattern, location and severity. Unlike numerical beam examples, the 

damages are not known in advance, while updating FE model of the real structures. 

Hence, it is interesting to solve the case-study example with respect to identification 

of the damage location, which defines the objective of the problem as shown in Fig. 

3.2.  Three case studies have been considered in this work to validate the proposed 

methodology. The damage pattern, location and severity are correlated with the 

experimental investigations from the literature.  

4.1 SIMULATION STUDY: SIMPLY SUPPORTED BEAM 

In this simulation study, selected elements of the simply supported beam are assumed 

to have damage at three locations, and rest of the beam was considered with no 

damage elements (Jaishi and Ren 2006). The density     and Young’s modulus  E  

of the concrete are 2500 kg/m3 and 3.2e+10 N/m2, respectively. Size of the beam 

considered is 250 mm × 200 mm as shown in Fig. 4.1. Modal analysis is performed 

by using FEA package for both damaged and undamaged beam. Damages are 

assumed by reducing the E of the three elements (3, 8 & 10) by 20%, 50% and 30% 

respectively. 

 

Fig. 4.1 A simulated simply supported beam 
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To develop the response equations using HDMR, the elastic modulus is 

considered as variable, and elastic moduli of the 15 elements of the beam are 

considered as updating parameters  1 15 to x x . The first ten fundamental natural 

frequencies are considered as output responses. The objective of the proposed 

methodology is to find out the damage location and severity by updating the 

undamaged beam by considering the first order approximation equation with number 

of variables, 15N  and sample points 3,5& 7n . Using the above values, 

responses are found out for functions using FEA for all the three parameters to 

constitute the component functions of HDMR. 

Let 1c  to 15c  be the reference point, where output response of the system is 

evaluated and taken as 32 GPa. The lower and upper bounds considered for E are 16 

GPa and 48 GPa respectively and sample point for 3,5,&7n  are taken within the 

parameter bounds. The HDMR expressions are developed for first ten natural 

frequencies and objective function can be written as follows: 

 

       

     

     

2 2 2 2

1 2 3 4

2 2 2

5 6 7

2 2 2

8 9 10

 

8.25 34.85 74.68 135.43

141.06 204.69 298.58

386.98 417.32 494.62

obj

Y Y Y Y

F Y Y Y

Y Y Y

      

      

     

 (4.1) 

where, 1 10   to    Y Y  denote the first ten natural frequencies of the beam obtained using 

HDMR.  Objective function developed in Eq. (4.1) is optimized using the GA. Table 

4.1 shows the initial frequencies of undamaged and damaged beam where frequencies 

of damaged beam are taken as true values.  

The beam is updated first by considering three sample points  3n . It is 

found that, after FEMU, the frequency values are close to damage state model with 

the maximum difference of 5.92% in mode 1 (Fig. 4.2). 
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Table 4.1 Initial frequencies of FE model: Simulated beam 

Mode 
Undamaged 

beam (Hz) 

Damaged 

beam (Hz) 

Difference in 

frequencies (%) 

1 9.00 8.26 8.22 

2 35.86 34.84 2.84 

3 80.13 74.69 6.78 

4 141.03 135.43 3.97 

5 149.00 141.06 5.32 

6 217.39 204.69 5.84 

7 307.52 298.58 2.90 

8 409.13 386.98 5.41 

9 445.38 417.32 6.30 

10 519.16 494.62 4.72 

Figure 4.2 indicates the variation of percentage frequencies with respect to 

damaged beam frequencies in ten modes after model updating for 3n and the results 

show the reduction in percentage difference after updating. However, the values are 

slightly high, and it requires further refinement of parameter values. Also from Fig. 

4.3, the prediction of damage location and severity is found to be less accurate, since 

percentage damage at location 3, 8 and 10 are found to be 5.3%, 26.9% and 4.1% 

respectively, which less than the assumed damage percentage.  Hence the HDMR 

based model updating is carried out for 5n  . 
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Fig. 4.2 Difference in frequencies after model updating  3n 



52 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

10

20

30

40

50

D
am

ag
e 

%

Element Location
 

Fig. 4.3 Identified damage locations and stiffness distribution  3n  

When number of sample points is increased from 3 to 5, significant 

improvement in the predicted frequencies are found, since reduction of difference in 

frequencies is witnessed from 5.92% for 3n  (Fig. 4.2) to 0.48% for 5n (Fig. 4.4) 

in mode 1, and also in other modes. Also improvement in prediction of damage 

location is observed. The variation of difference in frequencies after updating, using 

5n  is presented in Fig. 4.4, which shows a good agreement with the true responses 

in the damaged beam. 
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Fig. 4.4 Difference in frequencies after model updating  5n 
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Results obtained by updating the value of E of the 15 beam elements using 

five sample points are presented in Table 4.2. 

Table 4.2 Updated frequencies of simulated beam  5n  

Mode 
Before 

updating (Hz) 

Damaged 

beam (Hz) 

After 

updating 

(Hz) 

Difference in 

frequencies 

(%) 

1 9.00 8.26 8.22 0.48 

2 35.86 34.84 34.21 1.81 

3 80.13 74.69 75.58 1.19 

4 141.03 135.43 135.47 0.02 

5 149.00 141.06 141.32 0.18 

6 217.39 204.69 204.22 0.22 

7 307.52 298.58 298.41 0.05 

8 409.13 386.98 387.19 0.05 

9 445.38 417.32 418.76 0.34 

10 519.16 494.62 495.62 0.20 

Figure 4.5 indicates that the damage has been located at element 3, 8 and 10 

with the damage percentage of 31% 45% and 34% respectively. Values of damages 

have appeared on the undamaged elements i.e., 5, 11 and 12, damage is found to be 

13% and for element location 6 and 15 it is found to be 6% and 9% respectively.
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Fig. 4.5 Identified damage locations and stiffness distribution  5n  
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Even though the damage percentage in three elements are higher than the 

assumed ones, the results are acceptable due to a significant reduction in the 

differences observed in frequencies. Hence the updated FE model is able to predict 

the responses with good accuracy with the difference in frequencies less than 0.5%, 

except for mode 2 and 3 which is found to be 1.81% and 1.19% respectively as shown 

in Table 4.2. From the parametric study, it is found that, increase in number of sample 

points yields better responses with lesser percentage difference in frequencies in 

comparison with damaged beam frequencies. Hence after updating, the average 

difference between the experimental and numerical frequencies decreases from 4.42% 

(Fig. 4.2) to 0.45% (Table 4.2) with the increase in sample points from 3n   to 5 

respectively. Similar study is extended to update the model for finding the damage 

locations and severity using 7n . As the obtained results for 7n  do not exhibit 

any remarkable changes in the percentage of difference in frequencies compared with 

5n  , considering the efficiency with respect to computational effort as crucial, the 

higher number of sample points is not reported in this work.  Hence optimum number 

of sample points for better prediction of true response is taken as 5n . 

4.2 CASE STUDY 1: EXPERIMENTAL BEAM 

The cross section of the RC beam tested in laboratory (Jaishi and Ren 2006) is shown 

in Fig. 4.6. The RC beam consists of three 16 mm diameter bars provided on tension 

and compression sides with 1.4% of reinforcement ratio. Two legged stirrups of 8 mm 

diameter with 200 mm centre to centre is provided as shear reinforcement along the 

length of the beam. The beam is with a mass of 750 kg and  ρ value of 2500 kg/m3. 

Two point symmetric loading has been applied which are at distance of 2 m.  

 

Fig. 4.6 Beam cross section and with two point loading (Jaishi and Ren 2006) 
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Damages at regular intervals are introduced into the beam by a six-step static 

load arrangement (Fig. 4.7). Dynamic measurements are recorded after each loading 

intervals to get the dynamic responses of the beam at different damage conditions. 

The magnitude of the loads applied during each load step is given in Table 4.3. 

Table 4.3 Six step static load magnitude  

Load Step No. 1 2 3 4 5 6 

Load (kN) 4.0 6.0 12.0 18.0 24.0 26.0 

In the test setup, first for simply supported beam a static load is applied at two 

locations and after successive damage the static load is removed. Then beam was 

rested on flexible springs in order to eliminate the effect of inadequate support 

conditions on dynamic characteristics (modal frequencies). A non measured dynamic 

input in the form of impulses was created and supplied to the beam resting on flexible 

springs. With the said test procedure, initially the modal frequencies are recorded for 

simply supported beam without having damage, which was called as initial state of 

the beam. Before FE model updating, the responses from the initial state of the beam 

is considered to build the reference state FE model. Similar tests are carried out for all 

the static load steps and dynamic measurements are done. The dynamic responses 

from 5th load step are considered for updating the reference state model in order to 

obtain the final damage state FE model. For updating process, the test beam is 

analytically modelled with 30 beam elements using commercial FEA software. 

  

Fig. 4.7 Crack pattern at each load steps (Jaishi and Ren 2006) 
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The modulus of elasticity (E) of 38 GPa and second moment of area (I) of 

66×10─4m4 as material and inertial properties are considered in the original FE model 

respectively. The E of all the 30 elements of numerical model is used as updating 

parameters (N=30). Acceptable bounds are considered for all the parameters and 

HDMR response equations are used to develop the objective function. The function is 

minimized using GA to obtain the updated values of E. In this case study 31 0x x  are 

the 30 parameters considered which are the elastic modulus of individual elements of 

FE model. The values of the reference points  31 0c c  is taken as 38 GPa for 

evaluating the output response of the system. Sample points for 3n   are 22, 38, 54 

GPa, and similarly the sample points for 5n   are 22, 30, 38, 46, 54 GPa. The 

spacing between the two sample points in an axis is maintained as constant. 
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Fig. 4.8 Stiffness distribution: Reference state model (After updating: 3n ) 

The model updating procedure is first implemented for 3n . The HDMR 

response equations are developed for first four modal frequencies. Once HDMR 

response equations are developed, the objective function is built up and the same is 

optimized using GA. From Fig. 4.8, it is observed that the reference state model has 

several damages at different location at the mid span of the beam between element 10, 
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14 and 21 and damage percentage is found to be high with the values of 16.4%, 

21.7% and 9% respectively.  

Moreover, the damage at support is detected about 16% in element 29 and 

which needs further refinement. Hence study is extended to 5.n  The SDI based on 

HDMR is carried out for 5n  in order to obtain a better reference state model so 

that, damage pattern is found out which can be correlate with the experimental 

observations. Considering first-order HDMR expression from Eq. (3.9), for 

30N and 5n : 
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In the above expression the functions  1 1 1..., ..., ..., ..., 

j

i i i Nf c c x c c  are evaluated from 

FEA tool and responses of first four bending modes in vertical direction are 

considered to develop HDMR expansion. The evaluations of first five component 

functions are presented as below. 
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In first order-approximations,  1 1n N   function evaluations are required, 

hence 131 function evaluations are done to obtain the HDMR expression for four 

bending modes. Based on the experimental results, the objective function for the first 

four bending frequencies is written as follows: 

        
2 2 2 2

1 2 3 4  18.005 50.204 98.21 161.89 76       objF Y Y Y Y (4.5) 

Initial model is updated to obtain reference state FE model. The stiffness 

distribution of reference state FE model is shown in Fig. 4.9. A decrease in stiffness 

of 9.7% is observed at element location 24. Also, increase in stiffness has been 

observed in some elements of the FE model. For example, the stiffness at element 13 

is found to be 14.9%, which is higher compared to all other elements.   
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Fig. 4.9 Stiffness distribution: Reference state model (After updating: 5n ) 

Table 4.4 shows the recognized modal parameters for the experimental beam, 

the frequencies of the initial FE model and its percentage differences. From the results 

it is observed that, initial FE model is in tune with the reference state of the test beam 

having variation of percentage frequencies from 0.191 to −0.723. The FE model has to 

be updated since the difference in damage state frequencies are found to be high 
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(21.18%). Frequencies from first four bending modes are utilized to construct 

objective functions and further optimization using GA.  

Further by considering the E values obtained in reference state model, new 

lower bound, upper bound and mean [23 GPa, 43 GPa and 33 GPa] for all the 30 

updating parameters are fixed to carry out the updating process for second iteration. 

Table 4.5 presents the frequencies of the damage state FE model obtained by updating 

the reface state FE model using HDMR, and this model is called reference damage 

state (Ref.-damage).The stiffness distribution of Ref.-damage state model is shown in 

Fig.4.10. From Table 4.5 the percentage difference between experimental values and 

updated model in Ref.-damage state is found to be more than 5%, which is slightly 

high. 

Table 4.4 Frequencies and their differences: Experimental beam  5n  

Mode Experimental Value (Hz) Initial FE Value (Hz) 
Difference in 

frequencies (%) 

Reference State 

1 21.904 21.946 0.191 

2 60.329 60.072 −0.425 

3 117.022 116.680 −0.292 

4 192.026 190.636 −0.723 

Damaged State    

1 18.005 21.819 21.183 

2 50.204 60.285 20.080 

3 98.219 116.949 19.069 

4 161.876 191.944 18.574 
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Fig. 4.10 Stiffness distribution: Ref.-damage state model (After updating: 5n ) 

Hence in order to reduce the percentage difference and to obtain the better 

correlation between experimental and FE model, the values of E  from Ref.-damage 

state model is further updated to obtain the modal parameters. 

Table 4.5 Frequencies and its differences of Ref.-damage model: Experimental beam ( 5n ) 

Mode Experimental Value (Hz) After updating (Hz) 
Differences in 

frequencies (%) 

Reference State 

1 21.904 21.819 

 

─ 0.388 

2 60.329 60.285 ─ 0.072 

3 117.022 116.949 ─ 0.062 

4 192.026 191.944 ─ 0.042 

Damaged State    

1 18.005 18.980 5.415 

2 50.204 51.928 3.433 

3 98.219 101.314 3.151 

4 161.876 166.357 2.768 
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The comparison of Table 4.4 and 4.5 shows that a significant improvement in 

tuning the natural frequencies is observed except for mode 1 in reference state. And 

for other modes, the difference in frequencies are reduced further, where experimental 

and FE values are almost found equal with a minimum difference of −0.042% and 

maximum difference of −0.388%. From the model updating procedure using HDMR, 

accurate modal frequencies are obtained which are having values closer to 

experimental damage beam. By updating, percentage differences are found to reduce 

from 21.81% to 5.41% in the first mode and also in the higher modes. The detected 

damage distribution is shown in Fig. 4.10 without the assumed damage pattern. 

New lower bounds, upper bounds and mean [22.8 GPa, 41.8 GPa and 32.3 GPa] 

are considered for third iteration for further refinement of responses. After updating 

for third iteration, good convergence of frequencies between experimental and FE 

model is obtained. Table 4.6 presents the updated modal parameters obtained and 

variation in comparison with experimental values. It can be observed that the 

percentage difference reduces from 5% to ─1.89% in first mode, and in other three 

modes also a reduction in difference is observed as shown in Table 4.6.  

Table 4.6 Frequencies and its differences in damage state model: Experimental beam  5n  

Mode Experimental Value (Hz) After updating (Hz) 
Differences in 

frequencies (%) 

Reference State 

1 21.904 21.819 ─0.388 

2 60.329 60.285 ─0.072 

3 117.022 116.949 ─0.062 

4 192.026 191.944 ─0.042 

Damaged State    

1 18.005 18.347 1.899 

2 50.204 50.735 1.057 

3 98.219 99.090 0.886 

4 161.876 163.32 0.892 
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Fig. 4.11 Stiffness distribution: Damage state model (After updating: 5n ) 

Figure 4.11 shows the damage distribution in terms of percentage reduction in 

E  for all the 30 elements of the FE model. Reduction in E is found to be more than 

30% between the elements 7 and 23. 

Further in order to know the effect of increase in number of sample points on 

accuracy of the updated FE model, study is extended to 7n . From the obtained 

results no significant reduction of difference in frequencies for damage state model is 

found when sample points are increased from 5 to 7 n n . Hence similar damage 

pattern is observed as in case of 5n  (Fig. 4.12). Hence five sample points are 

considered as optimum for this study.  

Tables 4.7 and 4.8 present the comparison between FEMU based on modal 

flexibility residual method (Jaishi and Ren 2006) and HDMR. From the results, it is 

observed that the HDMR based SDI predicts results with less percentage variation 

than modal flexibility in both reference state and damage state. In final damage state 

model, the mean error of frequency is found to be 1.18% using HDMR based SDI in 

comparison with modal flexibility residual method wherein the error is 4.86%. 
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Table 4.7 Differences in frequencies of Modal flexibility residual (Jaishi and Ren 2006) and 

HDMR before updating: Experimental beam (Reference state) 

Mode Experimental Value (Hz) 

Differences in 

frequencies (%) 

(Jaishi and Ren 2006) 

Differences in 

frequencies (%) 

HDMR 

Reference State 

1 21.904 1.410 0.191 

2 60.329 1.219 ─0.425 

3 117.022 1.898 ─0.292 

4 192.026 2.187 ─0.723 

Damaged State    

1 18.005 21.466 21.183 

2 50.204 21.416 20.080 

3 98.219 20.361 19.069 

4 161.876 19.953 18.574 

 

Table 4.8 Differences in frequencies of Modal flexibility residual (Jaishi and Ren 2006) and 

HDMR after updating: Experimental beam (Damaged state) 

Mode Experimental Value (Hz) 

Differences in 

frequencies (%) 

(Jaishi and Ren 2006) 

Differences in 

frequencies (%) 

HDMR 

Reference State 

1 21.904 ─0.155 ─0.388 

2 60.329 1.039 ─0.072 

3 117.022 1.022 ─0.062 

4 192.026 1.119 ─0.042 

Damaged State    

1 18.005 ─1.144 1.899 

2 50.204 4.923 1.057 

3 98.219 6.845 0.886 

4 161.876 6.519 0.892 

Figure 4.12 shows the variation of E at different updating states, where 

straight line (i.e, horizontal line) indicates the E values are taken as 35.5 GPa 

throughout the length of the beam for 30 elements. However in real time situations, it 

is not the case, and there is a variation of E in reference state model. Further in 
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iteration 2 after updating the reference state model, values of E will converge, so that, 

modal frequencies are in tune with the experimental observations and the variation is 

found to be 5% more than the experimental values. Also the updated values of E are 

reduced (Ref.-Damage) compared to reference state. In order to reduce the variation 

further, iteration 3 is performed, where excellent convergence of modal frequencies 

are found. The final variation of  E values of damage state model for iteration-3 is 

shown in Fig. 4.13. The damage distribution for 5n  and 7n  is found to be 

similar with no significant improvement. Hence, with minimum number of sample the 

frequency responses from updated FE model are found to be in tune with the 

experimental observations. 
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Fig. 4.12 Variation of Young’s modulus at different updating states 

In order to know the exact damage pattern due to variation of Young’s modulus 

(E), the damaged beam is modelled using FEA software ABAQUS (Hibbitt et al. 

2000). Total number of nodes used are 8092, and total number of elements are 5656. 

To model the concrete beam, 4800 linear hexahedral elements of type C3D8R 

(Continuum 3D 8-node Reduced integration) are used. Reduced integration elements 

increase computational efficiency without losing the accuracy. Figure 4.13 shows the 

discretisation of FE model into 30 elements in which updated values of E are given.  
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Figure 4.14 shows the reinforcement provided as per the experimental beam. 

Reinforcements are modelled using 856 linear line elements of type T3D2 i.e., 2-

noded linear 3-D stress/displacement truss element. 

 

Fig. 4.13 3D Numerical model of experimental beam 

 

Fig. 4.14 Reinforcement bars (Linear line elements of type T3D2) 

Figure 4.15 shows the tension cracks generated due to static load step 5 in 

experimental case study and damage state FE model. The crack pattern obtained in the 

final updated FE model is found to be in well agreement with the experimental 

observations, where most of the cracks are under the applied load and no cracks are 

found at the supports for both the cases. Hence, SDI based on HDMR can be 

effectively utilized in SDI and damage pattern recognition. 
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Fig. 4.15 Comparison of cracks 

4.3 CASE STUDY 2: REINFORCED CONCRETE FRAME 

A single storey and single bay laboratory-scale RC frame tested under static and 

dynamic conditions (Fang et al. 2008) is considered for further validation of the 

proposed methodology. The geometric dimensions, reinforcement layout and in-situ 

modal test setup are as shown in Figs.4.16 and 4.17 respectively. Modal parameters of 

the intact and damaged frame are obtained by performing dynamic test and are used to 

validate the proposed method. The RC frame is modelled using commercial FE 

software with two-dimensional beam element. The actual E  of concrete is taken as 

35.5 GPa and    as 2400 kg/m3 with   of 0.2. 

 

Fig. 4.16 RC frame: Geometric dimensions and accelerometer arrangement (Fang et al. 2008) 
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Fig. 4.17 Modal test of an RC frame: (a) In-situ modal test with spring boundary condition 

(top right corner). (Fang et al. 2008) 

f1 f2 f3 f4 f5
0

10

20

30

40

50

60

70

80

90

100

 

 

C
o
n

ti
rb

u
ti

o
n

 t
o
 t

h
e 

to
ta

l 
V

a
ri

a
n

ce
 (

%
)

Frequency

 E1

 E2

 E3

 E4

 

Fig. 4.18 Parameter screening results (RC frame) 

Before proceeding to further development of HDMR response equations, 

parameter screening has been carried out to know the effect of E  on response 
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characteristics of four substructures of RC frame. Figure 4.18 shows the contribution 

of four substructures on first five frequencies of the RC frame. From the results of 

parameter screening, E4 substructure has no contribution on variation of the 

frequencies. Since, the Young’s modulus is the only property used as updating 

parameter, all the four substructures are considered as for identifying the damage 

location. Young’s modulus of the four substructure  1 2 3 4, ,  and E E E E  is considered 

as input parameters and nine modal frequencies are considered as output responses. 

The study is carried out for 3,5& 7n . The lower bound, upper bound values of E 

considered are 30.2 GPa, 40.8 GPa respectively, and 35.5 GPa as mean (reference 

point, c in HDMR expansions). The damage identification is performed in three 

updating steps. In the first step, the four substructures E1, E2, E3 and E4 having 35.5 

GPa each are updated. These updated values are used to build the damage state model. 

Table 4.9 Updated values of E for reference state model: Experimental RC frame 

 

Substructure 
Initial State 

(GPa) 

Reference State 

(GPa)  

(n=3) 

Reference State  

(GPa) 

 (n=5) 

E1 35.5 38.56 31.23 

E2 35.5 40.55 40.80 

E3 35.5 40.80 40.49 

E4 35.5 36.59 39.81 

Initially, SDI using HDMR technique is implemented in order to update the 

model and to identify the damage location and severity using 3n . From Table 4.9, 

it can be observed that the updated values of E of reference state model has no 

significance, since the values of E are higher than 35.5 GPa in all the substructures.  

The frequency errors of reference state model is found to be very high i.e., 

16.81% in first mode itself (Table 4.10), which is not acceptable, and a maximum 

error of 5.33% in mode 7 is found (Table 4.10). Hence, the possibility of detecting the 

damage location is found to be less. Therefore the investigation is further carried out 

for 5n , where an attempt has been made to reduce the percentage error and to 
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detect damage location in order to make FE model in tune with the experimental 

damage frame. 

By considering the parameter bounds similar to the case for 3n , the study is 

carried out for 5n . In this case, from the updated values in the first iteration, 

reduction in E for substructure one (E1) is observed and the corresponding values of E 

for all the substructures are shown in Table 4.9. From Table 4.10 frequency 

differences are found to reduce significantly from 16.81% to 3.85% in reference state 

with the increase in sample points from 3 to 5 n n respectively. Also from Fig. 

4.19, it is clear that, in the reference state model, the absolute errors significantly 

reduce except for first frequency. 

Table 4.10 Modal frequencies of reference state model: Experimental RC frame  

 Undamaged 

Mode Experimental 

(Hz) 

FEA Initial 

(Hz) 

FEA Ref (Hz) 

n=3 

Error (%) 

n=3 

FEA Ref (Hz) 

n=5 

Error (%) 

n=5 

1 30.16 30.51 35.23 16.81 31.32 3.85 

2 69.34 65.51 72.64 4.76 70.17 1.19 

3 178.11 163.58 173.57 2.54 167.36 6.04 

4 339.06 317.01 348.00 2.63 337.44 0.48 

5 348.74 322.43 351.14 0.68 339.67 2.60 

6 509.78 463.40 494.58 2.98 480.40 5.76 

7 709.86 682.30 747.70 5.33 686.30 3.32 

8 790.07 750.52 796.76 0.84 768.00 2.79 

9 948.13 890.53 965.45 1.82 952.60 0.47 

 

As observed from Table 4.9, the updated values of E1–E4 obtained from 

reference state model, it is clear that the substructure E1 is damaged due to reduction 

in E. Hence, the reference state model is further updated to find out the exact location 

of damage in substructure E1. Further the substructure E1 is subdivided into three 

divisions (E11, E12 and E13) and updated for the new bounds (lower bound 25.056 

GPa, upper bound 31.32 and mean 28.18 GPa).  
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Fig. 4.19 Comparison of absolute errors (%) of initial and reference state model  5n  

The updated values of three substructures (E11, E12 and E13) are shown in Table 

4.11. From the results it is clear that, damage at the substructure E11 is found to be 

more due to reduction in E from 31.23 GPa to 26.79 GPa. Hence, the damage is 

located at the mid span of the beam element. Finally, the E of four substructure and 

frequencies of damage state is shown in Table 4.12 and 4.13 respectively 

Table 4.11 Updated values E of E1 substructures: Experimental RC frame  5n  

Initial State(GPa) 

E1 

Reference State (GPa) 

E1 

Damage State (GPa) 

E1’=E11-E12-E13 

35.5 31.23 26.79, 29.77, 29.77 

 

Table 4.12 Values of E at different updating states: Experimental RC frame  5n  

Substructure Initial (GPa) Reference State (GPa) Damage State (GPa) 

E1 35.5 31.23 26.79 

E2 35.5 40.80 40.80 

E3 35.5 40.49 40.49 

E4 35.5 39.81 39.81 
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Table 4.13 Modal frequencies of damage state model: Experimental RC frame  5n  

 
Damaged 

Mode Experimental 

(Hz) 

FEA Ref 

(Hz) 

Error 

(%) 

FEA Dam 

(Hz) 

Error 

(%) 

1 29.10 31.32 7.64 30.81 5.88 

2 68.05 70.17 3.11 70.17 3.11 

3 170.24 167.36 1.69 166.82 2.01 

4 335.53 337.44 0.57 336.11 0.17 

5 344.65 339.67 1.44 339.43 1.52 

6 499.53 480.40 3.83 480.48 3.81 

7 679.41 686.30 1.01 674.92 0.66 

8 768.70 768.00 0.09 763.44 0.68 

9 933.98 952.60 1.99 953.50 2.09 

 

From the results of reference state (Table 4.10) and damage state (Table 4.13) 

reduction in mean error is observed, i.e., the mean error is found to be 2.94% in 

reference state and in case of damage stage model it is 2.21%. Also frequencies of the 

damage state model are in tune with the experimental observations. With maximum 

error of 5.88% in mode one and 0.17% to 3.81% in remaining modes. 

Figure 4.20 shows the absolute percentage variation of reference state and 

damage state beam with respect to results of test beam for nine frequencies. It is found 

that absolute error is found to reduce in damage state model from 7.64% to 5.88% in 

mode 1, and reduction in absolute error is also found in higher modes. Finally, Fig. 

4.21 represents the variation of E at different updating states. 

The study has been extended for 7n , to know any further improvement in 

updated parameters. From the updated values of 1 4E E  it is observed that, there is no 

significant improvement in the responses of the damage state model. The mean error 

for 5n and 7n  is found to be the same i.e., 2.2%. Hence the optimum number of 

sample points is found to be 5n for this case study. 
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Fig. 4.20 Comparison of absolute error (%) of reference and damage state model ( 5n ) 
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Fig. 4.21 Variation of E at different updating states 
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4.4 CASE STUDY 3: BRIDGE STRUCTURE 

In order to find out the efficiency of HDMR based SDI, a tested (Farrar et al. 1996) 

full scale I – 40 bridge constructed over the Rio Grande is considered (Fig. 4.22). In 

order to investigate the dynamic behaviour of the bridge, different damage scenarios 

are introduced in web and flange portion of a girder. First stage of damage in the form 

of two foot web cut at girder mid span, second stage of damage as six foot cut from 

the centre of the web to bottom flange at girder mid span, third Stage of damage as six 

foot cut in the web plus half bottom flange cut at girder mid-span, and fourth stage of 

damage as six foot cut in the web plus full bottom flange cut at girder mid-span (Figs. 

4.23 and 4.24). 

 

Fig. 4.22 General view of I – 40 Bridge 

 

 

 

Fig. 4.23 Damage scenarios (a) First stage damage (b) Second stage damage  

 

(a) (b) 
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Fig. 4.24 Damage scenario (a) Third stage damage (b) Fourth stage damage  

The bridge has three continuous spans each of 39.9 m, 49.7 m and 39.9 m (Fig. 

4.25). To understand the dynamic behaviour of the bridge, three torsional and three 

bending modes are recorded from the experimental investigation. To apply the 

concept of HDMR based SDI, the three dimensional model is simplified to two-

dimensional beam model. Hence, only bending modes are considered as the target 

values which are obtained from extraction of frequencies due to fourth damage 

scenario.   

Figure 4.26 shows the simplified two dimensional beam model resting on three 

piers, which have a rigid connection at the bottom and rotatable connections between 

top of the pier and the girder. The beam model is divided into 9 substructures (thin 

girders 7 numbers and thick girders 2 numbers-S3 and S7). The values of E for both 

girders are taken as 200 GPa and flange dimensions of thick girder are higher than 

thin girders. The section properties considered in the present study are cross sectional 

area  A  and second moment of area  I . The initial values of cross section area of 

thin girder  1A  and thick girder  2A  are taken as 0.5685 and 0.6436 respectively. 

The values of second moment of area of thin section  1I  and thick section  2I  is 

considered as 0.512 m4 and 0.812 m4
 respectively. A total of 61 beam elements were 

generated to simulate the equivalent girder, and 10 beam elements were used for each 

equivalent pier. 

(a) (b) 
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Fig. 4.25 Simplified I-40 bridge model with accelerator layout 

 

Fig. 4.26 Two dimensional beam model of bridge 

Similar to the first two case studies, a parametric study has been carried out 

for 3,5& 7n . In this case-study, as damage locations are predetermined in the field 

study, first the second moment of area of thin girder is taken as updating parameter 

 1I . Lower bound and upper bound for  1I  is taken as 0.340 m4 and 0.684 m4 

respectively with mean value of 0.512 m4 for all the sample points. Frequencies of 

initial state model before updating for first three bending modes are presented in 

Table 4.14. 
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Table 4.14 Frequency errors before updating: Bridge example 

 

Mode 

Experimental Un-damage 

Frequency (Hz) 

Frequency (Hz) 

(Initial State) 

Frequency 

Errors (%) 

1 2.48 2.45 −1.2 

2 3.50 3.69     5.1 

3 4.08 3.90 −4.6 

 

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

 

 

I r
ed

uc
tio

n 
(%

)

Substructure

(a)

S5 (1) S5 (2) S5 (3) S5 (4) S5 (5) S5 (6)
0

10

20

30

40

50

 

 

I r
ed

uc
tio

n 
(%

)

Substructure

(b)
 

Fig. 4.27 Identified damage location at substructure S5  3n  

From Fig. 4.27 it is observed that the damage is detected at substructure S5 

which agrees with the experimental value. However, the damage percentage is found 

to be less than 2% with mean percentage error 6.01%. Hence the study is extended 

using 5n  to obtain the accurate reference state model, with less frequency errors. 

From model updating using HDMR, for 5n , reduction in section inertia of I1 

(7.5%) is found at S5 substructure, and hence damage is found to be at S5 location as 

shown in Fig. 4.28. Table 4.15 presents percentage difference of frequencies between 

predicted and experimental observations in reference and damage state. Also the mean 

error is found to be reduced from 6%  3n  to 5.8% in reference state model for 

3n . Model is further updated to obtain damage distribution (Fig. 4.29) and 

frequency errors of damage stage model is presented in Table 4.15. 
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Fig. 4.28 Identified damage location at substructure S5  5n  

1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

 

 

I 
re

d
u

ct
io

n
 (

%
)

Substructure

(a)

S5 (1) S5 (2) S5 (3) S5 (4) S5 (5) S5 (6)
0

10

20

30

40

50

 

 

I 
re

d
u

ct
io

n
 (

%
)

Substructure

(b)
 

Fig. 4.29 Stiffness distribution at S5 substructure  5n  
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Table 4.15 Frequency errors after updating: Bridge model in damage state  5n  

 

Mode 
Experimental Damage 

Frequency (Hz) 

Frequency Errors (%) 

(Reference state) 

Frequency Errors (%) 

(Damage State) 

1 2.30 6.90 6.88 

2 3.49 7.90 3.59 

3 3.99 −3.00 −2.57 

Finally, by further updating the S5 substructure elements of FE model, the mean 

error is found to be reduced to 4.34%. The study is further carried out for 7n and no 

reduction in mean error of percentage difference is found out. Values of parameter 

bounds and percentage frequency error of initial state is taken similar to 5n . From 

the results observed it is found that, the mean error of damage state model for 

5n and 7n  is found to be 4.34% and 4.29% respectively. Hence the values of 

frequency are converged for 5n . 

4.5 SUMMARY  

The concept of HDMR is applied to three case studies in this chapter. In case-study 1 

an attempt has been made to update the initial FE model to final damage state model 

so that the dynamic responses obtained are in tune with the experimental 

observations. The dynamic responses i.e., frequencies at different modes are in well 

agreement with the experimental ones, also the crack pattern in damaged beam 

matches with the experimental beam. 

In case-study 2, the responses from single bay single story tested under 

laboratory conditions (Fang et al. 2008) are considered to build objective function, 

where the function is minimized using GA to obtain the updated parameters. In this 

case-study, location of damage has been identified using HDMR accurately. 

In case-study 3, HDMR based SDI is extended to identify the damage location 

in a real bridge structure, where damage location is found with minimum number of 

sample points  3n . However, the precise location is identified when the number of 
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sample points are increased. Since the variation of experimental frequencies between 

the undamaged and damaged states are very less, percentage frequency errors are 

found to be slightly high (i.e., 6.8%) in mode 1. And subsequently, the percentage 

errors are reduced in other two modes in damage state. Using second-order HDMR, 

the errors can be further minimized, with additional computational effort. 
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CHAPTER 5 

 

 

CONCLUSIONS 

 

 

5.1 SUMMARY AND RESEARCH FINDINGS 

The HDMR techniques are effectively applied for construction of a computational 

model directly from laboratory or field data, creating an efficient fully equivalent 

operational model to replace an existing time-consuming mathematical model, and for 

identification of key model variables, global uncertainty assessments, and efficient 

quantitative risk assessments, etc.  

In this work, a computationally efficient FEMU method using the HDMR is 

applied in conjunction with GA. Initially, HDMR response equations are generated by 

considering a simulated beam using three sample points and development of an 

objective function for minimum number of sample points is developed. Based on the 

accuracy of the results it is concluded that, in order to obtain acceptable true 

parameters, response equations in objective functions required should be greater than 

the number of parameters utilized. The method has been applied to model updating of 

a simply supported beam as well as a RC box culvert. Suitable parameters are first 

selected for model updating and numerical simulations are performed using the 

combinations of parameters. First order HDMR expressions are used to develop the 

response equations. An objective function is built up using the residuals between 

measured and predicted responses from the developed HMDR equations, and updated 

parameters are obtained using the GA. From the numerical examples presented, the 

computational efficiency is studied. 

In the proposed work, HDMR based FEMU is carried out for SDI. To locate the 

damage, and to observe its pattern, all elements in FE model are considered as 

parameters to be updated. First the proposed damage detection procedure was 
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illustrated with an example of simulated simply supported concrete beam, and damage 

patterns are identified using HDMR based model updating. The SDI procedure is then 

verified with the experimental results available in the literature. 

The identified damage distribution obtained from HDMR (without assuming the 

damaged pattern of the tested beam) is compared with the test results reported in 

literature. The comparison of the damage patterns obtained using the proposed 

method with the experimental observations shows well agreement.  The minimum and 

maximum percentage differences between the experimental values and HDMR in 

updating the reference state model are −0.72% and 0.19%, which is much better than 

the values obtained using modal flexibility residual that ranges between 1.41% and 

2.19%.  Similarly, in case of damaged state model after updating, the minimum and 

maximum differences in frequencies between the experimental values and HDMR are 

found to be −1.899 and −0.892% respectively, and −1.14 % and 6.52 % for the modal 

flexibility residual.  Hence, it is concluded that the proposed method using HDMR 

predicts the frequencies of damaged beam more efficiently than other methods such as 

modal flexibility residual method.   

The methodology is further applied to RC frame, where damage is located using 

substructure based approach, where the frame is divided in to four substructures 

considering Young’s modulus as variable. It is found that the damage is occurred with 

reduction in Young’s modulus at beam mid-span. The frequencies are found to be in 

tune with the experimental observations with percentage error of 5.48% in mode 1 

and 0.15% to 3.98% in all other modes. 

Finally, the concept of HDMR based SDI is applied to real bridge structures, in 

which the frequencies are efficiently computed with less computational effort, with a 

mean error of 4.29%.  Mean error is converged with the sample points n=7. Also in 

the present work, a parametric study is conducted with respect to the number of 

sample points used in approximation of HDMR component functions in model 

updating, and its effect on absolute error of updating parameters with respect to true 

values. It is observed that an improvement in accuracy is witnessed with increase in 

number of sample points from three to five. With the increase in sample point from 

five to seven, no significant tuning of parameters and responses are identified. 
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Therefore, the optimum number of sample points is taken as five for all the cases.  

Hence the proposed FEMU using the HDMR is promising in SDI. 

5.2 SUGGESTIONS FOR FUTURE WORK 

i. In the present work, first order HDMR expansions are utilized to develop the 

response equations. Further, the accuracy can be significantly improved by 

employing the second order HDMR, but with slightly increased 

computational effort. Finally, the updated FE model can be utilized in 

structural damage identification. 

ii. In the present study, Lagrange interpolation functions are utilized. Further, 

other interpolation techniques like moving least squares can be used and the 

accuracy of the parameters and responses of updated FE model can be 

investigated. 

iii. The present study has been conducted with limited information.  However, 

this could be extended by incorporating changes in damping, and also the RS 

designs could be coupled with neural networks. 

iv. The stochastic variation of material parameters can also be considered by 

proper uncertainty analysis tools. 

v. Different kinds of uncertainties can be characterised and included in the 

model based on the real time data. 
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APPENDIX 

 

 

DEVELOPMENT OF HDMR APPROXIMATION EQUATIONS 

USING THREE SAMPLE POINTS (n=3) IN CONJUNCTION 

WITH GENETIC ALGORITHM 

Case study – 1: SDI of experimental beam 

The general form of HDMR expression is given as: 
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Considering first order HDMR expression to develop response equations: 
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For N = 30 and n = 3: 
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The expanded form the above expression is given as: 
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For i = 1 and j = 1 – 3  
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For i = 2 and j = 1 – 3  
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Similarly from i = 3 to 30 and j = 1 – 3 expression are given by 
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In order to obtain the HDMR expression for the desired response, the functions  

1 1 1( ..., ..., ..., ..., ) 

j

i i i Nf c c x c c  are evaluated using FEA package. The responses in Hz 

for the function evaluations in the above expansion are as below: 
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f c c x c f

f c c 3

6 30,..., ) (38,38,...54,...,38) 21.976, 60.433,117.910, 192.586 x c f

 

1

1 2 7 30

2

1 2 7 30

1 2

   7

( , ,... ,..., ) (38,38,...22,...,38) 21.813, 58.872, 113.849, 188.166

( , ,... ,..., ) (38,38,...38,...,38) 21.947, 60.073, 116.684, 190.636

( , ,.



 

 

Function Evaluations in Expansion

f c c x c f

f c c x c f

f c c 3

7 30.. ,..., ) (38,38,...54,...,38) 22.001, 60.577, 117.983, 191.851 x c f

 

1

1 2 8 30

2

1 2 8 30

1 2 8

   8

( , ,... ,..., ) (38,38,...22,...,38) 21.747,58.635,114.372, 189.761

( , ,... ,..., ) (38,38,...38,...,38) 21.947,60.073,116.684, 190.636

( , ,...



 

 

Function Evaluations in Expansion

f c c x c f

f c c x c f

f c c x3

30,..., ) (38,38,...54,...,38) 21.028,60.692,117.772, 191.040 c f
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Similarly, all the function evaluations are carried out up to i = 30 and j = 1 – 3  

1

1 2 3 30

2

1 2 3 30

3

1 2 3 30

   30

( , , ,..., ) (38,38,38,..., 22) 21.947,60.071,116.670, 190.578

( , , ,..., ) (38,38,38,...,38) 21.947,60.073,116.684, 190.615

( , , ,..., ) (3



 

 



Function Evaluations in Expansion

f c c c x f

f c c c x f

f c c c x f 8,38,38,...,54) 21.947,60.073,116.689, 190.636

 

The shape/interpolation function   j ix  is evaluated using the Lagrange 

interpolation: 

 
      
      

1 1 1

1 1 1

 

 

     


     


j j n

i i i i i i i i

j i j j j j j j n

i i i i i i i i

x x x x x x x x
x

x x x x x x x x
 

Considering the first component function  

For i = 1 and j = 1 – 3, the expression of Expansion 1 is given by   

1 2

1 1 2 3 30 1 1 2 3 30

3

1 1 2 3 30

2 2

1 1 1 1

2

1 1

1 2

3

) ( , , ,..., ) ) ( , , ,..., )

) ( , , ,..., )

 0.002 0.179 4.007 (22,38,38,...,38) 0.004 0.296

4.640 (38,38,38,...,38) 0.031 1.87

(

5 26

1 ( (  

 

     

   





  



Expansion x x

x

f x c c c f x c c c

f x c c c

x x f x x

f x x

2 2

1 1 1 1

2

1 1

.125 (5438,38,...,38)

 0.002 0.179 4.007 21.947 0.004 0.296

4.640 21.947 0.031 1.875 26.125 21.947



     

     

f

x x x x

x x

Hence from the Expansion – 1 first component function in HDMR expansion is given 

by: 

2

1 10.643 38.578  559.  47 71  HDMR Component func xt xion  

Similarly,  

6 2 4

2 23.9 10 3.593 10  21.9  3 2 9      HDMR Component funct xion x  

6 2

3 39.756 10 0.001  21.92  2 3     HDMR Component functi xon x  

4 2

4 42.343 10 0.0026   4   21.882    HDMR Component func xtio xn  

5 2

5 55.078 10 0.00   57  21.85 02    HDMR Component functi xon x  

Similarly all the 30 HDMR component functions are evaluated and summation of all 

gives the HDMR approximation equation for first response ie natural frequency in 

mode 1  1Y  as below: 
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6 6 2 4 6 2 3

1 1 1 2 2 3 3

4 2 6 2 3 6 2

7 7 28 28 29

4 3 3

29 4 5 6 8 9

1

0.64 38.58 3.90 10 3.59 10 9.76 10 1.02 10

1.56 10 0.017 9.76 10 1.023 10 3.90 10

3.59 10 2.59 10 5.73 10 0.01 0.143 0.036

0.0468

   

   

  

         

        

        



Y x x x x x x

x x x x x

x x x x x x

x 0 11 12 13 14 15 16

17 18 19 20 21 22 23

3 3 5 2

24 25 26 27 4

5 2 4

5

0.057 0.066 0.074 0.079 0.082 0.082

0.079 0.074 0.063 0.057 0.047 0.036 0.026

0.134 0.014 5.73 10 2.59 10 2.34 10

5.078 10 1.015 10

  

 

     

      

       

   

x x x x x x

x x x x x x x

x x x x x

x 2 3 2 4 2 4 2

6 8 9 10

4 2 4 2 4 2 4 2 4 2

11 12 13 14 15

4 2 4 2 4 2 4 2 4 2

16 17 18 19 20

4 2

21

2.18 10 3.18 10 4.08 10

4.98 10 5.76 10 6.38 10 6.83 10 7.07 10

7.07 10 6.83 10 6.83 10 5.76 10 4.98 10

4.08 10 3.

  

    

    



     

         

         

  

x x x x

x x x x x

x x x x x

x 4 2 4 2 4 2 4 2

22 23 24 25

5 2 5 2

26 27

18 10 2.32 10 2.10 10 1.58 10

5.07 10 2.34 10 530.32

   

 

      

    

x x x x

x x

 

Similarly, the HDMR approximation equations are developed for the frequency responses of 

second, third and fourth mode ie. 2 3 4,  and Y Y Y  and utilized to develop objective functions. 

Then the objective function is minimized using GA to obtain the updated parameters. Using 

updated parameters, initial FE model is updated to obtain reference state, reference damage 

state and damage state models, so that, responses of FE model were in tune with the 

experimental observations. 
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