
AN APPROACH FOR HANDLING

CONCEPT DRIFT AND MODEL

SIMPLIFICATION IN LOG-BASED

PROCESS ANALYSIS

Thesis

Submitted in partial ful�llment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

MANOJ KUMAR MUTTYAL VASANTHA KUMAR

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA,

SURATHKAL, MANGALORE - 575025

NOVEMBER 2017





Dedicated to my beloved parents and teachers.





National Institute of Technology Karnataka, Surathkal

�����������������������������������������������������������������������-

DECLARATION

by the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled An Approach for Handling

Concept Drift and Model Simpli�cation in Log-Based Process Analysis

which is being submitted to the National Institute of Technology Karnataka,

Surathkal in partial ful�lment of the requirements for the award of the Degree of

Doctor of Philosophy in Computer Science and Engineering is a bona�de

report of the research work carried out by me. The material contained in this

Research Thesis has not been submitted to any University or Institution for the award

of any degree.

(CS12F06, Manoj Kumar M V)

(Register Number, Name & Signature of Research Scholar)

Department of Computer Science and Engineering

Place: NITK, Surathkal.

Date: November 13, 2017

������������������������������������������������������������������������-





National Institute of Technology Karnataka, Surathkal

�����������������������������������������������������������������������-

CERTIFICATE

This is to certify that the Research Thesis entitled An Approach for Han-

dling Concept Drift and Model Simpli�cation in Log-Based Process Anal-

ysis submitted by Manoj Kumar Muttyal Vasanth Kumar, (Register Number:

CS12F06) as the record of the research work carried out by him, is accepted as the

Research Thesis submission in partial ful�llment of the requirements for the award of

degree of Doctor of Philosophy.

Dr. Annappa B

Research Guide

(Name and Signature with Date and Seal)

Chairman - DRPC

(Signature with Date and Seal)

������������������������������������������������������������������������-





Acknowledgments

In this incredible four years journey of my Ph.D., I had the fortune to meet and work

with many outstanding people, without whom I never could have done it. Their en-

couragements have allowed me to push the envelope beyond what I originally thought

to be feasible. For this reason, I would like to mention the individuals to whom I owe

my genuine admiration and thankfulness.

I wouldn't know what was research and its depth if I was not given an opportunity

to do it. A great share of credit is due to my research supervisor, Dr. Annappa who

gave me an opportunity to work in the signi�cant �eld. There are absolutely no words

how much I am grateful to my guide who supported me throughout my journey of

ups and downs. His constant support, guidance, supervision accorded me to focus on

my research work. His unrelenting passion for quality and soundness in research, and

his incredible professionalism, work ethic, and drive, have been a de�ning inspiration

for my endeavors. Thank you sir for always leading me the right path.

I am enormously thankful to the Research Progress Assessment Committee mem-

bers Dr. Shashidhar G Koolagudi and Dr. Harsha Vardhan for their insightful

comments, critical questions, and valuable ideas. Their continuous interest about my

research progress and their sharp and quick feedback in all matters has greatly helped

me in achieving research related objectives.

I should thank Prof. K Chandrasekaran for inspiring me in many ways during

research tenure. His unparalleled commitment towards research and teaching had

in�uenced me in the way that I cannot describe in words. I am thankful to Dr. Mo-

hith Tahilani for providing convincing solutions for research and academics related

matters. I should be grateful Dr. Chandavardkar and Mrs. Soumya Hegde for

their cheering words. I humbly thankDr. Santhi Thilagam, HOD andDr. Alwyn

Roshan Pais, Chairman(DRPC) and Dr. Manu Basavaraju, Secretary (DRPC)



for helping me in research related aspects. I should be thankful for the support and

advices received from Dr. Jeny Rajan, Mrs. Vani M and Dr. Basavaraj

Talwar.

My journey during Ph.D. wouldn't have been exciting if I don't have this particular

friend Mr. Likewin Thomas. He shares the 99.9% of my memories at NITK. I

just cannot thank him in a single paragraph. He helped me in many aspects right

from the research to life. We have shared many quiet and cheerful moments. With

him I have traveled, cooked, written papers, did night outs, worked for conferences

and workshops, and what not..!(this listing is virtually never-ending). It has been a

genuine pleasure working with you!

I should be thankful toMrs. Priyanka Madukar for thoroughly reading through

my text and providing me with detailed comments and critical remarks. Feedbacks

and bits of advice given by her helped me in improving the quality of my research

related documents to many folds.

My cubicle/research lab was more exciting and fun with many colleague/friends

around me. Praveen my late night lab mate, Vishnu who never fails to bring a smile

on my face and such a great person to work with, Keerthi, a good fun loving friend

who makes the place come alive. Sachin, Sumith, Bane Rahman, Vishal, Girish,

Bhimappa, Khyamling, Manjunath Mulimani, Marimuttu, Raghavan, and

Fathima made the place so lively and educative. They managed to make me smile

whenever I was down. They held my hand through bad times. It is my pleasure to

share the lab with you kind people, you all contributed, big or small, to this work.

I became friends with Puneeth and Prashanth during my masters. It has been

more than half a decade we are the best friends. They always took my side during

every moment of joy and sorrow. I am grateful to them for many aspects . Thank

you both for the excellent support, fun-�lled moments and every other thing. Manoj

Revankar is my decade old friend, and knows all my secrets and shares almost

every memorable moments of PU, undergrad and postgraduate Thank you, Manoj

for always bringing a smile on my face.

I would humbly thank the non-teaching sta� of my department. Mr. Dinesh

Kamath, Mrs. Yashawanthi and Mr. Vairavanathan were supportive in ensur-

ing that research-related seminars go well and uninterrupted. I should be thankful to



Ms. Vanitha, Mrs. Seema Shivaram, and Mrs. Mohini for acknowledging me

through the academic work and helping me the all the time. Ms. Krithi and Mr.

Ravi were wonderful in helping me for several times. I can't forget Mr. Dayanand

for his help regarding academic and o�ce related matters.

Sneha is my best friend for almost a more than �ve years now. During not-so-

great times of my life, she was right there and provided excellent support. She has

always been an integral part of my every success. I dont have words to express my

gratitude for the enormous amount of time, support and advice she gave me whenever

I needed it. She always motivated me to strive for the best. It is tough to imagine a

better friend than her. Thank you, Sneha.

I want to thank my parents Mr. Vasantha Kumara and Mrs. Meenakshi for

being the main pillar of this journey and for constant and unconditional love towards

me. They understood and encouraged me in all my decisions. Without their support,

this thesis would not have been possible. Even though I was away from them for

these four years, they managed to pray for me and stay calm throughout my stay in

NITK. Without their constant encouragement, this journey would be left incomplete.

With this, I would like to thank all of my family members for all the support and

encouragement I have got always.

In the end, all that remains is to thank you, dear reader. If you have found at least

a small part of this thesis useful or interesting, you have made all my work worthwhile

Finally my inmost gratitude towards almighty for helping me get through

this!

Place: Surathkal Manoj Kumar M V

Date: November 13, 2017





Abstract

Nowadays process aware information systems supporting operational processes are in

the mainstream. Examples are work-�ow management systems, enterprise application

integration systems, enterprise resource planning systems, web services, etc. These

systems are recording detailed information about the history of processes execution

in the form of events. Events may range from the withdrawal of cash from an ATM,

a doctor adjusting an X-ray machine, a citizen applying for a driver license, the

submission of a tax declaration, and the receipt of an e-ticket number by a traveler.

The challenge is to extract knowledge out of event data for improving the original

processes in a meaningful way.

A young research discipline named process mining o�ers a spectrum of techniques

for analyzing event data generated in information systems. These methods can be seen

as the amalgamation of computational intelligence and data mining on the one hand,

and process modeling and analysis on the other hand. It o�ers a variety of techniques

for discovering, monitoring and improving processes in numerous application domains.

Through this research work, most signi�cant issues present in process mining are

identi�ed and the practical solutions are proposed. The techniques addressing these

issues are classi�ed into following three broad categories.

First category of techniques concentrate on addressing non-stationary learning

problem known as concept drift. Concept drift is a phenomenon when process changes

dynamically during the period of execution and/or analysis. Due to this, state-of-

the-art process mining techniques generate inconsistent and obsolete analysis results.

Therefore, it is required to design and implement the methods which can e�ciently

address concept drift. We have proposed a Multiple Trace Alignment method for

detecting and localizing concept drift in control-�ow perspective of the operational

process. The proposed method has been tested on real-life event log and compared

i



with the existing methods for handling concept drift.

Second category of techniques concentrate on developing a notation named trace

logo for visualizing control-�ow perspective. Traditional control-�ow discovery al-

gorithms in process mining can generate process model consisting of activities and

transitions and ignore all other information. But, the trace logo overcomes the draw-

backs of traditional approaches, and it is capable of visualizing activities, transitions,

the consensus of the traces, order of prevalence between activity, relative occurrences

of every activity, information scores, set of conserved and shared activities/sequences

in a single compact graphic.

Third category of techniques are centered on path discovery and complexity reduc-

tion in structured and unstructured processes. If the process is Lasagna (structured),

feature set capturing the control-�ow properties are extracted and used. If the process

is of Spaghetti (unstructured), it is reduced to Lasagna and features capturing the

control-�ow properties are obtained. Feature sets are systematically analyzed to �nd

the details like frequent, infrequent, possible, and impossible paths of executions in

the process.

All the proposed methods in this thesis are evaluated on real-life event log taken

from standard repository and results are presented in subsequent chapters. Through

this research work, a most sincere and prompt e�ort has been made to leverage the ex-

isting process mining practices by addressing the diverse categories of most signi�cant

issues.

ii
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Chapter 1

Introduction

In this modern age, data is the new oil. Every second a new data is being created, the

data volumes are exploding, more data has been created in the past two years than in

the entire history of the human race (Petter, 2015). The rapid development of digital

universe has brought us into the era of �big data�. For example, E-bay, the online

auction and web shopping company, processes around 50 petabytes of information

daily. Facebook, a social networking platform, processes more than 500 terabytes of

data daily. By the year 2020, the prediction is that each person would generate about

7 megabytes of new information every second (Bernard, 2017). A cloudburst of digital

data are produced daily and will continue to increase exponentially in coming days.

At the moment less than 0.5% of all data is ever analyzed and used (Antonio,

2016). The immediate need is to extract and use the knowledge and information out

of the recorded data. The knowledge gained by analyzing the raw data could play an

invaluable role in a countless number of realms. One such aspect where data plays

a key role (in understanding, implementing and improving) is business process/es in

and across organizations.

The increased level of competition compelling individual organizations to perform

in the best way possible. In the case of typical Fortune 1000 business organizations,

just a 10% increase in data accessibility will results in $65 million additional net

income (Dennis, 2014). A 65% of the senior executives are in agreement with the fact

that management decisions are increasingly based on hard analytic information. This

justi�es the potential behind rightly utilizing the data. Availability of data and the

capability of analyzing it could fetch fortunes in any realm. Depending on the context

of application and problem at the hand, a variety of analysis techniques would give
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interesting and useful information.

Majority of organizations such as hospitals, industries, colleges, etc. are increas-

ingly moving towards digitizing (or automating) their day-to-day processes with the

help of information systems. These systems typically support logging capabilities that

register what has been executed in the organization in the form of event log. Event

logs usually contain,

• Data about cases (i.e. process instances) that have been executed in the orga-

nization.

• Times at which the tasks were executed.

• Persons or systems that performed these tasks.

• Additional process speci�c information.

Event logs o�er a wealth of information for today's organizations, but it is rarely

exploited to provide meaningful insights into business processes.

An interesting class of information systems that produce event logs are Process-

Aware Information Systems (PAISs) (Dumas et al., 2005; Reichert and Weber, 2012)

(we will use the generic term Process-Aware Information System to refer to systems

that manage and execute such work�ows) . Some of the widely used PAISs are classi-

cal work�ow management systems (e.g. Sta�ware) (Yen, 2003), Enterprise Resource

Planning systems (ERP) (e.g. Systems, Applications, Products) (Arik Ragowsky,

2002), case handling systems (e.g. FLOWer) (Van Der Aalst et al., 2005), Product

Data Management systems (PDM) (e.g. Windchill) (Liu and Xu, 2001), Customer

Relationship Management systems (CRM) (e.g. Microsoft Dynamics CRM) (Symons,

2014), middleware (e.g., IBM WebSphere) (De La Cruz et al., 2007), hospital infor-

mation systems (e.g., Chipsoft) etc.

Nowadays most of the embedded systems (an embedded system is a special-

purpose system in which the computer is completely encapsulated by or dedicated

to the device or system it controls) are also capable of generating the event logs.

An example is �CUSTOMerCARE Remote Services Network� of Philips Health care,

where events occurring within an X-ray machine (e.g. moving the table, setting the
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de�ector, etc.) are recorded and analyzed. These examples show that systems record

(parts of ) the actual behavior, and thus implicitly or explicitly create event logs.

Event log di�ers signi�cantly from the standard tabular data (rows as observations

and columns as attributes) in various aspects and simultaneously demands di�erent

analysis approaches. Experiences from data mining and various other research disci-

plines fail if applied for analyzing event logs due to following characteristics.

• Business operational processes potentially exhibiting concurrency are incompa-

rable to simple data mining structures for example, decision trees and associa-

tion rules.

• Data mining mainly focuses on the case perspective, i.e., cases with attribute

values are analyzed without constructing some process model.

The goal is to develop the methods that are end-to-end and process centric, which

facilitate us in analyzing event logs. A young data analysis horizon named process

mining o�ers a spectrum of methods for analyzing event logs. It acts as a bridge

between data mining and operational process modeling and analysis. The major

concentration is on extracting the value and insights from these event data recorded

in the form of the event log.

1.1 Process Mining

By using historical facts, as recorded by the information system, process mining pro-

vides detailed insights into the process execution. Process mining bridges the gap

between the process-oriented nature of Business Process Management (BPM) and

the data-oriented nature of machine learning/data mining. It is a research discipline

that discovers, monitors, and improves real processes (not the assumed processes)

by extracting knowledge from event logs readily available from today's systems (Van

Der Aalst, 2011). The methods facilitated by process mining connects the modeled

and observed behavior of the process.

The advantage of using process mining is two fold.

• It o�ers information on how processes are carried out in the real-world settings.
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Figure 1.1: Relationship between process mining and BPM.

• Possibility to compare the actual behavior with the intended one. The expected

behavior is usually de�ned either in a formal way (by de�ning a formal process

model) or in an informal way. By comparing the models of expected behavior

with the discovered process models, deviations from the intended behavior can

be found, and this information can be used to improve the processes.

Approach followed by process mining is a reverse version of BPM (shown in the

�gure 1.1). BPM usually starts with high-level process design, followed by con�gura-

tion and �nally implementation. As in the case of process mining, observed behavior

recorded in information systems are utilized to discover the real processes.

1.1.1 Basic types of techniques

The basic idea of process mining shown in the �gure 1.2. Where the information

systems supporting and controlling various real world processes record event log.

With the availability of event log, di�erent process mining analysis techniques can

be employed to model and analyze the observed behavior.

There are three basic types of process mining techniques: discovery, conformance,

and enhancement. For the complete framework of the ten di�erent categories of

techniques in process mining, readers are referred to read the chapter "Analyzing

Lasagna Processes" in process mining book (Van Der Aalst, 2011).
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Figure 1.2: Basic types of process mining techniques (taken from Van Der Aalst
(2011)).

Process discovery technique takes an event log as input and produces a model

that best describes the behavior observed in the event log. Process discovery methods

are mostly useful to provide insights into what occurs in reality. Discovery techniques

produce control-�ow, data, organizational, time, and case models. A plethora of meth-

ods exists in process mining to elicit process model in various modeling notations. For

example, Fig. 2.2 shows control-�ow model of hospital admission process discovered

using α algorithm (Van Der Aalst et al., 2004).

Conformance checking techniques take a process model and an event log of

the same process as input. Conformance measures and quanti�es, how closely a

given process model conforms to reality (as recorded in the event log). It evaluates

the quality of the discovery algorithm and constructed model. Simplicity, precision,

�tness, and generalization are the dimensions used for measuring the conformance.

The idea of enhancement is to improve the discovered process model to make it

more informative. Various types of enhancement that one can perform, such as repair-

ing a process model to better re�ect the reality. Another type of enhancement is the

extension of process models with information extracted from event logs. For exam-

ple, a control-�ow model can be enhanced and made more readable by overlaying the

additional information such as time-stamps, bottlenecks, service levels, throughput

times, frequencies, resources, decision rules quality metrics, etc.
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1.2 Opportunities and Solutions

With the advent of process mining, analyzing operational process has become much

meaningful and easier than before. Process mining enabled the analysis of operational

process from the various perspectives such as control �ow, data, organization, case,

time, etc. Each of these perspectives delivers a particular piece of information unique

to a process. In this thesis, we explore the control-�ow perspective. We propose

the methods and techniques which leverage the currently available practices related

to control-�ow and assist them in obtaining more robust solutions. The methods

and techniques presented in this thesis are based on the following three categories of

techniques.

1. The very �rst problem addressed in this thesis is to handle the situation of non-

stationary learning problem named concept drift. Majority of process mining

algorithms are stationary in nature. Due to concept drift, these algorithms

generate obsolete analysis results. This thesis proposes a method for handling

concept drift. Which can be seen as the missing component in the currently

existing process mining algorithms. The proposed method can act as a necessary

and o�-the-shelf component in the upcoming algorithms of process mining.

2. In process mining, historically control �ow perspective is depicted using con-

nections between activities of the process (For example, Petri-net and Causal

net process models). But there is no method for representing the consensus of

the traces, the order of prevalence of the activities, information content, rela-

tive signi�cance and conserved and shared activities/sequences of the process.

We have developed a graphical notation named trace logo for addressing all the

previously mentioned issues.

3. Capturing the operational process behavior and predicting the most frequent

execution patterns in information systems has always been an matter of interest

in process mining. Through Position Speci�c Scoring Matrix method we are able

to capture the process state for detecting and predicting the most signi�cant

part of the control-�ow.
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1.3 Motivation

Following are most important facts and observations compelled us to explore our

curiosity in this direction.

• The operational processes are the intellectual property of any organization. The

method in which a particular task is carried out di�ers from an organization to

the other. Business processes have to be adjusted to meet the demands, un-

foreseen events, peer competition and �erce modi�cations in the agreed service

levels. For keeping an organization in the abreast of competition curve, change

in the operational process becomes inevitable. Variations in the process are

directly re�ected in the event log. Currently, available process mining tech-

niques stumble to produce stable analysis while analyzing event log of changed

processes.

• ProM (Van Der Aalst et al., 2007a; Veck, 2016; Rubin et al., 2007) is the open

source process mining framework o�ers more than 1200 algorithms in the form

of plugins. But, the majority of these algorithms behave poorly and generate

obsolete results when they are confronted with the process which has changed

during the execution period.

• Currently available process mining algorithms assume that the operational pro-

cess as a static entity and it does not change during the period of execution

and analysis. But in reality, process tend to change in order to satisfy the

intermittent needs, deadline, competition, and demands.

• Lack of taxonomy for classifying concept drift based on change types, patterns

of change, perspectives, and mode of handling.

• Though there are several control-�ow modeling methods are available, the in-

formation depicted by them are limited to activities and connections between

activities. There is a need for the notation which could compactly represent con-

trol �ow of a process with consensus, information content, relative signi�cance,

conserved activity or sequences details.
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• There is a need for a method which could capture the control �ow structure

of a process. The obtained process structure could be used for detection and

prediction of frequent activities and sequence of activities.

1.4 Research Contributions

Following contributions of this research work are available to the research community

in the form of journal and conference publications.

• Taxonomy for classifying di�erent categories of concept drift: It

provides information for identifying classifying various categories of concept drift

based on change type, change pattern, perspectives of change, mode of handling,

sub problems and duration of change.

• Framework for detecting control-�ow concept drift: Detecting any

changes in the underlying process is the primary problem. For this, a complete

event log is split into many small logs, and feature values embodying control-

�ow characteristics are extracted. Comparing features by employing statistical

hypothesis reveals the control-�ow drifts in sub-log level.

• Localizing concept drift in control-�ow perspective: Localizing process

change is the second step in handling concept drift. It aims at identifying the

cases and traces a�ected by the change in the process. Trace speci�c feature set

is constructed and analyzed to localize the changes.

• Notation for illustrating control-�ow more meaningfully: A control-

�ow modeling notation named trace logo has been proposed. Unlike traditional

approaches, trace logo is capable of displaying trace consensus, the relative sig-

ni�cance of activities, conserved/shared activity/sequence, relative occurrence,

and information score.

• Identifying frequent paths of execution in Lasagna processes: Finding

the frequent paths of execution in Spaghetti process has been a matter of interest

in the process mining research.
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• Simplifying Spaghetti structured process to Lasagna structure: Spaghetti

processes are unstructured, unreadable, and di�cult to comprehend. The meth-

ods assisting in converting Spaghetti process to Lasagna process has been pro-

posed.

• Identifying and predicting possible and impossible paths of execution:

Methods and techniques have been demonstrated for identifying the possible and

impossible paths of execution in Spaghetti structured processes. Identifying the

set of possible and impossible traces help in optimizing the complex Spaghetti

process in which they have numerous activities and paths.

1.5 Outline of the Thesis

This section brie�y describes each chapter of this thesis, in order to give a brief

overview about the structure.

• Chapter 1, the current chapter introduces the general domain of process mining

and motivates the need for new mining techniques that are capable of handling

concept drift, control-�ow visualization, and complexity reduction.

• Chapter 2 introduces the concepts and notations such as sets, lists, relations,

functions, event logs, and method for producing arti�cial event logs that are

needed for this thesis.

• Chapter 3 describes the literature survey related to the research problem and

objectives mentioned in this thesis.

• Chapter 4 Introduces the method for detecting and locating sudden control

�ow the concept drift.

• Chapter 5 proposes the method for constructing the control �ow visualization

notation named process logo.

• Chapter 6 explains the method for simplifying the Spaghetti structured control

�ow to extract Lasagna structured control �ow. It also explains about how to

�nd the possible and impossible paths of execution in simpli�ed Lasagna control-

�ow.
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• Chapter 7 proposes the methods and techniques for capturing the process

execution information for identifying the frequent execution patterns.

• Chapter 8 concludes the thesis and summarizes the contributions. Further-

more, the possible directions in which the proposed methods and techniques

that can be improved are also brie�y discussed.
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Chapter 2

Preliminaries

In this chapter we discuss the necessary concepts and notations used in the upcoming

contents of this thesis.

2.1 Sets, Lists, Relations and Functions

De�nition 2.1. (Set notation)
A set is a in�nite collection of elements. A �nite set is denoted by listing its elements
between braces. For example, a set S with elements a, b and c is represented as
{a, b, c}. The empty set, i.e. the set with no elements, is denoted by φ.

By considering A and B as two sets, We de�ne the following operations on sets.

• Number of elements in set A is denoted by |A|.

• a ∈ A denotes that an element a is present in set A.

• A ∩ B denotes the intersection of sets A and B, is the set containing elements

that are both in A and B: A ∩B = {x|x ∈ A ∧ x ∈ B}.

• A ∪B denotes the union of two sets, is the set containing all elements that are

in either A or B: A ∪B = {x|x ∈ A ∨ x ∈ B}.

• A \B denotes di�erence between two sets. Is the set containing all elements of

A that do not exist in B: A \B = {x|x ∈ A ∧ x /∈ B}.

• Set A becomes subset of B (denoted by A ⊆ B), if all elements of A are also in

B. The set A is called proper subset (denoted by A ⊂ B) of B, if A ⊆ B, but

not A = B. Power set of A denoted by P(A), it contains all possible subsets of

A. If set A and B does not contain any common elements, then they are called

as disjoint sets (denoted by A ∩B = φ).
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We use letter N for denoting set of all natural numbers (for example, N = {0, 1, 2, 3...})

and N+ denotes the set of all positive natural numbers (N+ = N \ {0}).

De�nition 2.2. (Cartesian product and ordered pairs)
The Cartesian product of two sets A and B is denoted as the set |A×B| = {(a, b)|a ∈
A∧ b ∈ B}. Where, �rst set in the Cartesian product (i.e., set A) is known as source
set, and the second set (i.e., set B) is known as target set.

In a Cartesian product each element of a source set is related to every element of

a target set. For example, Cartesian product of the sets A = {a, b} and B = {1, 2} is

{(a, 1), (a, 2), (b, 1), (b, 2)}.

De�nition 2.3. (Relation)
Let A and B be two sets. A relation is a subset of the Cartesian product, which
relates some elements of A with some elements of B (denoted by aRb, where the set
R ⊆ A×B is called a relation from A to B).

The domain of the relation is the set Dom(R) = {a ∈ A|∃b ∈ B : aRb}. Its range

is the set Rng(R) = {b ∈ B|∃a ∈ A : aRb}. Relations that have the same source

set and target set, we de�ne the notions of re�exivity, symmetry, transitivity and

antisymmetry. Let A be a set and let R ⊆ A× A be a relation, then,

• R is re�exive if aRa for all a ∈ A.

• R is irre�exive if ∼ (aRa) for all a ∈ A.

• If aRb implies bRa for all a, b ∈ A, the relation is symmetric.

• If aRb and bRc implies aRc for all a, b, c ∈ A, the relation is transitive.

• Relation R is antisymmetric if aRb and bRa imply a = b for all a, b ∈ A.

De�nition 2.4. (Functions)
A function is a relation that uniquely associates members of one set with members of
another set (denoted by f : A→ B).

A function f from A to B is a relation such that for all a ∈ A is individually

linked with an object f(a) ∈ B. This implies that a function can be many-to-one or

one-to-one relation. The set A of values at which a function is de�ned is called its

domain, while the set f(A) ⊆ B of values that the function can produce is called its

range. Here, the set B is called the codomain of f .
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De�nition 2.5. (Multiset or Bag)
In a multiset (or bag), the members (elements) are allowed to appear more than once,
whereas in a set the members can appear only once.

For example, a multiset consisting of two occurrences of a, two occurrences of b

and single occurrence of c is denoted by A = [a, a, b, b, c], same can also be represented

as [a2, b2, c]. The superscript in the multiset representation signi�es that how many

times an element appeared (multiplicity of the particular element).

The empty bag, i.e. the bag for which all elements have multiplicity 0, is denoted

by φ. If the multiplicity of an element is 0, we omit the element. Given a set A,

multiset is de�ned as cardinal value function M : A → N0 and M(x) = 0 if x /∈ A.

Set of all multisets over A is denoted by B(A) = A→ N0.

De�nition 2.6. (Sequences)
Let S be a set. A sequence σ over S of length n ∈ N is a function σ : {1, ..., n} → S.

Given a sequence s and set A,

• Sequence s of length n are represented as 〈s1, s2, s3, .., sn〉.

• Length of sequence s is denoted by |s|.

• ith symbol of s is represented by s(i).

• A subsequence of s that starts at position i and ends at position j of s is

represented by s(i, j).

• A Head pre�x of length i of s is represented by si it is equivalent to s(1, i).

• A tail of a sequence s (su�x) that begins at position i is represented by s(i, |s|).

• A new sequence p can be obtained by concatenating two sequences s = 〈s1, s2, ..sm〉

and t = 〈t1, t2, ..tn〉. After concatenation the resulting sequence p can be denoted

by s♦t, and it will be of length m+ n.

• A∗ represents the set of all �nite sequences over A.

• Set of all sequences of length n over set A is denoted by An (is ⊆ A∗).
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De�nition 2.7. (Tuple)
Tuple (list) is a collection of ordered elements. LetA be a set and let t = 〈a1, a2, ..., an〉 ∈
A× ...×A be a tuple of n elements (generally called as n tuple). t(i) refers to ith ele-
ment of tuple t. For example, let 〈a, b〉 ∈ A×A be a tuple of 2 elements t1(〈a, b〉) = a
and t2(〈a, b〉) = b.

2.2 Event Log

The starting point of process mining is the observed behavior of process executions,

stored in event logs. Since the event logs of information systems provide factual data

about the underlying processes, they are a precious source of information. Primarily

an event log consists of a bag of event traces (sequence of events that is recorded for

a process instance is called a trace) and all traces are assumed to be from the single

process. Same traces of events may occur multiple times indicating that di�erent

cases followed the same path in the process. Each line in the event log represents one

event, and each column represents an attribute of this event. An event is associated

with a case or process instance.

Table 2.1 shows an example of an event log of the hospital patient admission

process. This event log will be used for discussion and illustration in this chapter.

To better understand the structure of event log, a tree diagram of hospital patient

admission event log is given in �g. 2.1. Using tree structure, we can describe the

structure of event log as follows,

• A process involves numerous cases; a case comprises of events. Each event

relates to the exactly single case, identi�ed by case id.

• Events inside a case are well-ordered. Events can be explained by various at-

tributes such as activity name, event id, timestamp, cost, data, resources, etc.

The typically seen information in the event log and their explanations are as follows.

• Case id is used for distinctly identifying a particular instance of the process.

For example, ab12, ac13, etc. represent the case ids in the hospital admission

event log given in table 2.1.

• Event id assigns a distinct identi�er for every event related to a speci�c case.

For example, event 2346 of case ab12 and event of 3347 of case ac13.
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Case id Event id
Properties

Timestamp Activity Resource Cost ...

ab12

2342 10-10-2012:01.20 Appointment Anne 200 ...

2343 11-10-2012:07.24 Admit patient Jhon 100 ...

2344 12-10-2012:08.24 Check history Thomas 400 ...

2345 13-10-2012:12.24 Decide Clar 50 ...

2346 13-10-2012:13.25 Begin treatment Ram 10 ...

ac13

3347 14-10-2012:01.29 Appointment Anne 200 ...

3348 14-10-2012:01.34 Out patient Wil 20 ...

3349 14-11-2012:16.34 Check history Thomas 300 ...

3350 15-11-2012:08.22 Decide Clar 50 ...

3351 15-11-2012:09.17 Discharge Ram 100 ...

ad14

4352 22-11-2012:07.47 Appointment Anne 200 ...

4353 23-11-2012:12.31 Admit patient John 100 ...

4354 25-11-2012:19.41 Check history Thomas 50 ...

4355 25-11-2012:18.14 Decide Clar 50 ...

4356 25-11-2012:19.37 Re-examine Steven 100 ...

4357 26-11-2012:01.00 Out patient Wil 20 ...

4358 28-11-2012:02.00 Check history Thomas 100 ...

4359 29-11-2012:13.37 Decide Clar 400 ...

4360 30-11-2012:02.20 Discharge Ram 100 ...

ae15

5361 30-12-2013:02.20 Appointment Anne 200 ...

5362 11-01-2013:02.20 Check history Thomas 300 ...

5363 12-01-2013:03.20 Admit patient Jhon 20 ...

5364 12-01-2013:15.20 Decide Clar 50 ...

5365 13-01-2013:17.20 Discharge Ram 30 ...

af16

6366 17-01-2013:22.20 Appointment Anne 200 ...

6367 17-01-2013:23.17 Out patient Wil 50 ...

6368 19-01-2013:01.20 Check history Thomas 100 ...

6369 19-01-2013:04.20 Decide Clar 20 ...

6370 19-01-2013:15.20 Re-initiate Steven 400 ...

6371 19-01-2013:22.20 Admit patient Jhon 300 ...

6372 20-01-2013:05.20 Check history Thomas 200 ...

6373 23-01-2013:07.20 Decide Clar 300 ...

6374 24-01-2013:14.20 Begin treatment Ram 200 ...

... ... ... ... ... ... ...

Table 2.1: Event log of hospital admission process.
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Activity: Appointment

Timestamp: 10-10-2012:01.20

Resource: Anne

Cost: 200

...

Activity: Decide

Timestamp: 13-10-2012:1:37

Resource: Clar

Cost: 50

Activity: Begin treatment

Timestamp: 13-10-2012:13:25

Resource: Ram

Cost: 10

Activity: Appointment

Timestamp: 14-10-2012:7.47

Resource: Anne

Cost: 200

...

Activity: Decide

Timestamp: 15-11-2012:08.20

Resource: Clar

Cost: 50

Activity: Discharge

Timestamp: 15-11-2012:09.17

Resource: Ram

Cost: 100

...

...

Hospital 

Admission 

Process

Case Id Event Id

Activity: Appoint

Timestamp: 17-01-2013:22.20

Resource: Anne

Cost: 200

... ...

Event details

...

ab12

ac13

af16

2342

2345

2346

3347

3351

2658

6366

... ... ...

Figure 2.1: Tree structure of process log (taken from Van Der Aalst (2011) and
adopted according to the context of the thesis).

� Activity assigns a readable name for every event of a case. For example,

event 2346 of case ab12 and event of 3347 of case ac13 points to an ac-

tivity named Appointment. But activity Appointment will be carried out

separately for both the cases.

� Resources identify the individuals or machines who are assigned and re-

sponsible for executing a speci�c activity. For example, Ram is assigned

as a resource for executing the activity Discharge related to all cases.

� Timestamps record the duration between the start and end of a particular
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activity.

� The expenditure incurred while executing a speci�c activity is recorded in

the cost �eld.

� Data objects related with the process are recorded in the data �eld. Typ-

ical data objects are messages, �les, documents, guards, videos, voice, and

conditions.

We now formalize the various notations related to event log,

De�nition 2.8. (Event and attribute) Let E be the set of all event identi�ers
and AN be the set of all attributes. For an attribute s ∈ AN let Xx is a universal
set (consists of set of all possible values of x). Given E and an attribute x ∈ AN ,
#x(e) =⊥ is the value for all attributes x not de�ned in e and #x : E → Xx ∪ {⊥}
denotes value of attribute x for any event e ∈ E .

De�nition 2.9. (Classi�er)
A classi�er is a function that maps an event into a representative name used for

particular type of analysis. For any event e ∈ E let ē be the name of the event. For
example, if events are identi�ed by their activity names, then ē = #activity(e).

For any given event e, we use standard attributes such as activity, resource and

time. Let A be the set of activities, T be the time domain, R be the set of resources,

and TT be set of transaction types, then,

• #activity(e) ∈ A signi�es the activity associated with event e.

• #resource(e) ∈ R indicates the resource performing the event e.

• #time(e) ∈ R indicates the timestamp of event e.

• #trans(e) ∈ TT indicates the transaction type associated with the event e.

Transaction type attribute refers to activity life-cycle phases such as schedule,

start, suspend, complete, etc.

De�nition 2.10. (Case, Trace and Event log)
Let C is the set of all case identi�ers and AN be the set of all attributes. For

any given case c ∈ C and attribute x ∈ AN , #x : C → Xx ∪ {⊥} indicates value of
attribute x for case c.

Trace (a mandatory attribute of a case) represents a �nite sequence of events
t ∈ E∗ such that no two event in trace are same, i.e., for 1 ≤ i < j ≤ |t|, t(i) 6= t(j)
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If activity name is used as a classi�er, then a trace corresponds to sequence of

activities. Such scenario results in more than one cases with same activity sequence.

Therefore, an event log is a multi-set of traces.

De�nition 2.11. (Simple event log)
Let A be a set of activity names. A simple trace σ is a sequence of activities, i.e.,

σ ∈ A∗. A simple event log L is a multi-set of traces over A , i.e., L ∈ B(A∗).

All cases in event log L can be converted into sequences of activity names using

the classi�er, #activity(e). Applying this classi�er to the cases shown in table 2.1, then

we obtain the following simple event log,

L =[〈 Appointment, Admit patient, Check history, Decide, Begin

treatment 〉, 〈 Appointment, Out patient, Check history, Decide,

Discharge〉, 〈 Appointment, Admit patient, Check history, Decide,

Re-examine, Out patient, Check history, Decide, Discharge 〉, 〈

Appointment, Check history, Admit patient, Decide, Discharge〉, 〈

Appointment, Out patient, Check history, Decide, Re-initiate, Admit

patient, Check history, Decide, Begin treatment 〉, ..]

Projection using resource classi�er can be used in mining organizational models,

social networks, etc. By choosing resource classi�er #resource(e), the sample event log

results as,

L =[〈 Anne, Jhon, Thomas, Clar, Ram 〉, 〈 Anne, Wil, Thomas, Clar, Ram〉, 〈 Anne,

John, Thomas, Clar, Steven, Wil, Thomas, Clar, Ram 〉, 〈 Anne, Thomas, John,

Clar, Ram〉, 〈 Anne, Wil, Thomas, Clar, Steven, John, Thomas, Clar, Ram 〉, ..]

2.2.1 Control-�ow: causal relationships

The least necessity for process mining is that any event can be related to both a case

and an activity and that events within a case are ordered. Therefore, the case id and

activity columns in process log are necessary for process mining. Based on the type

of analysis, a subset of information available in event log is considered. For example,

activity column is the bare minimum requirement for discovering the control-�ow

perspective of a process. Which shows the causal relationships between activities in
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Case id Trace

xx12 〈 a, b, d, e, g 〉

xx13 〈 a, c, d, e, h 〉

xx14 〈 a, b, d, e, f, c, d, e, h 〉

xx15 〈 a, d, b, e, h 〉

xx16 〈 a, c, d, e, f, b, d, e, g, l, m 〉

... ...

Table 2.2: control-�ow traces of hospital admission process.

a process. Control �ow traces of hospital admission process is shown in Table 2.2.

Here, each case is represented by a chain of activities which results as a trace. For

simplicity, the activity names are mapped to alphabet labels.

Figure 2.2: Petri-net model of hospital admission process.

Control-�ow model depicting the causal relationship between activities of hospital

admission process is shown in �g. 2.2. It is built using petri net (a petri net is a

triplet N = (P, T, F ) where P is a �nite set of places, T is a �nite set of transitions

such that P ∩ T = φ, and F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs, called the

�ow relation.) notations. According to control �ow process model shown in �g. 2.2, a

patient has to take an appointment (a) and visit the hospital, based on the condition

of patient, the case is considered as out patient (c) or admit patient (b). Concurrently,

the medical history(d) of the patient is veri�ed. On the basis of veri�cation outcome,

the decision (e) is taken either to admit (g) or discharge (h) the patient. If the case
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still needs further evaluation, case is re-examined (f) and the process is carried out

allover again.

2.3 Representing and Storing Event Log

For analyzing event log using process mining methods, event logs should be based on

typical process meta-model such as Mining eXtensible Markup Language (MXML)

format. For addressing the practical limitations in MXML (Van Der Aalst, 2011),

IEEE task force on process mining has proposed and adopted a new process meta

model named eXtensible Event Streams (Verbeek et al., 2010).

Attribute

WorkflowLog

SourceSource
Process

ProcessInstance

AuditTrailEntry

Data WorkflowModelElement EventType Timestamp Originator

1

1

0..1

1

0..1

0..1

0..10..1 0..10..11
1

1

0..n

0..1

1..n

0..n

0..n

1

1

Figure 2.3: Event log structure in MXML format.

2.3.1 Mining eXtensible Markup Language

Uni�ed Modeling Language (UML) class diagram of MXML has shown in �g. 2.3.

Fragment of event log related to hospital admission process in MXML format has

been shown in the listing 2.1.

The root element in MXML format is WorkflowLog. Which contains the process

information related one or more processes, it can optionally can contain Source el-

ement, which signi�es the system from which the particular log has been obtained.
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Log

Trace

Event

String

Date

Int

Float

Boolean

Value

Key

name

prifix

URI

Attribute

<trace-global>

<declares>

<defines><defines>

<defines>

<contains>

Classifier

Extension

<contains>

<contains>

<trace-global>

<contains>

Figure 2.4: Event log structure in XES format.

Each Process in WorkflowLog consists of any number of ProcessInstances. Each

ProcessInstance is made-up of ordered collection of events termed as AuditTrail

Entry.

WorkflowModelElement and EventType are the mandatory constituent parts of

AuditTrailEntries. It can optionally contain additional information such as Time

stamp and Originator. All elements in MXML format have optional Data element

for storing additional information as Attributes in the form of key and value pairs.

MXML su�ers from a few limitations such as,

• It can only be used for recording the events originating from well-structured

processes and work�ow environments.

• It cannot be employed for capturing the events emanating from non-work�ow

systems.

• It doesn't support extensibility options to incorporate additional knowledge.
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2.3.2 eXtensible Event Streams

Until recently, MXML and its variant such as Semantically Annotated Mining eX-

tensible Markup Language (SA-MXML) are the de-facto standards for storing and

exchanging event logs in digital format. Based on many practical limitations with

MXML (and SA-MXML), the XES format has been accepted as a standard event log

format. XES has been made less restrictive and truly extensible.

General structure of XES metamodel is shown in �g.2.4. An XES document

contains one event log with any number of cases and attributes which can be nested.

XES permits the usage of �ve basic data types, namely, Boolean, Integer, String, Date,

and Float for the standard built-in data types of XML xs:boolean, xs:int, xs:string,

xs:dateTime, and xs: �oat respectively. The attribute that is mandatory should be

declared as global. Listing 2.2 shows the part of event log related to hospital admission

process in XES format.

XES permits the declaration of �ve standard extensions. Through extensions

semantics of attributes are speci�ed.

• Concept: de�nes the name attribute for traces and events. For traces, the

attribute typically represents distinct identi�er for the case. For events, the

attribute typically represents the activity name.

• Time: de�nes the timestamp attribute for events.

• Organization: de�nes three standard attributes for events: resource, role and

group. The resource attribute refers to the resource that triggered or executed

the event. The role and group attributes characterize the (required) capabilities

of the resource and the resource's position in the organization.

• Lifecycle: de�nes the transition attribute for events, possible values of this

attribute are schedule, start, complete, auto, skip, etc.

• Semantic: de�nes the model reference attribute for all elements in the log.

This is used for pointing to concepts in the ontology. For example, if there is

any ontology explaining various classes of memberships, for example, Platinum,

Gold, and Silver. Using semantic extension, any given trace can refer to the

suitable element in the ontology for classifying the memberships.
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Listing 2.1: Event log of hospital admission process in MXML format.

<WorkflowLog ...>

<Source program="Hospital process"/>

<Process ...>

<ProcessInstance id="xx12">

<AuditTrailEntry >

<Data>

<Attribute name="Costs">200</Attribute >

</Data>

<WorkflowModelElement >Appointment </WorkflowModelElement >

<EventType >complete </EventType >

<Timestamp >10 -10 -2012 T01:20 </Timestamp >

<Originator >Anne</Originator >

</AuditTrailEntry >

<AuditTrailEntry >

<Data>

<Attribute name="Costs">100</Attribute >

</Data>

<WorkflowModelElement >Admit patient </WorkflowModelElement >

<EventType >complete </EventType >

<Timestamp >11 -10 -2012 T07:24 </Timestamp >

<Originator >John</Originator >

</AuditTrailEntry >

<AuditTrailEntry >

<Data>

<Attribute name="Costs">400</Attribute >

</Data>

<WorkflowModelElement >Check history </WorkflowModelElement >

<EventType >complete </EventType >

<Timestamp >12 -10 -2012 T08:24 </Timestamp >

<Originator >Thomas </Originator >

</AuditTrailEntry >

<AuditTrailEntry >

<Data>

<Attribute name="Costs">50</Attribute >

</Data>

<WorkflowModelElement >Decide </WorkflowModelElement >

<EventType >complete </EventType >

<Timestamp >13 -10 -2012 T12:24 </Timestamp >

<Originator >Clar</Originator >

</AuditTrailEntry >

<AuditTrailEntry >

<Data>

<Attribute name="Costs">10</Attribute >

</Data>

<WorkflowModelElement >Begin treatment </WorkflowModelElement >

<EventType >complete </EventType >

<Timestamp >13 -10 -2012 T13:25 </Timestamp >

<Originator >Ram</Originator >

</AuditTrailEntry >

</ProcessInstance >

<ProcessInstance id="xx13">

<AuditTrailEntry >

<Data>

<Attribute name="Costs">50</Attribute >

</Data>

<WorkflowModelElement >Appointment </WorkflowModelElement >

<EventType >complete </EventType >

<Timestamp >14 -10 -2012 T01:29 </Timestamp >

<Originator >Anne</Originator >

</AuditTrailEntry >

...

</ProcessInstance >

...

</Process >

</WorkflowLog >
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Listing 2.2: Event log of hospital admission process in XES format.
<?log xes.version="1.0" xes.features="nested -attributes">

<extension name="Concept" prefix="concept" uri="http: //.../ concept.xesext"/>

<extension name="Time" prefix="time" uri="http: //.../ time.xesext"/>

<extension name="Organizational" prefix="org" uri="http: //.../ org.xesext"/>

<global scope="trace">

<string key="concept:name" value="name"/>

</global >

<global scope="event">

<date key="time:timestamp" value="2012 -09 -16"/>

<string key="concept:name" value="name"/>

<string key="org:resource" value="resource"/>

</global >

<classifier name="Activity" keys="concept:name"/>

<classifier name="Resource" keys="org:resource"/>

<classifier name="Both" keys="concept:name org:resource"/>

<trace>

<string key="concept:name" value="xx12"/>

<event>

<string key="concept:name" value="Appointment"/>

<string key="org:resource" value="Anne"/>

<date key="time:timestamp" value="10 -10 -2012 T01:20"/>

<string key="Event_ID" value="2342"/>

<string key="Costs" value="200"/>

</event>

<event>

<string key="concept:name" value="Admit patient"/>

<string key="org:resource" value="John"/>

<date key="time:timestamp" value="11 -10 -2012 T07:24"/>

<string key="Event_ID" value="2343"/>

<string key="Costs" value="100"/>

</event>

<event>

<string key="concept:name" value="Check history"/>

<string key="org:resource" value="Thomas"/>

<date key="time:timestamp" value="12 -10 -2012 T08:24"/>

<string key="Event_ID" value="2344"/>

<string key="Costs" value="50"/>

</event>

<event>

<string key="concept:name" value="Decide"/>

<string key="org:resource" value="Clar"/>

<date key="time:timestamp" value="13 -10 -2012 T12:24"/>

<string key="Event_ID" value="2345"/>

<string key="Costs" value="50"/>

</event>

<event>

<string key="concept:name" value="Begin treatment"/>

<string key="org:resource" value="Ram"/>

<date key="time:timestamp" value="13 -10 -2012 T13:25"/>

<string key="Event_ID" value="2346"/>

<string key="Costs" value="10"/>

</event>

</trace>

<trace>

<string key="concept:name" value="xx13"/>

<event>

<string key="concept:name" value="Appointment"/>

<string key="org:resource" value="Anne"/>

<date key="time:timestamp" value="14 -10 -2012 T01:29"/>

<string key="Event_ID" value="3347"/>

<string key="Costs" value="200"/>

</event>

...

</trace>

...

</log>
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2.4 Process Mining Framework: ProM

In the early days of process mining research, a numerous ad-hoc process mining tools

were created which were limited to the only subset of process mining algorithms.

Examples for the ad-hoc tools are, Enhanced Mining Tool (EMiT) (Van Dongen and

Van Der Aalst, 2004), Mining Social Networks (MinSon) (Van Der Aalst and Song,

2004), Mining Module (MiMO) (Van Der Aalst et al., 2004), and Rule of thumb

(Weijters and Van Der Aalst, 2003). In 2004, the development of ProM was started

to combine all the available process mining ad-hoc and future implementations.

2.5 Arti�cial Event Log Synthesis

Process Mining algorithms are target applications for real-world event logs. A major-

ity of times, real-world event logs are not the best data to evaluate a process mining

algorithm during the development phase. The main reason for this is real-world event

logs may be far from complete and contain outliers, which can pose di�culty in de-

termining whether an incorrect result is due to input log or mining algorithm. It is

necessary to retain control over the test data for evaluating the quality of the new

mining algorithm.

An e�ective way for testing a newly developed process mining algorithm is to use

arti�cially created event log. Arti�cially created data o�ers the complete control over

the various characteristic of event data. Once the algorithm can generate the expected

results using arti�cial data, the event logs generated by real-world processes become

target application for process mining algorithms.

A preferable way for synthesizing arti�cial event log is simulating process models.

This implies that an executable process model is created under controlled conditions,

allowing event log to record the prede�ned events. A variant of Petri-nets called

Colored Petri Nets (CPN) (Jensen and Kristensen, 2009) can be used for accomplish-

ing this purpose. CPN in conjunction with CPNXES library (Michael, 2011) allows

a designer to keenly control the semantics of execution, by focusing on the desired

characteristics.

Modeling, execution, and analysis of CPN is supported by CPN tools (Jensen and

Kristensen, 2009). Following are the two steps required for synthesizing CPN using
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role0, []));
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role0, []));
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action

(addATE(id, "Re-examine", 
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action
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action
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action

(addATE(id, 

"Admit patient", 
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input (id, role1);
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action

(addATE(id, 

"Appointment", 
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if OK(id)

then 1`(id+1)

else empty

Figure 2.5: CPN model of hospital admission process.

CPN Tools.

• Creating CPN net to call functions for generating events for every case executed.

It consists of a simulated process model, along with the functions for input,

action, and output on transitions.
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• Use ProMimport plugin (Van Der Aalst et al., 2007a) in ProM framework to

group the events in the event log for independent cases into generating single

XES or MXML �le.

Equipping a CPN model for generating event logs is a straightforward process.

From the CPN model, there needs to call two di�erent logging functions. The �rst

function allows to create a new case with case id and the second function generates

an event on speci�c case. The case can further be explained by name, resource, cost,

etc.

The most time-consuming step in generating arti�cial event log is creating CPN

process model. Once it is created, it is straightforward to extend it to logging facility.

One such example of CPN model with logging facility has been shown in �g. 2.5.

Which represents CPN model of hospital admission process.
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Chapter 3

Literature Survey

There are several contributions done by the researchers all over the world which

has helped us in identifying the research gaps, and addressing them by proposing the

suitable solutions. This chapter presents the set of scienti�c literature we have referred

in this thesis. Literature related to three diverse categories of research issues in process

mining are discussed in the upcoming sections, at �rst we discuss the study related

to non-stationary learning problem called concept drift, then we present the extensive

study on the set of available control-�ow process modeling notations and algorithms,

and �nally the concept of Spaghetti and Lasagna process has been discussed.

3.1 Process Mining

Process mining emerged in the last decade (Van der Aalst et al., 2003; Van Der Aalst

et al., 2007a). However, the roots date back about half a century. For example, Nerode

(1958) presented an approach to synthesize �nite-state machines from example traces,

Petri (1962) introduced the �rst modeling language adequately capturing concurrency,

and Gold (1967) was the �rst to systematically explore di�erent notions of learnability.

When data mining started to �ourish in the nineties, little attention was given to

processes. Moreover, only recently event logs have become omnipresent thus enabling

end-to-end process discovery. Since the �rst survey on process mining (Van der Aalst

et al., 2003), progress has been spectacular.

Process mining techniques have become mature and supported by various tools.

Moreover, whereas initially the primary focus was on process discovery, the process

mining spectrum has broadened markedly. For instance, conformance checking, multi-
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perspective process mining, and operational support have become integral parts of

ProM, one of the leading process mining tools.

3.1.1 Overview of Process Mining

Process mining is a relatively young research discipline that sits between compu-

tational intelligence and data mining on the one hand, and process modeling and

analysis on the other hand. The idea of process mining is to discover, monitor and

improve real processes (i.e., not assumed processes) by extracting knowledge from

event logs readily available in today's (information) systems. Process mining includes

(automated) process discovery (i.e., extracting process models from an event log),

conformance checking (i.e., monitoring deviations by comparing model and log), so-

cial network/ organizational mining, automated construction of simulation models,

model extension, model repair, case prediction, and history-based recommendations.

Process mining provides an important bridge between data mining and business

process modeling and analysis. Under the Business Intelligence (BI) umbrella many

buzzwords have been introduced to refer to rather simple reporting and dashboard

tools. Business Activity Monitoring (BAM) refers to technologies enabling the real-

time monitoring of business processes. Complex Event Processing (CEP) refers to

technologies to process large amounts of events, utilizing them to monitor, steer and

optimize the business in real time. Corporate Performance Management (CPM) is

another buzzword for measuring the performance of a process or organization. Also

related are management approaches such as Continuous Process Improvement (CPI),

Business Process Improvement (BPI), Total Quality Management (TQM), and Six

Sigma. These approaches have in common that processes are put �under a microscope�

to see whether further improvements are possible. Process mining is an enabling

technology for CPM, BPI, TQM, Six Sigma, and the like.

3.2 Concept Drift

The word concept drift was coined by Schlimmer and Granger Jr (1986) in the article

�Incremental learning from noisy data�, and since then, the concept drift phenomenon

is widely considered in all research disciplines involving data analysis. Concept drift
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in many data research disciplines is referred to as a change in properties of the target

variable which the model is trying to predict over time in unforeseen ways. This causes

the predictions become less precise over the time. Hence, it makes concept drift as a

non-stationary learning problem (Hand et al., 2006). The major concentration is on

designing the e�cient learning algorithms that can adapt to data changes over time,

for example, variations in the distributions of numerical, categorical and nominal

variables.

Learning algorithms usually required to operate in changing environments, which

is shifting unexpectedly. One general property of these algorithms is their ability to

include new data. If the data producing process is not stringently stationary, the

underlying concept, which we are predicting (for example, interests of a user reading

news), may be shifting over time. The capacity to adjust to such concept drift can

be seen as a natural expansion for data analysis algorithm.

Concept drift phenomenon has been extensively under consideration for research

in various data analysis discipline from the past two decades (Widmer and Kubat,

1996; Tsymbal, 2004; Schlimmer and Granger, 1986). Concept drift is known as co-

variate shift in machine learning (Blitzer et al., 2008; Jiang and Zhai, 2007), temporal

evolution in information retrieval (Wu et al., 2005), dynamic environment in arti�cial

intelligence and robotics (Luo et al., 2007; Yang and Yao, 2008), and non-stationary

learning problem in time series analysis (Hand et al., 2006). Unfortunately, concept

drift phenomenon is not addressed in process mining (Van Der Aalst et al., 2012).

3.2.1 General approach for handling concept drift

E�ective learning in environments with concept drift requires a learning algorithm

that can detect context changes without being explicitly informed about them, can

quickly recover from a context change and adjust its hypothesis to a new concept,

and can make use of previous experience in situation where old and corresponding

concepts reappear.

One possible approach is shown in �g. 3.1. As the context is known to vary in

time, the learner trusts only the latest examples. This set is referred to as window.

Examples are added to window as they arrive, and oldest examples are deleted from

it. Both of these actions trigger modi�cations to current concept hypothesis to keep
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Figure 3.1: Generalized approach for addressing concept drift.

it consistent with the examples in the window.

Learner maintains a store of concept descriptions or hypothesis pertaining to pre-

viously encountered contexts. This is indicated in the lower left part of the �g. 3.1.

When learner suspects a concept change, it will examine the potential of previously

stored concepts to provide better classi�cations. Based on the result, the system may

either replace the current concept descriptions with best stored descriptions, or start

developing an entirely new description.

For e�ciently handling concept drift, the following set of ideas are necessary.

• Operators that modify the concept description in reaction to changes in content

of window.

• Ability to decide when and which concepts should be deleted from set of old

descriptions.

• Strategy that maintains the store of current and old descriptions.

• Strategy to asses the relative merits of stored and current hypothesis.

3.2.2 Concept drift in process mining

In process mining, the task of handling concept drift is to discover the changes and up-

date the process model to re�ect the latest state of the process. Speci�cally, handling

concept drift seeks to analyze changes in the complex artifacts such as models de-

scribing choices, concurrency, loops and cancellation. However, the experiences from

other research disciplines can be adopted to deal with the concept drift in process

mining. But, the nature of process changes and structure of process models pose new

challenges and demands the development of suitable techniques.
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A Clustering and classi�cation

There has been some attempts to �nd the versions of a process by applying clustering

and classi�cation methods of data mining (Song et al., 2009; Luengo and Sepúlveda,

2012; Bose and Van Der Aalst, 2009b; Bezerra et al., 2009). But, �nding di�erent

versions of the process does not consider the type, pattern, and perspective of concept

drift. Hence there is a need for research to �nd better solutions to handle concept

drift.

B Use of �exible execution patterns

Currently, in the �eld of process �exibility, con�guring the work�ow system has be-

come adaptive. A collection of change patterns related to control-�ow (Russell et al.,

2006), data (Russell et al., 2004a), and resource (Russell et al., 2004b) perspectives

have been described. Schonenberg et al. (2008) and Regev et al. (2006) have provided

the detailed classi�cation of several �exibility and adaptability methods. Processes

executing in information systems can be bene�ted from these �exible patterns, at the

same time, the same method cannot handle the unforeseen changes in the process.

C Use of change logs

Gunther et al. (2008) proposed a method of �nding process changes with the help of

change logs recorded in the information systems. As of now, very few systems are

capable of generating change logs. Hence, there is a necessity to handle concept drift

based solely on event log input.

D Feature set extraction and processing

Bose et al. (2011) proposed a method for addressing concept drift in the article �Han-

dling concept drift in process mining�. They proposed a technique for handling control-

�ow concept-drift by evaluating hypothesis on feature values derived from the event

log. Concept drift is said to be detected when a continuous dip in signi�cance prob-

ability is observed. The drawbacks of this method are,

• Infeasible for processing large event logs (proposed feature set results in a large

number of values),
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• The dimensions of features increase as the number of activities in the process

increases.

• Extracting feature values by processing individual trace is time-consuming.

These issues are addressed in our proposed method by making use of consensus

trace produced from aligning traces. Consensus trace decreases the size of the event

log and in turn, eliminates the need for processing every individual trace for extracting

features related to control-�ow.

E Theory of abstract interpretation

Carmona and Gavalda (2012) presented an online method for handling concept drift.

They proposed a multi-stage technique that uses the theory of abstract interpretation

of control-�ow in the form of polyhedra. Successive traces were evaluated to check

whether they reside inside the polyhedra. If a sample resides inside, it is deemed to

indicate the unchanged process. If considerable samples reside outside the polyhedra,

it signi�es process change. Following are the major drawbacks of this method,

• This method is valid only for change detection.

• It does not identify the existence of more than one change, as soon as it en-

counters the �rst change it reports and gets terminated even if there are several

changes in the process.

The method proposed for handling concept drift in this thesis not only detects but

also localizes all control-�ow concept drifts in single run of the algorithm.

3.3 Characterization of Concept Drift

Characterization helps in designing and developing an appropriate solution for ad-

dressing the concept drift. This section presents the various aspects (shown in �g.

3.2) to be considered while characterizing the concept drift in a process.

3.3.1 Perspectives

Perspectives facilitate to witness the process from di�erent viewpoints (Van Der Aalst,

2011). In the context of process mining, concept drift can occur in control-�ow, data,
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Figure 3.2: Dimensionality of concept drift phenomenon for characterizing changes.

resource, organizational, time and case perspectives.

• Concept drift in control-�ow perspective refers to the changes in casual relation-

ship between activities of process. According to Weber et al. (2007), frequently

observable modi�cations in control-�ow can be classi�ed into change types such

as (�g. 3.2c),

� Serial insert: an activity/fragment (fragment is a set of connected activi-

ties) is inserted between two directly connected activities.

� Conditional insert: an activity/fragment added with an additional condi-

tion.

� Parallel insert: adding an activity/fragment in parallel to other activi-

ties/fragments.

� Delete: permanently removing an activity/fragment.

� Move: Transferring an activity/fragment to another place.
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� Extract: substituting a sub process by a �reference activity�.

� Replace: substituting a fragment/activity with another fragment/activity.

� In-line: exact opposite of the extract operation.

� Parallelize: Parallelizing sequential fragments/activities.

� Fragment in branch: making process fragment as one of many possible

choices during the process execution.

� Fragment in loop: arranging a process fragment in a loop, so that it can

be executed multiple times.

• Concept drift in data perspective indicate changes in data objects, variables and

conditions that guide and control the execution.

• Concept drift in resource perspective signi�es changes in assets, roles and their

e�ect on the execution of the process.

• Concept drift in organizational perspective signi�es changes in typical work pat-

terns, organizational structures and social networks.

• Concept drift in time perspective a�ects frequency, duration, utilization, predic-

tion, and timing of events.

• Concept drift in case perspective alters properties, attributes, path and perfor-

mance.

Time
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(b)

Gradual

(c)
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Figure 3.3: Most common concept drift patterns.

Most of adaptive learning techniques implicitly or explicitly assume and specialize

in some subset of concept drifts. Many of them assume sudden non-reoccurring drifts.

But in reality often mixtures of many types can be observed.
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3.3.2 Patterns of concept drift

Sudden, recurring, incremental, gradual, multi-order, and outliers (Gama et al., 2014)

are some of the most frequently observed patterns of change in a process (listing shown

in �g. 3.2b).

• Sudden (Bose et al., 2011) concept drift is when there is an abrupt change in

the operation of a process (as shown in �g. 3.3a).

This pattern is typically seen during the time of emergency response planning,

crisis situations and change of law/legislation.

• Concept drift is called incremental (Tsymbal et al., 2008; Delany et al., 2005),

when the �nal version of the process is obtained by making changes in all the

intermediate versions of the process. It is shown in �g. 3.3b.

The evolution of the banking process from manual to internet banking, and

mobile banking is an example of incremental change pattern.

• Process exhibits gradual (Stanley, 2003; Widmer and Kubat, 1993) (shown in

�g. 3.3c) concept drift when there are two versions (M1 and M2) of the same

process active at a given point of time. As time passes, the probability of traces

from modelM1 decreases and the probability of traces from modelM2 increases.

At a certain point in time, processM1 is replaced byM2, and traces from process

M1 cannot be observed.

For example, consider replacing the delivery process of an online shopping web-

site. The orders received before the change of delivery process are delivered

using model M1, and the orders received after the change are shipped according

to M2.

• Concept drift is known as recurring (Tsymbal, 2004), when a previously active

concept reappears after some time (shown in �g. 3.3d). Recurring pattern can

be periodic or non-periodic.

For example, a peak in the sales of ice cream is associated with the summer

season, but there may be an increase in sales at di�erent times every year

depending on increased temperature or some public event. Depending on the
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ice cream sales, the vendor has to employ di�erent process model to satisfy the

demand.

• Momentary change in operation of the process is termed as Outliers (shown in

�g. 3.3e). Outliers can also be thought as error or noise in the process log.

For example, the way in which the government agencies carryout operations

during the time of natural calamity or disaster. This type of concept drift does

not last for long and very rare to observe.

3.3.3 Sub-problems

Following are the issues to be addressed for e�ciently handling concept drift in process

mining.

1. Concept drift detection: The �rst and foremost issue is to detect that there is

some concept drifts in the process. This demands the techniques for detecting

concept drift, irrespective of nature and characteristics of changes in the process.

2. Concept drift localization: It involves the investigation of the cases that are

a�ected and the time interval during which concept drift occurred.

3. Concept drift characterization: Concept drift characterization involves identify-

ing the perspective (control-�ow, data, organizational, case etc.), change type,

(insert, delete, etc.) and pattern of change (sudden, recurring, incremental etc.).

4. Change process discovery : Change process discovery results in the discovery of a

new(changed) process. This step in particularity demands the ways and means

that exploit and relate the concept drift detection and localization �ndings with

the existing structure of the process.

3.3.4 Online and o�ine techniques

The techniques for addressing concept drift can be implemented either in online or

o�ine modes. Online methods detect and localize concept drift in real-time. On the

other hand, an o�ine method does the posterior investigation of the recorded process

instances to locate changes in the process. The o�ine method is generally carried
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out by processing the cases in the event log in batch mode (Zliobaite, 2010; Tsymbal,

2004).

3.4 Representing Control Flow Perspective

The control �ow notations connect activities (i.e., functions, tasks, transitions) in

the process through constructs like condition, places, events, connectors, and gate-

ways. The goal of a control �ow model is to visualize the order of the activities to

be executed. Based on the transitions between activities, execution can be serial,

concurrent, optional, and repeated. Process mining o�ers a plethora of techniques for

discovering control-�ow model out of event-log. These discovery algorithms are capa-

ble of representing control-�ow using various notations. This section aims at listing

a subset of most widely used process modeling notations.

3.4.1 Process discovery techniques

Process Mining techniques are aimed to deliver a deep understanding of the opera-

tional process by using the reservoir of information that exists in within event logs.

One of the main driving forces of the success of process mining is certainly the graph-

ical visualization.

Process discovery is one sub-domain of process mining that aims at construction of

control-�ow from such event logs. Despite the vastness of the process mining research

discipline, most of the attention in the process mining literature has been given to

control �ow discovery methods. In this section, various control �ow modeling nota-

tions are presented in order to systematically assess the quality of process discovery

techniques.

Since the invention of process mining research discipline, probabilistic, machine

learning, as well as algorithmic methodologies for visualizing control �ow perspective,

have been proposed. Development of ProM framework by TU/Eindhoven makes these

techniques available as a single tool.

A Initial approaches

The initial methods to process discovery were articulated by Datta (1998), Cook and

Wolf (1998), and Agrawal et al. (1998) . Cook and Wolf demonstrated RNet, Ktail
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and Markov methods concentrating the discovery of control-�ow from an algorithmic,

probabilistic, and statistical perspectives. Notion of relating process discovery in the

ground of work�ow management is proposed by Agrawal et al. and Datta.

Mannila and Meek (2000) presented the method for constructing the understand-

able global view of a set of sequences with the help of component mixture model

of global partial orders. This technique cannot deal with concurrency and several

additional characteristics in the process mining.

By employing techniques available in data mining and machine learning Schimm

(2002) developed the tool named Process Miner. Process Miner was capable of learn-

ing process model from the event log. But, this technique failed to qualify as robust,

which is a signi�cant prerequisite in order to employ methods in the real-life working

environment.

B α algorithm and It's successors

The invention of α algorithm (Van Der Aalst et al., 2004) considered as one of the

most important control �ow discovery methods in process mining. It extracts the

work�ow nets (subclass of Petri nets) from event logs. But, the alpha algorithm is

sensitive to noise and incomplete event logs. Several algorithms, such as α+ (Alves de

Medeiros et al., 2004), α + + (Wen et al., 2007) and β (Wen et al., 2009) have been

proposed to improve the α algorithm to overcome its drawbacks.

HeuristicsMiner proposed by Weijters et al. (2006) extends the α algorithm and

considers frequency information on three kinds of relations among activities in an

event log: direct, parallel and not direct. It can learn short loops and non-local

dependencies, but cannot detect the duplicate events. HeuristicMiner acts robust in

a real-life setting.

Günther and Van Der Aalst (2007) have proposed technique called Fuzzy Miner

by considering the idea of visualizing control �ow behavior in event logs at various

levels of abstraction and aggregation. It allows the analysis of less structured or

unstructured operational processes. The fuzzy model cannot be converted to a tradi-

tional petri net model. It limits the relative assessment to other control �ow discovery

techniques.
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C Application of machine learning techniques

There has been several attempts to use the machine learning techniques for discovering

control �ow perspective. The majority of methods are based on the application of

classi�cation techniques. M ru³ter et al. (2006) were the �rst to investigate the use

of rule induction to calculate the dependency relations among activities.

Use of Integer Linear Programming (ILP) learning and partial-order planning

techniques to discover process model is demonstrated by Ferreira and Ferreira (2006).

In this method, a process model is created by repeatedly combining planning and

learning, and the model is represented as case data preconditions and e�ects. The

contribution of this work is included in BPM life cycle of process execution, generation,

learning, and re-planning.

De Medeiros et al. (2007) demonstrated the application of a genetic algorithm for

process discovery. Parameters (namely �tness and precision) used in its implemen-

tation enable genetic algorithm to discover suitable control �ow model. Further, the

algorithm con�rms a robustness by using the technique of post arc running step.

AGNEsMiner (Goedertier et al., 2009) extracts Petri net models from event logs

(it models the process discovery as �rst-order classi�cation problem of events). It

uses multi-relational classi�cation learner called Tilde (Ferreira and Ferreira, 2006).

Given any event log, AGNEsMiner can discover the conditions that govern the process

execution.

With an idea of clustering the patterns which shares similar behavior, an hierar-

chical and iterative procedure (Greco et al., 2008) that re�nes the process model has

been proposed. This approach improved the traditional discovery techniques by guar-

anteeing the total compliance with event log (by producing the abstraction taxonomy

of process models). It permits the inspection of behavior in the event log at di�erent

levels of detail in the form of a tree-like structure. Which generalizes all the di�erent

process models in the respective subtree.

The FSM Miner/Petrify method proposed by Rubin et al. (2006) concentrates

on extracting control �ow at the various levels of event log abstraction. Basically

it follows a two-step approach. Initially, a transition system constructed from the

traces in an event log. Finally, Petri net is discovered by synthesizing the transition
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system. This method fails to handle noise. A method named Genet, which is very

similar to FSM Miner/Petrify has been proposed by Carmona et al. (2010). It allows

the production of a Petri net from a transition system, and su�ers from the similar

drawbacks of FSM Miner/Petrify.

Inductive miner (Leemans et al., 2013a) presented a process discovery framework

B, which is capable of generating block structured process model which is sound

and �t. It is further proved that B produces a set of sound, �tting models in �nite

amount of time. Extension of Inductive Miner - infrequent (IMi). An extension of

the Inductive Miner (IM, called B′) is proposed by Leemans et al. (2013b), that �lters

infrequent behavior locally in each algorithmic step of IM by selecting an operator

and a cut, splitting the log and base cases of the recursion.

D Other approach for control �ow visualization

Splitpar algorithm proposed by Herbst and Karagiannis (2004) is part of the InWoLvE

framework for process analysis. It extracts a structured process model by initially

deriving stochastic activity graph out of event log. Splitpar is capable of detecting

redundant activities. Work�ow miner (Gaaloul et al., 2005), models the elementary

dependencies in the event log and enables the discovery of structural work�ow patterns

in the form of intermediary graphical representation. Enhanced version of work�ow

miner proposed by Greco et al. (2006), which addresses important challenges (such as

noise, duplicate tasks, and non-free choice) in control �ow discovery . This method

is also capable of discovering control �ow from an unlabeled event stream (with the

help of Expectation Maximization method).

Van Dongen and Van Der Aalst (2005) demonstrated the method of discovering a

process model by aggregating group of related process models into a petri net. It was

achieved by applying Event-driven Process Chains as an intermediate step to derive

an executable process model.

ILP Miner (Van derWerf et al., 2009) uses the Integer Linear Programming to

control �ow discovery. This method, previously famous as Parikh language-based

region miner, is built on the famous theory of regions and it permits for parallelization.

It was shown to be free from the number of events in the event log, and the method

can be much useful in real-life settings.
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One of the notable exception for visualizing control �ow process model is the Mul-

tiple Trace Alignment (MTA) (Bose and Van Der Aalst, 2010). Trace alignment is a

way of arranging process traces to identify the areas of similarity that may be a con-

sequence of functional, structural or evolutionary relationships between the activities

of the process traces.

A representation named dotted chart (Song and Van Der Aalst, 2007) shows the

process events in graphical way such that end user gets a bird's eye view of overall

process trace execution scenario. Dotted chart shows the spread of events of an event

log over time. The basic idea of the dotted chart is to plot dots according to the

time. It has time and component as orthogonal dimensions. It o�ers large array of

opportunities for process management and improvement.

3.4.2 Process modeling notations

Brief overview of most frequently used control-�ow modeling notations in process

mining is presented in this section. Table 3.2 lists the summary of information shown

by each of the control �ow modeling notations discussed in this section.

Summary of the various information shown by each of the modeling notation is

listed in

Figure 3.4: Hospital admission process in transition net notation.

A Transition systems

Transition system (Van Der Aalst et al., 2004) is a most rudimentary control �ow

modeling notation. It consists of states and transitions. It is represented using triplet
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TS = {S,A, T}. Where S represents set of states,

• A ⊆ A is a set of activities and T is set of transitions (T ⊆ S× ⊆ A ⊆ S).

• Ss ⊆ S and Se ⊆ S denotes the set of initial and �nal states.

Transition systems are simple, but tend to fail when they are used for represent-

ing concurrent systems due to state explosion problem (Valmari, 1998). Hospital

admission process modeled in transition system notation is given in �g. 3.4.

Figure 3.5: Hospital admission process in petri net notation.

B Petri net

α algorithm (Van Der Aalst et al., 2004) available in process mining can generate con-

trol �ow of a process in the petri net notation. Petri net model of hospital admission

process is given in �g. 3.5.

A petri net is a triplet N = (P, T, F ) where,

• P is a set of places.

• T is a set of transitions such that P ∩ T = φ.

• F ⊆ (P × T ) ∪ (T × P ) is a set of directed arcs called �ow relations.

Petri net consists of places and transitions. The structure of petri net model is

static, but it is controlled by �ring rule. Distribution of tokens over network is referred

as marking and it determines the state of petri net.
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Figure 3.6: Hospital admission process in work�ow net notation.

C Work�ow nets

A work�ow net is a extension of petri nets with a speci�c start and end place (Van

Der Aalst, 1998). A work�ow net is represented with attributes as N = (P, T, F,A, L).

(a) N is a work�ow net if and only if P contains an input place i such that •i = φ,

(b) P contains an output place o such that o• = φ, and (c) There should be directed

path between any pair of nodes in N . Representation of hospital admission process

using work�ow nets is given in �g. 3.6.

Figure 3.7: Hospital admission process in YAWL notation

D Yet Another Work�ow Language (YAWL)

YAWL is a amalgamation of work�ow system and modeling language. Development

of YAWL was greatly driven by the work�ow patterns initiative (Van Der Aalst et al.,

2003). Based on a regular investigation of the notations utilized by existing control

�ow notations and work�ow languages, a group of patterns was considered. These

patterns consists of control �ow, data, resource, change, exception patterns, etc.
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The purpose of YAWL is to extend a easy assistance for many patterns while

keeping the language simple. Activities in YAWL are called tasks. Tasks can be

associated with di�erent split/join types (for example: AND split/join, OR split/join,

XOR split/join, etc.). Further, a task in YAWL can be composite or atomic. A

composite task refers to another hierarchical sub-model. Fig. 3.7 gives the YAWL

representation of hospital admission process.

Table 3.2: Control �ow visualization notations and information depicted in them

Set of information shown in a process model

Method Activities Transition
Order of

activities

General

Consensus

Information

Score

Conserved

and

shared activities

Relative

occurace

Transition systems X X X × × × ×

Petri net X X X × × × ×

Work�ow net X X X × × × ×

Yet Another Work�ow Language X X X × × × ×

Business Process Modeling Notation X X X × × × ×

Event Driven Process Chain X X X × × × ×

Causal net X X X × × × ×

Dotted chart × × × × × × ×

Trace alignment X × X X X × ×

Figure 3.8: Hospital admission process in BPM notation.

E Business Process Modeling Notation (BPMN)

In recent times BPMN (White et al., 2004) has became widely used notation to model

operational processes. It preserves the concept of tasks from YAWL. Unlike YAWL, in

BPMN splits/joins are not associated with tasks but with separate gateways. BPMN

model of hospital admission process is shown in �g. 3.8.
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Figure 3.9: Hospital admission process in EPC notation.

F Event Driven Process Chains (EPC)

EPCs (Scheer et al., 2005) fundamentally o�ers a subset of feature from BPMN and

YAWL with it's own graphical notations. Activities in EPCs are called as functions.

Functions consists of one input and output arc. Connectors are used for modeling

splits and joins of type OR, AND and XOR. EPC consists of three types of events

namely start, intermediate and end. Functions and events need to alternate along

any path, i.e., it is not allowed to connect any functions to functions and events to

events.

Figure 3.10: Hospital admission process in causal net notation.

G Causal nets

A causal net (Adriansyah et al., 2010) is a graph where arcs signify causal dependencies

and nodes signify activities. Each activity has a set of possible input and output
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Figure 3.11: Spaghetti process related to diagnosis treatment of patients in dutch
hospital.

bindings which guides routing logic in causal net. However, there are no places in the

causal net; the routing logic is solely represented by the possible input and output

bindings.

Causal nets are highly suitable for control �ow related tasks of process mining. It is

due to their declarative property and expressiveness without using all classes of extra

model elements (places, conditions, events, gateways, etc.). Casual net representation

of hospital admission process is shown in �g. 3.10.

3.5 Structured and Unstructured Process

In the initial stages of process mining research, synthetically produced event logs

were used to develop and validate the proposed mining techniques. These methods

will create a comprehensive depiction of the observed behavior (in the form of a control

�ow process model). While the results obtained by using synthetically generated event

logs are convincing, but contradict when the same techniques are evaluated on real-life

event logs. It is due to the fact that, most of the real life processes are not carried

out in a strict and rigid work�ow management systems. In�exible characteristics of

information systems compelled most of the business vendors to choose more �exible

ad-hoc solutions. It is apparent that conducting a process within �exible operational

environments will lead to highly diverse and unstructured behavior.

Case Handling (Van Der Aalst et al., 2005) and Adaptive work�ow management

systems (Han et al., 1998) permit operators to alter or de�ne procedures in a �exible
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style which does not �rmly outline an exact track of execution. However, the most

common solutions for executing operational processes do not apply any well-de�ned

behavior, yet merely extend the functionality for data and message sharing between

operators and resources. Examples of these systems are Enterprise Resource Planning,

plain text E-Mail, custom-built solutions, or Computer-Supported Cooperative Work

systems. This �exibility in process execution has exposed a basic �aw in most of the

initial process mining algorithms. When these algorithms are employed for analyzing

the event logs of less-structured processes, the outcome is unstructured process models

which are di�cult to comprehend and use for operational support. The control �ow

models generated by mining less structured processes resemble to Spaghetti.

It is important to notice that these Spaghetti models are not incorrect. The pro-

cesses themselves are really Spaghetti-like, i.e., the model is an accurate re�ection of

reality. An example of spaghetti process model related to diagnosis and treatment of

2, 765 patients in dutch hospital is shown in �g. 3.11. This process model was con-

structed based on an event log containing 114, 592 events over 619 activities executed

by 266 di�erent individuals.

Spaghetti models are insightful, but extracting useful results from it is di�cult.

The sheer amount of activities in Spaghetti model makes it di�cult to focus on the sig-

ni�cant parts. Total number of edges in the process model which forms the Spaghetti

structure poses a challenge in understanding. Spaghetti structure re�ects the heart

of �exibility in process execution when users and resources are permitted to carry out

anything in any order. It renders monitoring business activities fundamentally not

an easy task. The problems lie neither with unstructured processes nor with process

mining practices. Fairly, it is due to numerous implicit assumptions in process mining

techniques, both at the level of processes and event logs. These assumptions are valid

in controlled environments and fail to hold in less-structured and real-life settings.

On the other part of process complexity, relatively structured control-�ow mod-

els are referred as Lasagna process. The executions through Lasagna processes are

guided in controlled manner. Hence, the most of the available process mining tech-

niques generate compelling results when they are employed for analyzing Lasagna

processes. Complexity of process ranges from highly structured to unstructured and

it is continuum. The process complexities sometimes referring to structured, semi-
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structured and unstructured refers to same continuum.

• In a structured process (such as Lasagna), all activities are repeatable and have

a well de�ned input and output.

• In semi structured processes the information requirements of activities are known

and it is possible to sketch the procedures followed. However some activities

require human judgment and people can deviate depending on taste or the

characteristics of the case being handled.

• In the context of unstructured processes (such as Spaghetti), it is impossible to

de�ne post and pre-conditions for activities. These processes are driven by qual-

itative information, rules-of-thumb, trail-and-error, intuition, and experience.

3.5.1 Spaghetti structured processes

Spaghetti processes and Lasagna processes are the complement of each other. Due to

less structured nature of Spaghetti processes, only a subset of the available techniques

in process mining can be practiced. For example, it is highly impossible to aim at

operational support activities if there is huge variability. Still, process mining can

support to understand and facilitate the process improvements by revealing important

problems.

Researchers have came up with various solutions for simplifying and analyzing

Spaghetti structured processes. The initial methods for analyzing Spaghetti process

was proposed by Greco et al. (2006). They had proposed the iterative and hierarchical

re�nement of the process model, where, at each step, traces sharing similar behavior

patterns are clustered together and equipped with a specialized schema. The resulting

model is a disjunctive schema that explicitly takes care of variants of the process.

Fuzzy mining (Günther and Van Der Aalst, 2007) provides the method for adaptive

process simpli�cation. It uses the concept of a road-map as a metaphor to visualize

the resulting models. Based on an analysis of the log, the importance of activities

and relations among activities are taken into account. Activities and their relations

can be clustered or removed depending on their role in the process. Certain aspects

can be emphasized graphically just like a road-map emphasizes highways and large

cities over dirt roads and small towns.
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Bose and Van Der Aalst (2009a) has proposed a multiphase method for charac-

terizing and identifying frequently observed control �ow constructs (such as loops,

activity sequences, and splits/joins) in the process and a means to form abstractions

over identi�ed patterns. Typically, abstracting common process constructs results in

simpli�ed process models.

Method of clustering process traces based on the contextual information is pro-

posed by Bose and Van Der Aalst (2009c). This method partitions the traces into

clusters such that the process models mined from those clusters show a high degree

of �tness and that the models are more comprehensible.

Any operational processes are exciting from the perspective of process mining as

they often permit for numerous enhancements. A structured process is often less

exciting in this aspect; it is easy to employ process mining methods but there is no

or less room for improving the existing process. Hence, Spaghetti processes are often

interesting from a process management viewpoint. Converting Spaghetti to Lasagna

processes is highly helpful for an Organization.

3.6 Summary of Literature Survey

This section briefs the signi�cant issues noted from the literature survey. The methods

and techniques solving the issues identi�ed in this section are solved in the upcoming

contents of this thesis.

• Concept drift refers to an online supervised learning scenario when the rela-

tion between the input data and the target model changes over time. Concept

drift phenomenon is a signi�cant issue in most of the data analysis discipline.

Currently available techniques in process mining are poor at analyzing the pro-

cesses with concept drift. There are very limited attempts to address this issue

in process mining. The method proposed by Bose et al. (2014) su�ers from

the feature set dimensionality problem and the one suggested by Carmona and

Gavalda (2012) fails to detect the multiple concept drifts in the process.

There is a need for methods and techniques which are capable of handling it

with respect to various perspectives. In this thesis chapter 4 address this issue
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by proposing the methods and techniques for detecting and localizing sudden

concept drift in control �ow perspective of the operational process.

• In the section 3.4, a various control �ow discovery algorithms and modeling no-

tations have been discussed. Discovery algorithms aim at discovering the process

semantics, and modeling notations enable to express the same processes in vari-

ous forms (depending on the context of use). The main underlying information

depicted in all of the process notations and discovery techniques is activities and

connections between them. Frequency, consensus, information score, conserved

and shared activities are not shown in traditional methods.

The notation named process logo presented in chapter 5 o�ers a technique to

visualize the control �ow of process with additional and important information

in a single compact graphic.

• Process model becomes complex and cannot be used if there are a sheer number

of activities and transitions in it. One such category of the process model is

named as Spaghetti. Spaghetti models are important from the aspect of process

mining; they are normally observed in many real life processes where there is

no strict enforcement of information system.

The need is to simplify the structure of Spaghetti process models to extract the

simpli�ed process model. Which should be representing the signi�cant parts

of the process (in terms of activity and transition). This simpli�ed model is

used for operational support, communicating with the stake holders and for

identifying the set of possible or impossible paths of executions. A method has

been proposed the chapter 6 to address this issue.

• Process models play vial role in organizations for design, redesign and imple-

mentation of information systems. To achieve this, formal informal models can

be used. But, ability to determine the frequently executed path in the under-

lying process model bene�t the stakeholders in many ways for understanding,

communicating, discussion, optimization, etc. A method has been proposed in

chapter 7 to �nd out the frequently executed paths in information system.
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Based on the previous discussions, we present the problem statement and the

objectives of current research work in the upcoming sections.

3.7 Problem Statement

Design and development of improved process mining techniques for handling concept

drift, analyzing spaghetti processes, and informative envisioning of control �ow

process models.

3.8 Research Objectives

1. Propose a framework for detecting and localizing sudden concept drift in control-

�ow perspective of an operational process.

2. Propose a control-�ow notation for depicting general consensus among traces,

order of prevalence of activities, relative occurrences, information score and set

of shared/conserved activities.

3. Distilling Lasagna structured control-�ow from Spaghetti structured control-

�ow.

4. Identify and predict the possible and frequent path of execution in Spaghetti

structured process.
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Chapter 4

Detecting and localizing control �ow

concept drift in process mining

It is apparent that the �nancial growth of a business organization is greatly centered

on competence to respond to changes in its functioning environment. To cope with

competition, it is highly essential for the organizations to update the processes to

reduce the cost and increase productivity. Furthermore, customers expect enterprises

to be adaptable and adjust to altering conditions.

New laws (such as WABO act (Thomas, 2015) and Sarbanes-Oxley act (Welytok,

2006)), excessive di�erences in resource and request, periodic e�ects, catastrophes,

time limit violation (Van Der Aalst et al., 2007b), and so on, are also compelling

organizations to change their processes. Therefore, the topic of �exibility is well

researched in the domain of BPM and work�ow management (WFM). But still, a

majority of process mining algorithms considers the operational process as a static

entity.

Today's process discovery techniques are able to extract meaningful process models

from event logs not containing any explicit process information. When discovering

a process model from event logs, in process mining, it is assumed that the process

at the beginning of the recorded period is the same as the process at the end of the

recorded period. Obviously, this is often not the case due to the phenomenon known

as concept drift (Bose et al., 2011). While cases are being handled, the process itself

may be changing. This chapter presents an approach to analyze such second-order

dynamics.

Concept drift is a situation when the process changes during the period of execu-
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tion/analysis. Due to concept drift, the structure of the process at the cessation di�ers

from its commencement, and it makes the end-result of analysis obsolete. Ability to

handle concept drift e�ciently is the most critical aspect of ensuring correctness and

validity of the end-results produced by methods in process mining.

In process mining, ProM is an extensible and open-source framework that provides

a variety of techniques in the form of plug-ins. There are more than 1200 plug-ins

available in ProM and none of them are capable of addressing concept drift completely

(Van Der Aalst et al., 2012; Van Der Aalst and Weijters, 2004). Process mining

manifesto (Van Der Aalst et al., 2012) is an article released by IEEE CIS Task Force

on Process Mining. That enlists eleven open research directions. Handling concept

drift is one among the most pressing eleven challenges. To this point in time, a

little work is done on this highly signi�cant problem (Bose et al., 2014; Carmona and

Gavalda, 2012).

We propose the o�ine technique for detecting and localizing concept drift in the

control-�ow perspective of operational process. Features for concept drift detection

and localization are derived by processing consensus traces generated by MTA. Sub-

sequent populations of feature values are compared by applying an appropriate hy-

pothesis tests to handle concept drift.

Upcoming contents are organized as follows, section 4.1 describes the event log

related to insurance claim process, section 4.2 presents the basic problems to be ad-

dressed to handle concept drift and also illustrates concept drift with a small example.

MTA has been presented in section 4.3. Feature values used for handling concept drift

are described in 4.4. Section 4.6 describes the experimental setup. Results of exper-

imental study is given in section 4.6. Comparison results related to existing and

proposed method for concept drift handling is presented in section 4.7.

4.1 Insurance Claim Event Log

The method for concept drift detection and localization proposed in this chapter are

validated on the real life event log of insurance claim process. The excerpt of the

event log and initial control �ow connections of insurance claim process is shown in

the �gure 4.1.
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Case

id

Event id Activity Resource Cost Time

stamp

1

35654423

35654424

35654425

35654426

35654427

35654428

35654429

35654430

35654431

35654432

Register(a)

Decide high/low(c)

L insurancecheck (d)

L medicalhistory check (g)

Create questionnaire (b)

Preparenotification (i)

By phone (j)

Send questionnaire (m)

Receive response (n)

Archive(q)

Mark

Gardener

Wil

Thomas

Steve

Steve

Joseph

Steve

Smith

Smith

200

10

10

20

15

10

30

14

15

55

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

…

2

35654521

35654522

35654523

35654524

35654525

35654526

35654527

35654528

35654529

35654530

35654531

Register(a)

Decide high/low(c)

H insurance check (e)

Hmedical history check (f)

Create questionnaire (b)

Send questionnaire (m)

Contact hospital (h)

Preparenotification (i)

By email (k)

Skip response (o)

Archive(q)

Gardener

Thomas

Wil

Thomas

Steve

Joseph

Steve

Thomas

Wil

Smith

Smith

200

10

15

15

5

10

55

15

60

15

65
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Prepare notification
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Post
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Skip 

response

Notification 

sent

a

Control flow traces

Event Log

Trace 1: acdghijmnq,

Trace 2: acefbmhikoq,

Trace 3: abcdgijmnq,

...

Control flow model

Extract Transform

AND join

ConnectorsAND split XOR split XOR joinAND join OR split OR join Condition

YAWL Notations

Figure 4.1: Initial control-�ow model of insurance claim process (inspired from Bose
et al. (2014)).

According to the initial control �ow structure of insurance claim process shown in

�g. 4.1, upon registration (a) of any travel insurance claim, a list of questions will

be prepared (n) and sent to the claimant (o). Simultaneously, based on the amount,

the claim is classi�ed as high or low (b). If the claim amount is high, three steps of
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veri�cation are carried out serially (check medical history (d), check insurance (g),

and contact hospital (i)). Else (c), two steps of veri�cation (insurance check (e)

and medical history check (f)) are carried out serially. Insurance claim is rejected or

accepted based on the veri�cation outcome. Noti�cation of acceptance or rejection is

prepared (j) and sent to the claimant. Result of the process is communicated through

phone (m) or post (k) or email (l). Answers from the claimant for questionnaire is

considered (q) or ignored (p) depending on the situation. Finally, the case is closed

and put in archive (r).

4.2 Concept Drift

This section discusses the sub-problems involved in solving the problem of concept

drift and illustrates the concept drift in control �ow perspective by modifying the

causal relationships between a subset of activities related to insurance claim process.

4.2.1 An example illustrating concept drift in control-�ow per-
spective

Concept drift in control-�ow perspective is the result of change in causal relation-

ships between the activities. Same is illustrated by modifying the causal relationships

between activities by post (k), by phone (l) and by call (m) of insurance claim pro-

cess model shown in �g. 4.1. For representational simplicity, further sections of this

chapter uses YAWL notations for representing process models.

Initially, activities k, l, and m are arranged parallel between XOR split/join

(shown in �g. 4.2a), with the occurrence of successive concept drifts cd1 (�g. 4.2b),

cd2 (�g. 4.2c), and cd3 (�g. 4.2d); causal relationships between the activities change

as follows.

• Concept drift cd1 arranges the activities k, l, and m parallelly between AND

split/join (shown in �g 4.2b). This control-�ow arrangement forces all three

activities to execute simultaneously (irrespective of their order of occurrence).

• Concept drift cd2 arranges the activities k, l, and m parallelly between OR

split/join (shown in �g 4.2c). This control-�ow arrangement permit the execu-

tion of any combination of these three activities .
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By phone (m)

By post (k)

By email (l)

... ...

(a) Before any concept
drift (at time t0).

Activities k, l and m are
arranged parallel between

XOR split/join.

By phone (m)

By post (k)

By email (l)

... ...

(b) After cd1 (at time
t1). Activities k, l and m

are arranged parallel
between AND split/join.

By phone (m)

By post (k)

By email (l)

... ...

(c) After cd2 (at time t2).
Activities k, l and m are
arranged parallel between

OR split/join.

By phone (m)

By post (k)

By email (l)

...

...

(d) After cd3 (at
time t3). Activities
k, l and m are
arranged in

knockout fashion.

Figure 4.2: Change in causal relationships between activities.

• Concept drift cd3 arranges the activities k, l, and m in knock-out fashion

(shown in �g 4.2d). In this arrangement, process execution can skip any of

the intermediate activities to reach the �nal one.

Process excerpts given in �g. 4.2 illustrates the causal relationship between the

same set of activities after successive concept drifts cd1, cd2, and cd3.

Table 4.1: Control-�ow traces before cd1, after cd1, cd2, and cd3.

Time Concept drift Set of possible traces

t0 Before cd1 A1 = {k ,l,m}

t1 After cd1 A2 = {klm, kml, mkl, mlk, lmk, lkm}

t2 After cd2 A3 = {k, l, m, kl, lk, lm, ml, km, mk�klm, kml, mkl, mlk, lmk, lkm}

t3 After cd3 A4 = {k, kl, klm}
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Table 4.2: Possible number of traces in the process and sub-process level.

Number of possible traces at the

sub-process level

Number of possible traces at the

process level

Concept drift | Acdi | | Acdi/Acdi−1
| | Acdi ∩ Acdi−1

| | Pcdi | | Pcdi/Pcdi−1
| | Pcdi ∩ Pcdi−1

|

Before concept drift 3 - - 12 - -

After cd1 at t1 6 6 ∅1 24 24 ∅

After cd2 at t2 15 9 6 60 36 24

After cd3 at t3 3 ∅ 3 12 ∅ 12

The set of possible control-�ow traces on activities k,l and m before cd1, after cd1,

cd2 and cd3 are given in table 4.1. In the table 4.2,

• Acdi and Pcdi represent the set possible traces at sub-process and process level.

• Acdi/Acdi−1
and Pcdi/Pcdi−1

is the set di�erence.

• Acdi ∩ Acdi−1
and Pcdi ∩ Pcdi−1

represent set intersection.

• | Acdi/Acdi−1
| and | Pcdi/Pcdi−1

| are the number of newly observable traces

after every concept drift cdi.

• |Acdi ∩ Acdi−1
| and |Pcdi ∩ Pcdi−1

| gives the number of common traces that can

be observed in the sub-process and process level prior to and after every cdi.

Concept drift can either increase or decrease the number of possible traces. For

example,

• After the concept drift cd1, the process is capable of exhibiting double the

number of traces possible before cd1. We can observe six traces at the sub-

process level after cd1, all of them are entirely new(intersection between the set

of traces before and after cd1 evaluates to disjoint set (∅)).

• Set of traces observed after cd3 are the subset of set of traces possible before cd3

(i.e., after cd2).

The causal relationship between the activities change to satisfy the immediate

demands and tend to exhibit new behaviors. It is wrong to consider an operational

process as a static entity while analyzing an event log.

1Empty set is represented by ∅
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The focus of this chapter is to propose a robust o�ine method to detect and localize

sudden/abrupt concept drift in the control-�ow perspective of the process. Addressing

concept drifts in the perspectives except control-�ow, and change patterns other than

sudden are out of the scope of this research work. The framework followed for handling

the sudden control-�ow concept drift is illustrated in �g. 4.3.

Event log

Trace Clustering

Multiple Trace Alignment

Consensus Trace

Feature Extraction

Generate Feature Values

Compare Feature Values

Visualization

Interpretation

Input

Preprocessing

Process Charecteristics

Experiments and Evaluation

Results

Figure 4.3: Framework for detecting and localizing concept drift.

4.3 Trace Alignment to Detect Concept Drift in Pro-

cess

Trace alignment is a way of arranging process traces to identify the areas of similarity

that may be a consequence of functional, structural or evolutionary relationships be-

tween the activities of the process traces. The idea of trace alignment was proposed by

Bose and Van Der Aalst (2010) based on the concept of biological sequence alignment

(Waterman, 1995).
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Trace alignment is used as a preprocessing stage applied on traces. Based on the

similarities, traces in the event log are clustered, and each cluster is aligned to generate

a consensus trace, which is used as the input component for extracting features to

capture the control-�ow speci�c characteristics. This section uses following notations

for discussing the concepts related to feature set.

• Σ is the set of activities and |Σ| denotes the number of activities.

• Σ+ is the set of all non-empty �nite traces over Σ and T ∈ Σ+ is a trace.

• An event log L corresponds to a set of traces from Σ+.

• A trace of length n is denoted as T n, i.e., T n ∈ Σn (where, Σn is the set of all

n-length traces).

• Activities of T n are denoted as T (1)T (2)T (3)...T (n), where T (k) represents kth

activity in trace.

4.3.1 Multiple Trace Alignment (MTA)

MTA is a method of aligning more than two traces simultaneously. Trace alignment

over a set of traces can be represented as A = {ai,j}(1 ≤ n, 1 ≤ j ≤ m) over

Σ
′

= Σ ∪ {−} where, − denotes the gap in the alignment. Trace alignment over

a set of traces T = {T1, T2, T3..., Tn} is de�ned as mapping of a set of traces T̄ =

{T̄1, T̄2, T̄2, ..., T̄n, } where, each T̄i ∈ (Σ ∪ −)+ for 1 ≤ i ≤ n and

• |T̄1| = |T̄2| = .... = |T̄n| = m.

• T̄i by removing all ”− ” gap symbols is equal to Ti.

• @k, 1 ≤ k ≤ m such that, ∀1≤i≤n. T̄i(k) = −

Where, m is the length and n is the number of traces in the alignment.

The span of the alignment m, satis�es the relation lmax ≤ m ≤ lsum. Where, lmax

is the maximum length of the traces in T and lsum is the sum of lengths of all traces in

T. It is important to note that there can be many possible alignments for a speci�ed

set of traces. The number of possible alignments for two traces of length l is given by

equation 4.1.

l ≈ (1 +
√

2)(2l+1)l(
−1
2

) (4.1)
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Traces are aligned after a series of substitution, insertion, and deletion (indel) op-

erations. A score-function assigns the value for each substitution and indel operations.

The scores associated with substitution and indel operations are used to calculate the

optimal alignment.

• The substitution score is a function S : Σ× Σ→ < where, S(a,b) denotes the

score for substitution of activity a with activity b, ∀a, b ∈ Σ.

• IndelRightGivenLeft score is a function Il : Σ ∪ {−} × Σ ∪ {−} → < where,

Il(a, b) indicates the score for inserting activity a given that the left activity

is b, ∀a,b ∈ Σ.

The best alignment is calculated using the aggregate sum of the number of substi-

tutions, insertion, and deletion operations are applied to align a set of given traces.

An alignment with the maximum score is considered as optimal. We use sum-of-

pairs (Bose and Van Der Aalst, 2010) method for automatically deriving the optimal

substitution and indel scores from the event log.

If T̄1 and T̄2 are the traces after alignment and if the length of the alignment is m,

then the score of the alignment can be calculated using the equation 4.2. The value

of ei in equation 4.2 is calculated using equation 4.3.

Score(T̄1, T̄2) =
m∑
i=1

ei (4.2)

ei =


S(a,b) if T 1(i) = a and T 2(i) = b

Il(a,b)

if T 1(i) = a, T 1(i− 1) = b and T 2(i) = ˘ or

if T 1(i) = ˘, T 2(i) = a and T 2(i− 1) = b or

(4.3)

For example, �g. 4.4 represents three of many possible alignments between the

traces T1 = abcdabe and T2=acddcbc (according to formula (1+
√

2)(2l+1)l(
−1
2

), 2×105

alignments are possible between T1 and T2). By considering the scoring function

S(a,b) = 1 if a=b else −1 and Il(a,b) = −1 ∀a, b ∈ Σ, the scores of alignments

shown in �gures 4.4a - 4.4c evaluates to −2, 0, and −4 respectively, and a alignment

shown in �g. 4.4b, with the maximum score is considered as optimal.
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Figure 4.4: Alignments showing three of the 2× 105 possibilities between two traces.

T1 T2 T3 T4 T5

a b c e f g h d i 

a b c e f g h d -

a b c e - d f g h -

a b c e f d - g h i

a b c - e f g h d i 

a b c - e f g h d -

a b c d e f g h - -

a b c - e - - f g h d i 

a b c - e - - f g h d -

a b c d e - - f g h - -

a b c - e - d f g h - -

a b c - e f d - g h - i

T1: a b c d e f g h 

T2: a b c e f g h d i 

T3: a b c e f g h d

T4: a b c e d f g h

T5: a b c e f d g h i

Figure 4.5: Example of progressive alignment technique with the help of AHC.

In the preprocessing stage of producing alignment, duplicate traces from the event

log are �ltered out, and distinct traces are clustered using the Agglomerative Hi-

erarchical Clustering algorithm (AHC) (Day and Edelsbrunner, 1984). A dynamic

64



programming (Bertsekas, 1995) method known as Needleman and Wunsch algorithm

(Needleman and Wunsch, 1970) is used to �nd optimal alignment between a pair of

traces.

Finding the globally optimal alignment between multiple process traces can be

done by repeated application of the Needleman and Wunsch algorithm on every pair

of traces incrementally with the help of the progressive alignment technique. Further,

the optimal alignment corresponding to every stage of the output of AHC is built. Fig.

4.5 shows the example of aligning �ve traces with the help of AHC and progressive

alignment technique. The result is aligned cluster of unique traces. Further, AHC

can be cut at any levels to form required number of aligned trace clusters.

Figure 4.6 illustrates the result of aligning initial 1000 traces of insurance claim

process (�g. 4.1). Duplicate traces are �ltered out (selected 18 distinct traces out of

1000 traces), and distinct traces are clustered based on their similarity. Trace align-

ment technique is applied on each cluster of traces to generate the optimal alignment.

For example, result of grouping the same set of traces into one , two (cluster 1: 6 traces

and cluster 2: 12 traces), and three (cluster 1: 6 traces, cluster 2: 6 traces, cluster

3: 6 traces) clusters and aligning each cluster as shown in �g. 4.6. Each alignment is

capable of showing following set of information as a single compact graphic,

• Each row in the alignment represents a transformed trace, and each column

represents an activity.

• The left panel shows the case ids (as in the log), and case ids with a gray

background specify traces that have matching duplicates.

• Each MTA shows split/joins (if any) and order of arrangement of activities.

• The bottom panel shows the information score metric for each column and

consensus trace corresponding to all traces of alignment.

It is observed that, dividing a given set of traces with increasing number of clusters

(1, 2, 3,..) results in reduced uncertainty (entropy) and improved information score

(Shannon, 2001). This is due to the groping of coherent set traces in a same cluster.

Features related for concept drift detection and localizations are extracted out of

MTAs resulting from aligning traces of each cluster.
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Figure 4.6: Result of MTA on 1000 traces consisting of 18 distinct activities.

66



4.3.2 Consensus trace

The consensus trace captures the major activity in each column of the trace alignment

and can be considered as the backbone trace representing the control �ow of the pro-

cess. Consensus trace is capable of compactly representing the following information.

• Consensus of the traces.

• Order of prevalence of the activities at every position.

• Relative occurrences of every activity with respect to other activities.

• List of conserved and shared activities in the aligned set of traces.

abdgicfefhjklmknoqr (cluster 1 of 1), abdgijlmknopr (cluster 1 of 2, cluster 1 of

3), abcfefhjklmnopr (cluster 2 of 2), abdgijlmknopr (cluster 1 of 3), abcefhjlmknoqr

(cluster 2 of 3) and abcfehjklmno (cluster 3 of 3) are the consensus traces correspond-

ing to multiple trace alignments shown in �g. 4.6.

Corresponding to the trace alignment given in �g. 4.6 (two clusters). The relative

frequency of the activities in consensus traces 1 and 2 of second alignment is given

in table 4.3. Columns with relative frequency 1.0 indicate well-conserved patterns.

For example, in consensus trace abdgijlmknopr, activities a, b, d, g, i, j, n,

o and r are conserved and m, k and p are shared.

In the experimentation part, the complete event log is transformed into a set

of consensus traces, and features are extracted by processing the consensus traces.

Feature values are systematically analyzed to uncover the concept drift.

4.4 Features for Detecting and Localizing Concept

Drift

Information score, consensus activity relationships, activity relationship entropy, and

window count features are extracted from the consensus trace. We believe that there

is a characteristic di�erence in the manifestation of the feature values before and

after the process change, the change in feature values are more pronounced at the

boundaries of the process change. Features that assist in the concept drift detection

and localization are discussed in detailed as follows.
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4.4.1 Information score

Information score (Ri) (Shannon, 2001) shows how well the activities are conserved

at each position (column) in the alignment (it is measured in bits). It is calculated

for every activity appearing in the column of the alignment. Higher the count of any

particular activity in the column, higher will be the information score associated with

that activity.

Activity with higher information score appears in consensus trace, which represents

the predominant activity in that column. Information score decreases as the number

of distinct activities in that column increases. The Information score of an activity

at position i is given by equation 4.4.

Ri = log2(|Σ|)− (Hi + en) (4.4)

Where, Hi (calculated using equation 4.5) is the uncertainty (sometimes called the

Shannon entropy) of position i in the consensus trace.

Hi = −
∑

fa,i × log2 fa,i (4.5)

Here, fa,i is the relative frequency of the activity at position i and en is the small-

sample correction for an alignment of n activities. The information score of activity

a in column i is given by equation 4.6.

height = fa,i ×Ri (4.6)

The approximation for the small-sample correction, en, is given by equation 4.7.

en =
1

ln 2
× s− 1

2n
(4.7)

Where, s is the number of activities in the process and n is the number of traces

of the process. Table 4.3 shows the information score of the consensus traces resulting

from aligning the traces of insurance claim process shown in �g. 4.1.
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4.4.2 Consensus activity relationships

The relationships between activities in a consensus trace can be expressed using follows

and precedes notations. For any given pair of activities in Σ, one can �nd out whether

they sometimes, never or always follow/precede each other or not in the consensus

trace. The activity relationships are su�cient to discover most of the changes related

to control-�ow perspective.

For example, the set L = { abdgijlmknopr, abcfefhjklmnoqr} represents the

set of consensus traces of second alignment shown in �g. 4.6. Consensus activity

relationships such as b always follows a, j sometimes follows i, and e never follows d

always hold on set L. Consensus activity relationship is used to derive relation count,

relation entropy, and window count features. These features will be used during the

concept drift detection.

A Relationship count

Relationship count is a function (frc : Σ→ N3
0) can be de�ned over follows or precedes

relationship. For any activity, a ∈ Σ, frc is a vector of three integer values 〈countalways,

countsometimes, countnever〉. Where, countalways, countsometimes, and countnever are the

number of activities in Σ that always, sometimes, and never follow a in L.

For example, the relationship count of activity o on a set of consensus traces L is

〈1, 2, 14〉. Activity r always follow o, activities q and p sometimes follow o, and all

other activities except p, q and r never follow o.

B Relation entropy

Relations entropy is a function (fre : Σ → R+) can be de�ned over follows and

precedes relationship of all activities in Σ. frc of any activity a ∈ Σ with respect to a

relationship count can be de�ned as,

fre = pa log
1

pa
+ ps log

1

ps
+ pn log

1

pn
(4.8)

Where, pa =
countalways

|Σ| , ps = countsometimes

|Σ| and pn = countnever

|Σ| .

With respect to activity o in L, pa = 0.05, ps = 0.11, and pn = 0.82. The value of

the relation entropy is fre = 0.24.
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C Window count

Window count is the function (fwc : Σ × Σ → N0) de�ned over set of activity pairs

based on follows/precedes activity relationships. For a given process instance p and

a window length of size l, let Sl be the set of all sub-traces p(i, i + l − 1), such that

p(i) = a and ∃ j such that i < j < i + l and p(j) = b. The window count of the

relation b follows a is de�ned as the number of traces of length l in which b follows

a. In other words, fwc(a,b) = |Sl|.

For example, applying the window count function (fwc) with window size of 4, on

activities a and b in the consensus traces abcdefgh, acdefgh, acdefb, and acdbefg

results in fwc =1, 0, 0, and 1.

4.5 Experimental Setup

The goal of detecting and localizing concept drift is to detect the regions of changes

and identify the nature of changes in the process log. There should be a typical

dissimilarity in the manifestation of the feature values before and after the concept

drifts with the di�erence being highly noticeable at the point of concept drift.

Initially, process log is split into sub logs containing n cases each. Traces in

each sub log are clustered by applying AHC. MTA is preformed on each cluster and

consensus traces are obtained. Which results in the transformation of event log into

set of consensus traces. Further, duplicate consensus traces are removed. Feature

extraction method discussed in section 4.4 are applied on the set of consensus traces

to generate a population of feature values.

Iteration 1

Iteration 2

Iteration 3

V1 V2 . . . Vw Vw+1Vw+2 . . . V2w . . . 

Population 1 Population 2

Population 3 Population 4

Population 5 Population 6

Time

Feature Vector

Figure 4.7: Feature value selection by windowing procedure.

Successive populations of feature values are selected for comparison with the help

of windowing instance selection strategy shown in �g. 4.7. During every iteration of
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comparison, population 1 (〈V1, V2...Vw〉) and population 2 (〈Vw+1...V2w〉) are evaluated

to discover any discrepancy. If m is the length of the vector and w is the window size,

the possible number of population pairs are 1− 2w +m.

We use the method of statistical hypothesis testing (Sheskin, 2007) to compare

and evaluate the successive populations of feature values. Hypothesis testing is used

to determine the probability that a given statement is true based on the evidence

available in the data. The standard process of hypothesis testing comprises of four

steps.

• First, formulating null (H0) and alternative hypothesis (H1).

• Second, recognizing a test statistic that can be used to evaluate the correctness

of the null hypothesis.

• Third, calculate the p value(lesser the p value, the stronger the evidence in

contradiction of H0).

• Finally, compare the p value to α. If p ≤ α, then the null hypothesis is invali-

dated, and the alternative hypothesis is considered valid.

In our experiments, H0 and H1 are de�ned as follows,

• H0: There is no signi�cance di�erence between the successive populations of

feature values (i.e., p > α).

• H1: There is a signi�cant di�erence between the successive populations of fea-

ture values (i.e., p ≤ α).

Successive populations of feature values are compared with the application of two-

sample univariate (tests dealing with scalar data), multivariate (tests dealing with

vector data elements), and non-parametric (tests that does not follow any distribu-

tion) hypothesis test procedures.

We employed the Siegel Tukey and Chi-square Test for r × c Tables (Sheskin,

2007) for hypothesis evaluation. The Siegel Tukey test checks for the hypothesis, �Do

two independent samples represent two populations with di�erent variances?� and

the Chi-square Test for the r × c tables evaluates the hypothesis, �In the underlying
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population(s) represented by the sample(s) in a contingency table, are the observed

cell frequencies di�erent from the expected frequencies?�.
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Figure 4.8: (a) Initial control-�ow structure of insurance claim process (model m0).
(b) Final control-�ow of insurance claim process after cd5 (model m5).
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4.6 Results and Discussion

The method for detecting and localizing the concept drift are evaluated on the event

log of �insurance claim process�. The event log consists of 48, 000 cases and 3, 84, 000

events over 20 distinct activities. The original event log (.xes �le) used for the

experimental study is modi�ed to incorporate concept drift and regenerated using

Colored Petri-Net tools (CPN tools)(Jensen and Kristensen, 2009) and CPNXES li-

brary(Michael, 2011).

8000 16,000 24,000 32,000 40,000Trace Number

Process Model M0 M1 M2 M3 M4 M5

Concept Drift Points CD1 CD1 CD1 CD1 CD1

Figure 4.10: Concept drift locations.

The control-�ow perspective of the insurance claim process shown in �g. 4.8

(initial control-�ow) undergoes a series of sudden concept drifts. Process variants

after successive concept drifts are shown in �gs. 4.9a - 4.9d (intermediate variants)

and 4.11 (�nal variant). Parts of the process highlighted in dotted rectangle represent

the regions of change compared to it's previous variant. In other words, these are the

parts of the process a�ected by concept drift. Set of changes that transformed and

replaced a process model with its di�erent variant are listed in the table 4.4. The

concept drift locations and the process models during successive changes are shown

in �g. 4.10. Changes are induced in insurance claim process log resulting in series

of process variants. Previous process model is replaced by it's new variant for every

8000 traces.

MTAs corresponding to variants of insurance claim processes are shown in �gures

4.12 - 4.17. Red-colored dashed rectangles on the alignments indicate control-�ow

concept drifts. MTAs demonstrates the nature of control-�ow relationships between

activities (serial, branch, parallel, etc.). Consensus trace corresponding to each MTA

is given at the bottom of every alignment (highlighted in black color).

Fig. 4.12 shows MTA before any concept drift in the process (corresponding

to process model given in �g. 4.8). MTA shown in the �g. 4.12 clearly shows

Presence of XOR split at activity b, which allows either low(c,d) or high (e,f and g)
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Figure 4.11: Final control-�ow of insurance claim process after cd5 (model m5).

insurance veri�cation. Similarly, presence of XOR split at activity h allows sending of

noti�cation through exactly one mode (either i, j or k). Fig. 4.13 shows MTA after

the �rst concept drift cd1 (corresponding to variant in �g. 4.9a). It clearly shows the

presence of AND split at activity h which allows the usage of all mode of noti�cation

regardless of execution order.

Fig. 4.14 shows MTA after the second concept drift cd2 (of process variant in �g.

4.9b). Fig. 4.15 shows MTA after the third concept drift cd3 (of process variant in
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Figure 4.12: MTA of insurance claim process corresponding to model m0.
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Figure 4.13: MTA after cd1 (corresponding to model m1).

�g. 4.9c). Fig. 4.16 shows MTA after the forth concept drift cd4 (of process variant

in �g. 4.9d). Single clustered MTA (of insurance process in �g. 4.9d) results in 150

distinct traces, such a huge alignment is impossible to show. Hence 150 traces are
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Figure 4.14: MTA after cd2 (corresponding to model m2).

divided to form 3 clusters and MTA is generated. The MTA shown here is generated

using 32 distinct traces of 2nd cluster. Fig. 4.17 shows MTA after the �nal concept

drift cd5 (of process variant in �g. 4.11).

The 48, 000 cases of the insurance claim process are split into sub log of 100 cases

each, resulting in 480 sub logs. Redundant cases are �ltered out from each sub log,
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Figure 4.15: MTA after cd3 (corresponding to model m3).

and remaining traces are clustered with the help of AHC. Each cluster is aligned to

produce a consensus trace. The sub log and the cluster number of each consensus
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Figure 4.16: MTA after cd4 (corresponding to model m4).

trace are recorded, this information will be used during the drift localization.

Clustering and aligning each of 480 sub logs of insurance claim process has re-

sulted in total 1440 consensus traces. Information score, activity relationship, and

relation entropy feature sets for each consensus trace is calculated. The successive

population of the feature are selected using windowing instance selection procedure

and investigated for concept drift by applying statistical hypothesis testing procedures.

The graphs shown in �g. 4.18 illustrate the result of detecting concept drifts
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Figure 4.17: MTA after cd5 (corresponding to model m5).

around 240th, 480th, 720th, 960th and 1200th consensus traces (continuous dip in sig-

ni�cant probability indicates the change in process). The 240th consensus trace is
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(a) Result of detecting concept drift by applying Siegel Tukey test on information score feature.
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(b) Result of detecting concept drift by applying Chi-square test on relationship count feature.
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(c) Result of detecting concept drift by applying Chi-square test on relationship entropy feature.

Figure 4.18: Result of concept drift detection.

derived by aligning the traces of 80th sub log; this indicates process change around

the 8000th trace.
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phone.

Figure 4.19: Concept drift localization around trace index 8, 000.

Based on the evidence shown in �g. 4.18, we arrive at the conclusion that there

is concept drifts around the 8000th, 16000th, 24000th and 40000th trace indexes corre-

sponding to the sub logs.

The result of concept drift detection shown in �g. 4.18 on all three feature sets

(information score, relationship count, and relation entropy) failed to legitimately

capture the concept drift cd4 (around 960th consensus trace). This is due to the

characteristics of hypothesis tests used in detecting the concept drift.

After detecting the concept drift, 80th, 160th, 240th, 320th, and 400th sub logs are

further investigated to localize it. Concept drift localization techniques are used for

identifying the changes at the level of activities, relationship between activities, and

traces. Trace speci�c feature sets are generated by using window count method on

each of the traces of 80th, 160th, 240th, 320th and 400th sub logs by considering every

pair of activities. Successive populations of window count values are compared with

the help of hypothesis testing procedures.

The graph shown in �g. 4.19 illustrates the concept drift localization corresponding

to activity by post (shown in �g. 4.19a) and by phone (shown in �g 4.19b) of the

process shown in �g. 4.8, around the traces corresponding to case id 8, 000 by applying

Chi-square test on window count feature around. Occurrence of this concept drift

arranges activities by post, by email, and by phone parallel between AND split/join

from XOR split/join. Which enables to execute all of these activities simultaneously
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Figure 4.20: Concept drift localization around trace index 16, 000.

in any order.

The graph shown in �g. 4.20 illustrates the concept drift localization correspond-

ing to activity low insurance check (shown in �g. 4.20a), high medical history

check (shown in �g 4.20b), prepare notification (shown in �g. 4.20c), and by

email (shown in �g 4.20d) of the process shown in �g. 4.9a, around traces corre-

sponding to case id 16, 000, it is obtained by applying Chi-square test on window

count feature. This concept drift is primarily due to the result of arranging high/low

insurance claim tasks parallel and replacing AND split/join with XOR split/join at

prepare noti�cation activity.

The graph shown in �g. 4.21 illustrates concept drift localization corresponding to
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Figure 4.21: Concept drift localization around trace index 24, 000.

activity high claim join (shown in �g. 4.21a) and prepare notification (shown

in �g 4.21b) of the process shown in �g. 4.9b. It is around the traces corresponding

to case id 24, 000. It is obtained by applying Chi-square test on window count feature

around trace index 24, 000. This concept drift resulted due to introduction of knock-

out structure at high insurance claim path and replacing XOR split/join by OR

split/join at prepare notification.

The graph shown in �g. 4.22 illustrates concept drift localization corresponding

to activity by post (shown in �g. 4.22a), by email (shown in �g 4.22b), by phone

(shown in �g. 4.22c), and prepare notification (shown in �g 4.22d) of the process

shown in �g. 4.9d around the traces corresponding to case id 40, 000. It is obtained

by applying Chi-square test on window count feature around trace index 40, 000.

The localization result about the concept drift detection at 320th sub log (around

case id 32, 000) is not shown. The window count feature used in this chapter has failed

to localize the process change (signi�cance probability did not show any changes).

4.7 Comparison Results

This section demonstrates the result of the comparison study between existing and

the proposed method for concept drift detection and localization. Feature sets used

for handling concept drift (in existing and proposed method) are evaluated against

the time required for detecting and localizing concept drift (both in cumulative and
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Figure 4.22: Concept drift localization around trace index 40, 000.

non-cumulative manner). Demonstrated results are the average over �ve independent

runs of algorithms (error bars are shown in corresponding graphs).

4.7.1 Time taken for detecting concept drift

Comparison results are shown in �g. 4.23-4.24 illustrates the time required for individ-

ually detecting �ve di�erent concept drifts by applying our method and the technique

suggested by Bose et al. (2011). It evaluates the e�ciency of various feature sets and

technique of proposed and existing methods (demonstrates that how quick the feature

sets are capable of detecting concept drift).

The cumulative time required for detecting �ve di�erent concept drifts are pre-
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Figure 4.23: Time taken for detecting individual concept drifts (Relationship count
v/s proposed features).

sented in the �g. 4.25-4.26. It illustrates the total time needed for detecting all �ve

concept drift in a process by applying our method and the method proposed by Bose

et al. (2011). Results presented in �g. 4.23-4.26 clearly shows that the proposed

method is fast and responsive in handling concept drift.
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Figure 4.24: Time taken for detecting individual concept drifts (J measure v/s
proposed features).

4.7.2 Receiver operating characteristic curves

The Receiver operating characteristic (ROC) curve (plotted with sensitivity versus

1-speci�city) performs the comparison of di�erent approaches for detecting and lo-

calizing concept drifts and chooses the best approach. An Area Under Curve (AUC)

=1 is known as perfect discrimination, and 0.5 is known as absence of discrimination.

An AUC was calculated using all detection and localization attempts, and for each

attempt, the success and failure are recorded based on the result.
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Figure 4.25: Cumulative time taken for detecting concept drifts (Relationship count
v/s proposed features).

ROC curve for demonstrating the AUC of concept drift detection of the proposed

and other methods is shown in �g. 4.27 and 4.28. AUC of proposed method (0.9728)

is higher when compared to the AUC of Bose et al. (2014) (0.9439) and Carmona and

Gavalda (2012) (0.7236). The greater AUC demonstrates that the proposed approach

is capable of sensitively and correctly detecting concept drift.
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Figure 4.26: Cumulative time taken for detecting concept drifts (J measure v/s
proposed features).

ROC curves for concept drift localization is shown in �g. 4.29. AUC of proposed

method (0.9036) is signi�cantly higher than the method proposed by Bose et al. (2014)

(0.8257). Based on the comparison of AUCs of the di�erent methods used for concept

drift detection and localization, we can arrive at the conclusion that the proposed

method is capable of handling the situation of concept drift e�ciently.
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Figure 4.27: ROC curve for detecting concept drift (Proposed method vs. Bose
et al. (2011)).
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Figure 4.28: ROC curve for detecting concept drift (Proposed method vs. Carmona
and Gavalda (2012)).

4.8 Summary

In process mining, concept drift is a condition wherein process changes during the

period of execution/analysis. Handling concept drifts e�ciently is highly crucial for

ensuring the validity and correctness of the results generated by process mining. Con-

cept drift in the process makes the result of analysis invalid. The facets from which

the concept drift phenomenon to be addressed are many. One needs to consider every

major change type, perspective, pattern of change and mode of handling to propose a
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Figure 4.29: ROC curve for localizing localizing drift (Proposed method vs. Bose
et al. (2011)).

end-to-end solution.

This chapter has demonstrated a method for detecting and localizing concept drift

in control-�ow perspective. Consensus traces obtained by MTA are processed to

extract the control-�ow features. A systematic examination of feature values with ap-

plication of statistical hypothesis testing techniques assists in detecting and localizing

concept drift.

It is demonstrated that the proposed method is capable of e�ciently uncovering

most of the change types related to control-�ow perspective in the single run of the

algorithm using a reduced feature set size.
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Chapter 5

Process Logo: Informative

Visualization of Control Flow

Perspective

For building a control �ow process model, there are a plethora of techniques exist in

process mining. Currently, the available control �ow discovery algorithms in process

mining are capable of generating process model similar to the one shown in �g. 5.1

(constructed using YAWL notation). From this category of a process model, no

information other than activities (steps) and path (connections between steps) can be

depicted.

Figure 5.1: Control-�ow of loan application handling process (initial variant).

This chapter introduces a new control �ow modeling notation called process logo.

Process logo is capable of depicting following a set of information in a single compact

graphic (in addition to the conventional causal relationships.)

• Order of occurrence of activities (causal relationship).
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• General consensus between activities (back bone of control �ow).

• Co-occurrence of related activities at any given position in trace.

• Information score of individual activity.

• Conserved and shared activities/sequences.

A process logo is created from a set of aligned traces generated using MTA, basi-

cally consists of a stack of activities at each position. The relative size of the activity

indicates its frequency and height depicts the information content of the position at

which the activity (or set of activities) is observed (in bits).

The upcoming contents in this chapter is organized as follows, section 5.1 presents

the framework followed for constructing process logo. An example of MTA illustrating

di�erent splits and joins is given in section 5.2. Features required for constructing

process logo is given in section 5.3. Results of experiments carried out is given in

section 5.4 and the chapter concludes with the concise summary.

5.1 Framework

Figure 5.2: Framework for constructing process logo.

Framework followed to construct process logo is shown in �g. 5.2. Initially, all

traces in the event log are extracted and duplicates are �ltered out to form a distinct

set of traces. Alignment between traces is generated with the help of MTA. It is used

to extract consensus trace and information score. Finally, a process logo representing

control �ow of the process is generated.
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Table 5.1: Event log of loan application handling process.

Case

ID

Event

ID
Activity Resource Timestamp

ab12

2342 Register request (A) r71324 10-10-2014/01:20

2343 Begin veri�cation (B) r21345 10-10-2014/03:23

2344 Document check (C) r67890 10-10-2014/05:25

2345 Evaluate pledge assets (D) r45634 11-10-2014/12:20

2346 Police veri�cation (E) r55467 11-10-2014/13:44

2347 End veri�cation (F) r34526 14-10-2014/15:20

2348 Inform by post (G) r22435 16-10-2014/04:55

2349 End case and archive (J) r11234 19-10-2014/01:47

ab13

3313 Register request (A) r71324 28-12-2014/13:44

3314 Begin veri�cation (B) r21345 29-12-2014/14:23

3315 Document check (C) r67890 30-12-2014/17:01

3316 Evaluate pledge assets (D) r45634 01-01-2015/13:55

3317 Police veri�cation (E) r55467 01-01-2015/16:43

3318 End veri�cation (F) r34526 01-01-2015/19:52

3319 Inform by e-mail (H) r22434 02-01-2015/13:34

3320 End case and archive (J) r11234 08-01-2015/14:52

ab14

4313 Register request (A) r71324 28-12-2014/13:44

4314 Begin veri�cation (B) r21345 29-12-2014/14:23

4315 Document check (C) r67890 30-12-2014/17:01

4316 Evaluate pledge assets (D) r45634 01-01-2015/13:55

4317 Police veri�cation (E) r55467 01-01-2015/16:43

4318 End veri�cation (F) r34526 01-01-2015/19:52

4319 Inform by phone (I) r22434 02-01-2015/13:34

4320 End case and archive (J) r11234 08-01-2015/14:52

... ... ... ...
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We use variants of loan application handling process (shown in �g. 5.1) as a run-

ning example for illustrating the concepts discussed in this chapter. Excerpt of the

event log corresponding to the process is shown in the table 5.1. Materials and meth-

ods presented in this chapter are strictly related to control �ow perspective, therefore

activity column in the event log is the bare minimum requirement for constructing

the process logo (all other information except activity column is �ltered out).

We assign a distinct name for every activity of loan process to refer them easily.

These short names can be found corresponding to every activity in the process model.

All process models given in this chapter are constructed using YAWL notations.

Table 5.2: Possible traces between activities G, H, and I.

Split/ join

type
Possible traces

Serial A = { ABCDEFGHIJ }

XOR B = { ABCDEFGJ, ABCDEFHJ, ABCDEFIJ }

OR

C = { ABCDEFGIJH, ABCDEFIGHJ, ABCDEFIHGJ, ABCDEFHIGJ, ABCDEFHGIJ, ABCDEFGHJ, ABCDEFIJ

ABCDEFHGJ, ABCDEFGIJ, ABCDEFIGJ, ABCDEFIHJ, ABCDEFHIJ, ABCDEFGJ, ABCDEFHJ, ABCDEFGHIJ

}AND D = { ABCDEFGHIJ, ABCDEFGIJH, ABCDEFIGHJ, ABCDEFIHGJ, ABCDEFHIGJ, ABCDEFHGIJ}

5.2 An Example of Arranging Traces Using MTA

An example of aligning traces related to variants of loan application handling pro-

cess is illustrated in this section. Causal relationships between activities G, H, and

I of loan application process are altered to create variants. MTA of each process

variant is extracted and its competence in capturing activity relationship pattern is

demonstrated.

Examples of aligning three di�erent variants of loan application process are shown

in �g. 5.3. Corresponding to each MTA, the left panel shows case ids as in the event

log (gray background indicate traces that have identical duplicates), each column

in the MTA represents set of activities, and each row in the alignment represents a

distinct trace. The bottom panel depicts the information score for each column and

consensus trace. Three variants of loan application process is described as follows,

• According to �g. 5.1, activities G, H and I ordered between XOR split/join.

This activity arrangement permits execution of any one of the three activities
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to execute at any given instance (possible traces are given in set B of table 5.2).

Corresponding MTA is shown in �g. 5.3a.

• Set C in table 5.2 is result of ordering activities G, H, and I between AND

split/join. This permits execution of these three activities in any permutation.

Corresponding MTA is shown in �g. 5.3b.

• Set D in table 5.2 is the result of ordering activities G, H and I between OR

split/join. This permits the execution of activities in any permutation and

combination. The corresponding MTA is shown in �g. 5.3c.

From the alignments shown in �g. 5.3 it is evident that MTA is capable of legibly

capturing the prominent activity arrangements (such as serial, OR, XOR, AND etc).

These alignments are used to extract the information related for generating process

logo.

5.3 Features for Constructing Process Logo

The information necessary for constructing process logo is discussed in this section.

5.3.1 Consensus trace

Consensus trace generally consists of sequence of activities. Each activity in consensus

trace corresponds to signi�cant activity at each column (position) of MTA. Consen-

sus trace captures the backbone of control-�ow and prevalence (or order) of activity

arrangements.

Fig. 5.3 shows consensus traces highlighted corresponding to each MTA ( ABCEDHGIF,

ABCDFGHGIHGHJ and ABCEDFGHIGHIJ). To obtain a consensus trace, a table represent-

ing frequencies of activities in every column of MTA is constructed and frequency

value is sorted in decreasing order. Finally, an activity with the highest frequency is

chosen to appear on consensus trace.
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5.3.2 Information score

Information score (R) is used to represent the height of activities(y-axis) in process

logo. It is calculated using equation 5.1.

Ri = log2(|Σ|)− (Hi + en) (5.1)

Where, Hi is the uncertainty (Shannon, 2001) of position i. Hi is calculated using

equation 5.2, and the value of en in equation 5.1 is calculated using 5.3.

Hi = −
∑

fa,i × log2 fa,i (5.2)

Here, fa,i is the relative frequency of activity of the process under consideration at

position i, and en is the small-sample correction for an alignment of n letters. The

approximation for en is calculated using equation 5.3. Where s is number of activities

of the process and n is number of traces of the process.

en =
1

ln 2
× s− 1

2n
(5.3)

The height of a activity in column i in the process logo is calculated using equation

5.4.

height = fa,i ×Ri (5.4)

5.4 Results

A Process logo is constructed from the set of aligned traces. It consists of stack of

activity names corresponding to each position of it's corresponding MTA. The size

of activity in process logo is directly proportional to it's information score. The

method for constructing process logo is applied and validated on process variants of

loan application handling process. Event logs corresponding to process variants are

generated using CPN tools (Jensen and Kristensen, 2009) with CPNXES (Michael,

2011) library.
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The attributes and process logo related to MTA of �g. 5.3b are listed in table 5.3.

This process logo clearly shows,

• Arrangement of activities G, H and I in AND split/join.

• Serial arrangement of all other activities except G, H and I.

• Information score of any activity in process logo is proportional to it's frequency.

For example, in table 5.3, activities with frequency value equal to 200 have

highest information score (3.5 bits).

• Information score decreases with increase in number of distinct activities in the

any column of MTA. For example, in table 5.3 columns with only one activity

have highest information score. At the same time, columns with more number

of distinct activities have less information score.

Region in control �ow where these activities form AND split/join is highlighted in

the process logo shown in table 5.3.

1
2

3
4

A B C D E F G H I J
1 2 3 4 5 6 7 8 9 10

Position signifies the 
order of occurance of 

acitivity

Ri

The dimension of 
the activity is based 
on information score

Information score of activities 
vary based on the nature 

of split and joins

XOR

Figure 5.4: Trace logo of process having XOR split/join

Second process logo of variant of loan application process is shown in �g. 5.4. It

consists of 10 distinct activities. Activities G, H and I are arranged between XOR

split/join (all other activities except G, H and I are arranged serially). The XOR

region consisting activities G, H and I is highlighted in �g. 5.4.

Third process logo is shown in �g 5.5, it corresponds to process model shown in �g.

5.5a. It consists of three activities arranged in knock out-fashion (it is the arranging
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(a) Process model.

(b) Process logo.

Figure 5.5: Process logo exhibiting knock out and XOR split/join.

(a) Process model.

(b) Process logo.

Figure 5.6: Process logo exhibiting AND and XOR split/join.
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(a) Process model.

(b) Process logo.

Figure 5.7: Process logo exhibiting OR split/join.

activities where some of the activities can be skipped during the execution period),

and three activities are organized between XOR split/join. Activities in process logo

corresponding to knock out and XOR are highlighted.

Next variant of loan application handling process shown in �g. 5.6. This process

model (shown in �g. 5.6a) consists of AND split/join and XOR split/join at di�erent

places. Corresponding process logo is shown in �g. 5.6.

Process variant shown in �g. 5.7a consists of OR split/join. The the corresponding

process logo is shown in �g. 5.7b. Slightly di�erent process variant than the one

shown in �g. 5.7a is given in �g. 5.8a. The only change is that OR split/join has

been replaced by AND split/join and the number of activities are less compared to

former one. The process logo corresponding to process variant �g. 5.8a is shown in

�g. 5.8b.

Process logo becomes incomprehensible and complex if the process consisting of a

large number of activities. To overcome this, traces of the process are clustered, and

each cluster can be aligned individually to generate MTA. We demonstrate this with

the process model shown in �g. 5.9. It consists of 19 distinct activities.

Traces related to the variant of loan application handling shown in �g.5.9 are
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(a) Process model.

(b) Process logo.

Figure 5.8: Process logo exhibiting AND split/join.

clustered to form concrete set of clusters. Each cluster is aligned to generate individual

process logo representing the control �ow of particular cluster. Process logo shown in

�g. 5.10a shows the XOR connections between activities I and J. Process logo given

in �g. 5.10b shows AND split/join between activities F, G and H. Process logo shown

in �g. 5.10c shows activity arrangement OR split/join with respect to activities K, L

and M. Collectively process logo shown in �g. 5.10a, 5.10b and 5.10c summarizes the

control �ow of process in �g. 5.9.

5.5 Summary

Relationship between activities constitute the backbone of any process and it models

the control �ow perspective. A new control �ow modeling notation named process

logo presented in this chapter is a step towards overcoming limitations in the currently

existing control �ow modeling notations.

Process logo is capable of e�ciently visualizing 1) activity relationships 2) order of
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Figure 5.9: Process model with multiple split/join.

occurrence of activities 3) information score 4) signi�cant activities in a single compact

graphic. Process logo is capable of visualizing most commonly known split/join types

such as AND, OR, XOR and serial patterns.
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(a) Process logo of XOR trace cluster.

(b) Process logo corresponding to OR trace cluster.

(c) Process logo corresponding to AND trace cluster.

Figure 5.10: Process logo representing clusters of traces shown in �gure 5.9.
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Chapter 6

Distilling Lasagna from Spaghetti

Processes

Functional areas are the fundamental constituent parts of any operational processes.

Functional areas facilitate to coordinate, monitor, and execute the processes in an

organization. Most typically observed functional areas are production, �nance (and

accounting), procurement, logistics, resource management, sales, etc. Depending on

the structure and complexity of processes in functional areas, it's control �ow can be

labeled as structured, semi-structured and unstructured.

(a) Spaghetti structure. (b) Lasagna structure.

Figure 6.1: A real-world analogy for Spaghetti and Lasagna processes.

The spectrum of process complexity is continuous. �Unstructured�, �semi-structured�,

and �structured� are used for referring to the same spectrum of process complexity.

• A Structured process has a well-de�ned input and output conditions and matches

with observed and expected behavior. These categories of processes can be easily

automated.
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• In a semi-structured process, information requirement of activities are known

and it is possible to plan the execution steps much ahead of time.

• In an unstructured process, it is highly impossible to de�ne the prior and pos-

terior conditions for executing activities. The fundamental reason is that these

processes are carried out by vague qualitative information, intuition, trial-and-

error, experience and rules-of-thumb

Any operational process with unstructured control �ow is referred as Spaghetti

process, and the one with structured control �ow is referred as Lasagna process. The

term Spaghetti (used for referring unstructured process, an analogy of same is shown

in �g. 6.1a) and Lasagna (used for referring structured process, a real life analogy is

shown in �g. 6.1b) are adopted in this context for the better understanding of the

concept.

Spaghetti and Lasagna control �ows are the exact opposite of each other. Spaghetti

process is unstructured, cannot be readable, and incomprehensible. Spaghetti pro-

cesses consist of a large number of activities and transitions. On the other hand,

Lasagna processes are highly structured, readable and easily understandable with the

manageable number of activities and transitions. Lasagna process is de�ned with the

clear structure and carried out in a prede�ned manner. The process model is shown

in �g. 6.9 is a example for Lasagna process (Process mining tool named �Disco� (Gün-

ther and Anne Rozinat, 2012) is used for creating control-�ow models used in this

chapter) chapter)

Due to the structural complexity of Spaghetti process, only a minuscule of process

mining techniques can be used. However, Spaghetti processes are highly interesting

from the perspective of process mining, they always allow for continuous improve-

ments. The process model is shown in the �g. 6.2 is a example for Spaghetti process.

The focus of this chapter is to propose techniques for,

• Reducing the structural complexity of the process to extract Lasagna from

Spaghetti process.

• Finding the possible and impossible paths of executions in simpli�ed Lasagna

process.
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Upcoming contents of this chapter are structured as follows. Typical functional

areas are explained in section 6.1. Section 6.2 presents the framework. The method

for converting Spaghetti to Lasagna is explained in section 6.3. The technique to �nd

possible and impossible paths of execution is discussed in section 6.4. The result of

experimental work is documented in section 6.5. Section 6.6 presents the upshot of

the chapter.

6.1 Common Functional Areas in Organization

The structure of process (Lasagna or Spaghetti) associated with various functional ar-

eas of an organization is necessary for process management. Most commonly observed

functional areas in an organization are shown in �g. 6.3.
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Figure 6.3: Overview of the di�erent functional areas in a typical organization.

Both types of processes can be found in all of the functional areas. Lasagna

processes are typically encountered in production, �nance/accounting, procurement,

logistics, resource management, and sales/CRM. Spaghetti processes are typically

encountered in product development, service, resource management, and sales/CRM.
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6.2 Framework

The framework used for extracting Lasagna from Spaghetti process is shown in �g.

6.4. Initially, traces in the event log are read and control �ow model is constructed.

Constructed model is checked against Lasagna properties. If the control �ow structure

does not match with the Lasagna properties, then the activities and transitions are

aggregated and abstracted with the help of fuzzy miner (Günther and Van Der Aalst,

2007). This step is repeated until the formation of a concrete Lasagna control �ow

model.

Aggrigate

and abstract 

insignificant 

activities

Aggrigate

and abstract 

insignificant 

paths

Check for 

Lasagna

A
d
ju

s
t

Generate 

dependency

matrix

Normalize by 

adding 

pseudocount

Extract control flow specific 

feature sets

Structural complexity reduction

from Spaghettiti to Lasagna

using fuzzy mining approach 

Normalized 

dependency

martix

Control flow traces

1

2

Identify possible 
and impossible execution 

paths 

Event log of a 
Spaghetti process

Figure 6.4: Framework for simplifying Spaghetti processes.

The validity of the simpli�ed model is veri�ed based on its �tness value (Van

Der Aalst, 2011). If the �tness value (discovered model should allow for the behavior

seen in the event log. A model having a good �tness can replay most of the traces

in the log) of the simpli�ed model is ≥ 0.8, then the process is considered as �nal

Lasagna process (will not be simpli�ed any further). Once the Lasagna process model

is extracted, control �ow speci�c features (such as absolute frequency and dependency

matrices) are calculated. These feature values are used in �nding the possible and

impossible traces in the process.
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6.3 From Spaghetti to Lasagna

We use the following de�nition (rule of thumb) of Lasagna process stated by Van

Der Aalst (2011) for validating the Lasagna property of simpli�ed process.

�A process is a Lasagna process if with limited e�orts it is possible to create an

agreed-upon process model that has a �tness of at least 0.8, i.e., more than 80% of

the events happen as planned �.

Which means, more than 80% of the events happen as planned and stakeholders

con�rm the validity of the model.

6.4 Finding Possible and Impossible Traces

We obtain absolute frequency, and it is utilized to discover the corresponding depen-

dency matrix. Scores in dependency matrix are used for determining the possible or

impossible traces.

6.4.1 Absolute Frequency Matrix (AFM)

Connection between activities can be represented using follows and/or precedes re-

lationships. For any given pair of activities a and b we can determine whether they

sometimes, always, or never follows and/or precedes each other. The follows or pre-

cedes relationships are su�cient enough to discover how signi�cantly the activities

are interlinked.

AFM is constructed using follows relationship. It depicts the number of times one

activity is directly followed by another activity. Values in AFM is calculated using

equation 6.1.

De�nition 6.1. (Absolute follows relationship): Let L be the event log over A
and a, b ∈ A. |a >L b| is the number of times a is directly followed by b in L, i.e.,

|a >L b| = Σσ∈LL(σ)× |{1 ≤ i ≤ |σ||σ(i) = a ∧ σ(i+ 1) = b}| (6.1)

6.4.2 Dependency Matrix

Values of AFM is used for calculating dependency matrix. Dependency matrix sig-

ni�es the strength of the relationship between activities of a process. Dependency

matrix is constructed by equation 6.2.
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De�nition 6.2. (Dependency value): |a ⇒ b| is the value of the dependency
relation between a and b,

|a⇒ b| =

{
|a>Lb|−|b>La|
|a>Lb||b>La|+1

if a 6= b
a>La|
|a>La|+1

if a = b
(6.2)

Dependency value varies between 1 and -1.

• Two activities a and b are highly dependent if the value of |a⇒L b| is close to

1.

• If the value of |a⇒L b| u −1 then there is a high negative dependency between

a and b.

Figure 6.5: Control-�ow �tness versus activity and path percentage.

6.5 Results

The methods for simplifying spaghetti processes to �nd the possible and impossible

paths of execution is evaluated on event log of road tra�c �ne management process

(control �ow model of this process is shown in �g. 6.2) (De Leoni and Mannhardt,

2015). It is taken from the standard process mining event log repository (4TU.Centre

for Research Data). This event log made of 561, 470 events divided over 150, 370 cases

and consists of 27 distinct activities.
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Figure 6.6: Road tra�c process with activities: 80%, Paths: 40%, Fitness:0.3.

6.5.1 Step 1: Process simpli�cation

Fuzzy miner (Günther and Van Der Aalst, 2007) is employed on initial spaghetti

process (�g. 6.2), and the control �ow of road tra�c �ne management process is
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Figure 6.7: Road tra�c process with activities: 65%, Paths: 30%, Fitness:0.6.

constructed at various levels of activity and path aggregation and abstraction. Fitness

value of generated control �ow models are computed and checked against Lasagna

de�nition, this process is repeated iteratively until �nding a process model with the

�tness value ≥ 0.8.

The intermediate control �ow models of road tra�c �ne management process with

various levels of activity and path abstractions are shown in �g. 6.6 - 6.8. Considerable

improvement in �tness value can be seen by reducing the complexity of the process.

Balloon graph is shown in �g. 6.5 illustrates the e�ect of decreasing process complexity

(in terms of activity and paths) on �tness value. It is observed that complexity and

�tness are inversely proportional.
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Figure 6.8: Road tra�c process with activities: 50%, Paths: 25%, Fitness:0.7.

The simpli�ed Lasagna model of road tra�c �ne management process is shown

in �g. 6.9. It has �tness value of 0.8 and it is constructed with 40% of activity and

25% of path abstraction and aggregation. The simpli�ed Lasagna process is used to

extract the control �ow features to assist us in determining the set of possible and

impossible traces.
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Figure 6.9: Lasagna model of road tra�c �ne management process.
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Table 6.1: Absolute Frequency Matrix.

| >L | a b c d e f g h i j k

a 0 103392 0 0 0 0 0 0 0 0 46952

b 0 0 75757 161 0 0 0 0 0 0 0

c 0 0 0 3327 290 72334 0 0 0 0 3891

d 0 0 0 0 0 2933 0 1159 0 0 0

e 0 0 0 0 0 281 0 0 0 0 0

f 0 0 0 0 0 0 57182 2915 351 0 0

g 0 0 0 0 0 0 0 16 0 0 0

h 0 0 0 0 0 0 0 0 606 0 0

i 0 0 0 0 0 0 0 0 0 829 0

j 0 0 0 0 0 0 257 0 0 0 391

k 0 0 0 0 0 0 1538 0 0 0 4014

Table 6.2: Dependency matrix.

⇒L a b c d e f g h i j k

a 0 0.99 0 0 0 0 0 0 0 0 0.99

b -0.49 0 0.99 0.99 0 0 0 0 0 0 0

c 0 -0.49 0 0.99 0.99 0.99 0 0 0 0 0.99

d 0 -0.49 -0.49 0 0 0.99 0 0.99 0 0 0

e 0 0 -0.49 0 0 0.99 0 0 0 0 0

f 0 0 -0.49 -0.49 -0.49 0 0.99 0.99 0.99 0 0

g 0 0 0 0 0 -0.49 0 0.94 0 -0.99 -0.99

h 0 0 0 -0.49 0 -0.49 -0.48 0 0.99 0 0

i 0 0 0 0 0 -0.49 0 -0.49 0 0.99 0

j 0 0 0 0 0 0 1.00 0 -0.49 0 0.99

k -0.49 0 -0.49 0 0 0 1.00 0 0 -0.49 0.99

6.5.2 Step 2: Finding the possible and impossible paths of
execution

For easily referring the activities in Lasagna process, we assign simple one letter names

for each of the 11 activities shown in �g. 6.9. Short names are, �le �ne (a), create
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�ne (b), send �ne (c), insert �ne noti�cation (d), insert data appeal to perfecture (e),

add penalty (f), send for credit collection (g), send appeal to perfecture (h), receive

the result of appeal from perfecture (i), Notify the result of appeal to o�ender (j),

and payment (k).

A AFM and dependency matrix

AFM of road tra�c �ne management process is given in table 6.1. For instance, |b

>L d| = 161, i.e., in the entire log, activity named d has been carried out 161 times

after the end of activity b. Absolute frequency matrix related to simpli�ed control

�ow of road tra�c �ne management process is given in table 6.1.

Dependency matrix corresponding to simpli�ed Lasagna process (�g. 6.9) is shown

in table 6.2. The values in this matrix will be used for distinguishing between possible

and impossible sets of traces.

B Possible and impossible paths

Set of random traces are constructed using the activities in simpli�ed Lasagna pro-

cess (�g. 6.9). Value for each trace is computed by adding corresponding values of

dependency matrix given in table 6.2. The premise is, traces that are according to

control-�ow of Lasagna process obtain considerably high score compared to the traces

that are not con�rming to control-�ow of Lasagna process.

Following are the sets containing possible and impossible traces we use for evalu-

ating proposed techniques.

Tp = { abcdfghijk, abdhijk, abcefghijk, abcfghijk, abdfghijk, abdfhijk,

abdfijk, abcfhijk, abcfijk, abcefhijk, abcefijk, abcefhijk, abcefijk,

abcdfhijk, abcdfijk}

Ti = {kjjihgfdcb, abkigfedhgf, jbcbadhgf, kcbdedfdch, ccffbkjhbgh,

cbejahgbkg, kifcba, kjihfdcba, kjifbda, akihfbda, kiihgfbda, aagghhcc,

aaccffddjj}

Traces in the set Tp are formed according to the control �ow structure shown in

the �g. 6.9. Traces in the set Ti are impossible to be run on control �ow shown in �g.
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(a) Scores for possible paths of execution.

(b) Scores for impossible paths of execution.

Figure 6.10: Possible and impossible paths of execution.

6.9. Trace value for each trace in both sets is calculated using activity dependency

values given in table 6.2.

The result of evaluating the set of possible and impossible traces is shown in �g.

6.10. The graph is shown in �g. 6.10a corresponds to possible set of traces (Tp) and

graph shown in �g. 6.10b corresponds to impossible set of traces (Ti). From the graphs

shown in �g. 6.10, scores obtained by traces in Tp is always positive and relatively

higher to the scores of Ti. This result validates that proposed method is capable

of identifying the set of possible and impossible traces in any Spaghetti structured

process.
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6.6 Summary

Spaghetti processes are unstructured, di�cult to understand and impossible to com-

prehend. Due to its structural complexity, most of the currently available techniques

in process mining can't be applied. Methods and techniques for analysis of spaghetti

process are always a matter of interest in the process mining research community.

This chapter demonstrated the method for extracting Lasagna (structured) process

from Spaghetti (unstructured) process. Further, the method has been proposed for

identifying the set of possible and impossible traces on the simpli�ed process. The

proposed methods have been applied and validated on real world event log.
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Chapter 7

Identifying Frequent Execution Paths

in Information System

Availability of event log and process model play a signi�cant role while introducing

new information systems. Formal and informal are the two categories of models used

for designing and redesigning information systems.

• Informal model is used for discussion and documentation (typically ambiguous

and vague).

• Formal model (also referred to as executable model) is used for analyzing and

enacting the actual execution of a process (these models tend to have the speci�c

focus and too detailed, di�cult to be understandable by the stakeholders).

The lack of alignment between formal and informal models has been discussed

extensively in BPM literature (Dumas et al., 2005; Harel and Marelly, 2003; Ter Hof-

stede et al., 2009).

The value of the model is limited if too little attention is paid to the alignment

of model and reality. Process models become �paper tigers� when the people involved

cannot trust them. For example, it makes no sense to conduct simulation experiments

while using a model that assumes an idealized version of the real process. It may lead

to the incorrect design and redesign decisions. It is also di�cult to start a new

implementation project guided by process models that hide the reality.

A process model used to con�gure a work�ow management system is probably

well-aligned with reality. Unfortunately, most hand-made models are disconnected

from reality and provide only an idealized view of the processes at hand.
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Here the focus is on formal models. in the aspect of formal models, rigorous

analysis techniques may have little to do with the actual process. But, these are the

models used for actual implementation and analysis.

Knowledge about frequent execution paths in formal models helps stakeholders to

discuss, optimize, verify, analyze, animate, specify and con�gure the process related

information. We propose a method for identifying frequent paths of executions with

the help of formal models. The focus of this chapter is to propose the methods and

techniques for,

• Capturing the process execution information.

• Identifying the frequent execution patterns.

Upcoming sections of this chapters are organized follows. Section 7.1 introduces

online shopping process which is used as the case study for validating results in this

chapter. Framework for identifying frequent execution paths is explained in section

5.2. Extraction of feature set needed for identifying frequent execution path is illus-

trated in section the 7.3. Results of experimental study is given in section 7.4. Finally,

this chapter concludes with a summary.

7.1 Process Model Used for Case Study

Petri-net (Peterson, 1981) representing the control-�ow model of online shopping web-

site is shown in the �g. 7.1. It is constructed by applying α algorithm (Van Der Aalst

et al., 2004) on the process log given in the table 7.1

According to �g. 7.1, once the order is received (a), veri�cation steps (b,c and

d) are carried out before approving (f) or rejecting (j) the order. Order is closed

immediately if the decision is to reject the order. Upon approving the order, customer

will be noti�ed (h, i) and the consignment with invoice is sent (g). After delivering

(k) and receiving the payment (i), order will be closed (m). Table 7.2 shows the set

of all traces possible on online shopping process model.
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Figure 7.1: Control-�ow model of online shopping process.
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Table 7.2: Possible traces with positional information.

Activity positions

1 2 3 4 5 6 7 8 9 10 11

a b c d e f g h k l m

b d c h g

d c b g i

d b c i g

c b d j m

c d b

7.2 Framework

Steps followed for identifying frequent execution patterns is shown in �g. 7.2. Ini-

tially, a event log is processed to extract the control-�ow traces. Traces are used to

generate the alignment as shown in table 7.3. Aligned traces are used to extract Posi-

tion Speci�c Scoring Matrix (PSSM) and Position Probability Matrix (PPM). PSSM

and PPM serve as the building block for identifying frequent control-�ow execution

patterns.

Event log
Multiple 

trace 

alignment

Positoin specific

weights

Position 

Probabilities 

Trace 

representation 

Trace 

prediction 

Alignment
Position specific 

Weight matrix

Control flow 

traces

Position

probability 

matrix

Figure 7.2: Framework for predicting the frequent execution patterns.

7.3 From Traces to Position Weight Matrix

Position Weight Matrix (PWM) is a trace descriptor. It attempts to capture the

intrinsic variability characteristic of activities in trace patterns. A Pro�le is usually

derived from a set of functionally related aligned control-�ow traces. A PWM is

a two-dimensional matrix. It has one row for each activity appearing in the trace

alignment and one column for every position in the alignment.
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Table 7.3: Aligned traces of online shopping process.

Number Control-�ow trace

Trace 1: a, b, c, d, e, f, g, h, k, l, m

Trace 2: a, b, d, c, e, f, g, h, k, l, m

Trace 3: a, d, c, b, e, f, g, h, k, l, m

Trace 4: a, d, b, c, e, f, g, h, k, l, m

Trace 5: a, c, b, d, e, f, g, h, k, l, m

Trace 6: a, c, d, b, e, f, g, h, k, l, m

Trace 7: a, b, c, d, e, f, h, g, k, l, m

Trace 8: a, b, d, c, e, f, h, g, k, l, m

Trace 9: a, d, c, b, e, f, h, g, k, l, m

Trace 10: a, d, b, c, e, f, h, g, k, l, m

Trace 11: a, c, b, d, e, f, h, g, k, l, m

Trace 12: a, c, d, b, e, f, h, g, k, l, m

Trace 13: a, b, c, d, e, f, g, i, k, l, m

Trace 14: a, b, d, c, e, f, g, i, k, l, m

Trace 15: a, d, c, b, e, f, g, i, k, l, m

Trace 16: a, d, b, c, e, f, g, i, k, l, m

Trace 17: a, c, b, d, e, f, g, i, k, l, m

Trace 18: a, c, d, b, e, f, g, i, k, l, m

Trace 19: a, b, c, d, e, f, i, g, k, l, m

Trace 20: a, b, d, c, e, f, i, g, k, l, m

Trace 21: a, d, c, b, e, f, i, g, k, l, m

Trace 22: a, d, b, c, e, f, i, g, k, l, m

Trace 23: a, c, b, d, e, f, i, g, k, l, m

Trace 24: a, c, d, b, e, f, i, g, k, l, m

Trace 25: a, b, c, d, e, f, j, m

Trace 26: a, b, d, c, e, f, j, m

Trace 27: a, b, d, c, e, f, j, m

Trace 28: a, d, c, b, e, f, j, m

Trace 29: a, d, b, c, e, f, j, m

Trace 30: a, c, b, d, e, f, j, m

7.3.1 Absolute Frequency Matrix (AFM)

Generating AFM is the �rst step towards creating PWM. AFM shows the number of

times that each activity has appeared on each position in the alignment. The values

in AFM (i.e. Ak,j) are calculated using equation 7.1. Value of Xi,j in equation 7.1 is
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Table 7.4: Absolute and relative relative frequency matrix.

Activity Positions in Trace

Activities 1 2 3 4 5 6 7 8 9 10 11

a 30.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(A) Absolute Frequency

b 0.0 10.0 10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

c 0.0 10.0 10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d 0.0 10.0 10.0 10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

e 0.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 0.0 0.0 0.0

f 0.0 0.0 0.0 0.0 0.0 30.0 0.0 0.0 0.0 0.0 0.0

g 0.0 0.0 0.0 0.0 0.0 0.0 12.0 12.0 0.0 0.0 0.0

h 0.0 0.0 0.0 0.0 0.0 0.0 6.0 6.0 0.0 0.0 0.0

i 0.0 0.0 0.0 0.0 0.0 0.0 6.0 6.0 0.0 0.0 0.0

j 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0 0.0

k 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.0 0.0 0.0

l 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 24.0 0.0

m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 6.0 0.0 0.0 24.0

a 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(B) Relative Frequency

b 0 0.33 0.33 0.33 0.0 0.0 0.0 0.0 0.0 0.0 0.0

c 0 0.33 0.33 0.33 0.0 0.0 0.0 0.0 0.0 0.0 0.0

d 0 0.33 0.33 0.33 0.0 0.0 0.0 0.0 0.0 0.0 0.0

e 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

f 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

g 0.0 0.0 0.0 0.0 0.0 0.0 0.4 0.4 0.0 0.0 0.0

h 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0

i 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.0 0.0

j 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0

k 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 0.0

l 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0

m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 0.8

calculated using 7.3.

Ak,j =
N∑
i=1

I(Xi,j = k) (7.1)

Table 7.4(a) shows the AFM of online shopping process. For example, score of the

trace <a, b, c, d, e, f, g, h, k, l, m> using AFM evaluates to 30× 10× 10× 10× 30×

30× 12× 06× 24× 24× 24 = 2.6× 1013.
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Table 7.5: Background normalized relative frequency matrix.

Position speci�c scoring matrix

Activities 1 2 3 4 5 6 7 8 9 10 11

a 0.86 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

(A)

Relative frequency

(B=
√

(N) = 5.47)

b 0.014 0.29 0.29 0.29 0.014 0.014 0.014 0.014 0.014 0.014 0.014

c 0.014 0.29 0.29 0.29 0.014 0.014 0.014 0.014 0.014 0.014 0.014

d 0.014 0.29 0.29 0.29 0.014 0.014 0.014 0.014 0.014 0.014 0.014

e 0.014 0.014 0.014 0.014 0.86 0.014 0.014 0.014 0.014 0.014 0.014

f 0.014 0.014 0.014 0.014 0.014 0.86 0.014 0.014 0.014 0.014 0.014

g 0.011 0.011 0.011 0.011 0.011 0.011 0.35 0.35 0.011 0.011 0.011

h 0.060 0.060 0.060 0.060 0.060 0.060 0.344 0.344 0.060 0.060 0.060

i 0.060 0.060 0.060 0.060 0.060 0.060 0.344 0.344 0.060 0.060 0.060

j 0.003 0.003 0.003 0.003 0.003 0.003 0.172 0.003 0.003 0.003 0.003

k 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.688 0.011 0.011

l 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.688 0.011

m 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.183 0.014 0.014 0.691

a 0.996 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003

(B)

Relative Frequency

(B=0.1)

b 0.003 0.332 0.332 0.332 0.003 0.003 0.003 0.003 0.003 0.003 0.003

c 0.003 0.332 0.332 0.332 0.003 0.003 0.003 0.003 0.003 0.003 0.003

d 0.003 0.332 0.332 0.332 0.003 0.003 0.003 0.003 0.003 0.003 0.003

e 0.003 0.003 0.003 0.003 0.996 0.003 0.003 0.003 0.003 0.003 0.003

f 0.003 0.003 0.003 0.003 0.003 0.996 0.003 0.003 0.003 0.003 0.003

g 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.398 0.398 0.0002 0.0002 0.0002

h 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.20 0.20 0.0001 0.0001 0.0001

i 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.20 0.20 0.0001 0.0001 0.0001

j 0.00006 0.00006 0.00006 0.00006 0.00006 0.00006 0.19 0.00006 0.00006 0.00006 0.00006

k 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.79 0.0002 0.0002

l 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.79 0.0002

m 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.199 0.003 0.003 0.79

7.3.2 Relative Frequency Matrix (RFM)

Relative Frequency depicts the relative number of times a particular activity is ob-

served with respect to other activities at a speci�c position in the trace alignment.

An RFM is obtained by dividing the values in the AFM by the number of traces in

the alignment, thereby normalizing the values.

Formally, given a set X of N aligned traces of length l, the elements of the RFM

are calculated (using the equation 7.2).

Rk,j =
1

N

N∑
i=1

I(Xi,j = k) (7.2)

Where, i ∈ (1, ..., N), j ∈ (1, ..., l), k is the set of symbols in the alphabet and

I(a = k) is an indicator function where I(a = k) is 1 if a = k and 0 otherwise. Value
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Table 7.6: Background normalized relative frequency matrix.

Position speci�c scoring matrix

Activities 1 2 3 4 5 6 7 8 9 10 11

a 8.95 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14

(C)

Normalized Relative

Frequency

(B=
√

(n))

b 0.14 3.02 3.02 3.02 0.14 0.14 0.14 0.14 0.14 0.14 0.14

c 0.14 3.02 3.02 3.02 0.14 0.14 0.14 0.14 0.14 0.14 0.14

d 0.14 3.02 3.02 3.02 0.14 0.14 0.14 0.14 0.14 0.14 0.14

e 0.14 0.14 0.14 0.14 8.95 0.14 0.14 0.14 0.14 0.14 0.14

f 0.14 0.14 0.14 0.14 0.14 8.95 0.14 0.14 0.14 0.14 0.14

g 0.144 0.144 0.144 0.144 0.144 0.144 4.60 4.60 0.144 0.144 0.144

h 1.53 1.53 1.53 1.53 1.53 1.53 8.82 8.82 1.53 1.53 1.53

i 1.53 1.53 1.53 1.53 1.53 1.53 8.82 8.82 1.53 1.53 1.53

j 0.15 0.15 0.15 0.15 0.15 0.15 8.6 0.15 0.15 0.15 0.15

k 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 9.05 0.144 0.144

l 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 0.144 9.05 0.144

m 0.14 0.14 0.14 0.14 0.14 0.14 0.14 1.90 0.14 0.14 6.35

a 10.37 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031

(D)

Normalized Relative

Frequency

(B=0.1)

b 0.031 3.45 3.45 3.45 0.031 0.031 0.031 0.031 0.031 0.031 0.031

c 0.031 3.45 3.45 3.45 0.031 0.031 0.031 0.031 0.031 0.031 0.031

d 0.031 3.45 3.45 3.45 0.031 0.031 0.031 0.031 0.031 0.031 0.031

e 0.031 0.031 0.031 0.031 10.37 0.031 0.031 0.031 0.031 0.031 0.031

f 0.031 0.031 0.031 0.031 0.031 10.37 0.031 0.031 0.031 0.031 0.031

g 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 5.2 5.2 0.0026 0.0026 0.0026

h 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 5.12 5.12 0.0025 0.0025 0.0025

i 0.0025 0.0025 0.0025 0.0025 0.0025 0.0025 5.12 5.12 0.0025 0.0025 0.0025

j 0.003 0.003 0.003 0.003 0.003 0.003 9.5 0.003 0.003 0.003 0.003

k 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 10.39 0.0026 0.0026

l 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 0.0026 10.39 0.0026

m 0.031 0.031 0.031 0.031 0.031 0.031 0.031 2.079 0.031 0.031 8.22

of Xi,j in equation 7.2 is calculated using 7.3.

Xi,j

1 if a = k

0 otherwise

(7.3)

Where, i ∈ (1, ..., N), j ∈ (1, ..., l), k is the set of symbols in the alphabet and

I(a = k) is an indicator function where I(a = k) is 1 if a = k and 0 otherwise.

Table 7.4(B) shows the relative frequency derived by applying equation 7.2. From

the de�nition of RFM, it can be inferred that the sum of values for a speci�c position

adds to 1. Each column in the RFM can, therefore, be considered as following an

independent multinomial distribution. This makes it easy to calculate the probability

of any trace given an RFM, by multiplying the relevant probabilities at each position.

For example, score of the trace <a, b, c, d, e, f, g, h, k, l, m> RFM evaluates to
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Table 7.7: Position Weight Matrix.

Position speci�c scoring matrix

Activities 1 2 3 4 5 6 7 8 9 10 11

a 3.16 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83

(A)

Log likelihood

(B=
√

(n))

b -2.83 1.67 1.67 1.67 -2.83 -2.83 -2.83 -2.83 -2.83 -2.8 -2.83

c -2.83 1.67 1.67 1.67 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83

d -2.83 1.67 1.67 1.67 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83

e -2.83 -2.83 -2.83 -2.83 3.16 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83

f -2.83 -2.83 -2.83 -2.83 -2.83 3.16 -2.83 -2.83 -2.83 -2.83 -2.83

g -2.79 -2.79 -2.79 -2.79 -2.79 -2.79 2.20 2.20 -2.79 -2.79 -2.79

h 0.61 0.61 0.61 0.61 0.61 0.61 3.14 3.14 0.61 0.61 0.61

i 0.61 0.61 0.61 0.61 0.61 0.61 3.14 3.14 0.61 0.61 0.61

j -2.71 -2.71 -2.71 -2.71 -2.71 -2.71 3.10 -2.71 -2.71 -2.71 -2.71

k -2.79 -2.79 -2.79 -2.79 -2.79 -2.79 -2.79 -2.79 3.17 -2.79 -2.79

l -2.79 -2.79 -2.79 -2.79 -2.79 -2.79 -2.79 -2.79 -2.79 3.17 -2.79

m -2.83 -2.83 -2.83 -2.83 -2.83 -2.83 -2.83 0.92 -2.83 -2.83 2.66

a 3.37 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01

(B)

Log likelyhoods

Frequency

(B=0.1)

b -5.01 3.45 3.45 3.45 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01

c -5.01 3.45 3.45 3.45 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01

d -5.01 3.45 3.45 3.45 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01

e -5.01 -5.01 -5.01 -5.01 10.37 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01

f -5.01 -5.01 -5.01 -5.01 -5.01 10.37 -5.01 -5.01 -5.01 -5.01 -5.01

g -8.58 -8.58 -8.58 -8.58 -8.58 -8.58 2.37 2.37 -8.58 -8.58 -8.58

h -8.64 -8.64 -8.64 -8.64 -8.64 -8.64 2.35 2.35 -8.64 -8.64 -8.64

i -8.64 -8.64 -8.64 -8.64 -8.64 -8.64 2.35 2.35 -8.64 -8.64 -8.64

j -8.38 -8.38 -8.38 -8.38 -8.38 -8.38 3.24 -8.38 -8.38 -8.38 -8.38

k -8.58 -8.58 -8.58 -8.58 -8.58 -8.58 -8.58 -8.58 3.37 -8.58 -8.58

l -8.58 -8.58 -8.58 -8.58 -8.58 -8.58 -8.58 -8.58 -8.58 3.37 -8.58

m -5.01 -5.01 -5.01 -5.01 -5.01 -5.01 -5.01 1.05 -5.01 -5.01 3.03

1× 0.33× 0.33× 0.33× 1× 1× 0.4× 0.2× 0.8× 0.8× 0.8 = 1.4× 10−3.

7.3.3 E�ect of pseudocounts

A single deviation in a trace can knock the score down to zero. To address the problem

of zeros, RFM is updated with pseudocounts (B) to re�ect the overall composition

of the traces to be considered. We set B to
√
N (i.e. the square root of the total

number of traces considered for constructing AFM and RFM) or 0.1 (regardless of the

number of traces considered). In both scenarios, the e�ect of pseudocounts reduces
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Figure 7.3: Activity Background Frequency.

as the increase in a number of traces (
√
N
N

in the �rst case, 0.1
N

in the other).

The score for an individual activity at a particular position is equal to observed

counts plus pseudocounts all divided by the total number of possible counts, as given

in the equation 7.4.

Ui,j =
z + x

N +B
(7.4)

Where,

z is the observed counts for the activity at the given position.

x is Pseudocount × overall frequency of activity.

N is total number of traces.

B is Pseudocount.

The value of B speci�c to each activity in the online shopping process is given

in the �g. 7.3. It is calculated using the number of times activity appeared in the

alignment to the total number of activities in the alignment. In the table 7.5(A), the

value of the cell [a,1] is calculated as follows,

Ui,j =
[30 + (

√
2× 0.096)]

30×
√

2

Similarly, the values in the table 7.5(B) are calculated using B=0.1. The updated

RFM with pseudocounts is shown in the table. 7.5(A-B). Normalized scores for pseudo
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count corrected matrix are obtained. Equation 7.5 is applied on pseudocounts shown

in the table 7.5 (A - B). Normalised values are given in the table 7.6(C - D).

N =
Mk,j

bk
(7.5)

7.3.4 Creating Position Weight Matrix (PWM)

Most often the elements in PWMs are calculated as log likelihoods. Normalized values

are transformed to log likelihood using the equation 7.6. Log likelihood values are

shown in the table 7.7. Then, given a trace of length l and log-likelihood matrix,

the score can be computed by adding the coe�cients of the log-likelihood matrix

corresponding to each activity in each position on the trace.

Mk,j = log2(N) (7.6)

7.4 Results and Discussions

In this section, we verify the proposed Position Weight Matrix on the random traces.

The traces are constructed using the activities of the online process shown in �g. 7.1.

We use the traces of length same as we used for constructing the alignment shown in

the table 7.3.

Following is the test sequence used for verifying the result produced by Position

Weight Matrix.

Test sequence:

abcdefghklmadbcefigklmadbcefgiklmacbdefigklm

The test sequence given above is scanned using windowing method with the size

11. We could see 34 di�erent activity sequences out of the test sequences. The log-

likelihood scores for each traces during each iteration is calculated using the values in

the table 7.7.

Iteration 1:

abcdefghklmadbcefigklmadbcefgiklmacbdefigklm

Iteration 2:

abcdefghklmadbcefigklmadbcefgiklmacbdefigklm

136



−
1

2
.5

8

−
1

5
.0

4

−
2

2
.0

7

−
2

2
.8

2

−
2

3
.1

7

−
2

6
.5

4

−
2

6
.5

7

−
2

9
.9

7

2
9

.8
3

abcdefghklm

acbdefigk lm

adbcefg ik lm

adbcefigk lm

bcdefghklm a

bcefg ik lm ac

bcefigk lm ad

cdefghklm ad

cefg ik lm acb

cefigk lm adb

dbcefg ik lm a

dbcefigk lm a

defghklm adb

efghklm adbc

efg ik lm acbd

efigk lm adbc

fghklm adbce

fg ik lm acbde

figk lm adbce

ghklm adbcef

g ik lm acbdef

gklm adbcefg

hklm adbcefi

igk lm adbcef

ik lm acbdefi

k lm acbdefig

k lm adbcefg i

k lm adbcefig

lm acbdefigk

lm adbcefg ik

lm adbcefigk

m acbdefigk l

m adbcefg ik l

m adbcefigk l

Trace

Loglikelihood Score

Figure 7.4: Log likelihood scores of test traces for B=
√
N .

Iteration 3:

abcdefghklmadbcefigklmadbcefgiklmacbdefigklm

...

...

...

Iteration 34:

abcdefghklmadbcefigklmadbcefgiklmacbdefigklm

The results of the experimental study has been plotted using bar graph and shown

in the �g. 7.4 and 7.5. Fig. 7.4 shows the scores of traces using the PWM given in

the table 7.7(A). Fig. 7.5 shows the scores of traces using the PWM given in the table

7.7(B).
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Figure 7.5: Log likelihood scores of test traces for B=0.1.

From the output shown in the �g 7.4 and 7.5 we can see that for the traces

which formed the alignment have the considerably high log-likelihood score. Hence

for any given sequence of control �ow pattern with PWM at hand, we can calculate

the likelihood score to decide whether it is a frequently used control �ow execution

procedure or not.

7.5 Summary

Identifying the frequent paths of execution in any operational process is a matter of

interest for any organization, which could fetch a great bene�t in terms of optimiza-

tion of operations. This chapter presented a method for capturing the features related
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to control �ow perspective, which assists in identifying and predicting the most fre-

quently executed paths and helps in predicting the in control �ow of a process and

resource requirements.

The proposed method has been tested on real-life event log related to order process

of the online shopping process, and it is proven to be e�cient in terms of results

obtained.
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Chapter 8

Conclusions and Future Work

To conclude this thesis we �rst summarize some of the motivating factors that have

driven the course of work presented in this thesis followed by our contributions. Al-

though the techniques and concepts presented in this thesis take a step forward in

addressing some of these factors, several challenges remain to be addressed to improve

the applicability of process mining in general. We list some of these challenges and

provide some directions for future work.

8.1 Summary of Contributions

The techniques proposed in this thesis for leveraging process mining practices can be

used as a stand-alone tool. These methods can be thought as o�-the-shelf entities for

enhancing already available and upcoming process mining algorithms. Following are

the brief descriptions of the contributions through this thesis,

• First contribution is concentrated on handling the phenomenon related to non-

stationary learning problem called concept drift. We have presented a taxonomy

for classifying di�erent categories of concept drift based on problem character-

istics. Further, a technique is presented for detecting and localizing the sudden

concept drift in control �ow perspective of the operational process.

• Proposed process logo notation for modeling control �ow perceptive overcomes

the drawbacks of traditional process mining algorithms. With the help of process

logo, it is possible to illustrate various information in addition to the one possible

with the traditional control �ow visualization notations.
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• We have presented a method for simplifying Spaghetti processes to discover a

simpli�ed Lasagna process. The method for identifying the possible and impos-

sible paths of executions also has been proposed.

• We have presented a method for discovering and identifying the frequently ex-

ecuted paths of execution. With this information, organizations can optimize

the paths which are carried out frequently and can predict the probable events

in the due course of execution.

Following are some of the limitation to be solved in the work presented in this

thesis.

• Our approach for handling concept drift deals only with detection and localiza-

tion in control �ow perspective. But, for addressing concept drift from end-to-

end, techniques should consider all the aspects of phenomenon mentioned in �g.

3.2).

• Trace logo is an excellent notation for representing the control �ow perspective of

the process. It works �ne with the traces of limited length. If it is applied on the

longer and complex processes, it produces complex logos which are di�cult to

understand. One such example is given in �g. 5.10. It demands the techniques

and methods to simplify the generated logos, to make it easily understandable.

• Finding the meaningful processes out of Lasagna control �ow is an interesting

problem. The method presented in this for the same, includes the generation.

Still the proposed method can be optimized with the reduced feature set size.

8.2 Challenges and Directions for Future Work

In this section, we present some challenges. The reader is referred to the process

mining manifesto (Van Der Aalst et al., 2012) for the list of additional problems in

process mining.

• Online concept drift detection: Our methods concentrated on detecting

concept drift in an o�ine setting, i.e., for postmortem analysis. Detecting con-

cept drifts is essential for online analysis. We believe the proposed framework
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to be applicable even for online analysis. Few new challenges, however, emerge,

e.g., the number of samples required remains an issue. Also, we need additional

computational power and e�cient techniques to do such analysis in near real

time.

• Change process discovery: Organizations would be interested in discovering

the evolution of change (e.g., as an animation depicting how the process has

changed/evolved). Also, there are other applications such as deriving a con�g-

urable model for the process variants. A con�gurable process model describes a

family of similar process models. The process variants discovered using concept

drift can be merged to derive a con�gurable process model.

• Holistic approaches: We have discussed ideas on change detection and lo-

calization in the context of sudden changes to the control-�ow perspective of

a process. The data and resource perspectives are also, however, equally im-

portant. Features and techniques that can enable the detection of changes in

other perspectives need to be discovered. Furthermore, there could be instances

where more than one perspective (e.g., both control and resource) can change

simultaneously. Hybrid approaches considering all aspects of change holistically

need to be developed.

• Developing an application programming interface (APIs): It is at

most necessary to develop APIs for assisting in the development of new process

mining techniques. Process mining framework ProM plays a vital role in o�ering

processes mining algorithms at one place, but it is a standalone tool, it does not

allow the development of new method on the top of existing methods in it.

• Mining Lasagna trace clusters out of Spaghetti event log: We have

presented a method in this thesis which is capable of extracting a single Lasagna

process out of a given Spaghetti process. But, the method for clustering the

traces of Spaghetti to mine a Lasagna are need.

• It is necessary to construct a repository of event logs, which should serve as a

benchmark repository to test various process mining algorithms.
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On a closing note, process mining had remarkable journey so far. The initial

promise and success have led to more and more organizations look up to process

mining as a solution for many di�erent challenges. The contributions made in this

thesis extends the journey by enabling process mining for handling concept drift and

model simpli�cation.
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Appendix A

Event logs used in experiments

Following are the links for downloading the experimental event log and the programs

used for obtaining the results displayed in this thesis. The work in the thesis can be

reproduced by others using the information provided in the following links.

• Chapter 4: Detecting and localizing control �ow concept drift in process mining.

http://www.rectopage.com/manoj/concept_drift/

• Chapter 5: Process Logo: Informative Visualization of Control Flow Perspec-

tive.

http://www.rectopage.com/manoj/process_logo

• Chapter 6: Distilling Lasagna from Spaghetti Processes.

http://www.rectopage.com/manoj/lasagana_from_spaghetti

• Chapter 7: Identifying Frequent Execution Paths in Information System.

http://www.rectopage.com/manoj/frequent_paths
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