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ABSTRACT

One of the most common causes of cardiovascular diseas&3) (€ "therosclerosis
which is the continuous build-up of fatty deposits (plaquas the inner walls of the
blood vessels (arteries). The incidence of ischemic sgrakdrighly associated with
the rupture of atherosclerotic plaques in the common acheotery (CCA). To assess
carotid atherosclerosis, non-invasive imaging modalisech as magnetic resonance
(MR) and ultrasound (US) imaging are preferred over otheasive methods due to
their safer profile and ability to explore atherosclerosigis early stages. It has been
increasingly accepted that the wall thickness and diarm&arsurements of the CCA
can serve as early indicators of CVD development. Howevanual measurement of
these quantities is tedious, error-prone and subjectedbgerver variability. Hence,
there is a growing interest for the development of automatétivare systems for the
measurement of wall thickness and diameters of the CCA frdRralild US images. The

development of such automated systems was the primarytogi@e€ this research.

MR and US images are generally corrupted with noise whichesdkeir inter-
pretation and further processing difficult. This necessgidhe task of denoising as a
pre-processing stage which can improve the performanaaaje segmentation tech-
niques. For this reason, a robust denoising filter (NLMI:) has been proposed in this
thesis to reduce the Rician noise in MR images by integratisgrete cosine transform
into the conventional non-local maximum likelihood (NLMh)ethod. Whereas, one
of the widely accepted method named OBNLM is adopted in oukwo reduce the

speckle noise in US images.

We have proposed novel algorithms for delineation of thetahrartery borders

from MR and US images. The wall thickness of the CCA has beesared from T1-



weighted MR images using an active contour method combintdi@calized particle
swarm optimization. This combination of global and locatizsegmentation strategy
helped us to reduce the edge leaking problem to some extené t® better relia-
bility, the diameters of the CCA have been measured from BaridS images via a
region-based approach. For this measurement, we haveesdtdththe lumen-intima
and media-adventitia borders of the CCA using a scale-dpa®ed strategy. This auto-
mated segmentation system has been further improved usingrative spatial trans-
formation based technique for handling curved vessels. fEenensive statistical data
analysis was performed to ensure the superior performditbe proposed techniques

against the manual expert tracings.

Keywords Carotid Artery; MRI; Ultrasound; Denoising; Segmentatio



TABLE OF CONTENTS

ACKNOWLEDGEMENTS i

ABSTRACT iii

LIST OF TABLES viii

LIST OF FIGURES Xi

ABBREVIATIONS Xii

1

INTRODUCTION 1
1.1 Imaging of Cardiovascular Diseases: Background . . . . . . . 1
1.1.1 Risk of cardiovascular diseases
1.1.2 Imaging Modalities for Carotid Atherosclerosis . . . . . 3
1.1.3 A Brief Review of MR and US Imaging with Basic Principle 5
1.1.4 Wall thickness and Diameters of the Carotid Artery . .. .. 7
1.1.5 Significance of MR and US Image Denoising . . . . . . .. 8
1.2 Motivation
1.3 Problem Statement . . . .. ... ... 9
1.4 ResearchObjectives. . . . . . .. . ... . .. ... ... ..... 10
1.5 Major Contributions of the Thesis

1.6 Organization of the Thesis

CAROTID ARTERY SEGMENTATION APPROACHES 13
2.1 MR and US for Carotid Artery Imaging . . . . . . ... ...... 13

2.2 SegmentationfromMRImages. . . . ... ... ... .. ..... 14



2.3 SegmentationfromUSImages . .. ... .. ... ... ...... 18

2.3.1 General Framework for Carotid Artery Segmentation. ... 21

2.3.2 Challenges during Segmentation . . . . . . ... ... ... 32

2.3.3 \ValidationMetrics . . . ... ... ... oL 36
2.4 SUMMANY . . . .. e e 40

MAGNETIC RESONANCE IMAGE DENOISING AND MEASUREMENT

OF CAROTID ARTERY WALL THICKNESS 41

3.1 DCT Based NLML Filter for MR Image Denoising . . . . .. . .. 42
3.1.1 Data Distribution and Signal Estimationin MRI . . . . . . 44
3.1.2 Signal Estimation using NLML Method . . . . . ... ... 45
3.1.3 NLMLper Filter for MR Image Denoising . . . . . . . .. 46
3.1.4 ExperimentalResults . . . .. ... ... .......... 47

3.2 Carotid Artery Wall SegmentationfromMRI . . . . ... ... .. 57
3.2.1 Global Region based Lumen Segmentation . . .. ... .. 57
3.2.2 Morphological Gradient . . . .. ... ........... 60
3.2.3 PSO based Localized Outer Wall Segmentation . . . . . . . 1 6
3.2.4 ExperimentalResults . . . .. ... .. ... ........ 62

3.3 Summary ... . e e e 68

MEASUREMENT OF ARTERIAL DIAMETERS FROM CAROTID UL-

TRASOUND IMAGES 69

4.1 Speckle NoiseinUSImages . ... ... ... ........... 69

4.2 Automated Carotid Lumen Segmentation System . . . . .. ... 70
4.2.1 Scale-Space based Global Segmentation . . . . ... .. .. 2 7
4.2.2 Region based Local Shape Extraction . . .. ... ... .. 73

4.3 Improved System for LD Measurement in Curved Vessels . . . 73
4.3.1 Spatial Transformation . . . . ... ... .. ... ..... 76

4.4 ExperimentalResults . . . .. . ... ... oL 80
441 Dataset . ... ... ... .. ... 80

Vi



4.4.2 Evaluation Methodology . . . . ... ... ... ...... 80

44.3 ResultsandAnalysis . . ... ... ... .......... 81
45 DIiSCUSSION . . . . . . . e 88
4.6 SUMMANY . . . . o e e e e e 89

5 CLINICAL SIGNIFICANCE AND IMPLICATIONS OF CAROTID AR-

TERIAL DIAMETERS 91
5.1 Clinical Significanceof LDandIAD . . . . ... . ... ... ... 91
5.2 Relationship of Carotid Arterial Diameters and Plaqoer® . . . . 93
5.2.1 Correlation between LD/IAD and Plaque Score . . . . . .. 3 9
5.3 Computation of Stenosis Severity Index . . . . . . ... .. ... 96
54 Summary . . ... 97
6 CONCLUSIONS AND FUTURE WORK 99
6.1 Conclusions . . . . . . ... 99
6.2 FutureWork . . . . . . ... . 101
APPENDIX 103
A Polyline Distance Metric and Precision of Merit 103
A.1 Polyline Distance Metric . . . . . . ... ... ... ... ..., 103
A.2 PrecisionofMerit . . . . . ... 104

REFERENCES 105



2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7

5.1

LIST OF TABLES

Overview of region-based techniques proposed in teeatiire . . .

Overview of boundary-based techniques proposed intdrature .

NLML por Denoising Algorithm . . . . . . . . .. ... ... ...

Time Complexity Analysis of Denoising Algorithms

Quantitative analysis on experimental Kiwi fruitimage. . . . . .
Performance of Auto CAWT against Manual CAWT . . ... ..
Dice similarity and Jaccard index . . . . . . ... . ... ... ..

Previous studies describing carotid artery segmentatiethods . .

Algorithm for Spatial Transformation . . . . ... ... ... ..
Auto LD Performance . . . . . . . . . .. .o
Auto IAD Performance . . . . . . . ... ... oo
Dice similarity and Jaccard indexforLR . . . . . . .. ... ...
Dice similarity and Jaccard indexforlAR . . . . . ... ... ..
T - test for Auto LD vs. Manualtracings . . . . . . .. ... ...

T - test for Auto IAD vs. Manual tracings . . . . . ... ... ..

Risk analysisbasedonSSI . . ... .. ... ... .......

viii

27
31



11

1.2

2.1
2.2

2.3

2.4

3.1

3.2

3.3

3.4

LIST OF FIGURES

lllustrating the common carotid artery and its main bhas (Staff,

2014). . . e 3
Lumen-intima (LI) and media-adventitia (MA) interfaoef the carotid
arteryinB-modeUSimage. . ... ... ... ... .. ...... 7
General flow diagram showing segmentation of the cadRdmages. 15

Meijer Carotid Arc: illustrates the standardized apgitofor carotid ul-
trasound scanning which will give a set of reproducible isgdreprinted
from (Steinet al,, 2008), with permission from Elsevier. . . . . .. 20

General flow diagram showing the region-based and bowised
lumen segmentation in B-mode USimages. . . . ... ... .. .. 22

lllustrating the variation of carotid artery imagesass different pa-

tients. (a) Curved lumen diameter (LD) borders; (b) Highgpla de-

posit and narrowing of carotid artery; (c) Low contrast imagth jugu-

lar vein interference. (d) Image having poor contrast défifee at near

wall. . .. 34

Rician Bias : This experiment was conducted with= 1 and varying
afrom05t020. . ... ... . ... 43

Visual quality comparison: (a) Ground Truth (GT) (b) Gdrrupted
with noise (witho, = 15) (c) noisy image denoised with NLML(d)
noisy image denoised with NLMber. . . o 0 0 0 0 0 00 0oL L 49

Visual quality comparison : (First column) Ground Tr{#®cond col-

umn) enlarged view of the area marked in red color(Third cwiyen-
larged view after denoised with NLM(Fourth column) enlarged view

after denoised with NLMber. . . . . . o . . o o o o o 0oL 50

Quantitative analysis : (a) PSNR plot of NLMland NLMLpcr for
various search window size (b) Mean SSIM plot of NLMand NLMLper
for various search window size (c) Execution time comparsdNLML
and NLML ¢ for various search window size (d) and (e) Mean SSIM
and PSNR plot of NLMlg and NLML ¢ after varyingo, from 10 to



3.5 Experiments on real dataa) Noisy carotid MR imagéb) Denoised
with NLML ¢~ (c) Denoised with NLMLyc7, (d)enlarged view of the
region marked in red in (a)e) and (f) enlarged views of the corre-
sponding region marked in red from (b) and (@) enlarged view of
the region marked in green in (dh) and(i) enlarged views of the cor-
responding region marked in green from (b)and (c). . . . . . ... . 55

3.6 Experiments on MR image of a Kiwi fruit (a) Original image re-
constructed with 1 averag) Original image reconstructed with 12
averagesgc) image (a) denoised with NLMi-method(d) image (a) de-
noised with NLML, -1 method(e) and(f) residual images (with respect
to (b)) of (c) and (d) (inthe scale 0-150). . . . . .. ... ... ... 6 5

3.7 Flow diagram showing the segmentation of inner and auddis of the
carotid artery from MR images. . . . . . . . ... ... ... ..., 58

3.8 Segmentation results using the proposed method: (a)ifEhMR im-
age of the carotid artery b) Cropped ROI c¢) Automated lumendldro
(d) Morphological gradient (e) PSO output f) Automated Quwtall
border (g) Overlays on ROI (h) Overlays onraw image. . . . . . . . 63

4.1 Flow diagram of the region based approach for lumen segtien. 71

4.2 Segmentation results on a single image: (a) Croppeddr(iagoright
adventitial border points detected using vertical profilalgsis (c) Spline
fitted on these points to show the adventitial borders (dydselting
ROI is marked with a rectangle extracted using global-sieprmaction
system (e) binary lumen obtained from the classifier in the &Ihg
local region-based system (f) final lumen borders after smog and
splinefitting. . . . . . . . . . .. ... 74

4.3 Flow diagram of the iterative lumen delineation system.. . . . . 75
4.4 Flow diagram of the stage-2 of the automated lumen deimesystem. 76

4.5 lllustrating the algorithmic steps on a single imagdamgeurvature. (a)
Curved ROI, (b) Lumen axis on the ROI, (c) Transformed RO} Ad-
ventitial borders on the transformed ROI, (e) Binary lumemf clas-
sifier, (f) LD borders on the transformed ROI, (g) LD bordersthe
inverse transformed ROI, (h) LD borders on the original ROI.. . 78

4.6 Carotid Auto LD borders compared against the manuahigaon the
grayscale images of four patients for both simple scaleepad trans-
formation based iterative methods. Carotid Auto LD bor@eesshown
in solid white; while manual LD borders are shown in dashedtavh
(Auto SS Automated Simple scale-space, Auto SST Automatad-s
space with Transformation, Reader Manual Reader). . . . . . .. 79



4.7

4.8

4.9

5.1

5.2
5.3

Scatter diagrams showing the correlation between (ajidaAuto SS
LD and manual-1 LD, (b) carotid Auto SS LD and manual-2 LD, (c)
carotid Auto SST LD and manual-1 LD, (d) carotid Auto SST LQan
manual-2LD. . . .. ... ..

Bland-Altman plots between (a) carotid Auto SS LD and naévi LD,
(b) carotid Auto SS LD and manual-2 LD, (c) carotid Auto SST &
manual-1 LD, (d) carotid Auto SST LD and manual-2LD. . . . ..

Scatter diagrams showing the correlation between (ajidaAuto SS
IAD and manual-1 IAD, (b) carotid Auto SS IAD and manual-2 IAD
Bland-Altman plots between (c) carotid Auto SS IAD and mdfiua
IAD, (d) carotid Auto SS IAD and manual-2 IAD. . . . . . ... ..

(a) Scatter diagram showing the positive correlatidween Auto LD
and PS (b) Auto IAD and PS; (c) Bland-Altman plot of PS with aut
LD (d) PSwith AutoIAD. . . . . .. ... .. ... ... .....

Representative image of a patient with high stroke &K & 55%).

(a) Cumulative frequency plot of SSI, (b) Scatter diagshowing the
negative correlation between Mean carotid Auto LD and SSI.. ..

Xi

85

87

95
98

98



ACM
ASM
CAWT
CcC
CCA
CT
CvD
DCT
DDC
DSC
DSA
DP
ECA
ECST
GT
HT
IAD
ICA
IMT
IVUS
Ji

JV
LD

LI

ABBREVIATIONS

Active Contour Model

Active Shape Model

Carotid Artery Wall Thickness
Coefficient of Correlation
Common Carotid Artery
Computed Tomography
Cardio Vascular Disease
Discrete Cosine Transform
Discrete Dynamic Contour
Dice Similarity Coefficient
Digital Subtraction Angiography
Dynamic Programming
External Carotid Artery
European Carotid Surgery Trial
Ground Truth

Hough’s Transform
Inter-Adventitial Diameter
Internal Carotid Artery
Intima-Media Thickness
Intravascular Ultrasound
Jaccard Index

Jugular Vein

Lumen Diameter

Lumen-Intima

Xii



LSM Level Set Method

MA Media-Adventitia

MAD Mean Absolute Distance

MRA Magnetic Resonance Angiography
MG Morphological Gradient

MRI Magnetic Resonance Imaging
MWT Mean Wall Thickness

NASCET  North American Symptomatic Carotid Endarterectomy Trial

NLM Non Local Means

NLML Non Local Maximum Likelihood
OEM Original Equipment Manufacturer
PDF Probability Density Function
PDM Polyline Distance Metric

PET Positron Emission Tomography
PoM Precision of Merit

PS Plaque Score

PSNR Peak Signal to Noise Ratio

PSO Particle Swarm Optimization

RANSAC Random Sample Consensus

ROC Receiver Operating Characteristic
ROI Region of Interest

SNR Signal to Noise Ratio

SSI Stenosis Severity Index

SSIM Structural Similarity Index Matrix
us Ultrasound

WHO World Health Organization

Xiii



CHAPTER 1

INTRODUCTION

The area of medical image processing has undergone a dcagmptinsion in the last
decade and has already become an important part of climad#he. Computer soft-
wares assist physicians in the interpretation of medicalges. Imaging techniques
such as X-ray, magnetic resonance imaging (MRI), and wltnag (US) imaging yield
a great deal of information, which the radiologist has tolyreand evaluate compre-
hensively in a short time. Early detection of the diseasé¢ allbw the physicians to
follow up on the patient. Hence, the goal is to derive bettets that help to interpret

the images.

In this Chapter, we present a brief overview of different mabdimage processing
techniques associated with the analysis of cardiovasdigaases (CVD). In Section
1.1 we present the original aspects of this work and explain lmage processing
helps in the assessment of the risk of CVDs. Section 1.2 pteige motivation for the
proposed work. In Section 1.3, we describe the problemmaeté which is followed
by research objectives in Section 1.4. Section 1.5 expta@snajor contributions of

this thesis. Finally, in Section 1.6, a guide to this thesistents is presented.

1.1 Imaging of Cardiovascular Diseases: Background

1.1.1 Risk of cardiovascular diseases

Cardiovascular diseases (CVD) such as stroke and heark at@identified as the num-
ber one cause of human deaths worldwide. A report of the weeldth organization

(WHO) published in 2012 says that approximately 17.5 mlii@ople are died because



of CVDs (i.e. 31% of all global deaths). Out of them, around ®illion people were
died due to stroke. Moreover it is estimated that, by 2038y @3 million people will
die from CVDs each year since most of the low to middle incomentries are seriously
affected by CVDs (WHO, 2016). Further in near future, thet8dsian subcontinent
will have to carry around 60% of the world’s CVD burden desminhly accounting for
20% of the world’s population (IHA, 2015).

The major risk factors of CVD events include age, genderijlfanistory, excessive
use of tobacco and alcohol, unhealthy diet, obesity, payanactivity, hypertension,
diabetes and hyperlipidaemia (Organization and UNAID®,220However, one of the
most common reasons for CVDs is atherosclerosis which isdh&nuous build-up of
fatty deposits (plaques) on the inner walls of the vessetsr{as) that supply blood to
the heart or brain. This significantly reduces the blood flod @auses inflammation in
the arterial wall (Woollard and Geissmann, 2010). Athelerssis may be present in
different sites of the body, including the coronary artertee superficial femoral artery,

the aorta, and the carotid arteries.

The incidence of ischemic stroke is highly associated vindrtpture of atheroscle-
rotic plagues in the carotid artery which are located at baths of the neck (Cast al.,
1996). Carotid arteries are responsible for supplying dkancthe brain and muscles of
the face. Each carotid starts as a common carotid artery JO@#ch forks into two
branches: internal carotid artery (ICA) and external adrattery (ECA) (see Figure
1.1). The risk of stroke increases with the severity of adrstenosis (the narrowing of
the artery caused by plaque). Atherosclerosis changesebbkanical properties of the
carotid artery wall by making it stiffer (Lamoret al., 2000). The accumulated plaque
causes narrowing or constriction of the inner surface (hinoéthe carotid artery which
in turn results in irregularity of the artery (Mughat al., 2011). The degree of lumi-
nal narrowing is considered as an indirect measure of steseserity due to carotid

atherosclerosis.

Several studies have demonstrated that patients withidatbterosclerotic plagues
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Figure 1.1: Illustrating the common carotid artery and issmbranches (Staff, 2014).

carry an increased risk of cardiovascular events (Hollaatial., 2002; Grgnholdeét al.,
2001; Nambiet al,, 2010). Further, coronary plaque vulnerability may be ssse by
evaluating plaque characteristics in the carotid artegfiNdeghaviet al,, 2003). Cur-
rently, identifying patients that are having plagues indbenary artery is challenging.
Moreover, the intima-media thickness (IMT) and diameteasuweements of carotid
arteries are proved to be associated with both coronaryactkrs and CVDs (Kablak-
Ziembickaet al,, 2004; Botset al,, 1997). Hence, monitoring of the changes occurring
in the carotid artery via imaging techniques may provide newa clinical and practical
strategy to treat patients with severe cardiovascular tioatns. Further, this will
assist in the effective management of the atheroscleratagade patients (Suet al.,

2010). To assess carotid atherosclerosis, different inggigichniques have been used.

1.1.2 Imaging Modalities for Carotid Atherosclerosis

Atherosclerosis imaging encompasses several establisblediques and experimental

radiological methods and modalities. These include Di@tzbtraction Angiography



(DSA), Computed Tomography (CT), Positron Emission Torapby (PET), MRI, and
US imaging (Sabeat al,, 2014%). These techniques aid in the detection and diagnosis of
atherosclerosis and provide detail on arterial morpholégyther, this helps to assess
the disease severity which is indispensable to everydaycali practice and cardio-
vascular research. For example, DSA allows clear visuadizaof blood vessels in
a bony or dense soft tissue environment. CT assists in thehzation of the artery
morphology and the stenosis whereas PET provides a nosievanethod to measure
biological processes that are relevant to atherosclef@diard et al,, 2006). However,
there is no single imaging modality that can produce defmitnformation about the
state of atherosclerosis and each technique has its owrbdchw Some may be inva-
sive in nature, use ionizing radiation, inject contrastragelow patient tolerability, or

simply the insufficiency of information obtained.

It is unquestionable that every imaging modality is limitaddiffering degrees of
technical difficulty, in addition to potential adverse etieand costs. However, the use
of imaging modalities such as MR and US imaging are prefeonedt other invasive
and non-invasive methods for the assessment of atherosclptaque burden (Blum
and Nahir, 2013). This is due to their safer profile, espbcralgarding their use in
asymptomatic populations (Achenbagtal, 2001; Ibafezt al., 2007). Further, these
modalities have the ability to explore atherosclerosissrearly stages. This is the rea-
son why imaging of atherosclerosis by MRI and US is widelyepted today for the
mass screening of asymptomatic patients. MRI provides-tegblution images of the
carotid artery without involving ionizing radiation whigdan be repeated sequentially
over time. The MR imaging is based on the radio frequencyadignd offer important
diagnostic information that cannot be obtained with theafisgher imaging techniques
(Orel and Schnall, 2001). However, there are certain riskslved in doing MRI on
people with prostheses, artificial heart valves, implaatsany metal device in their
body. This is because that MR imaging needs highly powertgmets as part of the
imaging process. In addition to that, patients with a pa¢@meannot be recommended

for MRI. These adverse effects together with high cost ofgmg make it necessary to



have another alternative imaging technique. Non-invaasngeinexpensive US imaging
could be a better choice in this regard. US is recognized amplesand rapid imag-
ing method which allows real-time dynamic examination @& darotid artery (Sidhu,
2000). However, difficulty in imaging deeper structuressi@por-dependency and poor
repeatability are the main drawbacks identified with US imggdPatil and Dasgupta,
2012). However, it is reassuring to see that recent stu@ies éstablished moderate to
good inter-observer reliability and advances in technplaiipws increased resolution
for the transducers. Hence, MR and US imaging together haegged as the leading
non-invasive imaging modalities for atherosclerotic diagjs. The basic acquisition
principles of these two techniques along with their apjlilify in carotid imaging are

discussed in the next section.

1.1.3 A Brief Review of MR and US Imaging with Basic Principles

MRI is a unique tool which provides high resolution images$haf carotid artery using
radio frequency waves. These radio frequency signals arealjy generated from hy-
drogen atoms (protons) in the water which are present irtylaside the human body.
The subject (patient) will be placed in a strong magneticlfigith the application of

a radio frequency pulse. This causes the spin of the hydrogelei to align in a spe-
cific direction which later release radio signals when thgmnedic field gets turned off.
These radio signals are captured using a scanner and fed aamputer which trans-
lates them to 2D/3D MR images. The emitted radio signal frafferént body tissues
varies according to the water concentration in the tissukthe relaxation times (T1
and T2). Thus, we obtain different signal intensities forwdighted, T2-weighted, and
proton-density-weighted MR images. MRI has the ability istidguish the boundaries
of the carotid artery with good reproducibility and can assi plaque characterization
(Yuanet al, 2008). Further, the measurement of carotid artery watkiess (CAWT)

can be a useful biomarker for the degree of carotid sten8sisaet al., 2014).

Unlike MRI, medical ultrasound or ultrasonography useshhigquency sound

5



waves ¢ 20,000 HZ) for imaging (Carovaet al, 2011). The sound waves propagate
through the human body which are subjected to partial réfle@nd partial scattering
due to the acoustic heterogeneity of different tissuesifiascle cells, cysts, blood ves-
sels etc.). Based on the time of arrival of reflected wavesd#pth of penetration can
be measured which will be processed to form an image (Treeal, 2012). The speed
of sound wave varies in relation to the change in elastiaitmechanical weakening of
arteries. Elasticity is directly related to the sound spaedjiven by Newton-Laplace

equation as (Rayleigh, 1945):
c=4]— (1.1)

wherec, K andp are the sound speed, elastic modulus and density, resplgcior ex-
ample, the speed is found to be highest for calcified plagdécavest in the fatty plaque
(AbuRahmeet al,, 2002). Similarly, different tissues reflect varying dezge@f sound
(sound echoes) which were recorded and displayed as an .irhagesimplest type of
US is A-mode (amplitude mode) which is used for diagnosisphtbalmology (Lizzi
and Coleman, 2004). Other common types of US include Dopp$(display blood
flow through vessels), intravascular ultrasound or IVUSé€anside view of blood ves-
sels), ultrasonic elastography (to measure stiffnesssetit) and 3D-US (Weismann
et al, 2011). However, the most well-known type is B-mode (bnmgsts mode) US
image, which displays the acoustic impedance of a two-d#moaal cross-section of a
tissue. Here, the intensity of the echo is represented byutatdn of the brightness of
the spot, while the position of the echo is determined froenahgular position of the
transducer and the transit time of the acoustical pulsetaretho. B-mode ultrasonog-
raphy is widely used in carotid imaging because of its lowt @l ability to provide

real-time information about both the lumen and vessel v&ikiQet al., 2008).
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Figure 1.2: Lumen-intima (LI) and media-adventitia (MA)ternfaces of the carotid
artery in B-mode US image.

1.1.4 Wall thickness and Diameters of the Carotid Artery

It has been increasingly accepted that carotid artery Wwadkbess and diameter mea-
surements can serve as early indicators of cardiovascisieaske development. These
parameters are frequently measured in screening testsif@@ons performed to de-
tect disease at its earliest stage) for the selection oémistifor surgery. An irregular
thickening of the carotid artery walls or lumen narrowingynsggnal the development
of atherosclerotic plaques. In addition to this, the waitkhess and diameters of the
CCA have been related to several atherosclerosis riskriaatal to prevalent and inci-
dent coronary artery disease (Wasserrmizal., 2005). Figure 1.2 illustrates the lumen-
intima (LI) and media-adventitia (MA) interfaces of an USage. LD is measured as
the average distance between the two LI interfaces (disthpaoximal) and similarly

IAD is measured as the average distance between the two MAagces.

Currently, the physicians measure the wall thickness aacheliers of the carotid
artery using manual methods. However, manual measureméadious, error-prone
and has poor inter and intra-observer agreement (8aah 2012). There is increas-
ingly growing interest among physicians for the developndrautomated software
systems for segmentation of the CCA and measurement oftmelitess and diameters.
Further, considering the development of faster hardwadebatter image reconstruc-

tion tools in recent years, it is now possible to accuratelypute these parameters.



1.1.5 Significance of MR and US Image Denoising

The noise in medical images generally arise due to sensarfegtion, poor illumina-
tion or transmission errors. The noise present in imageemé& interpretation more
difficult. This necessitates the task of denoising as a poegssing stage which may
improve the performance of image segmentation technigltes. possible to find a
large number of denoising techniques in the literatureuigiclg both linear and non-
linear models. A good image denoising model is the one wheamowve noise without

affecting important image features such as edges.

The carotid MR images are often corrupted by Rician noisekvicauses a hin-
drance on the carotid artery morphology (Ragral., 2011). This affects the perfor-
mance of segmentation algorithms as well as diagnostiadacguA simple method for
denoising the images is to use local averaging. However ctm results in loss of im-
age contrast if the shape of the filter mask is not selectetbppptely. Moreover, the
interface between the carotid artery and the blood may noepeesented by a sharp
intensity gap after smoothing. Thus, we need adaptivedikdrich can preserve the

spatial structure of the image while smoothing it.

The noise in carotid US images is often characterized asdormamgranular texture
called speckle. Speckle noise results from the constmi@nd destructive interfer-
ence of ultrasound echoes made by reflectors spaced clge¢héo than the ultrasound
system’s resolution limit (Milkowsket al., 2009). Speckle is often modeled as a mul-
tiplicative noise under the assumption of direct propeortio the local grey level in
the image (Michailovich and Tannenbaum, 2006). Considerabrk has been done
to reduce the speckle by incorporating different distiimg such as Rayleigh distribu-
tion, Rician distribution, Gamma distribution, K-distuititon and Nakagami distribution
in the denoising algorithms (Hruska and Oelze, 2009; Sha@k®0; Tacet al., 2006).
For automatic segmentation, it is often preferred to smoathhe speckle texture while

preserving the sharp boundaries.



1.2 Motivation

Physicians perform the diagnosis of a vascular diseasel lmasdifferent factors such
as clinical history, medical test results and medical insag¢owever, in certain cases
the diagnosis becomes quite difficult as the physician hanétyze a huge amount
of data in a short time. Further, the diagnosis can be infle@iy the specialization
and experience of physicians. With the advances in meditaging technology, com-
puter softwares are increasingly being used to aid the piays for the detection and
interpretation of diseases in a short duration. These soffsvprovide an assessment
of the disease using image-based information alone or irbamation with other rele-
vant diagnostic data and are used by clinicians as a de@sjgoort in developing their
diagnoses. Further, it can be useful in the effective mamage of vascular diseases
both in terms of early detection of diseases and as a supgddol for the selection
of patients for surgery. In order to achieve the above gtiadssystem output needs to
be at a sufficient level of sensitivity and specificity. Moreg the output should be in
a format which can be easily understood by a clinician. In,fdeveloping software
tools for radiological image processing is one of the cimgieg problems in the med-
ical domain. Since accurate diagnosis of a disease depeniistio image acquisition
and interpretation, modern diagnostic systems are builhbgrporating the cutting-
edge computing and data processing technologies. Somes# thols require manual
interventions, while some are fully automatic. Even thqugdmputer based diagnos-
tic systems are commercially available, fully automategrapches have not yet been
completely formalized in the literature. This deficienc ted to difficulty in their use

for fast diagnostic purpose.

1.3 Problem Statement

Atherosclerosis is a vascular disease which affects thee anrl shape of the carotid

artery and is a major cause of stroke and transient ischettacka So far a num-
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ber of studies have been investigated the predictive aneptiee measures for carotid
atherosclerosis based on different imaging techniquergthis, non-invasive carotid
imaging methods such as MR and US are considered to be alegiaihnique to mea-
sure the carotid arterial morphology. The quantificatiorcaxotid artery stenosis via
imaging techniques guides physicians to take a decisiocardaty surgical interven-
tions. The method of measurement of stenosis used in thepBanoCarotid Surgery
Trial (ECST) and in the North American Symptomatic Carotiid&rterectomy Trial
(NASCET) is based on the carotid artery LD measured from BlendS (Warlow,
1991; Collaboratoret al, 1991). Further, there are studies which confirm the asso-
ciation of LD and IAD with other cardiovascular biomarkePo(aket al, 2014). It

is proved that the plaque characteristics can be betteyztifrom MR images and
the wall thickness measured from MR images have been shoaaortelate well with
ultrasound IMT (Underhilket al,, 2006). However, the main pre-requisite for the mea-
surement of these parameters is to locate the contours wlemtribe the boundaries
of the CCA. Manual tracing process used in this regard is toresuming and highly
subjective. Computer based fully automated image anagbysisedures can solve this

problem.

1.4 Research Objectives

This work aims to develop automated algorithms that assigatient risk prediction in
atherosclerotic cases from MR and US images of the CCA. Tpeiitant objectives of

this work are:

1. To develop/improve image denoising methods for MR images

2. To develop algorithms for automated segmentation of A €om MR and US
images.

3. To measure and validate the carotid artery wall thicktt€#sNVT) of the CCA
from MR images.
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4. To measure and validate the lumen diameter (LD) and adeentitial diameter
(IAD) of the CCA from US images.

5. To correlate the carotid arterial diameters with otharichl risk factors for car-
diovascular risk prediction.

1.5 Major Contributions of the Thesis

This thesis contributes novel algorithms for the carotiggrwall thickness and di-
ameter measurements from MR and US images. Further, this fresents a robust
denoising algorithm for MR images. The major contributians listed below:

e Developed an improved denoising algorithm (NLMd) for denoising MR im-
ages. This was an improved version of the conventional NLIdjhraach.

e Proposed a novel strategy for the segmentation of lumen atet avall con-
tours of the carotid artery from T1-weighted MR images andsoeed the carotid
artery wall thickness.

¢ A fully automated region-based method is developed for dggreentation of the
CCA from B-mode US images and measured the lumen and intenédal di-
ameters.

e The measurement accuracy is further improved by using sa$painsformation
based iterative approach for handling curved vessels.

¢ The clinical significance and implications of arterial dieters were studied.

1.6 Organization of the Thesis

The remaining part of the thesis are organized as followsip@r 2 presents a brief lit-
erature review of the carotid artery segmentation tectesqguboth MR and US images
while providing a general framework for segmentation. Theotetical background of

different techniques are furthermore explained.
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Chapter 3 introduces a robust denoising technique for MRy@adased on non-
local maximum likelihood (NLML) paradigm in discrete cosittansform (DCT) frame-
work. This is an improved version of the conventional NLMLwhich the intensity
similarity of the pixel neighborhoods has been computechen@CT subspace. Fur-
thermore, a semi-automatic method for carotid artery wedhsentation in MR image

has been proposed and experimentally validated.

Chapter 4 starts with a discussion in regard to the issueedidp in carotid ultra-
sound images. The main focus of the chapter is to develop @rae carotid lumen
segmentation system for US images. A fully automated regesed approach is pro-
posed which combines the scale-space strategy with piassification. This approach

is further improved using a spatial transformation for Hargdcurved vessels.

The relationship of carotid arterial diameters and otheral risk factors is studied
in Chapter 5 along with clinical significance and implicasoof LD/IAD and wall

thickness. A comparison with other similar studies is afitgad wherever possible.

In the last chapter, Chapter 6, we provide a brief discussiothe findings of this

work along with the concluding remarks and future work ssgiges.
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CHAPTER 2

CAROTID ARTERY SEGMENTATION
APPROACHES

In this chapter, we present the theoretical background ettrotid artery segmenta-
tion methods using MR and US images. Section 2.1 briefly dsthe practice of MR
and US imaging of carotid artery in a clinical environmenhei in Section 2.2, a lit-
erature review of the carotid lumen and outer wall segmemtdtom MR images is
presented. Section 2.3 explores the carotid artery segti@mtand LD/IAD measure-
ment techniques in US images along with a general framevaorédfgmentation. A few

important evaluation metrics are discussed for evaludatingsegmentation methods.

2.1 MR and US for Carotid Artery Imaging

MR and US imaging have their own specific strengths and wesslase understanding
the uses of each modality appropriately can result in a meattet) more accurate di-
agnosis. In clinical practice, US imaging combined with MiRIthe carotid arteries
is valuable in diagnostic work-up to demonstrate the preselocation and extent of
carotid narrowing. However, it appears premature for reutapplication of MRI as
an imaging modality to assess the carotid plaque charstitsrassociated with plaque
vulnerability. Although MRI still holds promise, clinicapplication for plaque char-
acterization would require consensus regarding MRI ggttand confirmation through
histology. The general inclusion criteria for performindRMof the carotid arteries are
the following: presence of an ultrasound analysis that gtbavcarotid stenosis 50%
and evidence of plaque alteration (an irregular surface-plaque hemorrhage, ulcer-

ation). Overall, no optimal single or combined imaging waikfor carotid stenosis has



been defined yet. Due to this reason, we focus on developitognatic carotid artery

segmentation strategies for both MR and US imaging modaliti

2.2 Segmentation from MR Images

The degree of carotid atherosclerosis can be determineddiyating the artery wall
guantitatively. This in turn requires the segmentationaftours which describes the
boundaries of the CCA (Liat al, 2006). The ability to offer high resolution images and
non-invasiveness makes the MRI an ideal tool for analyziegcarotid artery (Kramer
and Anderson, 2007). MRI has the ability to detect the botadaf the carotid artery
from transverse images and can assist in plaque charattenzYuanet al,, 2008).

Moreover, MRI offers reduced measurement variability wbempared to US images.

The accuracy of the carotid artery wall thickness (CAWT) sugad via automated
techniques should be high enough to meet the clinical stdeda&Some of the chal-
lenges in the automatic segmentation of the carotid arteslpde contrast variations,
image artifacts, and presence of noise in MR images. Fuytthese images are usually
characterized by their weak edges which allow a continuaws dif image information
from one region to the other. The signal intensity of soméeftissues surrounding the
outer wall boundary is similar to that of the wall. This prein of weak-edge-leakage
has been reported by many authors (Satiad., 2014; van't Kloosteret al., 2012; Yuan
etal, 1999). Furthermore, there are structures, such as th&ajugrin (JV), in the area
surrounding the carotid artery that produces additiongkesed This makes it hard to

segment the images into distinctive regions.

Figure 2.1 shows a general flow diagram for the carotid agegmentation from
MR images. One important pre-processing step is the renwvRician noise from
MR images and thereby increases the signal to noise rati®k)SKe segmentation
usually carried out in sequential steps in which the estonatf the inner lumen borders

followed by outer wall borders. These borders finally eveddaagainst the manual

14



Carotid MR Image

!

Pre-processing

l

Y

Manual Tracing Lumen Boundary
(GT) Estimation
Outer Wall Boundary
Estimation

|

Post-processing

h 4

Figure 2.1: General flow diagram showing segmentation ot#netid MR images.

tracings by experts which are considered as ground truth.(GT

Many methods have been proposed in the literature for thensetation of the
carotid artery wall in MR images. This includes both autamahd semi-automatic
techniques. Yuart al. (1999) developed an automated edge detection algorithm to
identify the inner and outer wall boundaries of the carotittrg in proton density
weighted (PD-w) MR images. They have used a Snake model ladgadthm to iden-
tify the contours for which the initial Snake points need$éidentified by the user
manually. Ladaket al. (2001) presented a semi-automatic method based on discrete
dynamic contour (DDC) for segmenting the carotid arteryl\raim black blood MR
images (BBMRI). The DDC deforms to conform to the shape o#itterial wall. How-
ever, detection of the outer boundary was generally poamfmierate to thick plaques.
The above two methods (Yuaat al, 1999; Ladaket al,, 2001) have limitations if the
carotid artery has high degree of stenosis and uneven lumendaries. Further, the

algorithm is sensitive to various contrast situations.

MR imaging has the ability to offer high resolution crosstgewl images of the
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carotid artery which can be used for characterizing theraioderotic plagues. An au-
tomated contour detection technique (Adaghal., 2004) was proposed for delineation
of the contours of the carotid artery in short-axis BBMRI{p&D-w and T1-w). This
approach combined model-based segmentation (ellipsegiitwwith fuzzy clustering.
Fuzzy clustering was used to separate three differentedasistissues corresponding
to the lumen, plaque and the wall. This method achievedfagnt improvement over
previously published techniques. The main difference a$ ithdeals with in vivo MR
images and has been validated on carotid arteries withréiffedegrees of stenosis.
However, the hypothesis of elliptic shape is an oversingaltfon when severe stenosis

is present. Further, there was no attempt to measure thrg wdd thickness.

Underhill et al. (2006) proposed a semi-automatic technique to measure ¢ae m
wall thickness (MWT) of the CCA from T1-w MR images using aetishape model
(ASM). A user identifies a point within the lumen of the CCA \geaphical user in-
terface from which the lumen boundary is roughly estimateitigia region growing
technique. Then, ASM is employed to delineate the exact tuasewell as the outer
wall borders. In each step of the algorithm, the fitness itueved by combining local
edge information and area. The mean distance between teeand outer contours is
calculated at each slice level. Then, MWT is determined byntiean of all the individ-
ual thickness measurements from each axial location. inghely, the MWT is found
to be highly correlated with the IMT measured from B-mode UBis strongly indi-
cates that it is possible to use carotid MRI as a tool for assgsystemic atheroscle-
rotic disease. However, one drawback with ASM is that if tia@ing set is small, the

performance can be limited due to variations in the data.

Arias et al. (2012) presented a three-dimensional (3D) coupled sudaaeh cut
algorithm for the segmentation of both the inner and outessekewall borders form
carotid MR images. The lumen centerlines were determin@myube user defined
seed points. The method combined the search for both inrteioater vessel wall

borders into a single graph cut and used two different costtians. An initial affine
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registration was performed on the data (PD-w BBMRI and PDehdPlanar MRI
(EPIMRI)) using mutual information. The authors found ttieg EPIMRI images have
better wall contrast, which generates better results inesonmages compared to the
results obtained by BBMRI. A major disadvantage of this mdtls that the output
very much depends on the initially segmented lumen shapegistRation errors of the

EPIMRI images are another concern.

A semi-automatic segmentation method was developed byt ¥dabster et al.
(2012) using deformable three-dimensional (3D) tube nedEhis method used com-
bination of two different types of images (3D MR angiogragMRA) and 2D MR
images) which can possibly decrease the manual interaatidrat the same time im-
proving the segmentation performance. This was the first 3dehdeveloped which
was applicable to both isotropic and non-isotropic imagea.da Time of Flight MRA
image is used to identify the artery of interest. Howeves,atailability of the 3D MRA
data is limited and in the absence of 3D MRA, the user intevadiecome little more

complex because the artery of interest has to be indicatéetinessel wall slices.

Ukwattaet al.(2013) proposed a robust 3D segmentation algorithm fondating
the carotid artery walls in T1-w BBMR images. This is a globgtimization based
approach which allows the simultaneous evolution of corgcorresponding to the lu-
men and vessel walls. The algorithm achieves high accunadyeecision with fewer
user interactions (choosing sampled voxels of the caraaiti Wwamen, and background
region on a single transverse slice). However, the autle@arted some disagreements
with the manual segmentations due to inadequate user atitevaand quantization er-

rors in the volume computation.

Sabeet al. (2014a) developed a semi-automatic technique for CAWT measuremen
in PD-w MR images. Level set method (LSM) was employed to ssagrinoth the lumen
and outer wall boundaries. The procedure of LSM segmemtatas done on a slice-by-
slice basis. A user needs to initialize the curve evolutipmarking a point inside the

lumen which will stop at the luminal boundary. The segmettiersen boundary grows
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outward by two pixels for the initialization of outer wall bodary segmentation. Then
the curve evolution takes place as in the previous step. Menvdue to poorer contrast
between outer wall and surrounding tissues, this usudistenore number of iterations
than for luminal boundary. Even though the method achieugh hccuracy on the

specified dataset, the authors reported some challenges whed to be addressed.
These include the leaking problem in LSM due to blurred edges$ heterogeneous
intensity in the arterial wall. This may cause the LSM to gapped at some other

locations rather than at the real outer wall.

Arias-Lorzaet al. (2016) presented an improved 3D graph-cut segmentatian alg
rithm which was designed for multi-spectral carotid artgifyrcation MR images. This
method was an extension of the previously published worlagt al., 2012) with im-
proved graph edge cost function. In this approach, the lureeterline extraction had
been automated. However, manual intervention is still ireguor the initialization to

build the graph.

2.3 Segmentation from US Images

The US imaging techniques currently in practice for the dasjs of the carotid artery
are B-mode US and Doppler US. B-mode ultrasound imagingiaitte visualization
and measurement of the carotid arterial morphology (Saetted., 2011). The Doppler
US imaging is another standard clinical tool for the assesgimf hemodynamics of the
carotid artery (Sarkaet al, 2007). Color Doppler US provides information regarding
blood flow in the lumen, which enables the clinician to detkxst reduction, flow tur-
bulence and occlusion in arteries (Bramasl., 1994). However, Doppler ultrasound
have limitations in giving a clear picture of the carotidrgisis since the blood velocity
is not constant (Mehra, 2010). Moreover, the Doppler spects likely to get dis-
torted (Doppler mismatch) by an acoustic impedance mismiagtween the fluid and

the vessel walls (Jones al, 1996). This mismatch is more prevalent in case of patients
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with hypo tension or hypertension, tortuous vessels, pisef hypoechoic or calcified
plaques and pre-occlusive lesions (Carroll, 1991). SiheeBtmode US imaging cap-
ture the morphology of plague build-up based on the sounelatésh and not based on
the blood velocity, it has a better chance of determiningstheerity of atherosclerosis.
In this section, we discuss the carotid artery segmentétom B-mode US images and

the measurement of arterial diameters (LD and IAD).

The LD and IAD of the CCA measured from B-mode US images carohsidered
as a surrogate marker for risk of CVDs. B-mode US allows fayeasualization and
guantification of anatomical structures and the images eachuired in real time, thus
providing instantaneous visual guidance for many intetieeal procedures. Figure 2.2
illustrates the "Meijer Arc”, the standardized approachBemode carotid US scanning
(Steinet al,, 2008). An increase in the IAD or decrease in the LD has beerlated
with the incident of stroke events (Polak, 2004). The CCAvtiter has shown to be
correlated to cardiac events (Eigenbretlal,, 2007), age (Eigenbroét al., 2006), and
other conventional vascular risk factors like gender, smpkistory, hyperlipidemia,
and hypertension (Polat al, 1996; Jensen-Urstaat al, 1999). Further, the carotid
IAD is independently associated with first-time incidectismic stroke, left ventricular
mass and IMT (Polakt al,, 2014). Moreover, the plaque formation in the carotid grter
is an early indicator for coronary artery disease and mybahinfarction (MI) (Mughal
et al, 2011). The asymptomatic carotid artery stenosis can betifjed by measuring
the changes in the LD/IAD over time, and can be used as a sapowalidated measure
to decide whether carotid endarterectomy/stenting isiredwr not (Fayad, 2007).
The ability to provide reliable, accurate and highly repradle measurements makes

LD/IAD an attractive imaging biomarker.

A large number of follow-up studies have used high-resoluB-mode ultrasonog-
raphy to investigate the determinants of atherosclerasieage, because of its ability
to identify atherosclerotic lesions at all stages of depelent (Constantinescet al,,

2012). Usually, delineations of the CCA are performed miniley medical experts
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Figure 2.2: Meijer Carotid Arc: illustrates the standaedizpproach for carotid ultra-
sound scanning which will give a set of reproducible imagBeprinted
from (Steinet al, 2008), with permission from Elsevier.
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using calipers (Nicolaidest al., 2011), but it was shown that this process is tedious,
prone to errors, and has large observer variability (S#ked., 2012). Further, the real
time imaging of the carotid artery is now possible due to trelability of better image
reconstruction tools in US imaging (e.g. compound and haraimaging) (Nicolaides
et al, 2011; de Korteet al,, 2011). However, automated methods are required for the

accurate and reliable delineation of the CCA from US images.

2.3.1 General Framework for Carotid Artery Segmentation

Accurate knowledge and understanding of the geometry ot#hetid arteries is im-
portant in their segmentation. Several automated algosthave been proposed for
segmentation of the carotid lumen, but majority of them ami$ed on the segmenta-
tion and measurement of IMT. However, a few authors havetpdiout the need for
automated measurement of the carotid LD (Padalal, 2014; Jensen-Urstaet al,
1999; Godieet al, 2007). The lumen segmentation algorithms can be broadbscl
fied into two different categories as: region-based (S#fakid Golemati, 2014; Rocha
et al, 2014; Cinthioet al, 2010) and boundary-based (Sanébsal, 2013; Golemati
et al, 2007; Loizouet al., 2013; Molinariet al,, 201(; Rochaet al,, 2011, 2012). The
class of segmentation algorithms in image processing aedoan two properties, sim-
ilarity and discontinuity. The region-based model worksasguming same intensity
or similarity throughout a specific region. Hence, it gefigrassumes same lumen in-
tensity which follows from the constant blood density asptian (Prosiet al, 2007).
Since no gradient information is used in the process, theeatation will be robust to
cases having discontinuity in the boundaries of the ca@tery. Unlike region-based
methods, boundary-based approaches generally followrgdra curves (traditional
snakes) or geometric curves (level set) with a manual liaéiaon. Moreover, since
boundary-based approaches rely on intensity gradiensn@ity discontinuity), they
are often susceptible to false edges and discontinuitigeeitumen borders. Figure 2.3

shows general flow diagram of region-based and boundamgddasen segmentation.
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Figure 2.3: General flow diagram showing the region-basddanndary-based lumen
segmentation in B-mode US images.

Each block in this flow diagram is explained below in detail.

ROI Selection

The first stage in the carotid artery segmentation is thegmiton of the region of
interest (ROI). Commonly, the region between the outer Veglers (near adventitia
layer and the far adventitia layer) is taken as the ROI. Thisigdes many advantages
while tracing the LI interfaces. First of all, the CCA can lasiy confounded with the
JV because of their very similar echo-graphic appearanieen,Twhile considering the
morphological aspect of the CCA, the artery can be of diffeshape and straight or

curved. However, once we select the ROI, we have only limaireé to search for the
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LI interfaces. Speckle noise in ultrasound images oftentditmhe performance of the
classification/edge detection techniques. Since the luegion can be considered as
the dark region that is located between the two bright advetayers of the CCA, this
might be the best approximation for the ROI.

Golematiet al. (2007) presented an algorithm that defined four specifictpdm
describe the ROI. The morphological opening followed byigadle thresholding gen-
erates a binary image. Then the four control points were eééflvased on the first
and last non-zero pixels along the raw and column. Saet@d. (2013) reproduced
the same idea proposed in Golenedttial. (2007) in their study for the ROI selection.
However, this algorithm has limitations in the less brightages where a portion of the
lumen region may get cut off in the process. Roehal. (2011) have chosen the ROI
as the smallest rectangular box containing all pixels withiparticular distance from
the user defined lumen axis. This distance is estimated laséde lumen width of
the largest carotid artery image found in the dataset. Heheemethod described in
(Rochaet al, 2011) is a semi-automatic method. In another automatimagp (Rocha
et al, 2012), classical Otsu’s algorithm was used to compute tiferdnt thresholds,
T1 and7T2, and a binary image is generated which contains only thectbjeaving
intensity in betweerY’l and72. After removing smaller objects using morphologi-
cal opening, ROI is then defined as the smallest rectangteetihoses the remaining
objects. They further refined this ROI and generated ROIsiyguan estimate of the
lumen axis. Sifakis and Golemati (2014) used an approadldivides the distributions
of the local mean and variance of vertical intensities ugiagcentiles, and then used

user-defined percentile-based thresholds to recognizeotieatial ROIs.

Pre-processing

Once we compute the ROI, the next step is to do some pre-@iogesuch as contrast
enhancement and noise removal. This stage helps in imgrdke quality of image

in ways that increase the accuracy of segmentation. Sonmergutave performed a
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Gaussian smoothing (Rockaal., 2014; Golematet al., 2007; Molinariet al,, 201()
or speckle filtering (Santcet al., 2013; Loizowet al., 2013) of ROI. This is to reduce the
noise in the image and thereby easing the process of LI adedelineation. In Santos
et al. (2013), the image is processed with the application of asatrapic diffusion
filter for speckle removal prior to segmentation. SimilaiyLoizou et al. (2013),
the authors have used a linear scaling filter to remove nhighifpye noise prior to the
segmentation. A non-linear smoothing filter was conceiveRaochaet al. (2011) and

applied to the ROI to reduce the noise before computing tige etap.

In Gaussian filters, the amount of smoothing is usually abletl by the standard
deviation ¢), which must be large enough to reduce the noise. Howevérisiftoo
large, the CCA walls may get completely blurred. The carbtiden images of CVD
patients usually contain protruding hypoechogenic plaguieurther, the low contrast
of the LI interfaces is another reason why we need to seledpéimal value foro.
Morphological closing was performed as a pre-processeistGolematet al. (2007)
to merge small "channels” and "openings” of the image. Hére,shape and size of
the structuring element is selected such that it does reatthie anatomical information

contained in the image.

In most of the studies, ROI selection has been done prior éoptlke-processing
stage. This is to increase the effectiveness of the preepsmeg algorithm and to
avoid any negative affect that may occur. For example, degaagorithms can be
greatly affected by the background information. Segmenas the next step after
pre-processing. The existing segmentation algorithmsbeabroadly classified into
two: region-based and boundary-based. The segmentatbnitgies coming under
these two categories are discussed below and their memsgfidts are compared in

detail.
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Region-based Segmentation

The region-based model works based on the distribution afemntensities and hence
able to capture the lumen intensities under the constaatldensity assumption (Prosi
et al, 2007). There exist only a few region-based methods in teeature which are
summarized in Table 2.1 along with their limitations. Thésetations are an indica-
tion of future research perspectives. A sub-pixel resotuthethod was suggested by
Cinthio et al. (2010) for carotid LD measurement which utilizes relatieeshold de-
tection on the arterial walls. The gray-scale informati@s\waveraged laterally within a
pre-defined ROI to produce an envelope profile. Then, theelesdl edges were found
out by applying a suitable threshold which was determinegtan the maximum in-
tensity points in the profile. The process is repeated adgten iacreasing the image
resolution to get the refined positions of the walls. Everugtothis method reduces
the computational load by giving a more robust estimatedbr@ptimal images, a ma-
jor problem is regarding with the accuracy which resultsnderestimation of the LD.
Further, the method assumes horizontal orientation foc#netid artery, and does not

take care of tortuous or tilted arteries.

Sifakis and Golemati (2014) made an attempt to find the @hhothen center point
based on the distributions of the local mean and variancatehsities. This method
used user-defined percentile-based thresholds to re@tdrezROIls. Further, they as-
sumed that the majority of the lumen center points will beated in a similar depth
within the ultrasound image. This algorithm effectivelyc#dizes the carotid artery
with relatively low computational cost. However, this madhhas several limitations.
Relatively low performance was observed in certain casashnihcludes presence of
carotid artery mimicking structures, poor far wall repras¢ion, an abruptly curved
arterial shape and non-uniform luminal intensity. Morepwieere was no discussion

about the quantification of LD or IAD.

Rochaet al. (2014) used a linear Bayes classifier to classify the longital paths

in the process of finding the carotid lumen axis. They havenddftwo classes; the
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class of blood vessels and the class of other anatomicaltstas, assuming normal
distributions for both the classes. The algorithm inifi@tans from the first to the last
column of the ROI, looking for all the paths that produce laoénima based on the
pixel intensity. The Euclidean distance to the local minisithen used as a cost map
and input to the dynamic programming (DP) algorithm. DP iedug determine the
longitudinal paths which are possible estimates of the lumes. The authors claimed
that the method is not misguided by the JV above the CCA oreldigs structures be-
low the CCA. However, this method did not consider the nedrduee to poor visibility

and hence difficult to adapt for the carotid LD estimation.

26



LC

Table 2.1: Overview of region-based techniques proposétktititerature

Author Approach # # LD/IAD Limitations
(Year) PP Subjects| Images| Measurment
. . i. Under estimation of LD
Cinthioet al.(2010) Sub-pixel resolution 3 30 LD..Yes ii. Does not take care of tortuous
method IAD: No . .
or tilted arteries
Relatively
low performance in following cases:
Combination of i. Presence of carotid artery mimickin
Sifakis and Golemati (2014) anatomical knowledge 100 2149 No structure
and statistic ii. Poor far wall visibility
iii. An abruptly curved arterial shape
iv. non-uniform luminal intensity
i. The near wall was not considered
Rochaet al. (2014) Gaussian filtering ang o5 199 No due to poor visibility

dynamic programming

ii. Fails in images with strong noise

inside the CCA lumen region
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Boundary-based Segmentation

The boundary-based approach for lumen segmentation ategrfrom the idea that
the edge-model can be adapted for tracking the carotid veatldss. These borders
represent discontinuities in brightness or pixel intgnine simple approach for these
interface detection is to use an edge detection techniquawvekkr, the boundaries
identified are often disconnected and one needs to find clegedn boundaries for
successful segmentation. Hence, some pre-processingdeels often apply prior to
the segmentation in order to enhance the edges. Many metedsproposed in the
literature for the detection of edges corresponding to thand MA interfaces. State
of the art methods in the literature for boundary-based segation include Hough’s
transform (HT), active contours and deformable templatedevel-set based methods.
Table 2.2 gives an overview of boundary-based (edge-bdseliques proposed in

the literature.

Hough's transform (HT) was used for the automated carotideln segmentation
by Golematiet al. (2007). Their assumption of straight lines (in longitudimaages)
and circles (in transverse images) for carotid lumen recknuch attention among the
research community. The algorithm was tested on image segqsagerather than static
images. This allowed the assessment of changes of artealageometry during the
cardiac cycle and subsequent changes in arterial diamé&eesto changes in the shape
and orientation of the carotid arteries, during the actjoisprotocol, it puts a challenge
on the above assumptions in case of diseased carotid artégea result, the arterial
boundary departs from a simple geometrical shape. Thexefoe authors suggested

the use of active contours in combination with the HT for dissd arteries.

Molinari et al. (201() used an integrated approach in order to extract the carotid
artery layer which consists of geometric feature extragtime fitting, and classifica-
tion. The output of the algorithm was the tracings of the pr@t and distal adventitia
layers. The authors have tested their algorithm extenswela database consisting

of 200 randomly selected longitudinal B-mode ultrasoundges of the CCA. How-
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ever, the authors have spotted two particular conditioasdaused imperfect adventi-
tial tracings. These include "multi layered” images and geshaving deeper plaques
protruding into the artery lumen. Here the "multi layerediage means nothing but
images having a repeated pattern of lumen walls due to tteepce of other similar
structures such as JV. Under these conditions, the algostitcessfully traces line seg-
ments corresponding to the far CCA wall, near CCA wall, anaki3&/ wall. However,

the algorithm fails in the final identification of correctédipairs for LI borders.

A semi-automatic technique was proposed by Roehal. (2011) using random
sample consensus (RANSAC) method for the segmentatiorr @inid near adventitia
boundaries of the CCA. At first, the edges inside the ROI weteated using a non-
linear image filter, non-maximum suppression and hyster$ie segmentation of the
adventitia boundary was based on a RANSAC search of the bes$tfigiven contour
model (which is evaluated according to a gain function). &b#ors have mentioned
about mis-detections of the carotid adventitia in the pres®f similar boundaries such
as JV boundaries. Another drawback discussed is the infuefne thick plague on the
gain function. In this case, the plague region pushes themumoundary away from the
adventitia boundary resulting in an under estimation ofgaim function. This causes
an increase in the number of samples analyzed by the RANSg@&@igdm and in turn

increases the cost of computation.

A fuzzy classification-based approach was proposed by Reicala(2012) for the
automated segmentation of carotid arteries followed bymaation of the lumen axis.
Using fuzzy edge detection, all step and valley edges in Bevirere determined and
classified by extracting various features of the carotid wérfaces. By adopting a
fuzzy classifier, the authors have avoided the use of low filsssng which might
eliminate important weak edges. The major advantage oftleitiod is that both the
near and far wall boundaries were detected which is a preisig for the LD/IAD

computation, but the authors did not attempt.

The segmentation of carotid lumen region has been carriedypbantoset al.

29



(2013) by utilizing the hypoechogenic characteristicshaf umen. The algorithm ini-
tially employ morphologic operators for the detection of tarotid artery. Then the
lumen and bifurcation contours are segmented using the-Gése (CV) level set seg-
mentation model. However, threshold-based region detecsi seldom susceptible to
false region estimation if the images are noisy due to lowltg®n or hyperechoic
characteristics or shadows due to the presence of calcitgineinear wall. Further, the
morphological processing operations are sensitive taerans hence are not very stable
(Sigmund, 2007).

Loizouetal.(2013) introduced a Snake-based segmentation technigtrefoarotid
bifurcation and diameter estimation. In addition to thigyt successfully segmented the
atherosclerotic plaques as well. However, the initialarabf Snakes remains a chal-
lenge. This is because since the propagation force is frelyugased on intensity gra-
dients, it makes the Snake vulnerable to false edges. Mergibve Snakes usually leak
through the discontinuities in the wall borders where traglgmt is too weak (Molinari
et al, 2012).
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Table 2.2: Overview of boundary-based techniques propiostx literature

Author Approach # # LD/IAD Limitations
(Year) PP Subjects Images Measurment

Fails in cases:

image sequenck  LD: Yes i.the arterial boundary has a

Golematiet al. (2007) Hough Transform 10 of length 70-80|  1AD: No _r_andom shape or curvatur_e
ii. Presence of speckle noise
iii. Presence of thick plaque
Integrated approach i. Non-perfect tracing of

consisting of boundaries in case of noisy
geometric feature extraction lumen and overlap of the
line fitting and classification Jugular Vein (JV)

Molinari et al. (201() 130 200 No

T€

i. The amount of smoothing
. must be controlled
Rochaet al. (2011) RANS’:%::S cubic 25 50 No ii. Misdetections of the carotid
P adventitia occur in presence
of other similar structures

i. Misdetections occur in

Rochaet al. (2012) Fuzzy classification 25 50 No L .
presence of similar boundaries

Chan-Vese level set i. Fails if carotid artery image is
Santoset al. (2013) . - 11 No of low contrast and noisy
segmentation model ii. Tested on a small database

i. Faces challenge of initializatio
. Snake based LD: Yes | of snakes
Loizouet al.(2013) segmentation 20 20 IAD: No ii. Only a small number of

subjects included




Even though, more boundary-based approaches are repbaeddgion-based in
the literature, it can be concluded that the region-bagatksty is giving more satisfac-
tory results when comparing the overall performance. Tarslee justified by consid-
ering the dependency of boundary-based algorithms on exigesge gradients. One
explanation is that boundary-based methods are more iserisithanges in the gradi-
ent information at the wall borders during the cardiac cydlke rapid changes in the
velocity of blood flow in the artery causes subtle changefénshape and size of the
lumen (Chowet al., 2008). Since the image acquisition takes place during dingiac
cycle, it is often sensitive to these changes when the imagesf gets frozen. One way
to compensate for this sensitivity is to consider the neaging frames. The second
explanation for higher error is associated with the mutal nature of atherosclerotic
plaques. The random deposit of plaques along the carogdyastibsequently affects
the intensity distribution and thickness of the diseaségtiat wall. Further, boundary-
based techniques are sensitive to sudden changes in tladiomsiof the gray scale
intensity distribution along the CCA, and will thereforeeld less optimal results. This
can be compensated by taking regional statistics embeddet@undary-based infor-

mation.

2.3.2 Challenges during Segmentation

CCA segmentation is a challenging process, whereas demnglagully automated sys-
tem is even harder in practice. One should take advantagedfrtowledge in ultra-
sound image reconstruction in the segmentation processinTdges may have scanned
with different hardware settings (frequency, depth, gein,) and different positioning
of the probe. The challenges for segmentation vary with tnaity of image data
and the view due to the anisotropy of US image acquisitiore gitesence of different
anatomic structures such as the JV and other muscles wredtoating around in the
ultrasound image may lead to erroneous capture of the danatils (Molinariet al.,
201, 2011).
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There are several challenges for the automated carotiddgegmentation from US
images. These are primarily due to the variability in data.s&he shape and size of
the carotid artery, presence of plaque and curvature ini@stenake the segmentation
process harder (Nicolaidedt al., 2011; de Korteet al, 2011; Sanchest al, 2011;
Sabaet al, 2014). Since there is variation in the image contrast due to tianan
composition, stage and grade of the deposited plaque attten-wall interface (Suri
et al, 2005), threshold-based systems often fail in segmertimgttery. Characteristic
artifacts, such as attenuation, speckle noise, acoustaosting and signal dropout may
complicate the segmentation task (Golenedtal, 2007; Sanchest al,, 2011). Figure

2.4 illustrates the variation of the carotid artery image®ss different patients.

In an US image, attenuation is the reduction in amplitudéefulitrasound beam as
a function of distance through the imaging medium. Accawymtor the attenuation ef-
fects in ultrasound is important because reduced signalime can affect the quality
of the image produced (Bushong, 1999). Acoustic shadowig iultrasound image is
characterized by a signal void behind structures that gtyabsorb or reflect ultrasonic
waves (Whittaker, 2007). This happens most frequently safid structures, as sound
conducts most rapidly in areas where molecules are closelygul, such as in bone or
stones. The direct effect of acoustic shadowing or echowdtgons in the segmentation
task is that some boundaries or boundary segments may bmgwgsich may lead to

edge leaking at the near and far LI interfaces.

Sensitivity to ultrasound vibrations at each depth of thdybis different due to
which the imaging suffer from signal loss from deeper in tissue. Signal drop-out
may occur frequently while imaging arteries with 65-70%mnstas, especially if the
CCA is deposited with high amount of calcium (Slowaital, 2010). This makes it
difficult to determine the boundaries of the true lumen. kemtthe presence of multi-
plicative speckle noise in carotid ultrasound images teéadsduce the image resolu-
tion and contrast thereby degrading the image quality. U&yes are often considered

as the hardest to segment among medical images due to theBNdR (Dahlet al.,

33



laque

I

Curved LD Borders

(a) (b)

Jugular Vein Interference

(© (d)

Figure 2.4: lllustrating the variation of carotid arteryages across different patients.
(a) Curved lumen diameter (LD) borders; (b) High plaque dépnd nar-
rowing of carotid artery; (c) Low contrast image with jugulein interfer-
ence. (d) Image having poor contrast difference at near wall
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2011). There are many methods available for speckle notketien in the literature

(Michailovich and Tannenbaum, 2006; Zhaeteal, 2015; Tayet al., 2010).

There are certain characteristics that make an US imagabseiifor the automated
delineation of the carotid artery borders. These includé Bpatial resolution, high dy-
namic range, low noise level, compound and harmonic ima@ytaginari et al., 2012).
Specific image enhancement or denoising strategies maytodéedadopted, if the im-
age does not possess these characteristics. The compaditd@nonic imaging fa-
cilities are available on most of the medium-level and Higlel US OEM (Original
Equipment Manufacturer) scanners, whereas they are neemrén majority of the
entry-level or cheaper equipments. This results in a poalityumage with low con-

trast at the near and far LI interfaces leading to inacclgeggnentation.

The important factor that complicates automatic deteatibthe CCA is the pres-
ence of JV structure which is often seen just above the CCAKRsgure 2.4). Since the
echographic appearance of the CCA and JV are very much sjthiéanear wall of the
CCA can easily be confounded with the far boundary of the Bépir plaques protrud-
ing into the carotid artery lumen represents another catisaperfect segmentation.
The plaque substantially perturbs the average intensmg} l&f the CCA lumen. Usu-
ally, in patients with severe stenosis 80%), hypoechoic plaques appear at both the
walls (Polaket al., 1998). This not only causes non-uniform luminal intengityt also
results in an abruptly curved arterial shape (e.g. due ttatvely large plaque). There-
fore, the final boundary segmentation may have many defigientt can be observed
that some of these challenges are inter-related. For exanmppresence of increased
speckle content in US image, the segmentation algorithmmoglge able to distinguish
between the carotid lumen and the hypoechoic plaque tigso®jor limitation of the
algorithms developed so far is that they do not take carertiidas or tilted arteries,
i.e., the lateral averaging cause an underestimation ofrtleelumen diameter if the
artery is not horizontally scanned. The segmentation ntegiroposed in this thesis

uses a spatial transformation approach to address this. issu
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2.3.3 Validation Metrics

An automated carotid artery segmentation system can beateal in two ways. One is
by simple visual inspection of fine details which is only pbksby expert physicians.
The second way is to analyze the system quantitatively i snge metric and compare
the automated measurement against the manual experggsaaihich are considered as
GT. Further, it is mandatory for an automated medical systeaompare and validate
against manual tracings in order to be accepted in the alidiomain. Different eval-
uation metrics are used for evaluating the performance mftickartery segmentation
algorithms. The following are some of the popular perforoemetrics found in the

literature.

i. Coefficient of Correlations()

The linear correlation coefficient’ (Swinscowet al, 2002) measures the strength
and direction of a linear relationship between two varial@uto and manual mea-
surements). This is sometimes referred to as the Pearsoglatamn coefficient. The

mathematical formula for computingis (Swinscowet al,, 2002):

ny ry =3T3y 2.1)
JnXat— (Dt n Ty - (D)

wheren is the number of pairs of data,andy are the variables of interest. The value of

T =

rissuchthat-1 < r < 4+1. The+ and— signs are used for positive and negative linear
correlations, respectively. The standard method used tsune the ’significance’ of
this correlation analyses is thevalue. Typically, values of either 0.01 or 0.05 are taken

as cutoff.
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il. Coefficient of variationC'V)

The coefficient of variation({'V') can be calculated according to the formula (Liang
et al, 2000):

_S*lOO

cv (2.2)
T
where
SD
S=—— 2.3
7 (2.3)

x is the pooled mean andlD is the standard deviation for the difference between auto-

mated and manual measurements of LD.

iii. Mean Absolute Distancel\( AD)

Mean Absolute DistanceM AD) is used as a boundary distance-based metric. The
averages of\/ AD can be computed using all vessels in the database imagesaia ob
an overall estimate of boundary disagreement. The fornaut@mputeM AD is given

by (Lianget al., 2000):

K
1
MADA[,T = ? Zz:; \d(m,, CLZ)‘ (24)

whered(m;, a;) is the distance between the boundary peintof the manual drawn
contour and its corresponding boundary point on automabetbara; and K is the
number of points included in the two boundaries (manual andraated). In the case
where the two boundaries do not have the same number of pthiatsone of them can
be interpolated. However, if the boundaries include cuseagments, then/ AD will

be overestimated.
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iv. Precision of Merit PoM)

Precision of Merit PoM) is a key feature used to validate the automatically traced
carotid diameter against the manually traced one. Therdéwardifferent ways for
computing thePoM. The overall systems performance was computed using the firs

method of precision-of-merit{oM 1) in percentage as (Ikeds al., 2015):

ﬁ uto — ﬁ anua
PoM1;p(%) = 100 — [(‘ ALtD M l‘) % 100] (2.5)
Manual
where N
S 1
LDAuto - N Zz:; L-DAutoi (26)
1 N
LD]Wanual = N Zz:; LD]Wanuali (27)

LD auto, is the measured automated LD ab@ y/4n.q;; 1S the measured manual LD of

a particular imageN is the total number of images in the database.

Second method of precision of merf®¢)\/2) computation was using error differ-
ence between the automated and manual methods for eachldiralicase. This is the

PoM per image basis. This is mathematically expressed as é&atj 2000):

N ‘LDAutoi —LDanual;
=1

LD]\/[anua,li

More details regarding the computation of precision of treme given in Appendix A.

v. Dice similarity (D.SC) and Jaccard Indexf[)

Dice similarity and Jaccard index (Bharathaal., 2001; Jaccard, 1912) were com-

puted to find the similarity between two regions. Assumeaedi represents the area
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enveloped by the automated segmentation and region B espigethe area enveloped
using manual tracings or GT. Then, DSC is the ratio of are@mron to both region
A and region B to the average size of region A and region B. This be expressed
mathematically as (Bharatte al., 2001):

ANB
DSC—-<4+B)*2W) (2.9)

Although very similar to Dice, Jaccard index shows the ratiarea in common to both

region A and B to the total size of region A and B available ¢ad, 1912):

ANB
LU:(M+B%4AHE)*mo (2.10)

Other than the above metrics, different plots and stasistiests can be used for
validating the segmentation results. Receiver operativagacteristic (ROC) analysis
(Golematiet al,, 2007) assesses the specificity and sensitivity of the setien meth-
ods. The regression plots show the variability between antomanual tracings which
is seen by the deviation from the trend line. Generally, the line of best fit through
the data of two variables, and the Pearson correlation caefti(r) indicates how far
away all these data points are to this line of best fit. The @&laiman plot used the
Bland-Altman method that demonstrates the level of agre¢imetween two methods
when measuring the same variable (Bland and Altman, 1986mulative frequency
plots are used to show the error distributions between audon@anual, whereas box

plots will illustrate the median as a measure of central ¢éeicy.

The statistical tests can be used to check the agreemergdretwie and measured
value of a variable. Often, the algorithm that has the besteagent with GT is con-
sidered to have the best performance. Due to the trade-@aifji@ement between bias
and precision, the best performing algorithm (agrees bést @T) is not necessar-
ily the best in terms of bias or precision. Use of statistteaks solves this problem.

For example, ANOVA test for one-way analysis of varianceckhine difference be-
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tween the means of auto and the manual measurements of blegsay LD) (Howell,
2012), whereas, Chi-Square test (Altman, 1990) is useddtyazm whether there exist
a significant difference between the observed data (autmhmatasurements) and the
expected data (manual measurements or GT). There are e#liersuch as Student’s
T-test and Mann-Whitney test which were used to confirm thgssical significance of
the obtained results (Hollandet al., 2013; Jackson, 2015). Usually in all the above
tests, p-values less than 0.05 will be considered statlktisignificant unless otherwise

specified.

2.4 Summary

We have presented different techniques for the carotid tusagmentation from MR
and B-mode US images which are intended to measure the CAR/IKD. These tech-
niques include LSM, graph cut, Hough’s Transform, fuzzysification, active contour
or Snake based techniques, scale-space, geometricabahpgsy local statistics and op-
timization based approaches. Section 2.2 reviewed thetdéterature on the carotid
lumen and outer wall segmentation from MR images, whereaganotid artery seg-
mentation techniques in US images are explored in Secti®n Burther, a general
framework for carotid artery segmentation is presented, @¢iscussed various chal-
lenges during segmentation. Finally, a few important estatun metrics are shortlisted
from the literature which is used for assessing the perfaoaaf segmentation tech-
nigues. The global trend is now toward the complete aut@naif the segmentation
and measurement process, which can assist the clinicia@.uSé& of computer-aided
measurement techniques has the potential benefit of iredeasuracy with less com-
putational complexity and less subjectivity. It is expélctkat the performance of the
methods can be further increased with the rapidly growingldgment of technology
such as 3D carotid imaging and video segmentation. Howewane validation studies

will be required to establish the state-of-the-art on sagaten performance.
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CHAPTER 3

MAGNETIC RESONANCE IMAGE DENOISING AND
MEASUREMENT OF CAROTID ARTERY WALL
THICKNESS

In this chapter, carotid artery wall segmentation from MRges is addressed. MR im-
ages are inherently corrupted with noise which hides ingmartisual information and
thereby affects the performance of the segmentation altgos. Thus, a robust filter,
named as NLMlpc7, is proposed to reduce the Rician noise present in MR images.
This filter is based on the non-local maximum likelihood (NLMechnique using dis-
crete cosine transform (DCT) as the similarity measure. Mieéhod is explained in
detail in Section 3.1 along with the experimental result®otin simulated and real im-
ages. Further, the performance of the proposed denoisitigoohés compared against

the conventional NLML technique.

In Section 3.2, a novel segmentation strategy is presetedaiotid lumen and
outer wall segmentation from T1-weighted MR images and tifieth the carotid artery
wall thickness (CAWT). The segmentation method utilizesifllmous Chan-Vese (CV)
model which is followed by particle swarm optimization (PS@separate the inner and
outer wall region of the carotid artery. Then, CAWT is measias the average distance
between the inner and outer wall borders. The results areulbly validated against

the manual tracings by an experienced radiologist.



3.1 DCT Based NLML Filter for MR Image Denoising

MR images are generally corrupted with noise, which is nyatihérmal in origin and
is produced by the stochastic motion of free electrons. Thservariance is influenced
by the imaging parameters, the number of averages, the fielibew and the sam-
pling interval (Parker and Gullberg, 1990). One straighird approach to reduce
the noise level in the acquired image is to average images @ftiltiple acquisitions.
Averaging will reduce the noise level by a factor @iV, whereN is the number of
acquisitions. Averaging, however, may not be feasibleimail and small animal MR
imaging where there is an increasing need for speed (Maetjah, 2008; Rajaret al.,,
2011). Thus, post processing techniques to reduce the lseislen the acquired data
are important. Also, time-sensitive acquisitions in castrmaterial-enhanced studies,
functional studies, diffusion MRI (dMRI) or studies withrited imaging time, experi-

ments cannot be repeated to do averaging (Retjah, 2011).

In most of the early papers on MRI denoising, the conventiolassical denois-
ing techniques were applied with the assumption that tha idathe magnitude MRI
follows a Gaussian distribution. In these methods the bgasifects of Rician noise
was not taken into account. This bias will increase with dasmng signal to noise ra-
tio (SNR). This is demonstrated in Figure 3.1. Many methodsawproposed later to
denoise MR images. Most of these methods exploited the daoement of the Rice
distribution to reduce the bias in the denoised imagesthe&.image is denoised with
the methods based on the Gaussian assumption and to re@dcia:thzog (whereag
is the variance of noise) is subtracted from the squaredisiethanage. However, in
Sijberset al. (1998) it is demonstrated that the SNR and sample size carendé the
process of estimating the true underlying pixel value ugshig approach. Methods
based on maximum likelihood (ML) were proved to be bettenttiee aforesaid meth-
ods. Superior performance of ML based methods over otherx efahe art methods
were demonstrated in He and Greenshields (2009) and Ragn(2011, 2012).
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Figure 3.1: Rician Bias : This experiment was conducted wjth= 1 and varyinga
from 0.5 to 20.

Conventionally, the ML estimation methods for denoising Miages incorporate
the Rice distribution in order to estimate the true, undedypixel value from a local
neighborhood. This is based on the constant intensity gssomwith in the neighbor-
hood. However, this assumption is not always valid espgcabund edges and fine
structures, which may results in poor quality images. Aslatsm to this problem,
many variations of ML based methods were proposed. Among tiiee 2D NLML
(NLML () approach (He and Greenshields, 2009) gained much attesftibe research
community. The NLMl¢ differs in its sample selection strategy, i.e. samples are s
lected in a non-local way, rather than from a local neighboth based on the intensity
similarity of the pixel neighborhoods. Euclidean distargcesed as the similarity mea-
sure in the image space. However, it has been recently sh@aticemputing the sim-
ilarity measure is more robust in DCT sub-space compardaed&ticlidean sub-space
(this is because of the inherent properties of DCT such asdaia correlation and
high energy compaction)(Het al,, 2012). Motivated by this observation, the proposed

method integrates DCT into NLML to produce an improved 2D MiRiation process
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which is termed as NLMkcr. In the next section, we explain the data distribution in

MRI and the signal estimation using the conventional NLMLtihogl.

3.1.1 Data Distribution and Signal Estimation in MRI

The raw complex MR data in thie-space are characterized by a Gaussian probability
density function (PDF). After the inverse Fourier trangipthe noise distribution in
the real and imaginary components will still be Gaussian tduie linearity and the
orthogonality of the Fourier transform. However, due toshbsequent transform to a

magnitude image, the data will no longer be Gaussian buaRidistributed.

Let R andJ represent the real and imaginary parts of the noisy complBxdsita
(corrupted by zero mean Gaussian, stationary noise witstéimelard deviatioa,) with
mean valuegz andyu;, respectively. Then the reconstructed magnitude dataill be

Rician distributed (Rice, 1944). The corresponding Ri¢&F is given by:

M —22sa® AN
pM(M|A,O'g) == —26 294 IO < 5 ) E(M) (31)
Ug Jg

whereM = VR + 32, A = /3, + 112, Io(.) is the0™ order modified Bessel function
of the first kind andk(.) is the Heaviside step function. The shape of the Rician PDF
depends on the signal to noise ratio (SNR), which is here elgfas the ratiol/o,.

Given the observed data and a model of interest, the unknavampeters in the PDF
can be estimated by maximizing the corresponding likelihfooction. LetM, Ms, ..., M,
be n statistically independent observations within a regioeaistant signal intensity

A. Then, the joint PDF of the observations is:

n M, _Mi2+2A2 AM,
p({M;}|A, 04) = H ¢ 205 I, ( ) : (3.2)
i=1 9

2
09

The unknown parameter in Eq. (3.2) is the true underlyingrisity A. However, ifo—g

is not known in advance, it can be estimated along withy maximizing the likelihood
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function £ or equivalentlyln £, with respect toA and ag (Sijbers and den Dekker,
2004):
{Arr, 0%, } = arg{max(In £)} (3.3)

7Ug

where

M2 + A2 &

InL = 21 (02) Z Zln[o( ) (3.4)
=1

and A,,; and o3, are the estimated underlying true intensity and the noisavee

respectively.

3.1.2 Signal Estimation using NLML Method

Non-local approaches generally take advantage of highegdegfredundancy in images.
In the recent past, these methods attracted the attenttbe ohage processing commu-
nity and several non-local methods have been introducedinfage denoising. NLML
method was motivated by non-local means (NLM) (Buadtsal, 2011). However,
instead of computing the noise free signal as a weightedageeof non local pixels,
considering the Rician nature of noise, NLML estimates the tunderlying signal us-
ing Eqg. (3.3), where the samples are selected in a non loshidia. Conventionally,
NL pixels are selected based on the intensity similarityhef pixel neighborhoods. If
the neighborhoods of two pixels are similar, then their @mtixels should have a sim-
ilar meaning and thus similar gray values (Zimneg¢ml., 2008). The similarity of the
pixel neighborhoods can be computed by computing the ittedistance (Euclidean

distance) between them (He and Greenshields, 2009):
= [[Ni = Nj| (3.5)

whered, ; is the intensity distance between the neighborhagdandV; of the pixels

i andj. For each pixet, the intensity distance; ; betweeni and all other non local
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pixels j as defined by Eq. (3.5), in the search window are measuree@r adtting the
non local pixels in the increasing orderdfthe firstn pixels are then selected 88/; }

for maximum likelihood (ML) estimation. This method is mas#ective in terms of
preserving edges and fine structures than the local ML estmaln the next section,

we discuss an alternative approach to select the sampl&dl festimation.

3.1.3 NLML per Filter for MR Image Denoising

The proposed work integrates DCT into NLML to produce an ioved filter for MR
image denoising. Instead of computing the similarity inithage space as in the con-
ventional NLML, we find the appropriate pixels for ML estinat by computing the
neighborhood similarity of pixels in the DCT subspace. 8inaly few low frequency
coefficients are used for distance calculation, the numbeomputations can be sig-

nificantly reduced. This reduces the influence of noise ofaxce calculation.

Let I be the noisy MR image. Initially, the DCT coefficients are guted for each
pixel i in I using a neighborhood of size x w. For every pixeli in the image, the
similar pixels; for ML estimation are computed based on the similarity of BH&T
coefficients of the neighborhoods«dind;. Let the neighborhood of pixeélbe denoted
by N; and the neighborhood of pixglbe denoted by, wherei, j € 1. AssumeC(V;)
and C'(N,) denote the coefficients in the DCT subspace correspondipatthesV;
and N; respectively. The first low frequency coefficients afand; from C(N;) and
C(N;) are then selected in a zigzag order. The zigzag order is geglo group low
frequency coefficients in top of vector and high frequencgfitaents at the bottom.

Now the distancd] ; betweenC’ (NV;) andC-(N;) are computed as:
d7; = [|C-(N;) = C, (V)| (3.6)

whereC'. represents the firstcoefficients ofC'. For each pixel, the intensity distance

d; ; between and all other non local pixelgas defined by Eq. (3.6), in the search win-

46



Table 3.1: NLMLycr Denoising Algorithm
Input: Noisy MR imageyw, [, andr

Output: Denoised MR image

Stage 1: DCT Coefficient Estimation
1. For each pixel in the noisy image calculate DCT coefficients
within a grid of size same as similarity windaw x w
2. Select and store the firstDCT coefficients in a zigzag order {;
Stage 2: Optimized Denoised Image Estimation
1. For each pixel in the Noisy Image
1.1. Compare&”; with all C; in the search window x [ using Eq. (3.6)
and store the results iif ;
1.2. Select the first non local pixelsj with the minimumd; ;
usingk'™ order statistic and let these pixels bg
2. Estimate the true underlying intensityiofA; using Eq. (3.3)

dow are measured. The non local pixglare then arranged in the increasing order of
di ; and the first pixels are selected 49/, } for maximum likelihood (ML) estimation.
Further, the proposed work makes usé@forder statistic (David and Nagaraja, 1970)
to select the most similar pixels. This will further reduce the computational burden
compared to traditional sorting algorithms. The NLMWy algorithm is summarized
in Table 3.1 and the time complexity comparison of both NLiV&nd NLML ¢ al-

gorithms is given in Table 3.2.

3.1.4 Experimental Results

To evaluate and compare the proposed method (NEMLD with the NLML¢, exper-
iments were conducted on both synthetic and real MR images.thfe experiments
on the synthetic data, we used the standard MR image pharfttme brain obtained
from the Brainweb database (Coco®tal., 1997). The phantom image was degraded
with Rician noise for a wide range of noise levels and the dng efficiency of both
algorithms with different search window sizes and noisellewere evaluated based on

the peak signal to noise ratio (PSNR) (Fisher, 1995) and #mnnstructural similarity
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Table 3.2: Time Complexity Analysis of Denoising Algoritem

ForanN x N image, assume:

[ x [ - Search window size

m - Similarity window size

7 - Number of low frequency coefficients of used for finding darity in DCT domain

For Conventional NLML (NLML:):

Number of computations for calculation of Euclidean dis&sof a given pixeln?i?
Hence, total number of computations for entire imayém?i?

For DCT based NLML (NLMLyc7):

Number of computations for calculation of 2D-DCT coeffidiefor each pixeli? log [
Number of computations for calculation of Euclidean dis&sof a given pixelm?r
Hence, total number of computations for entire imalyé:(i* log | + m?*7)

index matrix (SSIM)(Wangpt al,, 2004).

Figure 3.2 shows the visual quality comparison of the imageotsed with the
NLML - method and NLMly~r method. This experiment was conducted on the brain
image after corrupting the image by noise with = 15. Both filters were executed
with the following parameters: search window siz€ =x 21, neighborhood size =
3 x 3 and the the sample siZewas chosen as 25 (as recommended in He. et.al (He
and Greenshields, 2009)). In visual analysis, the exgeotare (i) perceptually flat
regions should be smooth as possible (ii) image edges aneérsoshould be well pre-
served (iii) texture detail should not be lost and (iv) fewdwally no artifacts (He and
Greenshields, 2009; Chesat al, 2010; Rajaret al, 2011). It can be observed from
Figure 3.2 that the image denoised with the proposed metlbMI ,-r ) is closer to
the original one (based on the above mentioned criteria) tiaimages denoised with
the other approaches. The difference is more clear frormtages in Figure 3.3, which
shows the zoom view of the denoised images of the region rdanked. It can be seen

from Figure 3.3 that the blurring effect is less in the imagaalsed with NLMLy 7.

Figure 3.4 shows the quantitative analysis and the time t®xtp comparison of

the images denoised with NLMLand NLML - for different search window sizes.

48



(©) (d)

Figure 3.2: Visual quality comparison: (a) Ground Truth jGB) GT corrupted with
noise (witho, = 15) (c) noisy image denoised with NLML(d) noisy image
denoised with NLMLpcr.
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Figure 3.3: Visual quality comparison : (First column) Gndulruth (Second column)
enlarged view of the area marked in red color(Third colunmiuged view
after denoised with NLML (Fourth column) enlarged view after denoised
with NLML por.
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In the quantitative analysis, the background was exclutted;is, only the area of the
image inside the skull was considered. Figure 3.4(a) anar€ig.4(b) shows the perfor-
mance of both methods based on PSNR and mean SSIM for seamdbwize varying
from11x11to101 x 101. As expected we can observe that the performance of both the
methods improves when search window size increases and tiesause the probabil-
ity of finding a similar patch increases when the search spateases. However, one
drawback of increasing search space is the correspondinggaise in time complexity.
This can be seen in Figure 3.4(c). The NLM scores over NLML here. Figure
3.4(d) and Figure 3.4(e) shows the quantitative analysiedan mean SSIM and PSNR
for both methods for various noise levels varying from 10@o At very low noise lev-
els it can observed that for this experiment the PSNR for thwentional NLML is
less than the noisy one. This is because of some slight biumtroduced in the image
through denoising. Nevertheless, the NLMly performs better than NLML in all

the cases.
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Figure 3.4: Quantitative analysis : (a) PSNR plot of NLMBnd NLML o for var-
ious search window size (b) Mean SSIM plot of NLMland NLMLpcr
for various search window size (c) Execution time comparisbNLML
and NLML ¢ for various search window size (d) and (e) Mean SSIM and
PSNR plot of NLML- and NLML ¢ after varyingo, from 10 to 40.
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Table 3.3: Quantitative analysis on experimental Kiwitfimage

NLML - NLML per | Percentage of Improve-
ment
PSNR 27.53 30.4 10.5

For the evaluation of the methods on the real data sets, waducted experiments
on a carotid MR image and an MR image of a Kiwi fruit. Figure 8ti®ws the results
of the experiment on noisy carotid image. It can be obseri@u the results that the
image denoised with NLMLqr preserves structures and fine details much better than
NLML . In the experiments (with both NLML. and NLML 7)) we estimated both
true underlying signal and noise simultaneously using E§)( For both experiments

we used a search window sizeldf x 11 and similarity window siz& x 3.

Figure 3.6 shows the results of applying both denoising odglon an MR image
of a kiwi fruit. Two sets of kiwi fruit images were reconsttad, one without averaging
and the other by averaging 12 acquisitions. Averaging ware dio the complexx'-
space. Averaging reduces the noise standard deviation agtarfofv/N, where N
is the number of averages. These images were acquired on aR93clhner with a
slice thickness of 0.4 mm. The denoising algorithms wera #gplied over the image
reconstructed without averaging and the resultant dedamage was compared with
the image reconstructed by averaging 12 acquisitionsnlbeaseen from the denoised
images and the residuals that the image denoised with NAMMLis more close to
the image reconstructed by averaging 12 acquisitions.eSime image acquired with
12 averages has a high SNR, for quantitative analysis, wepated the PSNR for
denoised images with respect to the image acquired with étages. The PSNR for
the image denoised with NLMLis 27.53 and the PSNR for the image denoised with
NLML per is 30.4. These results are summarized in Table 3.3. Thesziment on
the real data sets additionally indicates superior perémee of the NLMLp-7 method
over NLML- method.

However, one drawback with both conventional and the pregaosethod is in the
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optimal selection of the number of samples for ML estimatidn the experiments
mentioned in this section, the sample sizes selected as 25 (as recommended in He
and Greenshields (2009)). Results can be further improyeselecting an optimal
value fork for the ML estimation of the true underlying intensity forckaand every
pixels instead of fixingk as a constant based on some heuristics. Very recently in
Rajanet al. (2014) an adaptive approach to seléc(for NLML method) based on
Kolmogorov-Smirnov (KS) test is proposed. Further redeasaequired to see how

this can be incorporated in the proposed DCT based approach.
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(9) (h) @)

Figure 3.5: Experiments on real datéa) Noisy carotid MR imagéb) Denoised with
NLML ¢~ (c) Denoised with NLMLyc7, (d)enlarged view of the region
marked in red in (a)e) and(f) enlarged views of the corresponding region
marked in red from (b) and (c}g) enlarged view of the region marked in
green in (a)(h) and(i) enlarged views of the corresponding region marked
in green from (b) and (c).
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Figure 3.6: Experiments on MR image of a Kiwi fruifa) Original image reconstructed
with 1 averagdb) Original image reconstructed with 12 avera@g@smage
(a) denoised with NLMLk method(d) image (a) denoised with NLMbor

method(e) and(f) residual images (with respect to (b)) of (c) and (d) (in the
scale 0-150).
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3.2 Carotid Artery Wall Segmentation from MRI

The quantification of carotid artery stenosis via imaginghteques guides the physi-
cians to take a decision regarding surgical interventioneasurement of the wall
thickness from MR images is a promising approach in thisnaeg@ince, manual trac-
ing of the carotid vessel walls is time consuming and sesmstt observer variability,
computer assisted automated methods have been under geesib In this section,
we present a novel segmentation strategy for carotid lumenoaiter wall from T1-

weighted (T1-w) MR images and quantification of CAWT.

The segmentation has been carried out in two stages whith with a user assisted
region of interest (ROI) selection from the denoised imdgehe first stage, an active
contour based global segmentation has been applied tofgldss lumen region. The
famous CV model (Chan and Vese, 2001) has been used at thes dtathe second
stage, morphological gradient of the ROI has been comptad.is followed by PSO
(Ghamisiet al,, 2012) based multi-level segmentation to separate the wadéregion.
CAWT has been computed as the average distance between-thrdicates of the
lumen and outer wall borders. The overall block diagram efsagmentation process

is given in Figure 3.7.

3.2.1 Global Region based Lumen Segmentation

Chan-Vese (CV) model is a powerful and flexible techniquestgnsent images. This
includes images that would be quite difficult to segment lphdpg certain threshold or
gradient based methods. The CV model can be seen as an enengyzation problem,

which is reformulated to a simple level set evolution promleUnlike other active

contour models, where the curve evolution is controlledgisi stopping edge-function
(based on the gradient of the image), the stopping term in @dehis based on the
Mumford-Shah functional (Mumford and Shah, 1989). The ingrat point to note here

is that the CV model segmentation depends only on globalgstigs such as intensities
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Figure 3.7: Flow diagram showing the segmentation of inmat auter walls of the
carotid artery from MR images.
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of different regions. Thus, the entire segmentation prodescomes independent of
local gradients thereby allowing accurate segmentatiaegibns with discontinuous
boundaries. Further, this method does not suffer from a gvioitialization of a curve

by the user.

CV Model

Let Q be a bounded and open subsetRA, with 502 as its boundary. Let, be a
given image, as a bounded function definedband with real values. Usually} is
a rectangle in the plane ang takes values between 0 and 253(s) is a piecewise
C'[0, 1] parameterized curve. The region insidecan be denoted as, and the region
outsideC asQ\w. Moreover,c1 will represent the mean pixel intensity inside and

c2 will represent the mean intensity outsi@éi.c. c1 = c1(C), 2 = ¢2(C)).

The CV algorithm tries to minimize the energy functioddlc1, ¢2, C), defined by
(Chan and Vese, 2001):

F(cl,¢2,C) = p.Length(C) + v.Area(inside(C))

Y / ol y) — 1 Pdedy
inside(C)

Y / oz, ) — 1Py (3.7)

outside(C)

wherep > 0,v > 0,)\, A2 > 0 are fixed parameters and can be set by the user.
The preferred values are = 0, A\, \; = 1. Hence, the objective is to find those
cl, 2, C'which can be the solution to the minimization problem (Chaah ¥ese, 2001):

arg min F'(cl, ¢2, C').
cl,c2,C
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Level set Formulation

The active contour model with = 0 and\; = Ay = )\ is a particular case of the
minimal partition problem. It is possible to reformulatéstproblem using the level set
method. In this case, we will not search for a solution in o', instead, we rede-
fine the problem wheré’ C () is represented by the zero level set of some Lipschitz
function® : 2 — R, s.t.(Chan and Vese, 2001):

C=0w={(z,y) € Q: P(z,y) = 0},

inside(C) = w = {(z,y) € Q: ®(z,y) > 0}

outside(C) = N\w = {(z,y) € Q: ®(z,y) < 0}.

\

3.2.2 Morphological Gradient

One non-linear approach to edge detection is by computmgibrphological gradient
(MG) which is computed as the difference between two imadasiware obtained by
the dilation and erosion of the given image (Dougherty, 399hus, every pixel in
the resultant image represents the contrast intensitymwiitie neighborhood. The dif-
ference between the maximum and minimum intensity will balbm slowly varying

image regions; whereas in regions of fast changing grayegaline difference will be
very high. Hence, an edge map can be obtained by applyingldaithreshold on the

morphological gradient image.

Let f : E — R be amonochrome image which maps points from a Euclidearespac
E into the real lineR. Letb(x) be a structuring element. Then the MG fois given by
(Dougherty, 1992):
G(f)=feb-fob (3.8)

where® denote the dilation operator armgdenote the erosion operator.
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3.2.3 PSO based Localized Outer Wall Segmentation

Once we get the gradient image, the next step is to segmemh#ge into distinctive
classes by using a set of threshold values. However, thematitoselection of optimal
threshold values is challenging. PSO is a fast machineileg@tachnique and have the
capability of finding threshold values which are stable (fBbetet al, 1995). The can-
didate solutions are generally called as particles whiolgass through the domain and
stops when an optimum solution is found. During this trathedy interact and share in-
formation with neighboring particles. The particle sucscaseach step will be evaluated
using a well defined fitness function. In simple PSO, it is dafias the between-class
variance of the image intensity distributions. The simpéesl computationally most
efficient method of obtaining a robust optimurmlevel threshold is by maximizing the
between class variance. This can be mathematically foteailas follows. Let there
be L intensity levels in the rangf), 1,2, L — 1}, then the probability of occurrence of

each intensity level(0 <i < L — 1) can be defined as:

h N
=Y =1 3.9
p N i:1p (3.9)

whereh; represents the number of pixels with intensity levahd NV rerpresents the
total number of pixels in the image. Then, the total mean eiitiage can be computed

as:

L
Hr = Z p; (3.10)
=1

Now, the between class variance can be calculated as:

op = w; (- pr)’ (3.11)
j=1
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wherej represents a specific class in such a way thednd.; are the probability
of occurrence and mean of clagsrespectively. In other words, the problemof
level thresholding is reduced to an optimization problersetarch for thresholds that

maximizes the objective function (Ghametial,, 2012):

p= max o (t) (3.12)

1<t <..<th<L

The main advantage of using a localized segmentation fopuber wall separation
is that, the edge leaking problem can be reduced to sometegecondly, we already
have precise information regarding the inner lumen regidance, the outer wall re-
gion which is close to the lumen region can be taken out ebgilpeans of connected
component analysis, using 8-connectivity. This is anotkason why we go for a two
stage process, rather than segmenting both the lumen aadveait region simultane-
ously. Figure 3.8 shows the segmentation results on a simgige using the proposed

method.

3.2.4 Experimental Results
Image Data

We have tested our algorithm on twenty five T1-w carotid MR gesmacquired from
six patients (from SCTMST, Trivandrum). The carotid agenwvere examined using a
1.5T Avanto (Seimens, USA) MR scanner. IEC approval wasioéteto conduct this
study. Both the horizontal and vertical resolution of theges was 0.417 mm/pixel.
The segmentation system is evaluated by comparing the ateédmesults against those
computed manually. The manual delineation of the inner androwvall borders was

done by an experienced radiologist.
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Figure 3.8: Segmentation results using the proposed metf@dDenoised MR im-
age of the carotid artery b) Cropped ROI c¢) Automated lumenmldro(d)
Morphological gradient (e) PSO output f) Automated Outell iarder ()
Overlays on ROI (h) Overlays on raw image.
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Performance Evaluation

The following statistical measures have been used for thesament of the segmenta-
tion system. Mean error (ME) and standard deviation (SDpimputed between the
automated and manual CAWT. The overall system performara=eoomputed using

the first method of precision-of-meriPp ;) in percentage(Molinaet al, 2012) as:

CAWT g0 — CAW Thranua
PoM; (%) = 100 — [(‘ Auto 2 M l‘) %100 (3.13)
CAWTManual
where

1 X
CAW T o = ; CAW Tpyso, (3.14)

1 N
OAWT]Wanual - N ; OAWTManuali (315)

C AW T g0, 1S the measured automated carotid artery wall thicknes€'alid 7' /a1,

is the measured manual carotid artery wall thickness oftecpéar image . is the total
number of images in the database. Dice similarity (DS) acsdala index (JI) are com-
puted between the automated and manually segmented bexatydcregions. Further,

Student’s T-test is performed to prove the statisticalificance of the obtained results.

Results and Analysis

Mean Auto CAWT measured for twenty five T1-w MR images wasl + 0.11 mm,
while the manual CAWT was.21+0.14 mm. We have got a mean PoM value of 97.1%
against manual CAWT which implies sufficient system perfance for the intended
application. Table 3.4 give detailed performance stagstirable 3.5 compares the au-
tomatic and manually identified binary carotid regions blas@the Dice similarity and
Jaccard index. If both the regions exactly overlap, Dicalanity or Jaccard index will

be 1 or 100%. Here, both the readings are closer to 100 whimlvstheir closeness.
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Table 3.4: Performance of Auto CAWT against Manual CAWT

. Mean Auto CAWT | Mean Manual CAWT| Mean Error
# images PoM (%)
(mm) (mm) (mm)
25 1.24 +£0.11 1.21+£0.14 0.13 £0.08 97.1

Table 3.5: Dice similarity and Jaccard index
Lumen | Lumen + outer wall
Dice similarity (%) | 95 93

Jaccard index (%), 93 90

The statistical significance of the difference between teams of automated and man-
ual CAWT variables is determined by T-test. Since the cakadp-value (p = 0.2564)
is found to be highery > 0.05), it is concluded that there is no significant difference

between the two means.

It can be observed that the proposed segmentation mettgydislan line with pre-
vious researches which are slice-by slice methods. In thestbods, the user have
to perform initialization on every single slice. Furthdretsegmentation happens se-
guentially (i.e. segmentation of the inner wall followed iy outer wall). Moreover,
previous researches have shown that the segmentation @fitbewall contour is more
difficult than the inner lumen contour (Ukwatéh al., 2013; Arias-Lorzeet al., 2016).
This is because, the image contrast at the inner wall regiosually much better than

at the outer wall region.

A comparison of the previous studies describing the caratidry segmentation
methods from MR images is given in Table 3.6. Note that, tlaeeetechniques which
use images acquired using a different modality such as Migraphy (van’t Klooster
et al,, 2012) to assist the segmentation. Further, some of thedestused more than
one MR acquisition protocol (Ariast al, 2012; Arias-Lorzeaet al., 2016) which need
careful image registration before segmentation. All ther@€thods mentioned in the
Table 3.6 (Yuaret al,, 1999; Adameet al, 2004; Underhillet al., 2006; Sabaet al,
20148) need initialization by the user on every slice. The methpdnderhill et al.

(2006) used the IMT measured from B-mode US images for viadidgurpose. From

65



the Table 3.6, only three previous studies have measure@CANET (van't Klooster
etal, 2012; Underhilet al,, 2006; Saba&t al., 2014). Out of these, the method closest
to our study is Sabat al.(2014a) which used a LSM on PD-w MR images. However, in
Sabeet al.(2014), the authors mentioned many drawbacks of their technioelading
edge leaking problem in the LSM. The proposed techniqueesdsx in addressing
some of these issues by using two different approaches doneeting the inner lumen

and outer wall boundaries of the carotid artery.

Even though we have achieved good accuracy in segment#tierg are certain
limitations that need to be addressed. The initial croppirtge raw image to select the
ROI must be done in such a way that the carotid artery regipeas approximately at
the center of the ROI, and must not include any other simifacture. This is because
we are initializing the CV algorithm at the center of the R@dtldater it will evolve to fit
with the carotid lumen region. Further, if the image is toesgpthe CV algorithm may
fail to produce accurate results. To address this, we hakedad a denoising stage in
the pipeline prior to the segmentation. The denoising neefiroposed in Section 3.1
can be used in this regard. Moreover, the segmentation appmresented in this thesis

can be extended to 3D MR images.
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Table 3.6: Previous studies describing carotid artery segation methods

# | Author(Year) Approach Dim Dataset . # Perfqrm.ance Performance
images Criteria
. LA: 1.05+2.26
1| Yuanet al.(1999) SC;‘;‘:‘EE Contour Snake 5 | ppy_y MR 5 Mg\j%[)('ﬁerf)”ce OWA: 1.36+3.46
mm WA: 0.31:+4.03
Model-based ,
. Short-axis LA: 0.92
2 | Adameet al.(2004) segmentation _ 2D BBMRI 50 CC (MT) OWA: 0.91
and Fuzzy Clustering
, Statistical CC
3 | Underhillet al. (2006) shape modelling 2D | T1-w-BBMRI NA (MRI vs. US) 0.95
, 3D deformable vesse 3D MRA and VWT: 0.69
4 | van't Kloosteret al.(2012) model Both 2D MRI 55 CC (MT) VWV 0.79
. 3D coupled surface PD-w-BBMRI Area Overlap EPMRI: 84%
5 | Ariasetal.(2012) graph cut 3D | andepiMrl | 32 (MT) (mm?) | BBMRI: 85%
Global optimization .
6 | Ukwattaet al. (2013) based multi-region 3D | T1-w-BBMRI 38 RMSE (MT) AB'_ 0.6+0.1
) (mm) LIB: 0.5+0.2
segmentation
7 | Sabeet al.(2014) Level set method 2D PD-w MRI 102 CC (MT) VWT: 0.83
. PD-w-BBMRI, . _
8 | Arias-Lorzaet al. (2016) 3D coupled optimal 3D PCMRI 57 Dice Overlap WA. 0.86+0.06
surface graph-cut and EPIMRI (MT) LA: 0.89+0.05

MT:Manual Tracing; LA:Luminal Area; OWA:Outer Wall Area;AMVall Area; RMSE:Root Mean Square Error
VWT:Vessel Wall Thickness; VWV:Vessel Wall Volume




3.3 Summary

In Section 3.1, we have proposed an improved NLML methoddasdOCT to denoise
the MR images corrupted with Rician noise. In NLMImethod, the neighborhood in-
tensity similarity for selecting similar pixels are gerlgraneasured using the Euclidean
distance in the image space. In this work we have improvedlithdL ~ method by in-
corporating the DCT framework. The estimation of true uhdeg intensity based on
the NLML por method is more accurate than the NLMLBesides accuracy, the time
complexity of the NLML,or technique is significantly less compared to the NLML
method for higher values of search window size. Experimieate been carried out on
both simulated and real data sets. In Section 3.2, we hagemied an algorithm for
the semi-automated segmentation of the carotid arterysvildm T1-w MR images.
The algorithm combines an active contour based global seatien with PSO based
localized segmentation to separate the inner and outer@gdns of the carotid artery.
The automatically segmented borders were compared withdependent manual trac-
ing to analyze the performance of the proposed method. Trage-based automated
system holds significant potential to use in a clinical emwment. In future, this work

can be extended to do tissue characterization in the segoheggions.
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CHAPTER 4

MEASUREMENT OF ARTERIAL DIAMETERS
FROM CAROTID ULTRASOUND IMAGES

This chapter starts with a brief discussion in regard to Hseie of speckle in ultra-
sound images. Then in Section 4.2, we present a novel andautbmated algorithm
for lumen diameter (LD) and inter-adventitial diameter @Ameasurements in carotid
arteries from B-mode ultrasound images. The proposeditdigouses a region-based
strategy, which is the key contribution of this study. In S@t4.3, we have further im-
proved the performance of this algorithm with an iteratiesign which uses a spatial
transformation to straighten the curved vessels. Comps#e statistical data anal-
ysis was performed to ensure the superior performance aktfien-based technique

against the two manual expert tracings.

4.1 Speckle Noise in US Images

A granular noise called speckle exists in US images whichgisad dependent. The
major reason for the speckle is constructive or destrudtiterference of US waves
which produce the light and dark pixels in the image (Miobeth and Tannenbaum,
2006). Speckle degrades the image quality and reduces titesbwhich affects the
texture-based analysis and segmentation. Further, & therimage details significantly
(Bamber and Daft, 1986). This makes it really hard for an pleseto distinguish

between the fine details of the image during clinical diagh@@amber and Daft, 1986).
De-speckling techniques are generally trying to removseihile preserving the fine

details in the image. Thus, it is a trade-off between rengvinise and preserving



edges. The signal dependent nature of the speckle must &e italo account while
designing an efficient speckle reduction filter. The mainllehge is to remove the

noise component, while keeping integrity of the relevaragainformation.

A number of techniques are proposed in the literature toaeduoe speckle in US
images. This includes local statistic filters (Kuanal, 1985; Lee, 1980), wavelet
based filters (Pizuricat al., 2003; Achimet al,, 2001), NLM based filters (Coup al.,
2009; Sudeept al,, 2016), total variation (TV) (Michailovich and Tannenba2006)
and partial differential equation (PDE) based methods (@fod Kaveh, 2000). Among
them, NLM and PDE based methods gained much popularity. B&¥ed de-speckling
techniques rely on non-linear diffusion and follow an itef@ procedure. By utilizing
the coefficient of variation, it simultaneously performsssoreduction and contrast en-
hancement. Two different de-speckling filters were prodaoseently which are based
on fourth order and coupled PDE model (by coupling both seécamd fourth order
PDESs) (Soorajkumaet al., 201@,a). These methods use the ENI (Edge Noise Interior)
concept for controlled diffusion for different image regg An NLM based approach
for speckle reduction was introduced by Cogp@l. (2009) which is called as Optimal
Bayesian NLM filter (OBNLM). This method exploits the dataluadancy in the image
and smooths the image very well. In this chapter, we havetaddape OBNLM method

to reduce the speckle noise in US images.

4.2 Automated Carotid Lumen Segmentation System

Figure 4.1 shows the flow diagram of the automated carotiétusegmentation system.
We modeled the carotid artery segmentation system as a age girocess: A global
system which can establish the ROI and a local system for ttraation of the LI
interfaces. The first step in the segmentation is an autah@atgping which helps in
removing the text information from the image. After cropgpithe image is fed to the

global system which constitutes stage-1 of our algorithoalé&space based strategy is
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Figure 4.1: Flow diagram of the region based approach foelusegmentation.

employed at this stage in order to capture the bright edgédseadventitia wall which
defines the ROI. Here we used the assumption that the adaestjion is the brightest
in an US image due to its high tissue density (Delsattal, 2007; Molinariet al.,
20123). The ROI covers the region between the near and far MA wadlishivencloses
the lumen region in it. The pixel-classification within tlR®I uses the assumption that
the blood density to be constant over the lumen region anddigre intensity of pixels
corresponding to this region must be constant (Filardi320This classifier based local
processing allows us to extract the LI interfaces accuraldie LD is then measured as
the mean distance between the near and far LI interfacesiandb is measured as the
distance between the near and the far MA interfaces. BothiidlAD are measured
using polyline distance metric (PDM) (Swat al,, 2000). More details regarding the

measurement using the PDM method is given in appendix A.
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4.2.1 Scale-Space based Global Segmentation

The motivation of the stage-I strategy comes from the furetatal reconstruction of
the US image, where the distal (far) wall of the carotid grteas the brightest region
(Molinari et al,, 20123). This taps the information to build the global shape ushey t
scale-space framework combined with vertical profile asialyScale-space based seg-
mentation technique is employed in order to capture thehbagges of the adventitia
wall. The adventitial edges were delineated in two step® Jécond order derivative
of a5 x 5 Gaussian kernel (Babaiet al., 1986; Molinariet al, 201%) is computed
and convoluted with the cropped image to enhance the edgesponding to the near
and far adventitia walls. The optimal size of the Gaussianddas set empirically. The
standard deviation of the Gaussian kermglriust be chosen as the minimum MA wall
thickness in pixels. Using the previous rationale, we setilue ofs to 12 pixels in
our experiments (Molinaet al,, 201,f). Convolving an image with derivatives of the
Gaussian kernel highlights features of the image with alaiger than the chosen scale
o (Cheng and Li, 2003).

We used vertical profile analysis of pixel columns to trace ddventitial borders.
The proximal and distal adventitial borders are approxeadats the bright dots (peaks)
in the profile. These bright dots are well separated by thieldaren region in between.
In profile analysis, rather than analyzing each column ofittege pixels independently,
we used a sliding window of siz@” x H =3 x 5 (in pixels) and estimated the mean
intensity. This is to overcome any sudden spurious intgragpearing in the profile.
This is vital, as it help in detecting the correct peaks frém profile under the scale-
space paradigm. By moving the aforementioned sliding winéfom bottom to top
and from left to right, we were able to find the pair of peaksegponding to the MA
borders. The peaks represent high intensity value poirtis avipool of very small
intensity values in between. The ROl is then defined as themagpvered by these two
MA borders. The output of the global system is the ROI in witiod local proximal

and distal walls are searched for lumen delineation.
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4.2.2 Region based Local Shape Extraction

The region-based model captures lumen intensities unéecdhstant blood density
assumption (Filardi, 2013). The ROI captured using the glglgstem have three re-
gions: (a) low intensity lumen region, (b) high intensitylwrghtest adventitia region
and (c) medium intensity plaque region. Thus, we adapt Kmutassifier with three
pre-defined classes which is suitable for soft tissue clheniatics. On application of
the K-mean classifier, we yield three regions from which tiradn region is selected
and enveloped in binary form. The holes in the resultantrigihamen are filled via
connected component analysis (Soille, 2013) with a pixeheativity of 8 pixels. The
proximal and distal lumen morphologic borders (LI intedarare then delineated and
the LD is measured using the PDM method (Satal., 2000). The segmentation results

of the proposed region-based method is illustrated for glesimage in Figure 4.2.

4.3 Improved System for LD Measurement in Curved

Vessels

The automated lumen segmentation system presented ingt@ys section has lim-
itations if the orientation of the carotid artery is not gfd. Further, it is observed
that the segmentation techniques developed so far in #ratitre are not fully able to
handle the curvature associated with the carotid artefieis. motivated us to introduce
an improved iterative spatial transformation based tepmifor segmentation of the

carotid artery.

The global system discussed in the previous section is aldettact the ROI which
can be used as a guidance zone for the refined local procésseggimating the lumen
borders. The ROI containing the lumen axis is the input tatdrative procedure. Prior
to the iterative utilization of the scale-space framewale, transformation concept is

built which ensure that the curved vessels are straightlmedfined and very accurate
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Figure 4.2: Segmentation results on a single image: (a)gadpmage (b) bright ad-
ventitial border points detected using vertical profilelgsia (c) Spline fit-
ted on these points to show the adventitial borders (d) theltieg ROI
is marked with a rectangle extracted using global-shap@aeitn system
(e) binary lumen obtained from the classifier in the ROl usougl region-
based system (f) final lumen borders after smoothing andesfitting.
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Figure 4.3: Flow diagram of the iterative lumen delineasgstem.

measurements for LD. Figure 4.3 shows the flow diagram ofrtigroved automated

system which works in an iterative manner.

The pre-processing step includes automated cropping amoisileg of the input
image. We have included an additional denoising step inrdadeeduce the effect of
US speckle and thereby improving the accuracy of the sys®ptimized Bayesian
non-local means filter (OBNLM) (Coupét al., 2009) is used for this purpose. This
edge preserved smoothing approach will also help in pagdhie bleeding of the lumen
region into the media region at some places along the lumeteho This bleeding

otherwise produce over-estimation when tracing the lunoeddys using the classifier.

After pre-processing, the image is fed to the scale-spasedbsegmentation system
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Figure 4.4: Flow diagram of the stage-2 of the automated tudsineation system.

which constitutes stage-1 of our algorithm. Here we capgttine bright edges of the
adventitia wall which defines the ROI. K-means classifierssdito extract the lumen
region from which the lumen axis is approximated as the médheonear and far LI

borders. The ROI containing the lumen axis is the input tosthge-2 (local process-
ing). Figure 4.4 illustrates the flow of stage 2 in detail. Bpatial image transformation
makes the curved vessel straight by using the lumen axisoilddrs are then extracted
again using the scale-space based approach and then invage transformation is

applied to map these LI borders back on to the original image.

4.3.1 Spatial Transformation

The heart of the proposed system is a spatial image tranafam The whole idea
of introducing the spatial transformation is to improve tfegformance and stability
of the system. To address this issue, we followed an apprpeetented in Zahnd
et al. (2014), where a spatial transformation is used to strargtite curved vessels for

segmenting the contours of the intima-media complex in #reta artery wall. Given
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an approximation of the lumen axis, the aim of the transfdionds to generate a sub-
image in which the anatomical interfaces become nearlyzbotal. The transformed
image; is created by applying the spatial transformatiomon the originally, sub-

image, such that:

Iy =T(I,) (4.1)

The transformatior?’ consists of selecting. pixels above and below the lumen axis
in Iyy. The detailed algorithm is given in Table 4.1. This approeah overcome the
limitations of existing methods that require the imagerifaiees to be horizontal at the

time of acquisition.

Table 4.1: Algorithm for Spatial Transformation
Input: Image (), (z, y): « andy coordinates of lumen axis

Output: Transformed imagk

H = Height of image/

W = Width of imagel
L=H)/2

Ys =yL

Ts =T

nW =W

nH=2+«xL+1

Initialize I;(nH,nW) to zeros
Foreachraw : 1 — nWW of I,

m = x4(7)

For each column : 1 — nH of I;
Li(5,i) = I(n,m)
n=n+1

End of for

End of for

Figure 4.5 illustrates the algorithmic steps of the progdsehnique on a single im-
age having curvature. A visual comparison of the resultsoti the proposed iterative

and the simple scale-space based techniques is given ireFgi
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Figure 4.5: Illustrating the algorithmic steps on a singiege having curvature. (a)
Curved ROI, (b) Lumen axis on the ROI, (c) Transformed RO) Adven-
titial borders on the transformed ROI, (e) Binary lumen frolassifier, (f)
LD borders on the transformed ROI, (g) LD borders on the iswdrans-
formed ROI, (h) LD borders O the original ROI.
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Figure 4.6: Carotid Auto LD borders compared against the uaktracings on the
grayscale images of four patients for both simple scaleemand trans-
formation based iterative methods. Carotid Auto LD boraggesshown in
solid white; while manual LD borders are shown in dashed evfituto
SS Automated Simple scale-space, Auto SST Automated spalee with
Transformation, Reader Manual Reader).

79



4.4 Experimental Results

4.4.1 Dataset

Two hundred and two patient’s left and right CCA (404 Imagéspode US images
were retrospectively analyzed (ethics approval and IRBtgich Toho University, Japan).
Informed consent was obtained from all individual part@ifs included in the study.
There were 155 males (76.7%) and 47 females (23.3%) with mgal®7 and 75 years,
respectively. These patients had a mean HbAXc2¥+ 1.1 (mg/dl), Glucosd 08 31
(mg/dL), LDL cholesteroll01.27 £+ 31.6 (mg/dl), HDL cholesterol 060.26 + 14.8
(mg/dl) and total cholesterol af75.04 + 38 (mg/dl). The ultrasound scanner (Aplio
XV, Aplio XG, Xario, Toshiba, Inc., Tokyo, Japan) used to exae the carotid arteries,
was equipped with a 7.5-MHz linear array transducer. Samperenced sonographer
(16 years of experience) had performed all the scans. Tleewae acquired in a time
period ranging from July 2009 to August 2010. In this datab#se vertical resolution
was 0.05 0.01 mm/pixel.

The manual delineation of the lumen as well as adventitiddrsrwas done by two
experienced Neuroradiologists (one with 15 years of egpes and second about 5
years of experience) using ImgTratr (AtheroPoint™, USA), a user-friendly com-
mercial software (Molinaret al, 201Z). The two experts selected 15 to 25 edge points
proximal to the bulb in orders to delineate the boundariethefcarotid artery. The
number of points vary depending upon the length of the cdatiery. The observer
had the ability to zoom the image in wall region for bettenazation. The output of

the ImgTracef™ was ordered set of traced (x,y) coordinates.

4.4.2 Evaluation Methodology

Statistical analyses were performed using Medcalc soéWBelgium). The overall

system’s performance was computed using the method ofsmweenf-merit (PoM)
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(Molinari et al, 201Z) in percentage. This is a key feature that evaluate the auto-
matically traced diameters against the manual tracinggrd?sion plots are used to
show the variability between the manual tracings which endey the deviation from
the trend line. Bland-Altman (BA) plots and cumulative fueqcy plots are computed
to illustrate the data and error distributions. Dice simiya(DSC) and Jaccard index
(JN (Bharathaet al., 2001; Jaccard, 1912) were computed to find the similaritywéen
the two regions. Further, different statistical tests aedufor the evaluation of the au-
tomated system. Two sample Kolmogorov-Smirnov (KS) testli@ghderet al., 2013)
was used to verify that the samples follow the same disiobutStudent’s T-test was
used for testing whether the (strong and highly significaatjelation can be regarded
as equality or not (Box, 1987). In all the above tests, p-eslless than 0.05 were

considered statistically significant unless otherwiseggel.

4.4.3 Results and Analysis

In this section, we compare the results of both the simpléess@ace based system
and the improved transformation based iterative systenmsigidnie two manual expert
tracings on all 404 images in the database. Here, the sinople-space based tech-
nique means the same procedure excluding the spatial dramstion based iterative
steps. This comparison is to demonstrate the improvemanttik spatial transforma-
tion step adds. We denote them using the following abbriewiat Auto SS: Automated
Simple Scale-space, Auto SST: Automated Scale-space vatisiormation. It can be
observed that the Auto SST approach improves the perforenaintie lumen segmen-
tation in curved vessels. However, both the methods mesdi@bove give the same

IAD values, since the spatial transformation improves ahé/LD measurement.
Automated Carotid LD Measurements

Mean carotid Auto SS LD measured was 68697 mm, while mean carotid Auto

SST LD measured was 6.30.98 mm. Mean carotid LD for the two manual tracings
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were 6.190.92 mm and 6.280.95 mm, respectively. The performance evaluation of
the Auto LD values against the two manual tracings is sunzadrin Table 4.2. It can
be seen that there is no significant difference between tteera@asurements and the

corresponding manual tracings.
Automated Carotid IAD Measurements

Mean carotid Auto IAD measured was 7-80.98 mm which is close to the mean
carotid IAD for the two manual tracings, 7.#6.99 mm and 7.821.00 mm, respec-
tively. The performance evaluation of the Auto IAD valuesiagt the two manual

tracings is given in Table 4.3.
Inter-observer variability

Inter-observer differences were estimated by calculatiegcorrelation coefficient
(CC) between the measurements on the same subject. The @Edmetarotid Auto
SS LD and the two manual tracings were 0.91<( 0.0001) and 0.92 < 0.0001),
respectively. Whereas, the CC between carotid Auto SST LidDthe two manual
tracings were 0.94p( < 0.0001) and 0.95 p < 0.0001), respectively. The scatter
diagrams of Auto LD with respect to the two manual tracingssirown in Figure 4.7.
These diagrams show the closeness of the automated measusenith the manual
ones. The Bland-Altman plots shown in Figure 4.8 give a mueargicture of the data

including outliers.

The CC between carotid Auto IAD and the two manual tracingeevie93 ( <
0.0001) and 0.94 p < 0.0001), respectively. The scatter diagrams of Auto IAD with
respect to the two manual tracings are shown in Figure 4&{d)(b). The Bland-
Altman plots of Auto IAD with respect to the two manual tragsnare shown in Figure
4.9(c) and (d).

Cumulative Frequency of Signed and Unsigned Errors

The cumulative frequency is an important performancestativhich refers to the

error in the automated system. Cumulative frequency ofgmesl and signed Auto
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Table 4.2: Auto LD Performance

Manual Near wall Far wall Mean
0
Method Type Error (mm) | Error (mm) | Error (mm) PoM (%)
AUto SS Manual-1| 0.30+0.23 | 0.28+0.17 | 0.31+0.29 95.8
Manual-2| 0.24+0.16 | 0.26+0.16 | 0.28+0.27 96.7
Auto SST Manual-1| 0.25+0.18 | 0.21+0.18 | 0.2740.25 97.7
Manual-2| 0.22+0.15 | 0.16£0.11 | 0.25+0.24 98.7
Table 4.3: Auto IAD Performance
Manual Near wall Far wall Mean
0,
Method Type Error (mm) | Error (mm) | Error (mm) PoM (%)
AUto SS Manual-1| 0.20+0.17 | 0.26+0.15 | 0.23+0.23 97.6
Manual-2| 0.23+0.18 | 0.23+0.18 | 0.24+0.24 98.1

LD errors against the manual tracings are computed for b&tta®& SST methods.
The unsigned cumulative frequency shows the total numbereaisurements with less
than a particular error value irrespective of the sign (jpasor negative). It has been
observed that above 90% of the LD measurements are within Emoncompared to
the manual tracings. Similarly, the cumulative frequenegrs for IAD is computed. It
is notable that above 90% of the IAD measurements were dathel@gs than 0.5 mm
error with respect to the two manual tracings. Further, foisnd that the maximum

error value not exceeded 2 mm in any of the cases.
Dice similarity and Jaccard Index

Two similarity coefficients namely Dice similarity (DS) addccard index (JI) have
been computed between automatically and manually exttdateary lumen regions
(LR). Similarly, these similarity coefficients have beemuuted for binary inter-adventitial
regions (IAR). The results are given in Table 4.4 and Tal8e lWboth regions are equal,

then the Dice similarity or Jaccard index will be 1 or 100%.

Table 4.4: Dice similarity and Jaccard index for LR

Method Auto SS Auto SST
Manual Type Manual-1| Manual-2| Manual-1| Manual-2
Dice Similarity (%) 91.0 92.3 93.9 94.2
Jaccard Index (%)| 85.2 86.5 88.6 89.1

83



Table 4.5: Dice similarity and Jaccard index for IAR

Method Auto SS
Manual Type Manual-1| Manual-2
Dice Similarity (%) 95.1 94.8
Jaccard Index (%), 91.0 90.6

Statistical Tests

Using two-sample KS test, the null hypothesis that the datgodes are drawn from
the same distribution is retained for Auto SS L= 0.8328, p = 0.9239), Auto SST
LD (p = 0.9041,p = 0.9659) and Auto IAD (p = 0.9107,p = 0.9422) in comparison

to the corresponding manual tracings.

The null hypothesis for the paired t-test is that the meaiemdihce between paired
observations is zero. However, based on the result for AGtaS (p < 0.0001,p <
0.0001) and Auto SST LD $ < 0.0001, p < 0.0001) in comparison to the manual LD
tracings, the null hypothesis cannot be retained. As a cuesee, the relation between
carotid Auto LD and the two manual tracings cannot be reghasgeequality (see Table
4.6). Similarly, the result of paired t-test for Auto IAD & 0.0093, p < 0.0001) shows
that the same argument is valid in comparison to the correipg manual tracings
(see Table 4.7).
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Figure 4.7: Scatter diagrams showing the correlation betw@) carotid Auto SS LD
and manual-1 LD, (b) carotid Auto SS LD and manual-2 LD, (aptd
Auto SST LD and manual-1 LD, (d) carotid Auto SST LD and marial
LD.
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Figure 4.8: Bland-Altman plots between (a) carotid Auto I3 and manual-1 LD,
(b) carotid Auto SS LD and manual-2 LD, (c) carotid Auto SST abd
manual-1 LD, (d) carotid Auto SST LD and manual-2 LD.
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Table 4.6: T - test for Auto LD vs. Manual tracings

Auto SSLD | Auto SSLD | Auto SST LD | Auto SST LD
VS. VS. VS. VS.
Manual-1 LD | Manual-2 LD | Manual-1 LD | Manual-2 LD
Mean difference -0.2640 -0.2000 -0.1450 -0.08439
Standard error 0.01803 0.01684 0.02041 0.01712
95% C| -0.2994 to -0.2331 to -0.1851 to -0.1180to
-0.2285 -0.1669 -0.1048 -0.05074
Test statistict -14.640 -11.878 -7.101 -4.931
Degrees of freedom 403 403 403 403
Two-tailed probabilityp | p < 0.0001 p < 0.0001 p < 0.0001 p < 0.0001

Table 4.7: T - test for Auto IAD vs. Manual tracings

Auto IAD Auto IAD
VS. VS.
Manual-1 IAD Manual-2 IAD
Mean difference -0.0432 0.0851
Standard error 0.0165 0.0173
95% CI -0.0756 t0 -0.0107 0.0510t0 0.1197
Test statistic{ -2.615 4914
Degrees of freedom 403 403
Two-tailed probabilityp p = 0.0093 p < 0.0001

4.5 Discussion

The proposed automated system gives accurate segmenegidts for both the near
and far LI and MA borders, irrespective of the variation imken diameters which are
normal, moderately low and medium low representing varyiagjue thicknesses. The
main advantage of our method is that, it prevents interfexerf vessel-like structures
such as JV and other muscles whose interfering intensiiasaffect the automated
process. Further, we use a non-local mean based denoigingvide robustness to our
system. The iterative improved system has a special pmvisihandle the curved ves-
sels which uses a spatial transformation. Another secgrathrantage of our system
is that no matter how irregular the plaque is or how brighp@mgchonic) or less bright
(hypoechoic) the plaque is, it circumvents these challengestimate the LD and IAD

automatically. Unlike other existing techniques, the jmsgd system has only one pa-
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rameters which was set to 12 pixels (approximate size of minimum MAatkness

in pixels). This needs to change only if there is a significartation in the resolu-
tion of the image dataset. Hence, the proposed system caasbg adapted to a real
time clinical environment. We believe that it can support&am IAD measurements in

clinical practice and can be adapted for stroke monitoring.

To the best of our knowledge, this study is the first fully anébed measurement
method for LD and IAD, even though similar works have beemrega in the literature.
However, a direct comparison to previously published tessalnot easy since different
authors may have evaluated their algorithm on differengendatabases using different
performance metrics. Though our system is able to show giomresults and has
been well validated against the manual tracings, we belieaethere is a scope for
improving the automated system. The multi resolution teqmn can be adapted to
improve the automated system. More validation needs to be do other ethnic groups
from different countries. Another future scope is to acgt@mporal images from each

patient to look at the cardiac cycle variations affecting dimmeter estimations.

Our lumen region segmentation model is based on the assamiptat the blood
density is constant. It is very unlikely that this assumptt@n be disqualified. But
there can be cases in which there is no blood in the arteggmeduring the image
acquisition. This can be due to several reasons such (ipakde of the artery causing
no blood in the other side of the stenosis or (i) non-unif@umping of the blood from
the heart to brain. In cases like these, there can be mugiiple scale contrasts. Such

challenges can be considered by modeling it as a multi-pladgdem.

4.6 Summary

In Section 4.1, we have presented a fully automated systerthéomeasurement of
carotid arterial diameters from B-mode US images. Stagewasea global process-

ing system based on the scale-space framework combinedevriibal profile analysis
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for extraction of the ROI. The second stage of the algorithas ¥he local-processing
that extracts the lumen interfaces. The algorithm has bemtetad as a region-based
strategy in a multi-class framework. In Section 4.2, we hpresented an improved
version of the region-based algorithm where we used antiiteracale-space based
strategy which is embedded with spatial transformatione $patial transformation
was designed during the local processing to delineate theriborders while handling
the curved vessels which are otherwise difficult to compsiagiconventional meth-
ods. We validated our system against the two expert readersl@amonstrated high
correlations, precision of merit and reliability. Even tigh, the current results are very
promising, more multi-center evaluations need to be peréal for adaption in clinical

settings.
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CHAPTER 5

CLINICAL SIGNIFICANCE AND IMPLICATIONS
OF CAROTID ARTERIAL DIAMETERS

This chapter presents the clinical significance and impboa of carotid LD and IAD.
We believe that the LD and the IAD together might represendabrker of stroke risk.
The carotid stenosis can be quantified by measuring the LU Benode US. Further,
the association of LD and IAD with other cardiovascular béwkers can be utilized to
predict the stroke risk. In Section 5.1, we explain the chhisignificance of LD and
IAD. Then in Section 5.2, we analyze the relationship betwagomatically measured
LD and IAD and an important stroke risk factor named plaqu@es¢PS). In Section
5.3, we compute the stenosis severity index (SSI) of patienthe database based on

their automated carotid LD values to predict the stroke. risk

5.1 Clinical Significance of LD and IAD

Non-invasive assessment of the carotid arterial wall thesls using high-resolution US
is often used in clinical trials as a surrogate marker ofic&akcular diseases. However,
the advantage of using carotid LD/IAD as an imaging biomiaikés ability to provide
reliable, accurate and highly reproducible measuremémisatients with significantly
high volume of plaque which causes luminal narrowing, LO s smaller. Hence, LD
is inversely related to the stenosis severity. As a ressit,decreases, it seems rea-
sonable to believe that there may be a resultant increase ingk of ischemic stroke.
Both the European Carotid Surgery Trial (ECST) (Warlow, 1%nd the North Ameri-
can Symptomatic Carotid Endarterectomy Trial (NASCET)|(&@wratorset al., 1991)



indicate that the degree of stenosis can be expressed aseatage reduction in vessel
diameter. This is a major point considering the fact thaait be used in determining
whether a patient is likely to benefit from endarterectomyair As discussed by Fox

(1993), stenosis severity is calculated using the ratioanfawed diameter at stenosis
area to normal diameter of the carotid arteryLB®,,,,...., iS the measured lumen diam-
eter of the arterial zone with maximum stenosis @idd,,, .., 1S the measured normal
lumen diameter of the artery, then, the stenosis severilgr{S.S7) in percentage can

be formulated as (Fox, 1993):

LD
SSI = (1 - ——% 100 5.1
( L-Dnormal) : ( )

The plague growth inside the lumen leads to a compensattesiadiremodeling.
This arterial remodeling is bidirectional in nature depagan the changes in the shear
stress. While the positive remodeling results in an exmemnsi the arteries, negative re-
modeling may lead to an arterial narrowing (Watdl,, 2000). An increase in the wall
shear stress or decrease in the lumen area can lead tordétize arterial wall for the
normalization of the shear stress (Lafeb&l, 1995). The severity of lumen narrowing
of atherosclerotic arteries depends on the extent of thenagkation of plaque along
the arterial wall. During the initial stages of atherosofs, compensatory enlargement
of the artery is predominant. This results in an increasénéltD. However, when
plaque occupies 30-40% of the vessel area, this adaptiveanen fails. Further, the
inflammatory changes and fibrosis may lead to constrictiothefarterial wall, lead-
ing to augmentation of the lumen narrowing (Losortal., 1994; Pasterkamet al.,
1995). Meanwhile, the plaque growth causes the advengij@n to bulge up accord-
ing to the Glagov phenomenon (Glagetal.,, 1987), which causes the IAD to increase.
Because of this positive remodeling, the relationship betwL.D and IAD is important

to consider and together may be useful imaging biomarkeistfoke risk stratification.

Understanding the correlation between LD/IAD and tradidiocardiovascular risk

factors is important in predicting the risk of stroke. A spualy Polaket al. (2014)
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found that there exist a positive correlation between thethlAD and the incident
stroke. This study further suggested IAD as a stronger pt@dof ischemic stroke in
comparison to IMT. In the next section, we analyze the reheinip between the carotid
LD and IAD and the plaque score (PS). It has been observedhbaAD is more

strongly correlated to PS compared to LD.

5.2 Relationship of Carotid Arterial Diameters and Plaque

Score

Plaque score (PS) has been used for quantitative analysihefosclerotic plaques
(Takiuchi et al, 2004). It is associated with future stroke risk and the gmes of
coronary artery disease (CAD) (lke@d al, 2012). PS is computed by adding the
maximal thickness in millimeters of plagues in segmentgrnakom internal carotid
artery, bulbs and common carotid artery on each side of thk.niEhe progression of
atherosclerotic plaques leads to a compensatory artenabdeling which can affect
the arterial diameters (Vicenziet al, 2007; Maiellaro and Taylor, 2007; Staeball,
2010). We thus hypothesized that since the plague develuipoaeses the artery to
remodel; there should be a link between the arterial diamét® and IAD) and plague
score (PS). We have tested our hypothesis on the same Jamatalsase mentioned in

Section 4.3.1 which contains 404 images acquired from 2@02nga.

5.2.1 Correlation between LD/IAD and Plaque Score

A mild positive correlation is found between carotid AutoTSID and PS, 0.19) <
0.007). The correlation between the two manual LD tracings and R&wf 0.12

(p < 0.0767) and 0.17 f < 0.0125), respectively. A moderate positive correlation was
observed between Auto IAD and PS, 0.26< 0.0006). The corresponding correla-
tions with the two manual tracings were 0.28 £ 0.0001) and 0.29 § < 0.0001),
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respectively. Thus, Auto IAD is more strongly correlatedP® compared to LD. The
scatter diagrams of LD and IAD with respect to the PS are shovangure 5.1(a) and
Figure 5.1(b).

Bland-Altman plots of LD and IAD with PS are shown in Figurd (&) and Figure
5.1(d). It can be seen that the bias is more in the negatifereifce direction. The anal-
ysis is repeated after removing the outliers above and b#lewt.96 SD mark as seen
from Figure 5.1(c) and Figure 5.1(d). It has been observetah excluding around 10
outliers, the corresponding CC between (i) LD and PS was (».250.0001); (i) IAD

and PS was 0.3&(< 0.0001), respectively. These results validate our hypothesis.

We have demonstrated a moderate positive relationshipesthAD and PS on the
entire database and a strong positive relationship betid2and PS after eliminating
10 outliers (2%). This leads us to believe that IAD may be aifitant independent
predictor of stroke risk. Further, LD/IAD measurements lafeand right sided com-
pared to IMT which is one sided. IMT only provides lipid infoation in the far wall,
unlike LD/IAD which gives indirect reference to lipid wallsoth sides and also the
stenosis information which shows the severity of the atb&evotic disease (Suet al.,
2010).

The rationale behind the ability of IAD to be stronger congghto LD can be ex-
plained using the Glagov phenomenon (Glagval., 1987). Here, in spite of the
presence of plaque build-up, the LD is maintained; on thdraoy) the IAD shows a
reflectance of an increase in the wall thickness (Pela&l., 1996). This means that
in spite of the increase in lesion mass, arteries remodekiotain the constant blood
flow. This remodeling over a large range of changes in wallsxas cause an increase
in the IAD keeping the LD unaltered (Korshunetal,, 2007). Our results demonstrate
that IAD is more strongly related to PS compared to LD, whiglalong the lines of
previous studies. Thus, IAD may be a preferable imaging eraok atherosclerosis

compared to LD.
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Auto LD vs. PS
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Figure 5.1: (a) Scatter diagram showing the positive cati@h between Auto LD and
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5.3 Computation of Stenosis Severity Index

Carotid artery stenosis is an important risk factor of sttokhe ECST and the NASCET
have demonstrated that the risk of stroke is reduced by sumeatients with high
grade stenosisr(-99%). In this section, the stenosis severity index (SSI) has1bee
computed for all 404 images in the database using Eqg. 5.1 (F®8) and analyzed the
relationship with the respective average or mean carotidzalDes. For the purposes
of this analysis, we measured the narrowing of the CCA LD dm=drtormal carotid
LD. LD, .o 1S the measured LD at the stenotic zone (arterial zone winerd D

is minimum due to plaque deposit) aid), ... IS the measured normal LD in the

non-stenotic zone (arterial zone which is free from stesjosi

It has been observed that the benefit of surgery in asymptopetients is contro-
versial. Some studies indicate that surgery reduces thefistroke only in patients
with > 60% stenosis and some others have shown benefits for patiertswit)%
stenosis. Hence, in our analysis, images WY > 40% are categorized as high risk.
The detailed analysis results are given in Table 5.1. It caisden that 9 images in
the database are identified as high risk, whereas 47 imagadetified as medium
risk. Remaining is considered as low risk. Figure 5.2 showspaesentative image
of a patient with high stroke risk (SSI = 55% and minimum LD € 2am) in which

non-uniform distribution of the plaque causes luminal oaing.

Figure 5.3 (a) illustrates the cumulative frequency ploth&f SSI. This shows the
distribution of images in our database based on the SSinlbeaseen that more than
85% images give a low SSl value. Figure 5.3 (b) shows the ivegairrelation between
mean carotid Auto LD and the SSU'(C' = —0.31,p < 0.0001). The patients with a
higher mean carotid LD have a lower SSI value. This is becéhestea higher mean
carotid LD value generally indicates lesser plaques dégmsn the carotid artery walls.

Thus the difference between thé,,,, o, ANALD,,0rma Will b€ minimum.
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Table 5.1: Risk analysis based on SSI

Risk Category Condition # images| % images
High Risk SSI> 40% 9 2.3
Medium Risk | 40% < SSI> 20% 47 11.6
Low Risk SSI< 20% 348 86.1
5.4 Summary

The clinical significance of carotid LD and IAD is discussadection 5.1. We believe
that the LD and the IAD together might represent a biomarkstroke risk. In Section

5.2, we have analyzed the relationship of carotid LD/IAD &8 We have obtained a
moderate positive correlation and IAD is found to be morersity correlated to PS than
LD. In Section 5.3, the SSI of images in the database has lmeepuwted and correlated
with the corresponding mean carotid LD values. All images be@en categorized into

high, medium and low risk classes based on SSI values.
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Figure 5.2: Representative image of a patient with highkstresk (SSI = 55%).
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Figure 5.3: (a) Cumulative frequency plot of SSI, (b) Saatiagram showing the neg-
ative correlation between Mean carotid Auto LD and SSI.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

Stroke is one of the most important causes of death in thedveotl the leading cause
of serious, long-term disability. The rupture of atheresatic plaques in the carotid
artery is the major reason for ischemic strokes. Thus, tisema urgent need for better
techniques for diagnosing patients at risk of stroke, afigeteguidelines for the choice
of treatment. The changes occurring in the carotid artenybsasafely monitored via
non-invasive imaging modalities such as MR and US imagingwéyer, since the

manual measurement process is tedious and error pronenatet software systems
need to be developed which can measure the wall thicknessiameters of the carotid
artery. The development of such automated systems wasithargrobjective of this

research.

We have proposed novel segmentation and measurementgaelm this thesis for
both MR and US images of the CCA. As a pre-processing stefauwstaenoising filter
(NLML per) has been proposed to reduce the Rician noise in MR imageddnyrating
the DCT into the conventional NLML method. Whereas, one efwhdely accepted
method named 'OBNLM’ is adopted in our work to reduce the gfgeaoise in US
images. The wall thickness of the CCA has been measured frbweighted MR
images using a two stage process. The segmentation methpeldithe famous Chan-
Vese (CV) model for the carotid lumen segmentation. Thislieived by a PSO based
localized segmentation to separate the outer wall regioth@fcarotid artery. This
combination of global and localized segmentation strategged us to reduce the edge

leaking problem to some extent. Finally, the wall thicknkas been measured as the



average distance between the co-ordinates of the lumen w@ed wall borders. We
have got a mean PoM value of 97.1% against the manual exapemds which implies

sufficiant system performance for the intended application

Due to better reliability, the diameters of the CCA have bmeasured from B-mode
US images via a region-based approach. For this measureweehave delineated the
LI and MA borders of the CCA in two steps. This included a glaystem which can
recognize the ROI and a local system for the extraction ofLthimterfaces. Scale-
space based strategy is employed at the first stage in ordaptare the bright edges
of the adventitia wall which defines the ROI. Then by meanseofival profile analysis
of the resultant image, the MA borders are delineated. WetadaK-mean classifier
with three pre-defined classes for segmenting the lumewmedihis classifier based
local processing allowed us to extract the LI interfacesieately. LD and IAD are then

measured from the co-ordinates of the LI and MA interfacespectively.

We have improved the performance of the above automatedmnsysting an itera-
tive spatial transformation based technique for handlnggdurvature associated with
the carotid arteries. Given an approximation of the lumeas @btained from the initial
application of the scale-space based segmentation methedim of the transforma-
tion was to generate a sub-image in which the anatomicafaues become nearly hor-
izontal. The scale-space based segmentation techniduenseapplied on the straight
vessels to retrieve the lumen region and LD borders in timstoamed framework. The
inverse transformation is applied to obtain the LD bordeickion to the original image.
This approach can address the limitations of the existindpats that require the image
interfaces to be horizontal at the time of acquisition angLiees accurate measurements
for LD. Comprehensive statistical data analysis was peréal to ensure the superior
performance of the proposed techniques against the two ahaxpert tracings. We
have got high PoM (98.7% and 98.1%) and CC values (0.95 ad] th®both LD and
IAD. Further, the clinical significance and implicationstbge arterial diameters were

discussed.
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6.2 Future Work

We believe that the proposed image-based measuremenndysies significant poten-
tial as a tool for stroke and cardiovascular risk stratifaat However, more validation
needs to be done on other ethnic groups from different ceasfor its adaption in clin-

ical settings. Significant technical and clinical progreas still be made in the field of
carotid artery segmentation. The major challenge in thaéuwill be more towards the
development of completely automated integrated systenme fQture scope is to ac-
quire temporal images from each patient to look at the carciale variations affecting

the diameter estimations.

Need for an integrated systenmtegrated systems are desirable for the clinical experts
in order to evaluate the risk of stroke in a precise and efficieay both in asymp-
tomatic and symptomatic subjects (Papadopoetad. 2013). Here, integrated system
means a system (software application) which is able to segthe carotid artery, mea-
sure the LD/IAD/wall thickness, and stratify the atheresactic plagque. Such a system
should be able to exploit the morphological features of thera wall. A standard
integrated system should have the following stages: nazatadn and denoising/de-
speckling, segmentation, feature extraction and selectad classification (Loizou
and Pantziaris, 2015).

Carotid artery segmentation in GPU framewoi®ne of the important issues regarding
the modern segmentation algorithms is the computatiorsdl ddnis results from differ-
ent factors such as size of the image, number of samplinggaid multi-resolution
algorithms. For example, if the degree of curvature of argena more, we need more
number of samples to represent the boundary than in caseagjlstlines. Further,
some algorithms use complex iterative steps to achievedtghracy for the measure-
ment. This in turn requires more processing power than etios@al simple approaches
which are straight forward. To avoid this limitation, a wkllown parallel computing

architecture, GPU (graphics processing unit), can bezatlwhich provides excellent
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computing performance gain (up to 54 times faster than tihallpaCPU implemen-
tation). Different GPUs have different architectures anel equipped with different
number of processing cores. Moreover, the technology uselévelop these GPU’s

may vary based on the degree of versatility to be executedfereht platforms.

Arterial wall changes during the cardiac cycl&he study of dynamic properties of the
wall of carotid artery is becoming more common, since thelmaatcal and structural
properties of the arterial wall may change before the oetwne of clinical symptoms
of cardiovascular disease (Selzdral, 2001). Arterial stiffness indices can be esti-
mated by measuring arterial diameter changes during @acgiide using ultrasonogra-
phy (Gambleet al,, 1994). Arterial stiffness may indicate early vascularrgfes and
increased arterial stiffness is often considered as a gedf carotid atherosclerotic
disease. Since the shape of the carotid arterial wall clsadgeng the cardiac cycle,
useful information may be obtained from the study of the dyaarterial geometry
(Polaket al,, 2012).

Role of carotid bulb lumen in quantification of steno€ie of the disadvantages of the
NASCET method is that it underestimates the size of the g@aqthe carotid bulb. Itis
equally important to measure the minimal residual lumeth@ipoint of tightest steno-
sis in the bulb) and the corresponding bulb diameters (8haalal, 2008). Moreover,

it has been observed that atherosclerotic diseases ocsiiesiwith complex hemo-
dynamics, such as artery bifurcations, junctions, ancoregof high curvature such as
the bulb (Nguyeret al, 2008). These elements, along with the complex geometry of
a residual lumen in a stenotic carotid bulb, are well undedtin theory; however a
systematic process to quantify these elements, with vatidic of their significance,

has not yet occurred in a large clinical trial.
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APPENDIX A

Polyline Distance Metric and Precision of Merit

Section A.1 presents the mathematical derivation for RayDistance Method (PDM)
used for the measurement of Auto LD and Auto IAD (Meiburgeanl., 2011; Moli-
nari et al, 2012). Section A.2 presents the derivation for Precision of M@PoM)
(Molinari et al,, 201%).

A.1 Polyline Distance Metric

Polyline Distance Metric (PDM) is used to measure the LD al aglAD. It measure

the changes of the contours of the far wall LI interface aral meall LI interface. The
first contour used is the far wall LI interface and is denotgdHy. A point on the

first contourB; is chosen as the reference paing, yo). Next, the nearest point at the
second contour (near wall LI interface2 was found using the Euclidean distance.
This is thel*! point (x1, ;) to be evaluated. Then t1¥¢ point (x5, 1») is established

as the point next to th&** point on the second contour. The two points actually form a
line segment]. Nextd(v,!) was obtained which is the distance between the reference

point, v(zo, yo) and the line segment formed by th# point and the2"? point.

The distance between thé' point to the reference point is called whereas the
2" point to the reference point is calleld. Another term used in the process towards
finding d(v, s) is A which is the distance of the reference pointfowards the line
segment,s. The perpendicular distance between the line segment andetarence

point, v, is given byd*. The formulas to calculat® andd* are given below:

(e =) (o — Y1) + (22 — 31) (20 — 1)
S o S PR .



L (2 —y)(yo— 1) + (2 — x1) (o — 1)
d- = A.2
V(w2 —x1)? + (g2 — )2 (A-2)

Therefore(v, s) is obtained using the following equation:

min(dy,dy), A<0 or A>1
d(v,s) = (A.3)

dt], 0<A<1

The process to obtaif(v, s) is repeated for the rest of the points of the contByiand

is given by:

n

d(By,By) =Y d(vi, Sps) (A.4)

=1
wheren, is the number of points in contoulf; and S, is the segment on contour
B,. Secondly, the algorithm above is repeated, whgyenow becomes the reference
contour andB; becomes the segment contotls;. The reverse can be represented
by d(Bs, B;). Lastly combining bothi(B;, By) andd(Bs, B;) will yield the equation
below which is the polyline distance metric (Meiburgeml,, 2011):

d(By, B2) + d(Bs, B1)

Dy(B; : By) = : i

(A.5)

The word PDM is used which is more convenient expression pr(&.5).

A.2 Precision of Merit

Given Autor;_nygar @andAutor;_rar Which are the interfaces computed using the au-
tomated method, we comput:ito L D using the polyline distance method (Eg. (A.5))

and is given as:

Auto LD = PDM(AutOL[_NEAR, AutOL[_FAR) (A6)
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Similarly, using the definition of PDM, we can compute the L[2asurements using

manual tracings using Eq. (A.5) and is given as:
Observer LD = PDM (Observerp;_ngagr, Observerp;_pag) (A.7)

Let Auto LD; be the lumen diameter value automatically computed by tbpgsed
system on theé'” image of the database of patients. If a database of images is

considered, then the overall mednto L D estimate can be defined as:

N
S |
AutoLD = — ; Auto LD; (A.8)

Correspondingly, ifObserver LD; is the LD value computed from the radiologist’s

traced manual measurements, then the ni®aarver LD is given as:

N
1
Observer LD = N Z Observer LD; (A.9)

=1

The overall system’s performance can be computed using rénaspon-of-merit

(PoM) in percentage as (Molinaget al., 201%):

Observer LD — Auto LD
Observer LD

POMLD (%) = 100 — ‘ * 100 (AlO)

The same procedure is adopted for computingi®hé/ for IAD measurements and is

given as:

Observer IAD — Auto IAD
Observer IAD

100 (A.11)

POM[AD (%) =100 — '
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