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Abstract
Online social networks have received a dramatic increase of interest in the last

decade due to the growth of the Internet and Web 2.0. They provide convenient plat-

forms for people to share, communicate, and collaborate in real-time regardless of the

differences and geographic distances among them. However, with the openness and the

diversity of the users of social networks, malicious users turn online social networks

into platforms for illicit activities such as spamming, identity theft, cyber-attacks, or-

ganized crimes, and even terrorist attack planning. Discovering such suspicious and

illicit behavior in social networks is a significant and challenging problem in social net-

work analysis. The unusual behavior of users that cause harm to legitimate users can

be identified by using anomaly detection techniques. The major categories of anoma-

lies occurring in social networks are point anomalies and collective or group anomalies.

Point anomalies or anomalous nodes signify the unusual behavior of individual users

whereas collective anomalies signify the unusual behavior of groups of users. As these

two types of anomalies can signify illegal and illicit behavior, they are to be detected

to uncover such suspicious behavior. Several techniques and tools have been proposed

for detecting point and collective anomalies in social networks. These techniques and

tools are developed for single-layer social networks with only one type of interaction

among the individuals. However, the social relationships among individuals are more

complex and they interact with each other in multiple ways simultaneously leading to

multiple networks among the same set of individuals, or a multi-layer social network

with each layer representing one type of interaction. The analysis of only one type of

interaction for anomaly detection does not provide a complete picture of the relation-

ships among the users of the networks. Therefore, there is an urgency and need for

multi-layer analysis of the networks for identifying the anomalies by employing the

rich information hidden in the individual network layers. Hence, this work aims at de-

veloping approaches for detecting point and collective anomalies in multi-layer social

networks.

In social networks, if the neighborhood of a user is a clique/near-clique or a

star/near-star pattern, the online behavior of the user can be linked to an anomalous

behavior, as only minority of users follow these patterns. In a multi-layer social net-

work, if the neighborhoods of nodes in different layers are close to stars or cliques,

they can signify anomalous behavior. Hence, in this work, an unsupervised approach

called Anomaly Detection On Multi-layer Social networks (ADOMS) is proposed for
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detecting these point anomalies in multi-layer social networks, by using graph-theoretic

features of the networks and data mining techniques. The online behavior of users is

modeled as an unattributed multi-layer social network, and the network structure-based

features of the network are extracted to detect anomalies. Anomaly scores are com-

puted for the nodes of the multi-layer network and the nodes are then ranked based on

their anomalousness. The nodes with high anomaly scores are the top ranked anomalies.

The proposed approach is evaluated using extensive experiments on multiple real-world

multi-layer network datasets, and the experimental results substantiate that the approach

can effectively detect anomalous nodes in multi-layer social networks.

Spamming is the most predominant form of anomalous activity prevalent in online

social networks that involves malicious users sending unsolicited messages to legitimate

users with the intention of wasting their time, bandwidth, and money. Being one of the

fastest growing online social networks, Twitter has become a cardinal target platform

for social spammers. A substantial amount of research work has been carried out in

the field of detecting spam messages and social spammers in Twitter. However, one of

the important issues in Twitter is that the social spammers collaborate with each other

and form collective anomalies or spammer communities to spread spam messages to a

large set of legitimate users. Consequently, it is highly desirable to detect such spam-

mer communities prevailing in Twitter. Hence, in this work, an unsupervised approach

called Spammer Community detection (SpamCom) is proposed for detecting spammer

communities in Twitter by using graph-theoretic features of the network and the net-

work attributes. The Twitter network is modeled as an attributed multi-layer social

network, and the overlapping community-based features of the network are exploited

to identify spammers based on their structural behavior and URL characteristics. The

utilization of community-based features of the network, URL characteristics of user

accounts, and content similarity among the tweets makes the approach robust and ef-

ficient. The approach is evaluated on real-world dataset, and the experimental results

show significant performance in detecting spammers and spammer communities.

Keywords: Social network analysis, Anomaly detection, Outlier detection, Graph min-

ing, Graph-based anomaly detection, Multi-layer networks, Spammer detection, Spam-

mer communities,
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CHAPTER 1

INTRODUCTION

A social network is a social structure that represents the relationships or associations

among social entities such as friends, professionals, or co-authors. The last decade has

witnessed a proliferation of social networks supported by variety of information com-

munication technologies and web-based services. Examples of social networks include

online social networks (Mislove et al. 2007), mobile call networks (Nanavati et al.

2006), instant messenger networks (Leskovec and Horvitz 2008), email communica-

tion networks (Diesner et al. 2005), terrorist networks, and co-authorship networks

(Barabsi et al. 2002), to name a few.

Over the last few years, online social networks have become more and more per-

vasive and have received significant attention and popularity due to the advancement

of the Internet and Web 2.0. They are among the most popular sites on the Internet

that have become integral part of our day-to-day life. They are being used in almost all

areas of life including education, entertainment, medical, and business. Through online

social networks, there are plenty of possibilities for individuals to share contents, inter-

act, and collaborate with each other irrespective of the geographical distances among

them (Pedrycz and Chen 2013). In addition, they enable users to maintain social rela-

tionships, to find users with similar interests, and to access information that have been

shared by other users (Mislove et al. 2007). Because of these reasons, in recent years,

online social networks have received tremendous attention by both academic and indus-

tries.

Social Network Analysis (SNA) (Wasserman and Faust 1994) is the field of study

which investigates the properties of social networks. SNA helps us to explore the rela-

tionships between individuals who are connected through social networks, and provides
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understanding about the inherent patterns that are embedded in these networks (Scott

2011). SNA concerns a variety of tasks. Some of the most significant tasks of SNA are

centrality analysis (Carrington et al. 2005), community detection (Girvan and Newman

2002; Arab and Afsharchi 2014), information diffusion (Bakshy et al. 2012; Haral-

abopoulos et al. 2015), influence maximization (Chen et al. 2009), link prediction

(Liben-Nowell and Kleinberg 2007), recommender systems (Wang et al. 2015), and

anomaly detection.

Social networks are typically modeled as graphs, and SNA investigates the prop-

erties of social networks through the use of graph theory. A graph is a powerful rep-

resentation framework for a complex network (Boccaletti et al. 2006), with nodes

or vertices representing entities and edges representing the interactions among them.

More formally, a graph is defined as G(V,E), where V denotes the set of nodes and

E denotes the set of edges such that ek ∈ E and ek = {(vi, vj)|vi, vj ∈ V }. Social

network graphs can be classified into directed/undirected based on the edge direction

(Robins et al. 2009), weighted/unweighted based on edge weights (Newman 2004;

Das et al. 2010), signed/unsigned based on edge sign (Leskovec et al. 2010), or

attributed/unattributed based on edge and/or node attributes.

Each of the online social networks is a huge database of millions of individuals

and their activities. Unfortunately, due to the openness of these networks, this enor-

mous amount of information attracts the interest of malicious users (Fire et al. 2014).

Consequently, the perversion of these networks has also increased and has opened up

the door for numerous malicious and predatory activities such as spamming, identity

theft, collaborative fraud, cyber attacks, cyberbullying, organized crimes, terrorist at-

tack planning, and fraudulent information dissemination (Jiang et al. 2016; Keyvan-

pour et al. 2014; Liu and Chawla 2015; Al-garadi et al. 2016; Asam and Samara

2016; Yu et al. 2015, 2016). As the perpetrators of these unusual and irregular ac-

tivities often interact in a manner that significantly differs from the common public,

they can be discovered by employing anomaly detection techniques. Anomaly detec-

tion in social networks refers to the problem of identifying the strange and unexpected

behavior of users by analyzing the patterns hidden in the networks. The knowledge

about these unusual and irregular patterns leads to the identification of suspicious users

and illegal activities in social networks. For example, online fraudsters often interact

with many individuals who are otherwise unconnected to form star-like patterns in the

network. These anomalous patterns can be identified by analyzing a set of network

2



1.1. Anomaly Detection

features. As social networks are mathematically represented as graphs, the abnormal

behavior of users in the networks can be identified by using graph-based anomaly de-

tection techniques.

1.1 ANOMALY DETECTION

An anomaly or outlier is a data object that behaves substantially different from the other

objects in the dataset (Chandola et al. 2009). The classic definition of an outlier is “an

observation which deviates so much from other observations as to arouse suspicions

that it was generated by a different mechanism” according to Hawkins (1980), or “an

observation (or subset of observations) which appears to be inconsistent with the re-

mainder of that set of data” according to Barnett and Lewis (1994). These abnormal

patterns or observations are also known as aberrations, peculiarities, discordant obser-

vations, contaminants surprises, or exceptions based on the application areas (Chandola

et al. 2009). Anomalies occur because of fraudulent behavior, human error, or faults in

systems (Hodge and Austin 2004).

Anomaly detection or outlier detection is a key problem in data mining and is

defined as the problem of detecting anomalous patterns in a dataset. Whereas other

data mining algorithms such as classification, clustering, and frequent pattern analysis

find popular patterns from the dataset, anomaly detection identifies relatively small set

of objects that differ from the normal behavior of the larger number of data items in the

dataset (Dang et al. 2014).

Anomaly detection is a well-researched topic in various research domains such

as data mining, statistics, sensor networks, distributed systems, spatio-temporal min-

ing, environmental science, etc (Gupta et al. 2014a). It has attracted wide recogni-

tion in many practical application areas including fraud detection for insurance, credit

cards, stock markets, or health care, cyber security and intrusion detection in computer

networks, military surveillance for enemy activities, fault diagnosis in safety critical

systems, and pharmaceutical research for identifying novel molecular structures.

Some of the challenges that are encountered while detecting anomalies are as fol-

lows (Chandola et al. 2009):

• It is often difficult to define a clear separation between normal and anomalous

behavior.

3



1.2. Graph-based Anomaly Detection

• In the case of anomalies that arise from illegal activities, the adversaries often

pretend to be legitimate users. It complicates the process of defining the normal

behavior.

• Normal behavior of data may change over time which makes the current notion

of normal behavior irrelevant in the future.

• The exact definition of anomalous behavior depends on the application domain.

Therefore, the anomaly detection techniques depend on the application domain

for which it is developed, and hence cannot be applied directly to other domains.

• Due to the unavailability of datasets with ground truth, it is hard to perform the

performance evaluation of anomaly detection algorithms.

• In most cases, datasets contain noise that are close to the anomalies which makes

it difficult to differentiate and eliminate anomalies.

Due to these challenges, it is difficult to develop a general-purpose anomaly de-

tection system. Hence, application-specific anomaly detection approaches need to be

formulated by taking into consideration of various aspects such as the type of data,

availability of ground truth, and the type of anomalies to be identified.

1.2 GRAPH-BASED ANOMALY DETECTION

Graph-based anomaly detection is the problem of finding anomalies from data that are

represented as graphs, by using graph mining techniques. Graph mining, which has

been a popular area of research in recent years, is the novel approach for extracting

useful knowledge hidden in graph data by employing techniques from domains such as

graph theory, machine learning, data mining, statistics, and pattern recognition (Jiang

2011). Substantial research works have been directed towards graph mining because

of its various applications in a multitude of practical domains including bioinformatics,

chemical compound analysis, program flow structures, computer networks, and online

social networks. In literature, several graph mining approaches have been proposed,

including: frequent subgraph mining (Cook and Holder 1994; Kuramochi and Karypis

2005, 2001; Dehaspe et al. 1998), graph pattern summarization (Xin et al. 2006; Chen

et al. 2008; Chaoji et al. 2008), approximate graph pattern mining (Chen et al. 2007b;

Kelley et al. 2003), graph classification (Saigo et al. 2009; Jin et al. 2009; Deshpande
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1.3. Anomaly Detection in Social Networks

et al. 2005), graph clustering (Newman 2012; Xu et al. 2012; Clauset 2005; Kulis

et al. 2009), graph indexing (Wang et al. 2012b; Yuan et al. 2012), graph searching

(Chen et al. 2007a; Yan et al. 2005), and graph-based anomaly detection (Eberle and

Holder 2007; Akoglu et al. 2010).

Graph-based anomaly detection attempts to find anomalous units such as nodes,

edges or subgraphs in graph-structured data. More specifically, graph-based anomaly

detection techniques identify abnormal substructures from graphs, the existence of un-

expected nodes or edges, the absence of expected nodes or edges, or modifications in

the attributes of nodes or edges (Eberle and Holder 2007). As graph based data has

become omnipresent, it is essential to detect anomalies from graph data for addressing

problems such as activity monitoring in social networks, network intrusion detection,

network surveillance, spam filtering, biomedical imaging, gene network analysis, churn

analysis in social networks, disease outbreak detection, sensor network monitoring, en-

vironmental monitoring, and malware detection (Sharpnack et al. 2013; Sricharan and

Das 2014).

Even though the traditional anomaly detection problem has been actively stud-

ied in statistics and data mining communities over the last several decades, there has

been much less focus on anomaly detection on graph-based data. Unlike the traditional

anomaly detection methods that analyze independent and identically distributed data

objects or data points, graph-based anomaly detection techniques have to consider the

inter-related data objects having long range correlations (See Figure 1.1). Therefore,

the algorithms and techniques formulated for traditional anomaly detection problems

are not directly applicable to graph data. Moreover, due to the powerful representation

capability of graphs, the definitions of anomalies is much more diverse and typically

depend on the data and application of interest (Akoglu et al. 2015). In addition, in

order to enumerate anomalous units in graphs, the detection algorithms have to search

the entire complex graph, due to which the time and space complexities of the detection

algorithms are often high. Due to these challenges, it is hard to develop an efficient and

scalable technique for graph-based anomaly detection.

1.3 ANOMALY DETECTION IN SOCIAL NETWORKS

Social network anomaly detection is of crucial importance to detect the malicious activ-

ities in social networks. In social networks arena, an anomaly is an unexpected behavior
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Figure 1.1: Traditional anomaly detection vs. graph-based anomaly detection (Akoglu
et al. 2015)

of a user or group of users whose behavior is unusual compared to the normal behavior

of the users in the network. The anomalies occur when the patterns of interactions of

certain individuals deviate significantly from their peers. As a consequence of these ir-

regular interactions, the network structure changes, and the parts of the network that are

significantly different from the normal structure are deemed as anomalies. More specif-

ically, anomalies in social networks occur when the behavior of users forms unusual

network patterns (Savage et al. 2014).

Anomalies prevailing in social networks can be mainly classified into two cate-

gories: anomalous nodes or point anomalies and anomalous subgraphs or collective

anomalies. Point anomalies are individual nodes or users whose online behavior is

abnormal compared to other users, whereas collective anomalies appear as groups of

nodes or users in social networks. In a collective anomaly, the individuals in the group

collaborate with each other to achieve a malicious goal. These two types of anomalies

can signify illegal and irregular behavior of users and need to be detected to unveil such

suspicious user behavior. Even though not all anomalies are malicious, anomalies in

social networks can be representatives of illicit and fraudulent activities and can harm

users in the virtual world as well as in the real world. Therefore, the detection of such

anomalies has been used to identify illegal and fraudulent activities in social networks.
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Anomaly detection in social networks attempts to identify anomalous entities in

the networks such as abnormal nodes, abnormal interactions, or abnormal subgraphs

using graph-based anomaly detection techniques. As the entities in a social network are

highly inter-related, the anomaly detection methods have to examine the interactions

in the network to identify anomalous units. Hence, the traditional anomaly detection

techniques developed for multi-dimensional points can not be directly applied to social

networks. Moreover, the anomaly detection techniques on social networks have to ana-

lyze the whole network data to reveal the anomalies, which makes the detection process

complex in terms of both computational time and space requirements.

In social networks, the analysis of the users’ local and global views helps in gen-

erating the online behavior patterns of the users in the networks. The local view of the

users specifies local connectivity patterns of them and global view generalizes the rules

for identifying the deviation of the users’ online behavior. More specifically, if the local

view of a user obeys the rule characterized by the global view of the network, the user’s

online behavior is categorized as “normal”; otherwise it is categorized as “anomalous”.

Anomaly detection has become a significant and challenging problem in SNA.

In recent years, anomaly detection in social networks has received remarkable interest

from the research community and a multitude of algorithms, techniques, and tools have

been proposed. These techniques have been proposed for networks with only one type

of interaction among individuals. However, individuals in a social system can interact in

multiple ways simultaneously, leading to the formation of multi-layer social networks

(Bródka and Kazienko 2014). Even though several techniques and tools have been

developed for anomaly detection in single-layer social networks, anomaly detection in

multi-layer social networks is an unexplored area of research.

1.4 MULTI-LAYER NETWORKS

Over the last few years, complex networks (Boccaletti et al. 2006) have attracted

enormous attention in a wide variety of domains including social, biological, physical,

information, and engineering sciences. The study of complex networks has been tra-

ditionally based on graph theory, representing only single type of interaction among

entities. However, real-world systems are more complex and multiple types of interac-

tion can exist among the same set of entities which can not be completely captured by

conventional simple graph models. Examples are social systems where multiple types
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of interactions exist among individuals, transportation systems where multiple types of

travel exist between places, and biological systems where multiple types of interactions

exist among biological entities such as genes. In these systems, each layer is associated

with a given relevance or meaning and treating all layers as similar results in the lose of

important information present in individual layers. This has led to the development of

multi-layer networks (Kivelä et al. 2014; De Domenico et al. 2013; Boccaletti et al.

2014). A multi-layer network is an emergent model that can encode much richer and

relevant information than a single-layer network.

The standard way of representing a multi-layer network is to aggregate the infor-

mation present in different layers together to obtain a single-layer network so that the

traditional network analysis tools can be directly applied. However, this is a crude ap-

proximation and results in the loss of important information hidden in the individual

layers. Even though a large body of literature exists for single-layer networks, there is

a deficiency of widely-accepted methods and means for multi-layer network analysis.

Therefore, it is extremely important to develop network analysis tools for multi-layer

networks.

Even though the study of multi-layer networks originated decades ago from so-

cial sciences, they were not analyzed at the large scale. Recently, multi-layer networks

have become extremely popular in multi-disciplinary research domains and a substan-

tial amount of effort has been dedicated to their mathematical modeling and character-

ization. The analysis of multi-layer networks is an ongoing research area of network

science, and the sudden increase in the study of such networks has resulted in a mul-

titude of terminologies such as multi-layered networks (Bródka and Kazienko 2014),

multiplex networks (Battiston et al. 2014; Lee et al. 2015), multi-relational networks

(Harrer and Schmidt 2012), multidimensional networks (Berlingerio et al. 2013a), and

interconnected networks (Dickison et al. 2012).

1.5 MULTI-LAYER SOCIAL NETWORKS

Multi-layer social networks represent multiple types of interactions occurring in social

systems among the same set of individuals (Magnani and Rossi 2011; Bródka and

Kazienko 2014). In a social setting, media multiplexity (Haythornthwaite 2005) is

the term used to refer to the multiple means of communication among individuals. The

more the number of communication means among the users, the more is the relationship

8



1.5. Multi-layer Social Networks

strength. In other words, media multiplexity indicates stronger tie among individuals

in any social setting. Individuals may interact through phone calls, instant messaging,

emails, online social networks, and so on. It is observed that there exists high social

influence among strongly tied individuals. In addition, if a medium of communication

fails, the people with strong ties will be less affected, as they are connected through

multiple means of communication. Moreover, if a new means of communication is

introduced, strong ties are more likely to adopt it if it suits their needs and is useful for

maintaining the relationship among them.

Each layer of a multi-layer social network describes one mode of interaction among

individuals. In online social media, people can connect through multiple social net-

working platforms like Twitter, Facebook, Instagram, LinkedIN, YouTube, and Google

plus, to name a few. In Facebook, users can interact with each other through private

messages, post contents on each other’s walls, like posts of other users, tag other users

in posts, etc. Similarly in Twitter, users can follow each other, tweet and re-tweet mes-

sages, reply to tweets, and mention other users. In such cases, a multi-layer social

network can be constructed with each layer representing the interactions at one service,

and multi-layer network analysis is required for distinguishing between the interactions

in different layers. Most classical SNA tools deal with single type of interaction be-

tween individuals. Recently, many of the classical SNA metrics and problems have

been extended to multi-layer social networks.

A simple graph representation can model a singe-layer network effectively and

is highly useful in modeling many social phenomena. However, it can not represent

the multiple ties existing among the users of a social network. Hence, the simulta-

neous interactions among users is modeled as a multi-layer social network M , con-

taining a set of m graphs, each representing the interactions in a distinct layer, as

M = {G1, G2, ..., Gm}. Each layer in the multi-layer social network can be consid-

ered as a network on its own, and the ith layer of the multi-layer network M is denoted

as Gi(V i, Ei), where V i and Ei are respectively the nodes and edges of the layer i. A

node can be present in one or more layers. If all the nodes are not present in every layer

of the multi-layer network, a union of the nodes in the network layers is taken as the

shared node set, i.e. V =
⋃m
i=1 V

i and n = |V |, number of nodes in V . An example for

a three-layer multi-layer social network is shown in Figure 1.2.
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Figure 1.2: Multi-layer social network with three layers

1.6 MOTIVATION

Anomalies in social networks often represent illegal activities and security issues such

as spamming, identity theft, cyber attacks, organized crimes, bullying, fraudulent infor-

mation dissemination, and even terrorist attack planning (Keyvanpour et al. 2014; Liu

and Chawla 2015; Yu et al. 2016). Anomalies in social networks could also signify un-

usual user behavior such as credit card fraud, electronic auction fraud, email spam and

phishing (Akoglu et al. 2010), and many others. Therefore, it is extremely important

to detect these anomalous behaviors.

The criminal activities prevalent in social networks necessitates the importance

of digital forensics in social networks arena. Anomaly detection can provide inherent

and invaluable information for detecting criminal activities in social networks for So-

cial Network Forensics (SNF) (Keyvanpour et al. 2014). SNF is an emerging subject

that involves the detection, analysis, prevention, and prediction of illegal and criminal

activities in social networks. Apart from identifying fraudulent, distrustful, or danger-

ous behavior, anomaly detection is also helpful in identifying influential individuals and

rare events in a network.

The problem of anomaly detection in social networks has been well-researched

in the recent years and a plethora of approaches have been proposed. However, these

approaches focus only on single-layer networks with one type of interaction among

the users. The analysis of only one type of interaction for anomaly detection does

not provide a complete picture of the relationships among the users of the networks.
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For instance, in a narcotic criminal network, actors interact in multiple ways to ex-

change tangible resources such as drugs, money, precursor chemicals, equipment, and

premises as well as intangible resources such as information, labor, and skills (Bright

et al. 2015). Understanding the multi-layer structure of criminal networks helps the

law enforcement agencies for identifying the key actors and their interactions in the

networks. Using the traditional SNA techniques, the criminal network is aggregated

as a single-layer network by interpreting any mode of interaction between two indi-

viduals as a connection between them without specifying the nature of the interaction.

However, it is possible that some criminals may be central in one or more individual

network layers. Hence, the information regarding the key actors involved in the dealing

of specific resources may be discarded in such type of analysis. Therefore, the analy-

sis of the multi-layer social network is particularly crucial for identifying key players

and for designing disruption strategies for criminal networks. Consequently, there is an

urgency and need for multi-layer analysis of the networks for identifying the anoma-

lies by employing the rich information hidden in the individual network layers. Hence,

this work aims at developing approaches for detecting point and collective anomalies in

multi-layer social networks.

In social networks, the minority of users follows the uncommon topology of either

the neighbors of are fully connected to form clique-like structures, or the neighbors are

completely disconnected to form star-like structures. The nodes whose neighborhoods

follow star/near-star and clique/near-clique patterns can be linked to suspicious behav-

ior and have been established as anomalies, as only a minority of users follows this

behavior (Akoglu et al. 2010; Hassanzadeh et al. 2012; Gupta et al. 2013; Hassan-

zadeh and Nayak 2013a,b; Kaur and Singh 2017). In a multi-layer social network, if

the neighborhood of a user in different layers are close to stars or cliques, the online

behavior of the user can signify an anomalous behavior. For example, in the narcotic

criminal network, the actors who are in the center of stars or cliques in multiple lay-

ers are the key players in the criminal network. In social networks, the uncommon

friendship patterns of cliques and stars can signify anomalies such as spammers, fraud-

sters, or sexual predators (Fire et al. 2012). A star topology in online social networks

could also signify a celebrity or influential person. Hence, in this work, the detection

of these two types of point anomalies in multi-layer social networks is considered and

an unsupervised approach is developed by using graph theoretic features and data min-

ing techniques. Even though the proposed approach is applied on multi-layer social
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networks, it can be applied to any multi-layer network with intra-layer connections.

For example, the proposed approach can identify important hub cities in multi-layer

transportation networks, and important proteins and genes that have critical roles in

biological networks.

Spamming is the most predominant form of anomalous activity prevalent in online

social networks. Spamming involves undesirable users sending malicious tweets con-

sisting of text and HTTP URLs to large number of legitimate users as possible (Zheng

et al. 2016). The motivations for spammers to spread spam messages is with an in-

tention for promotional marketing by capturing trending topics, spreading views, and

generating revenues based on URL clicks. It leads to uncontrolled dissemination of con-

tent, virus/malware, scams, pornography, and advertisements leading to huge wastage

of network bandwidth and revenue losses of organization.

Being one of the fastest growing online social networks, Twitter has become a pri-

mary target platform for social spammers. A considerable amount of research work has

been carried out in the field of detecting spam messages and social spammers in Twitter.

However, one of the crucial issues in Twitter is that the social spammers usually form

collective anomalies or spammer communities to spread spam messages to a large set of

legitimate users. Consequently, it is highly desirable to identify such spammer commu-

nities prevailing in Twitter. Hence, in this work, an unsupervised approach is proposed

for detecting spammer communities in Twitter by using graph-theoretic features of the

network and the network attributes.

1.7 APPLICATION DOMAINS OF ANOMALY DETECTION IN
SOCIAL NETWORKS

This section presents some of the specific real-world application domains where the

social network anomaly detection methods have been used.

1. Fraud Detection in Online Social Networks: Online social networks have be-

come new targets for cybercrime, and malicious users attempt to perform illegal ac-

tivities such as spamming, cyber attacks, bullying, fraudulent information, organized

crimes, and even terrorist attack planning on these systems (Yu et al. 2015). Further-

more, online social networks are prone to malwares, spam messages and other offensive

materials (Rahman et al. 2012; Gao et al. 2012; Hassanzadeh et al. 2012; Hassanzadeh

and Nayak 2013a,b; Akoglu et al. 2010; Shrivastava et al. 2008). These fraudulent
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activities often cause monitory loss and harm to other users of these online platforms.

As the patterns of interactions of the perpetrators of these illegal activities often signifi-

cantly deviate from normal users, they can be detected by using network-based anomaly

detection techniques. The fraudulent activities of users in online social networks neces-

sitate the importance of digital forensics in social networks arena. Anomaly detection

can provide inherent and invaluable information for detecting criminal activities in so-

cial networks for Social Network Forensics (Keyvanpour et al. 2014).

2. Insider Threat Detection: An insider threat is a security threat to an organi-

zation from individuals within the organization. The threat can be fraud, theft of

sensitive information, and destruction or compromise of hardware and software re-

sources. Network-based anomaly detection measures can be used for identifying in-

sider threats. The work presented in Eberle et al. (2010) uses Graph-Based Anomaly

Detection (GBAD) algorithms (Eberle and Holder 2007) to detect insider threats and

cybercrime. Chen and collaborators (Chen et al. 2011; Chen and Malin 2011; Chen

et al. 2012c,a,b) proposed several effective social network-based methods for identify-

ing insider threats in Collaborative information systems (CIS) such as electronic health

record systems. A CIS manages important and sensitive information in collaborative

and dynamic environments. Chen and Malin (2011) and Chen et al. (2012b) proposed

Community Anomaly Detection System (CADS) to identify anomalous insiders based

on the access logs of collaborative environments. Chen et al. (2011, 2012c) formulated

a local network approach called Specialized Network Anomaly Detection (SNAD) that

leverages social network analysis technologies to detect anomalous access made by a

user in dynamic collaborative systems.

3. Review/Opinion Spam Detection: Nowadays, it has become a common prac-

tice for customers to read the opinions or reviews written by other customers before

deciding to purchase a product. These reviews are also used as feedbacks by manu-

facturers to identify the problems of their products. However, in review websites such

as amazon.com, fraudsters write fake reviews or bogus reviews to defame or boost the

reputation of manufacturers and vendors, and to mislead the customers (Jindal et al.

2010). Detecting these fake reviews has become more critical, as these reviews can

result in significant financial loss/gain for the manufacturers and vendors. Review or

opinion spams can be detected by mining the networks induced by the reviewers, re-

views, products or stores. These network-based methods can be used complementary to
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the traditional methods for reviewer spam detection such as language features, text sim-

ilarity, and rating patterns. The review spammer detection methods proposed in Wang

et al. (2011, 2012a) rely on a heterogeneous review network with three types of nodes

to show the relationships among reviewers, reviews, and stores or products that the re-

viewers have reviewed. Spams are identified by analyzing the interactions among the

nodes in the review network. The method proposed by Akoglu et al. (2013) employs a

signed network for representing the negative and positive reviews, and uses relational

classification to detect opinion spam.

4. Financial Trade Fraud Detection: In financial trade frauds, traders trade them-

selves to increase the share values and to manipulate the stock market. These illegal

trading activities are known as trading rings, and are identified by mining the networks

extracted from the trading transactions at consecutive time steps. Li et al. (2010, 2012)

developed algorithms to identify the trade ring patterns called blackhole patterns and

volcano patterns in large directed financial trading networks.

5. Auction Fraud Detection: Online auction websites such as Ebay and eBid have

been receiving much attention in the recent years. The growing popularity of the on-

line auctions has also led to an increase in auction frauds. The most prevalent auction

frauds are in the form of non-delivery fraud, where the fraudulent seller receives the

payment from the buyer, but fails to deliver the products. The methods proposed in

Chau et al. (2006) and Pandit et al. (2007) detect auction frauds by modeling the trans-

actions among users as networks, with nodes denoting users and edges denoting the

interactions among them. These methods classify the users of the auction network into

three categories: fraudster, accomplice, and honest. Tsang et al. (2014) identify col-

laborative auction frauds by first generating an initial anomaly score for each user, and

then applying belief propagation.

6. Influence Maximization: Apart from identifying fraudulent, distrustful, or dan-

gerous behavior, anomaly detection is also helpful in identifying influential individuals

and rare events in a network. For example, an unusual friendship pattern such as star

topology in online social networks could signify a celebrity or an influential individual

(Shetty and Adibi 2005; Hassanzadeh et al. 2012; Hassanzadeh and Nayak 2013a,b).

This information can be used for viral marketing by an e-commerce agency for promot-

ing their products in the influential individual’s friendship network.
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1.8 THESIS ORGANIZATION

Rest of this thesis is organized as follows. Chapter 2 discusses a review on the re-

lated research works in the areas of anomaly detection and spammer detection in social

networks. Additionally, this chapter discusses about the research challenges and open

research areas in these fields. This chapter also talks about the significant research areas

in multi-layer networks. Chapter 3 describes the research problem of the thesis. Chap-

ter 4 presents the proposed approach for detecting anomalous nodes in multi-layer so-

cial networks. This chapter also presents the experimental evaluation of the approach in

terms of the effectiveness and running time. Chapter 5 presents the proposed approach

for discovering spammer communities in Twitter multi-layer network. This chapter also

provides the experimental evaluation of the approach. Chapter 6 summarizes the con-

tributions of the research presented in this thesis and some future research directions.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, a structured review of the various state-of-the-art techniques and related

research works for detecting anomalies and spammers in social networks is presented.

The first section presents the techniques and tools for detecting anomalies in social

networks. In addition, the promising research directions and research challenges asso-

ciated with anomaly detection in social networks are discussed in this section. After

presenting a brief review on the significant research areas and research challenges in

multi-layer networks, a review of the literature on spammer detection in social networks

is presented in the subsequent section. This section also discusses about the research

challenges and open research areas in spammer detection in social networks.

2.1 ANOMALY DETECTION IN SOCIAL NETWORKS

In the past decade, a multitude of techniques have been developed for social network

anomaly detection in a wide variety of problem settings. However, this field is still

relatively young and rapidly growing. Hence, there is a growing need for an organized

study of the research work done in the area of anomaly detection in social networks.

This section provides a comprehensive and systematic study of the research works car-

ried out in the field of anomaly detection in social networks. It also brings out the open

challenges and research issues in this field. Even though the emphasis of this section is

to review the anomaly detection techniques for social networks proposed in the last ten

years, few of the earlier works that are formative to this area have also been reviewed.

In addition, we have identified the key aspects associated with the problem of anomaly

detection in social networks, and have provided a multi-level taxonomy to categorize
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the existing anomaly detection techniques based on i) nature of input network, ii) types

of anomalies, and iii) anomaly detection approach.

2.1.1 Different Aspects of Anomaly Detection in Social Networks

As the problem of anomaly detection is application-specific, it is determined by differ-

ent aspects of the data to be analyzed such as the type of input data, the availability of

ground truth, the type of anomalies being identified, and the restrictions of the specific

application domain. This section describes the different characteristics of anomaly de-

tection in social networks such as the nature of input networks and the type of anomalies

that are being identified.

2.1.1.1 Nature of Input Networks

A key characteristic of an anomaly detection method is the nature of the input data

(Chandola et al. 2009). In the case of social network anomaly detection, the input

networks that are used by various methods can be categorized as static/dynamic or

attributed/unattributed, based on the type of analysis performed for anomaly detection.

a) Static versus Dynamic networks: In static networks, the number of nodes and the

relationships between the nodes do not change over time. More specifically, a static

network is able to represent only a single snapshot of the social network data at any

instant of time. However, social networks are constantly evolving, leading to dynamic

networks. They are subject to discrete changes such as insertions or deletions of nodes

or edges, and alterations to attributes associated with nodes or edges. For example, in

social networks individuals may lose old acquaintances, make new friends, or move

from one place to the other, which leads to new links appearing and existing links

disappearing. Last decade has witnessed a growing interest in dynamic networks and

a whole body of algorithmic techniques and data structures have been discovered for

them.

Dynamic networks from different application domains evolve differently over time

which leads to application-specific anomalies and approaches. For slowly evolving net-

works such as bibliographic networks, snapshot analysis can be employed, by analyz-

ing the state of the networks at two different instants of time (Aggarwal and Subbian

2014). Such snapshot analysis can be performed off-line effectively. For highly evolv-

ing or streaming networks, real-time analysis is required. This is more difficult due to
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the computational complexity involved and the inability to store the whole network on

the disk.

b) Unattributed versus Attributed Networks: In unattributed or unlabeled networks,

the attributes or labels associated with the individuals or their interactions such as any

details about the type of interaction, the age of the individuals involved in the interac-

tion, or the duration of the interaction are not considered for anomaly detection (Savage

et al. 2014). The only information considered about an unattributed network is the net-

work topology or the fact that the interaction has occurred. In other words, anomalies in

unattributed social networks are determined by analyzing only the interaction between

the individuals, because the details about the individuals and their interactions are either

ignored or not available.

Networks that have attributes associated with nodes and/or edges are referred to

as attributed or labeled networks. For instance, individuals in a social network can have

different attributes such as the locations where the individuals live in or work, their

educational qualifications, age, etc., whereas the interactions between the individuals

or edges may have types, duration, frequency, etc. For detecting anomalies in attributed

networks, these attribute values are also considered, in addition to the network structure.

Such meta-data associated with nodes and edges can significantly enhance the anomaly

detection by providing auxiliary information for distinguishing between normal and

abnormal behavior.

2.1.1.2 Types of Anomalies in Social Networks

Another important characteristic of an anomaly detection technique is the type of anoma-

lies and the manner in which the anomalies are reported. The anomalies are categorized

based on the output produced by various anomaly detection methods that have been pro-

posed in the literature. The detection methods uncover anomalous units such as nodes,

edges, subgraphs, and/or events in the networks. The methods either assign an anomaly

score to each unit, or classify each unit as normal or anomalous.

a) Anomalous Nodes: If we need to identify the individual users whose behavior

deviates considerably from the usual behavior of users in the social network, we may

view a subset of users or nodes as anomalies. Anomalous nodes are also known as

point anomalies, as they are scattered in the network. For example, spammers who
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send unsolicited messages to other users, and malicious users who cause harm to other

users in the network are anomalous nodes or point anomalies.

b) Anomalous Edges: If we need to identify unusual or irregular interactions among

the users in the network, we may view a subset of edges as anomalous. In other words,

an edge can be anomalous if it is an unlikely edge or its weight fluctuates over time. The

edge weight can correspond to the number of messages exchanged between individuals

in the network. For example, if a social network has changed in some substantial way,

then in most contexts this is likely that there are some individuals who are now either

communicating more or less frequently than usual, or communicating with different

individuals than usual (Heard et al. 2010).

c) Anomalous Subgraphs: Anomalous subgraph detection aims at finding the sub-

networks such that the pattern of interaction among the nodes in the subnetwork is ir-

regular compared to the other nodes in the network. These anomalies are also known as

collective or group anomalies. For example, if we need to identify groups of fraudulent

people collaborating to promote their reputation in an on-line auction system, commu-

nities of spammers that sends unsolicited messages to legitimate users, or groups of

people colluding to create fake product reviews, then the anomalies will be collective

anomalies (Pandit et al. 2007; Yu et al. 2015).

d) Events: Events occur exclusively in dynamic networks, and are the discrete time

steps at which the social network is substantially different from the preceding and the

succeeding networks in the dynamic network sequence (Wang et al. 2017). Event

detection aims at finding the time steps at which the change or event has occurred, and

then identifying the nodes, edges and/or subgraphs that have contributed to the event.

2.1.2 Anomaly Detection in Static Social Networks

Even though social networks evolve over time, it is often useful to analyze them as if

they were static. An anomaly in static network occurs with respect to the rest of the

network. Hence, the anomaly detection task in static networks is to uncover anomalous

units such as nodes, edges, or subgraphs given the entire network topology. In this

section, the various state-of-the-art methods for mining anomalies from static social

networks are discussed. The methods are categorized according to the nature of input

networks they analyze, the type of anomalies they discover, and the approaches they

follow. Figure 2.1 shows the organization of the study.
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Figure 2.1: Taxonomy of the survey on static social networks. Methods are categorized
based on the nature of input network, type of anomalies they identify, and the underlying
approach.

2.1.2.1 Static Unattributed Networks

Anomalies in static unattributed social networks are identified by analyzing the interac-

tion between the users or structure of the network at any instant of time, as the details

about the individuals as well as their interactions are either ignored or not available. In

this section, first the anomaly detection methods are categorized based on the underly-

ing approach, and then a review of the various anomaly detection techniques that are

developed for static unattributed networks is presented.

Types of Approaches

The various approaches that have been used for detecting anomalies in static unattributed

networks can be categorized into three groups: clustering / community-based, network

structure-based and signal processing-based approaches.
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a) Clustering/community-based approaches: The clustering/community-based ap-

proaches for anomaly detection in static networks find densely connected nodes in the

network as clusters or communities, and identify the nodes or edges that interconnect

different communities (Sun et al. 2005; Xu et al. 2007; Sun et al. 2010). These

approaches define anomaly as nodes or edges that interconnect different communities,

but do not belong to any of the communities. Most of the clustering/community-based

approaches aim to find anomalies after performing clustering or community detection.

b) Network structure-based approaches: This group of approaches exploit the given

network structure or different shapes of topology to compute graph-specific feature

space and to detect anomalous nodes (Akoglu et al. 2010; Hassanzadeh et al. 2012;

Hassanzadeh and Nayak 2013b,a). These approaches transform the anomaly detection

problem on networks into traditional outlier detection problem. Akoglu et al. (2010)

specify features of egonet such as degree of the ego, its total weight, number of edges

in the egonet, and principal eigenvalue of the weighted adjacency matrix of the egonet.

An egonet consists of a central node called ego and a set of neighbors to which the ego

is directly connected to, plus the edges among them. Henderson et al. (2011) extend the

feature base and propose an algorithm called ReFeX (Recursive Feature eXtraction) that

recursively aggregates node-based features with neighborhood or egonet-based features

and yields regional features by capturing behavioral information. After extracting the

feature space, any of the traditional outlier detection methods can be applied to detect

anomalous nodes.

c) Signal processing-based approaches: Signal processing on graphs is an emerging

field that extends the traditional signal processing for graphs and treat comparatively

small anomalous subgraphs as signals embedded in a much bigger network taken as the

background noise. In signal processing, if the signal is weaker, or if it resembles the

background more, then the signal is more difficult to process. In other words, when

the signal-to-noise ratio is low, signals are harder to detect, estimate, and classify. In

this setting, anomalous subgraph detection is a special class of the more general graph

partitioning problem in which the spectral properties of a graphs Laplacian matrix is

used to determine the presence of an anomaly (Miller et al. 2010, 2011, 2012; Bliss

2015; Miller et al. 2015).
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2.1. Anomaly Detection in Social Networks

Anomalous Node Detection

The state-of-the-art anomalous node detection methods on static unattributed networks

are based on clustering/community-based, network structure-based, and signal process-

ing - based approaches. This section reviews the anomaly detection methods that have

been developed for spotting anomalous nodes in static unattributed networks.

Clustering/Community-based approach: One of the earliest works on clustering/ com-

munity - based anomaly detection by Sun et al. (2005) addresses the problems of neigh-

borhood formation and spotting anomalous nodes in bipartite networks. The real-world

scenarios that can be represented with bipartite networks include: users versus files up-

load/download relationships in point-to-point networks, stocks versus traders network

in financial stock markets, and authors versus conferences relationships in publication

networks of different research areas. The anomalies in these settings can be: cross-

border files in point-to-point networks, cross-sector traders in financial stock networks,

and inter-disciplinary authors in publication networks. The authors proposed an algo-

rithm to find the community or neighborhood of each node in the bipartite graph using

random walks with restart and graph partitioning, and used this algorithm to detect

anomalous nodes in the network.

SCAN (Structural Clustering Algorithm for Networks) (Xu et al. 2007) and

GskeletonClu (Graph-skeleton based clustering) (Sun et al. 2010) are density-based

network clustering algorithms to identify clusters, hubs, and outliers in large networks.

These algorithms use the neighborhood of the nodes as the clustering measure rather

than their direct neighbors. Nodes sharing common neighbors are clustered together.

Nodes that interconnect several clusters are identified as hubs, and nodes that do not

belong to any cluster are designated as outliers. Both SCAN and GskeletonClu depend

on a sensitive parameter called minimum similarity threshold for clustering. Whereas

SCAN provides no automated way to find the minimum similarity threshold, Gskele-

tonClu automates the issue of selecting the parameter.

Network-structure based approach: Akoglu et al. (2010) proposed a network structure-

based technique called OddBall to discover anomalies such as clique/near-clique, star/

near-star, heavy vicinity, and dominant edge patterns from large, weighted networks.

Oddball uses the features of egonet such as degree of the ego, its total weight, number

of edges in the egonet, and principal eigenvalue of the weighted adjacency matrix of the

egonet to detect anomalies. The egonet features are then examined in pairs and different
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2.1. Anomaly Detection in Social Networks

power-law rules are defined among the features. The majority of egonets follow these

power-law rules. The set of nodes that do not conform to these rules are declared as

outliers.

On similar lines, Hassanzadeh et al. (2012) proposed a framework based on egonet’s

features for identifying anomalous nodes in social networks. The framework aims to

find the common behavior obeyed by majority of the nodes by computing graph theo-

retic properties of a node’s egonet such as number of nodes, number of edges, the aver-

age betweenness centrality, and community cohesiveness of the node’s super-egonet. It

then models the relationships between these metrics by using distribution models such

as linear and power laws. The anomaly score for each node is then calculated by de-

termining the distance between the linear and power law fitting line for each node’s

egonet. Based on the anomaly score, a labeled subset of nodes is obtained. In order to

minimize the number of false positives and false negatives, a threshold is computed for

the labeled subset of nodes using the scoring function.

The anomalous node detection methods presented in Hassanzadeh and Nayak

(2013b,a) consider fuzziness of user behavior in an online social network. The au-

thors propose hybrid methods that combine graph theoretic properties, clustering, and

Fuzzy logic for spotting anomalous individuals. In Hassanzadeh and Nayak (2013b),

as a first step, an initial anomaly score is computed based on the extend of similarity

with an egonet’s structure to clique or star, and named them as cliqueness and starness

scores respectively. A clustering algorithm based on Expected Maximization (EM) is

then used to categorize the users according to their initial anomaly scores. Finally, the

method makes use of Fuzzy logic using membership functions to define the degree of

anomalousness. In Hassanzadeh and Nayak (2013a), the initial cliqueness and starness

scores are computed based on the egonet features such as number of nodes and num-

ber of edges in the egonet. It then employs Expected Maximization-Gaussian Mixture

Model algorithm, Fuzzy c-means clustering algorithm, and a combination of Gaussian

Mixture Model and fuzzy logic to differentiate between normal and anomalous individ-

uals.

Kaur and Singh (2017) propose a network structure-based approach for detecting

near-star/near-clique anomalies by extracting features of the network such as egonet

node count, egonet edge count, and brokerage, and computing the anomaly score as the

deviation from linear and power laws.
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Anomalous Edge Detection

The existing anomalous edge detection methods on static unattributed networks are

based on clustering/community-based approach. This section provides an overview

of the different approaches developed for detecting anomalous edges from a static

unattributed network.

Clustering/community-based approach: Chakrabarti developed AUTOPART, a pa-

rameter - free, scalable, and iterative approach, to detect anomalous edges and node

groups. AUTOPART automatically partitions the network into clusters by re-organizing

the rows and columns of the adjacency matrix. The edges that do not belong to any clus-

ter as well as the edges that inter-connect different clusters represent anomalies. It also

differentiates the nodes that have many cross-cluster connections as anomalies. For

clustering the network, the algorithm employs Minimum Description Length (MDL)

principle (Rissanen 1999) for re-organizing the adjacency matrix of the graph into

homogeneous blocks. These blocks contain nodes that are more thickly connected to-

gether compared to the remaining nodes in the network.

Another community-based approach for detecting anomalous edges and nodes is

presented in Tong and Lin (2011). The authors propose a non-negative residual ma-

trix factorization framework (NrMF) to identify anomalous nodes and edges. NrMF is

based on low-rank approximations on the adjacency matrices of the network. The low-

rank approximation of adjacency matrix A is normally formulated in a factorized form,

A = FG + R, where F and G are factors and R is the residual matrix. The low-rank

factors F and G show the community structure in the network, whereas the residual

matrix R often indicates anomalies in networks. Unlike the traditional non-negative

matrix factorization (NMF) that restricts the factors F and G to be non-negative, NrMF

enforces non-negativity constraint on the residual matrix R for finding anomalies.

Anomalous Subgraph Detection

The algorithms developed for detecting anomalous subgraphs from a static unattributed

network are based on network structure-based and signal processing-based approaches.

In this section, the different techniques proposed for anomalous subgraph detection in

static unattributed networks are reviewed.

Network structure-based approach: In email spam and viral marketing in social net-

works, the fraudulent user creates a set of fake identities and uses these identities to
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interact with a large random set of innocent users. Shrivastava et al. (2008) defined Ran-

dom Link Attacks (RLA) to model such collaborative malicious activities and proposed

algorithms to mine subgraphs satisfying the RLA property. RLA is detected in two

steps: the first step is identifying the suspect nodes that are possibly part of the attacker

cluster by conducting two tests on each individual nodes in the network: clustering test

and neighborhood independence test. As the innocent users are chosen at random, they

are improbable to be interconnected, forming a star-like pattern in the network. In order

to detect the suspect nodes in the network, the triangles in each egonet are counted, with

a lower triangle count indicating an attacker. In the next step, the attack set is identified

by growing the neighborhood of the suspect nodes.

Signal processing-based approach: The signal processing-based framework proposed

in Miller et al. (2010) uses L1 properties of the eigenvectors of the network’s modular-

ity matrix to determine the presence of an anomalous subgraph. The framework aims at

determining whether an observed network was generated by a given random process or

if there is other behavior that deviates from the mode. The objective of the anomalous

subgraph detection problem is to solve the binary hypothesis test:

H0 : The network is the large background graph without anomalous subgraphs (noise)

H1 : The network is the large background graph with anomalies (signal+noise)

The framework employs the R-MAT Kronecker graph (Chakrabarti et al. 2004) as the

background network in the null hypothesis. This graph model exhibits a heavy tailed

power law degree distribution and inherent clustering of nodes often found in real-world

networks. In Miller et al. (2011), the detection framework and the related algorithms

proposed in Miller et al. (2010) are applied for the specific problem of detecting threat

subgraphs embedded in social networks. On similar lines, Miller et al. (2015) proposed

a framework based on the principal eigenspace of the network’s residuals matrix in

which an observed random network is compared to its expected value to find anoma-

lous subgraphs.

2.1.2.2 Static Attributed Networks

Anomalies in static attributed networks are determined by analyzing the network topol-

ogy as well as the attributes associated with nodes and/or edges. As mentioned in

Section 2.1.1.1, the additional information available on nodes and edges of the network

can significantly improve anomaly detection.
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The anomaly detection methods developed for static attributed networks mainly

identify anomalous nodes and subgraphs. In this section, first we categorize the methods

based on the underlying approach they follow, and then provide an overview of the

methods that have been proposed for detecting anomalies on static attributed networks.

Types of Approaches

The anomaly detection approaches that have been reported for static attributed networks

can be categorized into two groups: clustering/community-based and network structure-

based approaches. The clustering/community-based methods detect community out-

liers whose properties differ from other members in the community, whereas network

structure-based methods detect subgraphs that are rare with respect to the structure of

the attributed network.

a) Clustering/community-based approaches: This type of anomaly detection meth-

ods identify the subset of nodes within the context of communities such that their

characteristics differ significantly from other members of the same community. These

nodes are termed as community outliers. For instance, a low-income person having

many rich people as friends is an example of community outlier (Gao et al. 2010b).

The community-based anomaly detection methods proposed in Gao et al. (2010b) and

Muller et al. (2013) integrate attribute graph clustering and outlier detection in a single

algorithm.

b) Network structure-based approaches: This class of anomaly detection methods

aim to spot subgraphs or substructures in the network that are unusual with respect to

the structure as well as labels or attributes of the network. Most of these methods make

use of the SUBDUE (Holder et al. 1994) system, which is based on MDL principle,

for discovering frequent substructures within networks.

Anomalous Node Detection

The detection methods that have been reported for anomalous nodes are based on

clustering/community-based approach. This section reviews the different methods for

identifying anomalous nodes.

Gao et al. (2010b) introduced the concept of community outliers, and developed

a unified framework for detecting outliers and for discovering communities. They pro-

posed community outlier detection algorithm (CODA) that combines both community
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2.1. Anomaly Detection in Social Networks

detection and outlier detection in a probabilistic formulation based on Hidden Markov

Random Fields (HMRF), by combining information from both network structure and

node attributes. The node information is formulated as a mixture of Gaussian distri-

butions or multinomial distributions, whereas the network topology information is en-

coded as spatial constraints on the hidden variables via the HMRF model. Even though

the computational cost of the community outlier detection algorithm is linear in the

number of nodes, the success of the algorithm is highly dependent on the good initial-

ization of the clusters.

GoutRank (Muller et al. 2013) is an approach for ranking network nodes ac-

cording to their degree of deviation in both node attributes and network structure. The

approach focuses on the detection of complex outliers that deviate with respect to a

subgraph of highly connected nodes. Whereas the individual outlier is highly similar

to other nodes in the subgraph, it deviates significantly with respect to a subset of sig-

nificant attributes called subspaces. GoutRank addresses two problems: 1) the problem

of selecting subgraphs with their individual subspaces and 2) the problem of scoring

of nodes in these multiple subspaces. It uses graph clustering techniques and subspace

analysis as preprocessing steps for generating the outlier rankings.

Yang et al. (2015) developed a framework based on bipartite graph and co-clustering

for detecting anomalous users and messages in microblogging. A bipartite graph is con-

structed to represent homogeneous and heterogeneous interactions between users and

messages. Then, a co-clustering algorithm based on non-negative matrix tri-factorization

(NMTF) is used to discover anomalous users and messages at once, by considering not

only the user attributes and messages but also the homogeneous and heterogeneous in-

teractions. The framework detects both individual and group anomalous users.

Anomalous Subgraph Detection

The anomaly detection methods that aim to identify anomalous subgraphs are based on

network structure-based approach. This section provides an overview of the methods

proposed for anomalous subgraph detection.

Noble and Cook (2003) introduced two methods for identifying unusual pattens in

a network with categorical labels using the SUBDUE system. The first method identi-

fies specific, unusual substructures within a network. In the second method, anomalous

subgraphs are detected by partitioning the network into distinct, separate subgraphs

and then comparing each of them against the other subgraphs for unusual occurrences.
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The main idea behind the two methods is that subgraphs containing frequent substruc-

tures are generally less anomalous than subgraphs with few frequent substructures. The

SUBDUE system discovers frequent substructures and then compresses the network

with them. The anomalous subgraphs experience less compression compared to other

subgraphs, as they contain only few frequent substructures. The authors also introduced

a measure of graph similarity called conditional subgraph entropy, which specifies the

number of bits needed to describe a substructure’s surroundings. If the conditional sub-

graph entropy of a substructure is higher, then it is infrequent and hence it is anomalous.

Another method, also based on SUBDUE, that aims to uncover anomalies in at-

tributed networks is by Eberle and Holder (2007). They introduced a suit of three

algorithms called GBAD (Graph-Based Anomaly Detection) algorithms for discover-

ing anomalies in three types of possible changes in the network that nearly match

non-anomalous activities: node/edge insertions, node/edge label modifications, and

node/edge deletions. Each of the three algorithms aims at one of these anomalies and

employs the MDL principle to identify those substructures that constitute anomalous

nodes and edges. GBAD-P (Probability) algorithm detects anomalous node/edge in-

sertions, GBAD-MDL algorithm detects anomalous node/edge label modifications, and

GBAD-MPS (Maximum Partial Substructure) algorithm detects anomalous node/edge

deletions. The main idea behind the algorithms is to find anomalies where the anoma-

lous substructure in the network is part of a non-anomalous substructure called norma-

tive pattern.

The GBAD algorithms (Eberle and Holder 2007) operate on unweighted networks

with discrete node and edge labels, and can not incorporate continuous labels. To over-

come this problem, (Davis et al. 2011) presented YAGADA (Yet Another Graph-based

Anomaly Detection Algorithm), an algorithm to search attributed networks for anoma-

lies using both structural information and numeric labels. If the numeric values in the

network are normal, the algorithm discretizes the values with the same constant cate-

gorical label. If the values are abnormal, they are assigned an anomalous score. When

the network is subsequently searched for frequent substructures, the nodes with the

same constant value are incorporated into frequent patterns. The other values are infre-

quent and therefore substructures that contain them are anomalous. Like the algorithms

proposed by Noble and Cook (2003) and Eberle and Holder (2007), YAGADA also

employs SUBDUE to find frequent substructures.
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In a recent work, Gupta et al. (2014b) developed a query-based outlier subgraph

detection mechanism called Subgraph Outlier Detection Algorithm (SODA). Different

from the methods discussed so far, it accepts a subgraph as an input query and returns

top matching anomalous subgraphs from the original attributed network sorted by their

outlier score. An anomalous subgraph has many low-probability or unexpected edges

and lacking many high-probability or expected edges within itself, and between itself

and its neighborhood. The authors model the anomalous subgraph detection as a linear

optimization problem and use one-hop neighborhood information of the query subgraph

to deduce the feature weights. Apart from learning the feature weights, linear optimiza-

tion is also used to calculate the outlier score of the subgraphs.

This section presented a review of the various anomaly detection methods that are

proposed for static social networks. As the different methods are developed for differ-

ent application domains and for detecting different types of anomalies, a quantitative

comparison among the methods is not practical. However, a qualitative comparison

and summary of the different anomaly detection techniques that are developed for static

networks are shown in Table 2.1.

2.1.3 Anomaly Detection in Dynamic Social Networks

As dynamic social networks are constantly undergoing alterations to their structure

and/or attributes, the major tasks in identifying anomalies are to detect change-points

or events in time at which the majority of the nodes or edges deviate from their nor-

mal behavior, and to identify the particular parts of the network that are responsible

for the change-point. When considering the dynamic nature of networks, new types of

community-based anomalies such as formation of new communities, and splitting up

and disappearance of existing communities are also possible (Chen et al. 2012d). This

section provides a review of the existing methods for identifying anomalies in dynamic

social networks. The taxonomy of the survey is shown in Figure 2.2.

2.1.3.1 Event Detection

Event detection aims at finding the time points at which the change or event has hap-

pened, and then identifying the nodes, edges, and/or subgraphs that are responsible for

the event. An event is detected by comparing the similarity of the network snapshots at

consecutive time points.
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The similarity of the consecutive networks can be measured by comparing the

summaries extracted from the networks. When the similarity is less than a threshold, an

event is detected and the corresponding network snapshot is flagged as anomalous. The

methods proposed by Sun et al. (2007), Akoglu and Faloutsos (2010), Sun et al. (2006),

Kolda and Sun (2008), Aggarwal et al. (2011), Koutra et al. (2012), Huang and Zeng

(2006), Heard et al. (2010), Papalexakis et al. (2012), Miller et al. (2012), and Miller

et al. (2013) detect events from dynamic networks. As these methods detect anomalous

units such as nodes, edges, and/or subgraphs as well, they are discussed in detail in the

subsequent subsections.

2.1.3.2 Dynamic Unattributed Networks

For detecting anomalies from dynamic unattributed networks, only the alterations in

structure of the network in subsequent time steps are considered; the attributes asso-

ciated with nodes or edges are not considered. In this section, first we categorize the

methods based on the approach they follow, and then we describe the various methods

developed for dynamic unattributed networks.

Types of Approaches

The various approaches proposed for anomaly detection in dynamic unattributed net-

works can be grouped into three categories: matrix/tensor decomposition-based, com-

munity - based, and probability-based approaches

a) Matrix/tensor decomposition-based approaches: The decomposition-based meth-

ods identify anomalies by decomposing the adjacency matrix or tensor representation

of the dynamic networks and by analyzing the eigenvectors, eigenvalues, or singular

values appropriately (Sun et al. 2007; Akoglu and Faloutsos 2010; Miller et al. 2012;

Yu et al. 2013; Kolda and Sun 2008). Sun et al. (2006) introduced tensor streams to

solve the streaming problems in dynamic networks. Tensors are generalizations of ma-

trices. A dynamic network is represented as a third order tensor in which the first two

dimensions denote an adjacency matrix and the third dimension denotes the dynamics

of the network. The primary differences among the decomposition-based methods are

whether they employ a matrix or a tensor for representing the network, what informa-

tion is stored in the tensor, and how the matrix or tensor is decomposed.
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Nature of Input          Anomaly Type   Approach Used

  

Anomaly detection 
on dynamic networks 

Unattributed 
networks 

Nodes 

Matrix/Tensor 
decomposition-

based 

Community-based 

Probability-based 

Edges Probability-based 

Subgraphs 

Community-based 

Distance-based 

Matrix/Tensor 
decomposition-

based 

Probability-based 

Attributed 
networks 

Nodes 

Tensor 
decomposition-

based 

Probability-based 

Signal-processing 
based 

Edges 

Probability-based 

Signal-processing 
based 

Subgraphs 

Probability-based 

Signal-processing 
based 

Figure 2.2: Taxonomy of the survey on dynamic social networks. Methods are cate-
gorized based on the nature of input network, type of anomalies they identify, and the
underlying approach.
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b) Community-based approaches: Even though the communities in a network con-

tract, expand, merge, split, appear, vanish, or re-appear after a time period, majority

of the nodes within a community follow similar evolution trends which define the evo-

lution trends of the community (Gupta et al. 2012b,a). Community-based anomaly

detection approaches spot the nodes that do not follow the common evolution trend of

the communities.

c) Probability-based approaches: Probability-based approaches generally build mod-

els of normal behavior of the network based on probability theory, probabilistic distri-

butions, and scan statistics (Heard et al. 2010; Priebe et al. 2005; Pandit et al. 2007).

Several previous graph snapshots are used for building a model for normal behavior,

and every new incoming network instance is compared with this model. Any deviations

from this model are reported as anomalies.

Anomalous Node Detection

This section reviews the various anomaly detection methods that have been developed

for identifying anomalous nodes in the dynamic unattributed networks. The anomaly

detection methods that identify anomalous nodes are based on matrix/tensor decompo-

sition - based and community-based approaches.

Matrix/Tensor decomposition-based approach: In this section, at first an overview of

anomalous node detection methods based on matrix decomposition are presented. Then

an overview of the methods based on tensor decomposition are presented.

Sun et al. (2007) employ matrix decomposition for anomaly detection and propose

Compact Matrix Decomposition (CMD) to calculate sparse low rank matrix approxi-

mations. The low rank decompositions, such as Singular Value Decomposition (SVD)

and CUR, reveal hidden variables and associated patterns from high dimensional data.

However, they do not consider the sparsity property of the network, and therefore suffer

from high computational cost and memory requirements. CMD is computationally ef-

ficient and requires less space compared to SVD and CUR. In order to detect anomalies

using CMD, the low-rank approximations of input networks are used to summerize the

dynamic networks. The reconstruction error of each network is checked over time, and

any significant deviation is considered as anomalous and the responsible anomalous

nodes are reported.
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Anomalous nodes can be detected by comparing their behavior with their previous

normal behavior. Akoglu and Faloutsos (2010) proposed an algorithm based on eigen-

behavior analysis to detect events and the corresponding anomalous nodes in a dynamic

network. The algorithm uses the network structure for extracting various features of

each node’s egonet such as in-degree, out-degree, out-weight, number of neighbors,

reciprocal neighbors, etc. The behavior of each node from each network snapshot is

summarized by using these set of features. For each time window, a correlation ma-

trix of node features is created using Pearsons correlation coefficient and the principal

eigenvector is computed. The current behavior of each node is obtained by putting the

values of the eigenvectors in a vector. The past behavior of each node is computed

by SVD decomposition and is compared with the current eigen-behavior vector. If the

current behavior is found to be significantly different from recent past, current time

window is flagged as anomalous and reported as an event has occurred. The anomalous

nodes are identified by examining the singular vectors.

The signal processing-based approach proposed by Miller et al. (2012) also uses

matrix decomposition to find anomalous nodes in dynamic unattributed networks. A

residual matrix is constructed by taking the difference between the adjacency matrices

of observed network and the expected network. A probabilistic model called ChungLu

random graph model (Chung et al. 2003) is used for building the expected network.

The major analysis algorithm used in the approach is the partial eigen decomposition

of the residual matrix and calculation of its eigenvectors and eigenvalues. In order to

detect anomalous time windows, a linear ramp filter is applied on the residual matrices,

and then partial eigen decomposition is performed. The change in the top eigen vectors

is analyzed, and the anomalous nodes are identified by examining the eigen values.

Another method using matrix decomposition is presented in Yu et al. (2013) that

identifies important localized regions of change in a fast network stream by applying

Principal Component Analysis (PCA) locally. An edge correlation matrix, containing a

row and column for every neighbor of the node, is maintained for each node of the net-

work. The authors designed a localized PCA algorithm that can continuously maintain

information about the changes in different neighborhoods of the network, and used a fast

incremental eigenvector update algorithm to efficiently maintain local correlation infor-

mation. The eigenvector update algorithm is used to compute anomaly score for each

node at each time point. The nodes whose anomaly scores are higher than a threshold

are reported as anomalous at that point of time. The non-negative matrix factorization-
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based approach proposed by (Baingana and Giannakis 2016) jointly tracks temporal

communities and anomalous nodes in dynamic unattributed social networks.

In the last few years, tensors and tensor decompositions have gained increasing

popularity in the data mining community (Kolda and Bader 2009; Sael et al. 2015).

The anomaly detection methods proposed in Sun et al. (2006) and Kolda and Sun

(2008) use tensors instead of matrices for representing dynamic networks. Like ma-

trix decomposition, tensor decomposition also approximates the original data in a low

dimensionality. Sun et al. (2006) proposed two new techniques called dynamic ten-

sor analysis (DTA) and streaming tensor analysis (STA) to incrementally analyze and

summarize large tensors. These techniques are scalable, space efficient, and fully au-

tomatic. In order to detect anomalies, a multi-level screening process was followed,

where the anomaly is found from the broadest level and gradually narrowed down.

More specifically, the anomaly detection detection process consists of three steps: 1)

given a sequence of tensors, find the abnormal ones, 2) locate the abnormal modes on

those suspicious tensors and, then 3) identify the abnormal dimensions of the given

mode. The major idea of the algorithms is the decomposition of the tensors into projec-

tion matrices, and the modification of the matrices at each time step. If the modification

causes high reconstruction error, then the tensor of that time step is flagged anomalous;

and anomalous nodes, subgraphs and events are revealed.

The method presented in Kolda and Sun (2008) use Tucker decomposition (Tucker

1966) to decompose tensors. The problem with Tucker decomposition for sparse ten-

sors is that the input and output tensors cause memory overflow during the decomposi-

tion process. This problem is termed as intermediate blowup problem and the authors

propose a novel technique called memory-efficient tucker (MET) decomposition to ad-

dress this issue. MET decomposition optimally utilizes the available memory and is

computationally efficient. The MET decomposition approximates a higher order tensor

using a smaller core tensor and a matrix for every mode of the original tensor. The

reconstruction error is calculated for the smaller sub-tensors. If the error is high for a

specific sub-tensor, it shows a deviation form the norm and the sub-tensor is flagged as

anomalous.

Tensor analysis is a powerful and promising tool for detecting anomalies from

dynamic and multi-aspect network (e.g., DBLP networks with information about the

authors, papers and conference). Koutra et al. (2012) developed a PARAFAC ten-

sor decomposition-based method called TENSORSPLAT for identifying micro-clusters
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and anomalies from such networks. In a recent work, Jeon et al. (2015) put forth

HATEN2, a scalable and distributed suite of tensor decomposition algorithms running

on HADOOP, the open source version of the MAPREDUCE platform. HATEN2 unifies

Tucker and PARAFAC decompositions into a general framework such that the interme-

diate storage space and computational cost are minimized.

Community-based approach: Gupta et al. (2012b) introduced the concept of evolu-

tionary community outliers (ECOutliers) which are outliers with respect to evolving

communities. These outliers deviate from the common evolutionary trend of the re-

maining nodes in a community, and can be found by matching the communities across

multiple snapshots. The authors proposed an optimization framework that integrates

community matching and outlier detection. The framework employs a coordinate de-

scent algorithm to improve community matching and outlier detection performance it-

eratively. After matching the communities from successive snapshots, it generates out-

lierness score for every node in the community. These outlierness scores are used to

report the ECOutliers. On similar lines, Gupta et al. (2012a) introduced the notion of

Community Trend Outliers (CTOutliers), nodes that evolve in a dramatically different

manner compared with the rest of the community members, and propose a two-stage

approach to detect them. In the first stage, the normal evolutionary trend of the com-

munities is modeled using soft patterns discovered from the dataset (pattern extraction).

The second stage analyzes the soft patterns and detects nodes that deviate significantly

from the normal trend as CTOutliers (outlier detection).

Another method that detects nodes that do not follow normal community evolu-

tionary trend is proposed by Ji et al. (2013). The authors formulated an incremental

algorithm to discover local evolutionary outliers, LEOutliers, which are nodes with un-

usual evolutionary behavior only with respect to their local neighborhood, in a weighted

dynamic network. The local neighborhood of a node is described by its local neighbor-

hood subgraph called Corenet that includes itself and all the nodes within the two-step

neighborhood of the node that have a weighted path greater than a threshold. The al-

gorithm that detects LEOutliers consists of two stages: 1) discovering Corenets based

on the network topology and edge weights, and 2) measuring outlier score by inspect-

ing and comparing Corenets at different snapshots. Nodes having top outlier scores are

declared as outliers.

Rossi et al. (2013) presented a fully automatic, community-based method called

Dynamic Behavioral Mixed-Membership (DBMM) model to identify node roles, such
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as star-centers or bridge nodes, and to detect anomalous nodes. DBMM model uses non-

negative matrix factorization approach as well as MDL principle to calculate node role

memberships. It generates the role transition model for each node based on the evolu-

tionary behavior, and uses this transition model for predicting the network memberships

at the next time step. The anomaly score of each node is computed by comparing the

predicted network role memberships and actual role memberships.

Another community-based method to detect anomalous nodes is by Araujo et al.

(2014). The method spots nodes that constitute comet communities which appear and

disappear periodically. The dynamic network is modeled as a three-mode tensor, and

PARAFAC decomposition is performed to obtain candidate communities. The method

then applies MDL principle to identify important communities and to determine the

correct community size. Based on the important communities detected, the authors

use the principle of tensor deflation to find novel comet communities in subsequent

iterations.

Probability-based approach: One of the earliest works on network-based anomaly

detection by Priebe et al. (2005) uses scan statistics, commonly known as moving win-

dow analysis, to detect the anomalous nodes. The basic idea of scan statistics is to scan

a small window over data, computing some local statistics for each window. The high-

est value of the local statistics is referred to as the scan statistic. The method proposed

in Priebe et al. (2005) applies scan statistics on disjoint one-week windows of the EN-

RON who-emails-whom network to find network instances that have remarkably high

interactions compared to the past. The number of edges in the neighborhood of each

node is taken as the local statistics. The network instance is flagged as anomalous, if

the scan statistics is above a threshold value, and the nodes and edges that contribute

most to the change are deemed as anomalies.

Another method that aims to find anomalous nodes based on probabilistic models

is by Pandit et al. (2007), who proposed an approach called NetProbe to detect fraud-

sters in online auction networks. NetProbe represents auction users and their transac-

tions as a Markov Random Field to identify the subgraphs of fraudsters in the network,

and uses Belief Propagation to predict which users are likely to commit frauds in the

future. It classifies the users of the auction network as fraudster, accomplice, or honest.

The interaction between fraudsters and accomplices form bipartite cores, and fraudsters

can be uncovered by discovering those cores.

38



2.1. Anomaly Detection in Social Networks

The anomaly detection method developed by Heard et al. (2010) exploits a proba-

bility - based approach to find anomalous nodes, edges, and subgraphs in the dynamic

network. The method uses a two-step Bayesian approach. In the first step, the interac-

tion between node pairs is tested for anomalousness by calculating a predictive p-value

according to the Bayesian learning of the count distributions. If the derived predictive

p-value falls below a fixed threshold, it represents a deviation from previously mod-

eled behavior. The node pairs are then said to be anomalous and are added to the set

of anomalous nodes for this period. The algorithm considers the network snapshots

as a stream. It discovers changes in the incoming networks according to the history

(sequential analysis), and modifies the history according to the new network snapshot

(retrospective analysis). In the second stage, a subnetwork is constructed around this set

of nodes, normally extended to include other nodes that have recently interacted with a

node in this set, and then standard clustering techniques are applied to investigate the

structure in this small subnetwork.

Anomalous Edge Detection

Anomalous edge detection methods aim to find patterns of interaction among individ-

uals that deviate from the usual pattern of interaction in the network. The anomalous

edge detection methods on dynamic unattributed networks are based on probability-

based approach.

Probability-based approach: Anomalous edges in a dynamic network can be dis-

covered by applying link prediction techniques. Future interactions can be predicted

through link prediction and the interactions that are very unlikely to occur are deemed

as anomalous. Huang and Zeng (2006) developed an anomalous email detection frame-

work by applying a link prediction based formulation. The probability that an interac-

tion occurs between two individuals is estimated using expectation maximization, and

is used for assigning likelihood scores to each interaction afterwards. The emails that

have low likelihood scores are flagged as anomalous.

Another probabilistic approach that identifies events and anomalous edges in stream-

ing networks is Goutlier that is proposed by Aggarwal et al. (2011). It uses a reser-

voir sampling approach to capture a structural summary of the network. The sampling

method employs node partitioning to yield a summary of the network. When a new

network arrives, the likelihood probability of every edge in the network is computed ac-
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cording to the edge generation models of the various node partitions. After calculating

the edge likelihood probabilities, the incoming network’s global network likelihood is

computed by taking the average of all the edge likelihood probabilities. The network is

flagged as an outlier, if its likelihood probability is t standard deviations below average

of all previous networks. The scan statistics approach proposed by Priebe et al. (2005),

discussed in Section 2.1.3.2, can detect anomalous edges as well, apart from detecting

anomalous nodes on a dynamic unattributed network.

Anomalous Subgraph Detection

The methods that detect anomalous subgraphs in the dynamic unattributed graphs are

based on community-based, distance-based, matrix/tensor decomposition-based, and

probability-based approaches. This section discusses the different anomalous subgraph

detection methods that have been developed for dynamic unattributed networks.

Community-based approach: When considering the dynamic nature of networks,

new types of community-based anomalies such as formation of new communities, and

splitting up and disappearance of existing communities are also possible. The notion of

community-based anomalies are introduced by Chen et al. (2012d). They proposed a

representative-based technique to identify six types of community-based anomalies that

are possible in dynamic networks: growing, shrinking, merging, splitting, appearing,

and disappearing communities. The technique is based on graph representatives and

community representatives. The graph representative of a network snapshot is the set

of nodes that appear in the previous as well as the succeeding snapshots; the community

representative of a community is the node that appear in less number of other commu-

nities in a network snapshot. The communities are modeled as maximal cliques and

therefore enumerating communities is an NP-hard problem. The network snapshots in

consecutive time steps are compared using graph and community representatives, thus

reducing the computational cost involved in enumerating various communities.

Distance-based approach: Mongiovi et al. (2013a) developed an iterative formulation

called NetSpot for spotting and summarizing anomalous subgraphs called Significant

Anomalous Regions (SAR) in weighted dynamic networks. SAR is a generalization of

an NP-hard problem called Heaviest Dynamic Subgraph (HDS) problem. The anoma-

lousness of each edge in each graph instance is calculated as its statistical p-value, based

on the distribution of weights on the edge. If the p-value is lower, the edge is anoma-
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lous. NetSpot alternates between detecting the subgraph that maximizes the anomaly

score for a given time window, and detecting the time window that maximizes the score

for a given subgraph. The algorithm outputs the regions of the network whose anomaly

scores are higher than a threshold value, along with their respective time windows.

This work is extended in Mongiovi et al. (2013b) to allow for the subgraphs to

change gradually in consecutive time steps. The network may shrink or expand between

contiguous snapshots. Hamming distance between the set of edges is used as a distance

measure to determine the amount of variation between two adjacent subgraphs. The

authors presented a filtering based framework called LEGATO for mining smoothly

evolving subgraphs in weighted dynamic networks.

Matrix/Tensor decomposition-based approach: The matrix/tensor decomposition -

based methods (Tong et al. 2008; Sun et al. 2006, 2007; Kolda and Sun 2008; Koutra

et al. 2012) for anomalous node detection discussed in Section 2.1.3.2 can detect

anomalous subgraphs as well.

Probability-based approach: Thompson and Eliassi-Rad (2009) put forth a probability-

based algorithm to find anomalous subgraphs from a time-evolving network. The recent

behavior pattern of the network is modeled as a cumulative network that summarizes all

past edges but gives more weight to recent edges by using an exponential decay model.

The normal behavior of the subgraphs is modeled by identifying persistent patterns

among nodes. A persistent pattern is a set of nodes that communicate frequently and

form a connected component. Persistent patterns are identified from a given cumulative

network by extracting subgraphs whose edge weights are beyond a threshold value. In

order to detect anomalous subgraphs, the current activity at a particular point of time is

compared with the expected normal activity based on recent behavioral patterns. If the

subgraph deviates significantly from the expected activity, it is classified as anomalous.

2.1.3.3 Dynamic Attributed Networks

For detecting anomalies from dynamic attributed networks, the attributes associated

with nodes and/or edges are considered, in addition to the alterations in network struc-

ture over time. In spite of the fact that the additional information provided by the nodes

and/or edges can improve the anomaly detection significantly, only very few papers

are found on anomaly detection in dynamically evolving attributed networks. In this

section, firstly the methods that have been developed for detecting anomalies from dy-
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namic attributed networks are classified based on the underlying approach, and then an

overview of the methods are provided.

Types of Approaches

The methods that have been proposed for detecting anomalies from dynamic attributed

networks can be categorized into three: tensor decomposition-based, probability-based,

and signal processing-based approaches.

a) Tensor decomposition-based approach: As explained in Section 2.1.3.2, the de-

composition - based anomaly detection methods use matrices or tensors to represent the

dynamic networks, and exploit their decomposition to detect the anomalies. The method

proposed by Papalexakis et al. (2012) uses tensor decomposition to detect anomalies in

dynamic attributed networks.

b) Probability-based approach: Based on probability theory, the approaches presented

in Heard et al. (2010) build models of normal behavior of dynamic networks by ana-

lyzing several previous network instances. Every new incoming network instance is

compared with this normal model, and any deviations are flagged as anomalous.

c) Signal processing-based approach: As discussed in Section 2.1.2.1, signal pro-

cessing on graphs treat comparatively smaller anomalous subgraphs as signals embed-

ded in a much bigger network taken as the background noise.

Anomalous Node, Edge, and Subgraph Detection

This section surveys the anomaly detection methods that have been developed for spot-

ting anomalies in dynamic attributed networks.

Tensor decomposition-based approach: Papalexakis et al. (2012) presented a fast and

parallelizable approach called ParCube, for speeding up sparse tensor decompositions

by using random sampling techniques. ParCube is a method for PARAFAC decompo-

sition and can process tensors that do not fit in memory. In order to represent attributed

networks using tensors, the labels are to be mapped into real numbers. The anomalous

nodes at particular time steps are detected by tracking the unusual patterns in the factors

of tensor decomposition.

Probability-based approach: The probability-based method by Heard et al. (2010),

discussed in Section 2.1.3.2, can detect anomalous nodes, edges, and subgraphs in dy-
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namic networks with categorical attributes as well. A recent probability-based approach

called HCODA (Pandhre et al. 2016) detects Holistic Community Outliers (HCOut-

liers) that are nodes connected to several nodes of other communities in attributed net-

works.

Signal processing-based approach: The proposed framework by Miller et al. (2013)

exploits signal processing for graphs to find anomalous nodes and subgraphs from dy-

namic attributed networks. This framework treats a network as an instance drawn from

a distribution of random graphs, and performs spectral analysis of graph residuals (i.e.,

the difference between the observed graph and its expected value) to determine the

presence of anomalies. The expected value is obtained by assuming that the probability

of occurring an edge between any two nodes is a function of the linear combination

of the labels on the nodes. Apart from the aforesaid methods, the anomaly detection

methods developed by Araujo et al. (2014) and Koutra et al. (2012), discussed in Sec-

tion 2.1.3.2, can incorporate attributes as well, even though they are not applied in

dynamic attributed networks.

In this section, the various anomaly detection methods that have been developed

for dynamic social networks have ben discussed. Even though there has been consider-

able amount of work in developing anomaly detection methods for dynamic unattributed

networks, it is observed that there is a minimal published information relating to min-

ing dynamic attributed networks for anomalies. However, a qualitative comparison and

summary of anomaly detection methods proposed for dynamic social networks is shown

in Table 2.2.

2.1.4 Research Directions and Challenges

In this section, a multitude of methods for mining social networks for anomalies are

examined. Even though there are a wide variety of methods for anomaly detection in

social networks, this field is still relatively young and rapidly growing, and there is

a significant scope for future research. In this section, the open issues and research

challenges in this area are discussed.

Unlike the traditional anomaly detection methods which analyze independent and

identically distributed data objects, anomaly detection in social networks is primarily

based on the interactions among different individuals in the network.
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2.1. Anomaly Detection in Social Networks

Moreover, as the social network is highly interconnected, the spreading of anoma-

lies also needs to be taken care of. This makes the anomaly detection problem on

social networks different from other forms of anomaly detection. Similar to the tradi-

tional anomaly detection problem, anomaly detection in social networks is also highly

application-specific, and most of the approaches were developed by keeping a set of

requirements and constraints in mind. Hence, a quantitative comparison among the

methods is not practical as they identify different types of anomalies. Moreover, with

the different methods discussed, deciding a particular algorithm for anomaly detection

is a difficult task. There is no generic algorithm for anomaly detection in social net-

works. The factors that are to be considered when selecting an appropriate algorithm

are the different aspects of the application such as the type of the network examined and

the types of anomalies to be detected.

The challenges associated with traditional anomaly detection are already discussed

in Section 1.1. Apart from those challenges, anomaly detection in social networks

encounters the following challenges specific to network data:

• Computational complexity: In this era of Big Data, detecting anomalies in so-

cial networks is a computationally intensive task due to their huge size and dy-

namic nature. More specifically, in order to enumerate anomalous units in net-

works, the detection algorithms have to search the entire complex network, due

to which the time and space complexities of the detection algorithms are often

high. Therefore, it is hard to develop an efficient and scalable method for mining

anomalies from social networks.

• Streaming networks: The area of streaming social networks is relatively new,

and poses many new challenges as a result of the complexities in maintaining

real-time structural summaries of the network streams arriving over time. They

typically require real-time analytical techniques for anomaly detection. Develop-

ing scalable approaches for detecting anomalies in streaming networks is a major

area for future research.

• Dynamic attributed networks: Even though there has been substantial amount

of work in developing anomaly detection methods for dynamic unattributed net-

works, it is observed that there is a minimal published information relating to

mining dynamic attributed networks for anomalies. Therefore, exploring and

identifying the real-world applications for anomalies in such networks, and de-
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2.1. Anomaly Detection in Social Networks

veloping definitions and algorithms for such anomalies are promising research

directions.

• Maintaining history of updates: When a network has evolved significantly, the

dynamic anomaly detection algorithms do not exploit the past updates occurred

to the nodes or edges. For instance, for a user having a strong interaction with a

malicious user in the past and the edge is later deleted, the existence of such an

edge should be considered while making future evaluations. The existing meth-

ods treat the edge removal as a simple edge alteration. Therefore, developing

anomaly detection methods that can maintain history of dynamic updates is an

open area of research.

• Feature extraction: Selection and extraction of appropriate, meaningful, and

unique feature space are essential in many of the anomaly detection techniques

on social networks. The features should be easy to compute, able to differentiate

anomalous and normal objects, and able to resist noises. Considering the huge

size of the networks, the selection and extraction of a suitable feature space that

can map the real-world behavior of interest are challenging tasks in the anomaly

detection process.

• Performance evaluation: Due to the lack of publicly available network datasets

with explicit ground truths, the evaluation of the detection methods is often dif-

ficult. In many cases, researchers have to perform their experimental analysis

on synthetic data by injecting anomalies or have to manually investigate the top

ranked anomalies by using the real-world domain knowledge. Furthermore, there

is no accepted standard for evaluating an anomaly detection system developed for

social networks.

• Anomaly detection in multi-layer social networks: The social relationships

between individuals are often multiple in nature. For example, same set of indi-

viduals can interact through different social networks such as Facebook, Twitter,

and Google Plus. This information can be modeled by using a multi-layer net-

work, where each layer captures the interaction in one social network (Boccaletti

et al. 2014; Dong et al. 2014). The anomaly detection methods discussed in the

previous sections have been developed for single-layer networks with only one
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2.2. Multi-layer Networks

mode of interaction. Combining the rich information from all the network layers

for detecting anomalies is an interesting research direction in this area.

2.2 MULTI-LAYER NETWORKS

The study of multi-layer networks provides new insights into diverse areas of science

including social systems, biology, physics, web, and engineering systems. Recently,

multi-layer networks have become extremely popular in multi-disciplinary research do-

mains and a substantial amount of effort has been dedicated to their mathematical mod-

eling and characterization. More recently, a great effort has been directed to extending

the classical single-layer network problems to multi-layer settings. Bródka et al. (2012)

analyze the neighborhood in multi-layer networks and introduce cross-layer degree cen-

trality, different variants of multi-layer degree centralities, and cross-layer clustering

coefficient. Halu et al. (2013) extend the classical PageRank centrality to multi-layer

networks. Brodka et al. (2011) address the problem of shortest-path discovery in multi-

layer social networks.

The significant research directions in multi-layer networks include clustering/ com-

munity detection (Dong et al. 2012; Mucha et al. 2010; Rodriguez and Shinavier

2010; Berlingerio et al. 2011; Shiga and Mamitsuka 2012; Tang et al. 2012; Berlin-

gerio et al. 2013b; Afsarmanesh and Magnani 2016; Jeub et al. 2015; Hmimida

and Kanawati 2015), layer communities (Kao and Porter 2017), layer-reduction (De

Domenico et al. 2015), link prediction (Ahmad et al. 2010; Rossetti et al. 2011;

Pujari and Kanawati 2015; Jalili et al. 2017), information diffusion (Eslami et al.

2011; Ramezanian et al. 2015; Salehi et al. 2015) (For a comprehensive survey on

spreading processes, the readers are referred toSalehi et al. (2015)), and visualization

(De Domenico et al. 2014; Redondo et al. 2015; Renoust et al. 2015; Rossi and

Magnani 2015). The methods proposed by Rodriguez and Shinavier (2010); Tang

et al. (2012); Berlingerio et al. (2011) detect communities in multi-layer networks by

transforming them into single-layer networks and by applying the existing community

detection methods on the single-layer networks. This results in the loss of informa-

tion embedded in individual layers. Dong et al. (2012) propose a spectral approach for

clustering multiple graphs, and Afsarmanesh and Magnani (2016) identify overlapping

communities in multiplex networks by extending the popular clique percolation method

for single-layer networks.
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2.3. Spammer Detection in Social Networks

In contrast to the above-mentioned research areas, anomaly detection in multi-

layer networks is an unexplored area of research. Hence, in this work, a pioneer ap-

proach for anomaly detection in multi-layer networks is proposed.

Research Challenges

The challenges faced by researchers in multi-layer network analysis are as follows:

1. Multi-layer social networks are much more difficult to analyze than single-layered

networks, because there is no well-known and widely-accepted mathematical

framework and measures for them.

2. Multi-layer social networks are often heterogeneous, i.e., they can be directed

vs. undirected, weighted vs. unweighted, signed vs. unsigned, or have different

degree densities.

3. Real-world multi-layer social networks are often huge and non-trivially notice-

able, since no single organization has full control over all the layers.

4. The structure of the multi-layer social networks changes over time leading to dy-

namic multi-layer social networks, which makes the analysis much more complex

and time-consuming.

2.3 SPAMMER DETECTION IN SOCIAL NETWORKS

Most of the research on spam detection in social networks has been developed for de-

tecting spam messages or individual social spammers (Benevenuto et al. 2010, 2008;

Lee et al. 2010; Stringhini et al. 2010; Yang et al. 2013; Wang 2010). Limited

amount of research has been dedicated to understand the social relationships existing

among the spammers in social networks. The spam content detection usually includes

content-based filtering (Benevenuto et al. 2010), URL blacklists (Gao et al. 2010a),

and spam traps known as honeypots (Lee et al. 2010, 2011; Stringhini et al. 2010) to

build classifier algorithms.

Initial works on spammer detection in Twitter majorly focused on analyzing the

social behavior and network characteristics of spam accounts by studying a spam cam-

paign (Yardi et al. 2009; Mustafaraj and Metaxas 2010). Similarly, a study of the

spread of Astroturf memes for a political campaign in Twitter is analyzed by Ratkiewicz

49



2.3. Spammer Detection in Social Networks

et al. (2011a,b). These works mainly focus on information diffusion in Twitter based

on content using a supervised algorithm (Ratkiewicz et al. 2011a) and use of network

information using a clustering algorithm (Ratkiewicz et al. 2011b). Gao et al. (2010a)

present the quantification and characterization of spam campaigns in social networks

by detecting spam clusters using the content and user behavioral characteristics. Spam

clusters are initially detected based on similarity of URLs posted by the users to form

correlated subsets of posts. Using the dual behavioral hints of burstiness and distribu-

tive communication within subsets, the identification of malicious spam campaigns is

performed. The distributive property focuses on the number of users within a commu-

nity sending the same set of URLs and the bursty nature depicts the short time span

within which the messages were posted. Thomas et al. (2011) analyze the suspended

accounts by Twitter to learn about the tools, techniques, and support infrastructure used

by spammers.

A multitude of spammer detection techniques based on machine learning classifi-

cation algorithms have been developed by researchers. Such classification models use

machine learning techniques from training instances to learn and develop a spam sig-

nature (Benevenuto et al. 2010; Lee et al. 2010; Wang 2010; Chu et al. 2010; Song

et al. 2011). These techniques employ network information (in-degree, out-degree,

bi-directional links, etc.), user profile information (about me, address, etc.), content in-

formation, and user behavior (interactions with other users, clustering coefficient, etc.).

Stringhini et al. (2010) has developed a machine learning algorithm that uses textual

features of spammer profile and their interactions in the network to develop spam sig-

natures. Initially, it involves human classification for building the training set. The

process of human inspection to build classifiers is a costly process involving a lot of

human efforts to build training data. Spammers constantly can adapt to the classifica-

tion algorithms strategies/tactics and make their feature sets match to the feature sets

of legitimate users to avoid being detected by spam detection classifiers. The spam

classifiers can go stale quickly by the adaptation of spammers. It is based on the as-

sumption that spammers follow a pattern in their profile description and use a set of

distinguished keywords and URLs while interacting with other users. However, this as-

sumption has been found to be evaded by copy-profiling (imitation of the profile of legit-

imate user) and content obfuscation by spammers (Song et al. 2011; Yang et al. 2013).

Wang (2010) and DeBarr and Wechsler (2009) utilize more robust characteristics such

as graph-based metrics and degree centrality-based metrics to detect spammers. Ben-
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2.3. Spammer Detection in Social Networks

evenuto et al. (2008, 2010) employ video rating, user behavioral characteristics, and

topological characteristics to detect spammers in video sharing online social networks.

Another method proposed by researchers to detect spammers is content-based

analysis known as keyword-based filtering (Grier et al. 2010). The drawback of

content-based analysis is that it involves a huge amount of computation and usually

has a big delay in identifying malicious links. Secondly, spammers use non-dictionary

words or images to counter the keyword-based filtering. Tools have been developed

for detecting spammers that post the same tweet with the same meaning but different

words, and posted to a large random base of users. Moreover, there has been a change

in Twitter Policy in allowing the content access due to the user privacy protection is-

sue. The utilization of user-content for detecting spammers is often being reported as a

violation of privacy by many users.

Finally, many existing studies on spammer detection depend on using social hon-

eypots to attract and detect spammers (Lee et al. 2010, 2011; Yang et al. 2014).

Social honeypots are administered bot accounts which monitor and log spammer be-

havior and features. Any unusual activity by a user is automatically logged by the bots.

These spammers are later manually classified and further analyzed by the researchers

to develop spam signatures. Finally, the information collected in logs and the spam

signatures are used to develop classification algorithms based on machine learning ap-

proaches. Yang et al. (2014) employ tweet content and user behavioral characteristics

using social honeypots to identify the taste of spammers. The tastes identified from

the machine learning algorithm is used to further detect spammers. However, honeypot

classification is not much efficient in terms of entire Twitter scope involving a huge

number of spam accounts. These techniques require passively waiting for spammers

and thus does not include all spammers. Additionally, the spammer can evade honeypot

detection by copy-profiling. Honeypot classification is not scalable and requires manual

efforts. As discussed above, the manual classification is a tedious, time-consuming, and

heavy-weight process. Given the restricted time and resource constraints, relatively a

much simpler and automated process is desired to detect spammers from such a large

base of Twitter universe.

Zheng et al. (2015) analyze the message content and user behavior in the social

network to extract a set of features and apply the feature set on an SVM classifier to de-

tect spammers and obtain better classification results. But, this approach requires more

training time and requires manual adjustment for selecting parameters. On similar lines,
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2.3. Spammer Detection in Social Networks

Zheng et al. (2016) propose an extreme learning machine (ELM) based supervised clas-

sification approach to detect spammers by analyzing message content and user behavior.

The ELM-based approach provides better performance than SVM-based approaches.

A summary and comparison of the features and methods used by popular spam

detection techniques are presented in Table 2.3. The methods popularly used by re-

searchers include supervised learning, URL blacklisting, clustering, and use of social

honeypots to trap spammers. The spammer detection algorithms require certain fea-

tures to detect spammers. It can be contextual features such as tweet content, URL

information, length of profile description, username, etc. to detect spammers. Content

information provides most accuracy in detecting spammers but involves lot of compu-

tation to recognize the credibility of content. Next, the spam detection techniques use

more generic network or topological information. The network information consists of

number of followers, followings, bidirectional links, clustering coefficient, mean de-

gree, etc. Network information is easy to compute and has more availability. Based

on the topological characteristic of known spammers, a spam signature can be created

to detect future spammers. However, spammers usually are successful in evading most

of the network signature detection techniques by mimicking legitimate users. Finally,

there are some behavioral features that are extracted by researchers to detect spam ac-

counts. The behavioral features depict the general behavior of an account in a social

network. It includes features such as ratio of URLs in tweet, fraction of hashtags in

tweet, number of re-tweets, ratio of username in tweet, burstiness in tweet, etc. The

behavioral features are robust features that the spammers find difficult to evade. The

spammer needs to behave like legitimate users to avoid detection which is harder as

compared to mimicking topological characteristics. In this work, all the three kinds of

features, ie., content, network, and behavior, are employed to detect spammers. The

network and behavioral features introduced are most robust and very hard to mimic for

spammers. Additionally, the community-based features used to detect spammers make

the proposed approach novel and robust.

The overlapping community structure exists even for spammers in social networks.

Spammers are known to form a close-knit communities among themselves with high

clustering coefficient. Additionally, these spammers send a large number of spam mes-

sages to a large base of random legitimate users. These randomly selected users are

generally socially unconnected and does not show community structure among them-

selves. This kind of spam attack is called Random Link Attack (RLA) (Shrivastava
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2.3. Spammer Detection in Social Networks

Table 2.3: Summary and comparison of articles on spam detection in social networks

Features Methods
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Benevenuto et al. (2008) X X X
Yardi et al. (2009) X X X
DeBarr and Wechsler (2009) X X
Lee et al. (2010) X X X
Benevenuto et al. (2010) X X X
Gao et al. (2010a) X X X
Grier et al. (2010) X X
Stringhini et al. (2010) X X X X
Wang (2010) X X X
Mustafaraj and Metaxas (2010) X X X
Chu et al. (2010) X X X X
Ratkiewicz et al. (2011a) X X
Ratkiewicz et al. (2011b) X X
Song et al. (2011) X X
Fire et al. (2012) X X X
Yang et al. (2012) X X
Hu et al. (2013) X X X
Bhat and Abulaish (2013) X X
Yang et al. (2014) X X X X
Zheng et al. (2015) X X X
Zheng et al. (2016) X X X

et al. 2008). Generally, the clustering coefficient is a good feature that can be exploited

to detect RLA attacks. Hence, the authors use clustering coefficient and neighborhood

independence to tackle with RLA from spammers in networks. Spammers usually form

connections among themselves and with supporters (users that readily follow back) to

obtain a high clustering coefficient similar to legitimate users to evade RLA detection

schemes.

Fire et al. (2012) incorporate the idea of using community detection to detect

spammers. Each community detected by them was analyzed based on the interactions

of the user, in-degree and out-degree of the user, the number of communities the users
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belongs to, and the number of edges between the friends of the user. Bhat and Abulaish

(2013) proposed the detection of dynamic overlapping communities, and exploited the

role and interaction of nodes within the communities to classify them as spammers or

legitimate users.

The works of Yardi et al. (2009); Gao et al. (2010a); Yang et al. (2013), and

Thomas et al. (2011) provide us with deep and valuable insight with the tools, tech-

niques, and characteristics that describe the spammers. The taste of the spammers and

the strategies that can be used to effectively detect spammers have been addressed by

many recent researchers. However, the existing techniques involving machine learn-

ing approaches, URL blacklisting, and social honeypots have limitations as described

above. Additionally, significantly less amount of work has been carried out in the di-

rection of analysis of community structure among spammers.

The motivation for the proposed work comes from RLA (Shrivastava et al. 2008)

prevalent in social networks including Twitter and the existence of spammer community

ecosystem (Yang et al. 2012) in social networks. Compared to the existing literature,

our work primarily focuses on detection of spammer community ecosystem - investi-

gating the overlapping community structures existing in the social network along with

URL similarity, uniqueness, user topological features, and user profile features to clas-

sify users as spammers.

2.3.1 Research Directions and Challenges

Most of the existing work has been based on learning content or user based features to

detect spammers. Commonly, the features used to detect spammers include the num-

ber of follow, the number of followers, the number of malicious URLs, follower to

follow ratio, reputation, number of re-tweets, etc. Still improvements can be made by

addressing some unexplored areas and techniques that are mentioned as follows:

• Even though the signatures that use user and content-based features to detect

spammers are useful, they are not robust and can get stale because spammers use

various tools and techniques to evade detection and conceal their fake identities.

The focus must be on identifying the behavioral characteristics of spammers to

help behavior-driven suspicious signatures in detecting them.
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2.4. Summary

• Spammers usually operate as a group within a same locality and time period.

There is a lack of research in the direction of detecting spammers based on inten-

tion, environment, and temporal information of spammers.

• Most of the existing techniques for spammer detection employ spammer scores

or thresholds based on their signature. If any user is crossing the threshold, it is

marked as a spammer. Quantification of spammer score to essentially classify the

user as a spammer or legitimate user is still an open issue.

• The in-depth analysis of the community structure of spammers existing in social

networks is a significant open issue.

2.4 SUMMARY

In this chapter, a structured review of the various methods proposed for anomaly and

spammer detection in social networks is presented. Mining social networks for anoma-

lies is a challenging and computationally intensive task due to the huge size of the

network and its dynamic nature. In the past decade, there are a wide variety of meth-

ods developed for social network anomaly detection in different problem settings. This

chapter organizes the state-of-the-art methods into different categories based on the el-

ementary approach followed by each method and briefly introduces the corresponding

methods. Finally, the various research challenges and open issues for future research

in this domain are discussed. With the different methods discussed, deciding a partic-

ular algorithm for anomaly detection is a difficult task. When selecting an appropriate

algorithm, one has to consider different aspects of the application such as the type of

the network being examined and the types of anomalies to be detected. This compre-

hensive review provides a better understanding of the various techniques that have been

developed for mining social networks for anomalies and spammers. Additionally, this

chapter presents a review on the significant research areas in multi-layer social networks

and discusses the major research challenges in multi-layer social network analysis.
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CHAPTER 3

PROBLEM DESCRIPTION

In this research work, the novel problem of anomaly detection on multi-layer social

networks is put forward. Th first objective of this work is to develop an unsuper-

vised, parameter-free, and network-feature based method to discover anomalous nodes

or point anomalies in a multi-layer social network. In the social network arena, the ma-

jority of the nodes follow the rule of “friends of friends are often friends” and minority

follows either “stars/near-stars” or “cliques/near-cliques”. The nodes whose egonets

follow star/near-star and clique/near-clique patterns can be linked to suspicious behav-

ior and have been established as anomalies by previous researchers (Akoglu et al. 2010;

Hassanzadeh et al. 2012; Gupta et al. 2013; Hassanzadeh and Nayak 2013a,b; Kaur

and Singh 2017). Hence, in this work, we focus on detecting the anomalous nodes

with such abnormal patterns in a multi-layer social network. Existing anomaly detec-

tion methods do not consider the multi-layer structure of human interactions. They have

been devised for networks with only one type of interaction among the entities. Hence,

it is essential to consider the multi-layer structure of social networks for anomaly de-

tection, by combining the rich information embedded in multiple layers. The goal of

this work is to rank the nodes in a multi-layer network according to their anomalous-

ness or suspiciousness, by assigning anomaly scores to the nodes based on the degree

of similarity of the nodes’ egonets in different layers to stars or cliques.

The problem is formally stated as follows: Suppose we have an undirected and

unweighted multi-layer social network G = {G1, G2, ..., GL} with a finite sequence of

L network layers, each of which corresponds to one type of interaction. Each layer in

the multi-layer network can be considered as a network on its own, and the lth layer of
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the multi-layer network is represented as Gl, where V l and El are the set of nodes and

set of edges respectively in layer l. A node can be present in one or more layers. If all

the nodes do not appear in every layer of the multi-layer network, a union of the nodes

in the network layers is taken as the shared node set, i.e., V =
⋃L
l=1 V

l and n = |V |,
number of nodes in V . Now a sequence of L n×n adjacency matrices or sociomatrices

(Wasserman and Faust 1994) can be defined, one for each layer: AG = {A[1], A[2], ...,

A[L]}, whereA[l] = {a[l]ij} and a[l]ij = 1 if and only if i and j are connected in layer l. The

first objective of this work is to develop an unsupervised approach to rank the nodes of

the multi-layer network G according to the anomaly scores that are calculated based on

the degree of similarity of the nodes’ egonets in different layers to stars or cliques.

This work secondly addresses the detection of spammer communities in Twitter.

Spamming is the most predominant form of anomalous activity prevalent in online so-

cial networks that involves malicious users sending unsolicited messages to legitimate

users with the intention of wasting their time, bandwidth, and money. Being one of the

fastest growing online social networks, Twitter has become a primary target platform

for social spammers. A substantial amount of research work has been carried out for

detecting spam messages and social spammers in Twitter. However, one of the impor-

tant issues in Twitter is that the social spammers collaborate with each other and form

collective anomalies or spammer communities to spread spam messages to a large set

of legitimate users. Accordingly, it is highly desirable to detect such spammer com-

munities prevailing in Twitter. Hence, the second objective of this work is to develop

an unsupervised approach for detecting spammer communities in Twitter by analyzing

the spammers’ community features and robust characteristics of these accounts that are

difficult to evade by the spammers. The overlapping community based features existing

in Twitter network, the structural characteristics, URL (content) based characteristics,

user behavior, and user account characteristics are employed to detect spammer com-

munities in Twitter. The goal is to classify the accounts as spammers and legitimate

users, and find social connections between the spammers to unearth the spammer com-

munities.

In order to represent the tweet content, behavioral, and structural characteris-

tics of the users of Twitter network for detecting spammer communities, the network

is modeled as a directed and attributed multi-layer social network with two layers,

M = {GF , GT}, where GF is the Follower network layer and GT is the Tweet network
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layer respectively. The Twitter multi-layer social network considered in this study is

a heterogeneous network; the Follower layer is an attributed network with the nodes

labeled with profile features, whereas the Tweet layer is an attributed network with the

edges labeled with the tweet URLs posted by the users.

Given the directed and attributed Twitter multi-layer social networkM = {GF , GT},
where GF (V,EF , A) is the Follower network layer and GT (V,ET , U) is the Tweet net-

work layer, the aim of this work is to develop an unsupervised approach that extracts

the overlapping community structure existing in the social network and analyzes the

user’s clustering coefficient, neighborhood, behavior, and content information to detect

spammer communities in Twitter. The output is multiple connected components from

the Twitter network that represent the set of socially connected spammer communities.

To summarize, the primary goal of this research work is to develop unsupervised

approaches for detecting anomalies in multi-layer social networks by using graph-

theoretic features of the networks and data mining techniques. The primary objective

of the work is further subdivided into two specific objectives as listed below:

1. Developing an unsupervised approach to detect anomalous nodes in a multi-layer

social network by analyzing the structure of the network

2. Developing an unsupervised approach to detect anomalous spammer communi-

ties in a multi-layer social network by analyzing the structure and attributes of the

network
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CHAPTER 4

ANOMALOUS NODE DETECTION IN MULTI-LAYER
SOCIAL NETWORKS

4.1 INTRODUCTION

The definition of anomaly is usually subjective and depends on the problem at hand. If

we need to identify the individual users whose behavior deviates considerably from the

usual behavior of users in the social network, a subset of users or nodes are viewed as

anomalies. Anomalous nodes are also known as point anomalies, as they are scattered in

the network. In our problem setting, an anomaly is a node in the multi-layer social net-

work whose egonets in different layers follow either “stars/near-stars” or “cliques/near-

cliques” patterns.

The objective of the work presented in this chapter is to develop an unsupervised,

parameter-free, and network-feature based method to discover anomalous nodes in a

multi-layer social network. As already mentioned in Chapter 3, in the social net-

work arena, the majority of the nodes follow the rule of “friends of friends are often

friends” and minority follows either “stars/near-stars” or “cliques/near-cliques”. The

nodes whose egonets follow star/near-star and clique/near-clique patterns can be linked

to suspicious behavior and have been established as anomalies (Akoglu et al. 2010;

Hassanzadeh et al. 2012; Gupta et al. 2013; Hassanzadeh and Nayak 2013a,b; Kaur

and Singh 2017). Hence, this work focuses on identifying anomalous nodes with such

abnormal patterns in a multi-layer social network. The state-of-the-art anomaly detec-

tion methods do not consider the multi-layer structure of human interactions. They have

been devised for networks with only one type of interaction among the entities. Hence,

it is essential to consider the multi-layer structure of social networks for anomaly de-
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tection, by combining the rich information embedded in multiple layers. The objective

of this work is to rank the nodes in a multi-layer network according to their anomalous-

ness or suspiciousness, by assigning anomaly scores to the nodes based on the degree

of similarity of the nodes’ egonets in different layers to stars or cliques.

This chapter contributes to the existing literature in the following ways:

• Introducing and studying the problem of anomaly detection on multi-layer net-

works. To the best of our knowledge, the proposed approach is a pioneering work

on detecting anomalies in multi-layer networks.

• Proposing Anomaly Detection On Multi-layer Social networks, ADOMS, an un-

supervised, network feature-based, and parameter-free methodology, to automat-

ically rank the nodes of a multi-layer network based on the extent of similarity of

the nodes’ egonets in different layers to cliques or stars.

• Parallelizing the feature extraction and anomaly detection operations on different

layers of the multi-layer network to significantly speed up the computation, by

distributing the tasks to different cores of the machine.

• Evaluating the proposed approach via extensive experiments on multiple real-

world multi-layer network datasets. The experimental results substantiate that the

proposed approach can effectively detect anomalous nodes in multi-layer social

networks.

• Developing a baseline method by aggregating the layers of the multi-layer net-

work into a single-layer network, as there is no known method for anomaly de-

tection on multi-layer social networks. The results of the proposed approach are

compared with that of the baseline method and it is found that the proposed ap-

proach outperforms the baseline.

The rest of this chapter is organized as follows. Section 4.2 presents the termi-

nologies used in this chapter, and Section 4.3 deals with the problem statement which

includes the formal definition of the problem. Section 4.4 presents the proposed so-

lution methodology for the problem of anomalous node detection in multi-layer net-

works. Section 4.5 discusses the experimental analysis and discussion on results, and

Section 4.6 presents a summary of the chapter.

60
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Figure 4.1: Star/Near-star. In star structure, the neighbors of the node are fully discon-
nected

4.2 DEFINITIONS AND TERMINOLOGIES

To set scene for this chapter, a brief overview of the terminologies used in the chapter

is presented below:

1. Egonets: In a social network, an egonet is an individual’s personal network. In

other words, an egonet of a node (called “ego”) is the one-step neighborhood subgraph

of the node. An egonet describes the local network structure of a node, i.e. the network

around a single node. It consists of the node itself, its immediate neighbors (called

“alters”), and all the edges or ties among them. For example, in Figure 1.2 the egonet

of node 1 in Layer I is the subgraph containing the nodes 1, 2, and 4. In Layer II, the

egonet of node 1 is the subgraph containing the nodes 1, 4, and 5 and in Layer III, it is

the subgraph conatining the nodes 1, 2, 4, and 5. Each alter in an egonet has its own

egonet, and all egonets interconnect to form the social network.

2. Stars/Near-stars: In a star topology, the neighbors of the node are fully discon-

nected with each other. The number of edges in a star with n nodes is (n − 1). In a

near-star pattern, few of the neighbors of the node can be connected to each other. An

example for star/near-star is shown in Figure 4.1.

In social networks, a near-star topology can correspond to a highly influential per-

son such as a movie star, a politician, or a sports person. E-Commerce companies can

use this information to advertise their products on the influential person’s network to ob-

tain maximum spread. It can also be a spammer or fraudster who sends unsolicited or

fraudulent messages to random legitimate users who are otherwise unconnected. There-

fore, stars/near-stars can signify suspicious behavior.
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Figure 4.2: Clique/Near-clique. In a clique structure, the neighbors are fully connected
to each other

3. Cliques/Near-cliques: A clique is a fully-connected subgraph in a network. If the

egonet of a node is a clique, all the neighbors of the node are connected to each other.

The number of edges in a clique of n nodes is n ∗ (n − 1)/2. A node follows a near-

clique pattern, if few of the neighbors of the node are disconnected. An example for

clique/near-clique is shown in Figure 4.2.

In social networks, a clique can correspond to a close-knit community of friends,

a group of spammers (spammer community) who are fully connected to each other to

evade from being detected by spam detection algorithms, or a group of fraudsters who

collude with each other to commit a scam such as electronic auction fraud. Therefore,

cliques/near-cliques can signify suspicious behavior.

4. Local Outlier Factor: Local Outlier Factor (LOF) (Breunig et al. 2000) is a widely

used unsupervised and density-based outlier detection technique. Density-based outlier

detection techniques consider an object as an outlier if its density is comparatively less

than that of its neighbors. LOF compares the local density of an object to the local

densities of its neighboring objects, and assigns a high outlier score if the local density

of the object is considerably less than the average local density of its neighbors. If

the object is in a dense area, its local density will be similar to that of its neighboring

objects and therefore, its outlier score will be low.

LOF assigns an anomaly score close to one for normal objects, and much larger

scores for anomalous objects. In Figure 4.3, the local density of point A is much lower

than that of its neighbors, and therefore it will be assigned a high anomaly score com-

pared to its neighbors. LOF is more advantageous compared to other density-based

outlier detection methods if the objects in the data set lie in different density regions.
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Figure 4.3: Local Outlier Factor

4.3 PROBLEM STATEMENT

The problem is formally stated as follows: Suppose we have an undirected and un-

weighted multi-layer social network G = {G1, G2, ..., GL} with a finite sequence of L

network layers, each of which corresponds to one type of interaction. Each layer in the

multi-layer network can be considered as a network on its own, and the lth layer of the

multi-layer network is represented as Gl, where V l and El are the set of nodes and set

of edges respectively in layer l. A node can be present in one or more layers. If all

the nodes do not appear in every layer of the multi-layer network, a union of the nodes

in the network layers is taken as the shared node set, i.e., V =
⋃L
l=1 V

l and n = |V |,
number of nodes in V . Now a sequence of L n×n adjacency matrices or sociomatrices

(Wasserman and Faust 1994) can be defined, one for each layer: AG = {A[1], A[2], ...,

A[L]}, whereA[l] = {a[l]ij} and a[l]ij = 1 if and only if i and j are connected in layer l. The

objective of the work presented in this chapter is to develop an unsupervised approach

to rank the nodes of the multi-layer network G according to the anomaly scores that are

calculated based on the degree of similarity of the nodes’ egonets in different layers to

stars or cliques. The major symbols used in this chapter are defined in Table 4.1.
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Table 4.1: Symbols and definitions used in this chapter

Symbols Definitions

G Multi-layer network

V Set of nodes in G

L Number of layers in G

n Number of nodes in G

Gl lth network layer of G

El Set of edges in Gl

AG Set of n× n adjacency matrices corresponding to G

A[l] n× n adjacency matrix of Gl with elements a[l]ij
N l
i Number of nodes in the egonet of node i in Gl

El
i Number of edges in the egonet of node i in Gl

aScoreli Anomaly score for node i in Gl

LRl
i Layer relevance of layer l for node i

multiScorei Anomaly score of node i in the multi-layer network G

GA Aggregated topological network of G

A Adjacency matrix corresponding to GA

4.4 PROPOSED METHODOLOGY

This section provides the solution methodology for the problem of anomaly detection on

multi-layer social networks. At first, an egonet is generated for each node in each layer

of the network. Then, an anomaly score is computed for each node in each individual

network layer based on the local features of its egonet such as the number of edges and

edges in the egonet. The anomaly scores of the corresponding nodes from individual

layers are then combined, based on the relevance of the layers, to form the anomaly

scores of the nodes in the multi-layer network. The nodes of the multi-layer network

are then ranked based on the anomaly scores.

The proposed approach for detecting anomalies in multi-layer networks namely

Anomaly Detection On Multi-layer Social networks (ADOMS) is divided into two log-

ical phases: Phase 1 and Phase 2. The details of Phase 1 and Phase 2 are described in

Sections 4.4.1 and 4.4.2 respectively. In Phase 1, the anomaly scores for the nodes in

individual layers are calculated based on their degree of cliqueness or starness in the
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layers. In Phase 2, the anomaly scores of the nodes in the multi-layer network are com-

puted by employing the anomaly scores of the nodes in the individual network layers

from Phase 1, and the nodes are then ranked according to the anomaly scores.

4.4.1 Phase 1: Computing Anomaly Scores of Nodes in Individual Network Lay-
ers

The objective of the first phase of ADOMS approach is to mine patterns and to as-

sign anomaly scores to the nodes in the individual layers of the multi-layer network.

Anomaly scores are assigned to each and every node in the individual network layers

according to the degree of similarity of the nodes’ egonets to stars or cliques. The pri-

mary task in assigning anomaly scores to data items is identifying a suitable feature

space and finding the patterns or rules obeyed by the majority of data items within that

feature space. The data items that violate these patterns or rules are ranked as anoma-

lies. The major steps involved in the first phase of our approach are explained below:

1. Feature Extraction: The first step in anomaly detection in social networks is to

identify an appropriate feature space that can map the online behavior of users. Identify-

ing a suitable feature space is a key challenge for spotting anomalies in social networks.

The features should be effective and meaningful, and should be fast to compute. In

addition, the numerical features are to be selected in such a way that the deviation from

the normal nodes can be measured and compared in an efficient way. In this work, the

numerical features that characterize and summarize the neighborhood of nodes in the

individual network layers are identified. The characteristics of the local neighborhood

of nodes such as edge count and node count in the egonets of the nodes, as specified

by Akoglu et al. (2010), are selected as feature space. The feature pairs of the num-

ber of edges and the number of nodes in the egonet of a node are easy to compute

from the network, and can characterize the neighborhood and online behavior of the

node effectively. After identifying the suitable feature space, the numerical features

that reflect the online behavior of users are extracted from each network layer to form

a two-dimensional feature space. More specifically, the online behavior of users in in-

dividual social network layers are transformed into numerical feature pairs: edge count

and node count of egonets. Consequently, a point in the two-dimensional vector space

corresponds to a node in the individual network layer. Therefore, a two-dimensional

feature space is obtained for each network layer in the multi-layer social network.
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Algorithm 4.1 Computing anomaly scores of nodes in individual network layers
Input: Multi-layer network G

Output: Anomaly scores of nodes in each layer of the multi-layer network

1: for each layer l of G do

2: for each node i do

3: Identify the 1-step neighborhood (egonet) of node i

4: Extract the number of nodes N l
i and number of edges Eli in the egonet of node i to

form a two-dimensional feature space;

5: Compute aScoreli = LOF (Eli, N
l
i ), the anomaly score for node i in layer l;

6: end for

7: end for

8: return aScore;

2. Pattern Mining: One of the main challenges of anomaly detection is understand-

ing the typical/normal behavior followed by majority of data items in the set. The

suspicious user behavior can be identified by finding the deviation from this normal

behavior. In this step, the pattern obeyed by normal nodes, within the extracted low-

dimensional feature space, is discovered. The neighborhood of normal nodes follow

the pattern of a power-law, and the points that deviate from this pattern can be flagged

as anomalies (Akoglu et al. 2010). The Egonet Density Power-Law (Akoglu et al.

2010) that defines the correlation between the edge count and node count in the egonet

of a node is adopted for representing the normal behavior obeyed by majority of nodes.

According to Egonet Density Power-Law, the feature pairs, the number of edges El
i and

the number of nodes N l
i in the egonet of a node i in layer l, are correlated as

El
i ∝ N l

i
θ,

where 1 ≤ θ ≤ 2 is the power-law exponent. Consequently, El
i is approximately equal

toN l
i for near-stars (≈ N l

i−1), and is close toN l
i
2 for near-cliques (≈ N l

i ∗(N l
i−1)/2).

Because of the power-law relationship, El
i and N l

i follow a linear correlation with slope

θ in log-log scales. In our experiments, the power-law exponent θ ranges from 1.02 to

1.55.
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3. Anomaly Scoring: As the Egonet Density Power-Law defines the correlation be-

tween the extracted feature pairs of edge count and node count, the deviation from the

normal pattern can be identified using a traditional non-network based anomaly detec-

tion method. Any outlier detection method that assigns anomaly scores to data points

can be employed. The well-known traditional non-network based anomaly detection

method Local Outlier Factor (LOF) (Breunig et al. 2000) is chosen because it works

efficiently on low-dimensional data points. LOF assigns a measure of outlierness or

anomaly score to each data point. Hence, LOF is applied on the two-dimensional data

points and the anomaly scores are generated. Specifically, the anomaly score for node i

in layer l is computed as

aScoreli = LOF (El
i, N

l
i ) (4.1)

Consequently, the anomalies detected in this two-dimensional feature space correspond

to the specific structures of stars/near-stars and cliques/near-cliques in the individual

network layers. The pseudocode of Phase 1 of ADOMS is shown in Algorithm 4.1.

As there are no interdependency among the operations on individual layers of

the multi-layer network, the feature extraction and anomaly detection operations on

different layers (Phase 1) can be performed in a parallel and distributed manner. The

operations can be distributed to different cores of the processor for parallel execution.

Thus, significant speed up can be achieved.

4.4.2 Phase 2: Ranking Nodes of the Multi-layer Network According to the Anomaly
Scores

The most challenging step of multi-layer network analysis is effectively integrating the

information hidden in different layers. The second phase of ADOMS finds the anoma-

lies in the multi-layer network by combining the layer-wise anomalies obtained in the

first phase. The anomaly score of a node in the multi-layer network is computed as

a function of the anomaly scores of the node in the individual network layers. More

specifically, the anomaly scores of the nodes in the multi-layer network are obtained

by taking linear combinations of anomaly scores of the nodes in the individual network

layers. The weight considered for linear combination is a measure of the density of

connectivity McPherson et al. (1992); Hanneman and Riddle (2005) of a node and its
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Algorithm 4.2 Computing anomaly scores of nodes in the multi-layer network
Input: Layer-wise anomaly scores of nodes in G

Output: Nodes ranked according to the anomaly scores

1: for each node i do

2: Find total edges in the egonets of i in all layers, Total edgesi = ΣL
l=1E

l
i

3: end for

4: for each layer l do

5: for each node i do

6: Find layer relevance, LRli = Eli/Total edgesi

7: end for

8: end for

9: for each node i do

10: multiScorei = ΣL
l=1(LR

l
i.aScore

l
i)

11: end for

12: return Ranking of nodes in descending order of multiScore

neighbors in a layer compared to other layers. It shows whether they are densely con-

nected or weakly connected to each other in that particular layer in comparison with

other layers. When a node and its neighbors are densely connected in a network, the

tie strenth among them is high (McPherson et al. 1992). A high density also signifies

a larger number of connections among the nodes, and nodes in such a network have a

high chance of being connected among each other (Luarn et al. 2014). Therefore, if the

connectivity among the neighbors of a node is high in a network layer, the activity of the

node is high in the layer, and that particular layer is more important for the connectivity

of the node in the multi-layer network. A weight termed as layer relevance is defined to

each node in every layer of the multi-layer network, and is defined as the relevance of

the layer for the connectivity of the node compared to its connectivity in other layers of

the network. The pseudocode for Phase 2 is given in Algorithm 4.2 and the associated

key steps are described below:

1. Compute layer relevance: As each characteristic of relationships may have dif-

ferent relevance in the real-world, assigning different importance to individual layers

is more applicable than assigning uniform importance to each layer of the network.

Therefore, a layer relevance is assigned to each node in every layer of the multi-layer
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network according to the layer’s characteristics. The layer relevance of a node in a net-

work layer signifies the connectivity of the egonet in the layer compared to other layers

in the multi-layer network. It indicates how a node and its neighbors are connected to

each other in a network layer, compared to the other layers. If the connectivity of a

user is sparse in a layer, the activity of the user in that layer is less. On the other hand,

if the user is connected to many other users and the connectivity among them is dense

in a layer, that layer is more relevant to the connectivity of the user in the multi-layer

network. In other words, the layer relevance shows the importance of that particular

layer for the connectivity of the node in the multi-layer network. The layer relevance

of a node with respect to a layer is computed as the ratio of the number of edges in the

egonet of the node in that layer to the total number of edges in the egonets of the node

in all the layers in the multi-layer network. More formally, the layer relevance of node

i with respect to layer l is defined as

LRl
i =

El
i∑L

l=1E
l
i

(4.2)

2. Compute the final anomaly score: After computing the layer relevance of the

nodes in the individual network layers, the anomaly scores for the nodes in the multi-

layer network are computed as linear combinations of anomaly scores in the individ-

ual network layers. The layer relevance of the nodes are considered as the constants

for linear combination. The layer relevance indicates how much the particular layer

contributes to the anomaly score of the node in the multi-layer network. If a node is

connected to many other nodes and the connectivity among them is dense in a layer,

that layer contributes more to the anomaly score of the node in the multi-layer network,

compared to other layers. Similarly, if the connectivity of a node is sparse in a layer,

that layer contributes less to the anomaly score of the node in the multi-layer network.

Therefore, the layer with more layer relevance for a node imparts more proportion to

the total anomaly score of the node in the multi-layer network. Hence, the anomaly

score of node i in the multi-layer network is computed as

multiScorei =
L∑
l=1

LRl
i.aScore

l
i (4.3)

3. Anomaly ranking: Finally, the anomaly scores of nodes are sorted in a descending

fashion and the ranking of the nodes are returned with the corresponding node indices.
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In other words, the nodes in the multi-layer social network are ranked based on their

degree of deviation from the norm or anomalousness.

The advantage of anomaly ranking is that it overcomes binary classification of

objects into anomalies and normal, which is not sufficient in many application areas.

With anomaly ranking, the analysts are able to explore a manageably-small subset of

top-ranked objects first (Chandola et al. 2009). In addition, they can decide a domain-

specific cutoff threshold between anomalous and normal objects in a flexible manner.

4.5 EXPERIMENTAL RESULTS AND ANALYSIS

Extensive experiments are carried out on six real-world multi-layer networks to vali-

date the effectiveness and efficiency of the proposed ADOMS approach. This section

presents the experimental analysis of the ADOMS approach.

4.5.1 Experimental Setup

We implement the algorithms of Phase 1 and Phase 2 and perform the evaluation on an

Intel Core I7 CPU@3.40 GHz machine with 8-core processor and 8 GB RAM running

Ubuntu 15.10 operating system. The algorithms are implemented in R programming

language making use of the igraph1 library. The overall execution time of the approach

is reduced by implementing the first phase of ADOMS in parallel and distributed man-

ner, as there are no dependencies among the operations in different layers. The anomaly

scores of the nodes in different layers are computed by applying Phase 1 on each layer

in parallel by distributing the work to different cores of the processor. ADOMS is im-

plemented by using the parallel package in R by distributing the workload to six cores

of the processor.

In the experimental evaluation, the potential and capabilities of the ADOMS ap-

proach are demonstrated on six real-world multi-layer networks for identifying mean-

ingful anomalies.

4.5.2 Datasets

This section presents a description of the real-world multi-layer networks considered

for our experimental analysis. For the experimental evaluation, the proposed approach

1http://igraph.sourceforge.net/
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is applied on six undirected and unweighted real-world multi-layer network datasets -

two collaboration networks, two terrorist networks and two social interaction networks.

The basic characteristics of the networks are summarized in Table 4.2 and described in

further detail below.

Noordin Top Terrorist Network: Noordin Top Terrorist dataset (Roberts and Ever-

ton 2011) is a four-layer multi-layer network of Indonesian terrorists. The layers repre-

sent information on communication, financial, operation, and trust relationships among

a group of 78 terrorists headed by Noordin Mohammad Top. Noordin Mohammad Top

built a personal terrorist group and was Indonesia’s most wanted terrorist, prior to his

death in 2009. He was responsible for several bombing attacks during 2003 to 2005. An

exhaustive multi-layer analysis of this network has been performed by Battiston et al.

(2014). The layer map is: Financial 1, Communication 2, Operational 3, Trust 4.

Social Evolution Dataset: Social Evolution experiment (Madan et al. 2012) was

conducted to study the everyday life of a social community. The experiment covered

more than 80% of students residing in an MIT dormitory. The students were surveyed

on the different social relationships among them. The multi-layer network of the social

evolution experiment consists of five layers representing the five relationships among

the students and the layer map is the following: CloseFriend 1, SocializeTwicePerWeek

2, PoliticalDiscussant 3, FacebookAllTaggedPhotos 4, BlogLivejournalTwitter 5.

Aarhus: Aarhus multiplex network (Magnani et al. 2013) is a multi-layer social net-

work representing the social interactions of a research department at Aarhus University.

The multi-layer social network consists of five types of online and offline interactions

namely Facebook, Leisure, Work, Co-authorship, and Lunch among the employees of

the department of Computer Science at Aarhus. There are 61 nodes in total with 620

connections among them. The layer map is: Lunch 1, Facebook 2, Co-authorship 3,

Leisure 4, Work 5.

DBLP C: DBLP C is a co-authorship network from the popular computer science

bibliographic database DBLP2 extracted by Berlingerio et al. (2013a). The conference

names are the layers of the network. The authors of the conferences are the nodes of

the network, and two authors are connected in a layer if they wrote one or more papers

together in the conference. The network consists of six layers (conferences) and the

2http://dblp.uni-trier.de/
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Table 4.2: Characteristics of the multi-layer networks analyzed in this study

Dataset Nodes Edges Layers Description

Noordin Top (Battiston
et al. 2014)

78 911 4 Network of Indonesian
terrorists

Social Evolution (Dong
et al. 2011)

84 31,918 5 Social evolution experi-
ment

Aarhus (Magnani et al.
2013)

61 620 5 Employee interaction
network

DBLP C (Berlingerio
et al. 2013a)

6,771 19,345 6 Co-authorship network
of conference authors

arXiv (De Domenico
et al. 2015)

14,065 59,026 13 Co-authorship network
of arXiv authors

GTD (Berlingerio et al.
2011)

2,509 32,279 124 Systematic data of ter-
rorist incidents

layer map is the following: VLDB 1, SIGMOD 2, CIKM 3, SIGKDD 4, ICDM 5,

SDM 6.

arXiv: Another dataset used in this chapter is a multi-layer co-authorship network

of the free scientific repository arXiv3 built by De Domenico et al. (2015). The net-

work consists of 13 layers corresponding to different arXiv categories. The authors

considered exclusively the articles with the word “networks” in the abstract or the title

up to May 2014. The layer map is the following: physics.soc-ph 1, physics.data-an

2, physics.bio-ph 3, math-ph 4, math.OC 5, cond-mat.dis-nn 6, cond-mat.stat-mech 7,

q-bio.MN 8, q-bio 9, q-bio.BM 10, nlin.AO 11, cs.SI 12, cs.CV 13.

GTD: Another dataset used in this chapter is a multi-layer network constructed by

Berlingerio et al. (2011) from the Global Terrorism Database4 (GTD). GTD is the most

extensive database on terrorist attack incidents in the world. The GTD multi-layer net-

work used in this chapter depicts the terrorist attacks occurred during the years 1970-

2008. The nodes of the network are terrorist organizations and they are connected to

each other if they have attacked the same country in the same year. In order to be con-

nected, the terrorist groups attacked the same country in same year, but need not be

collaborated for the attack. The network contains 2,509 terrorist organizations (nodes)

active in 124 countries (layers).
3https://arxiv.org/
4https://www.start.umd.edu/gtd/about/
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The Egonet Density Power-Law equations of the different layers of the datasets

are shown in Table 4.3. In our experiments, the power-law exponent θ ranges from 1.02

and 1.55.

4.5.3 Baseline Method

As there is no known method for anomaly detection on multi-layer networks, it is hard

to find a baseline method to compare with. As mentioned in Section 1.4, the standard

way of representing a multi-layer network is to aggregate the information present in

different layers together to obtain a single-layer network so that the traditional network

analysis tools can be directly applied. Hence, for comparison purposes, an interesting

baseline method would be to first generate a single-layer network called aggregated

topological network (Battiston et al. 2014) from the multi-layer network by taking a

union of the network layers and then applying the single-layer network anomaly detec-

tion algorithm over the aggregated network.

The aggregated topological network is constructed by flattening the layers of the

multi-layer network. Given a multi-layer network G, the aggregate topological network

of G is denoted as GA = (V,EA), where V is the set of nodes in G, EA = {E1 ∪
E2 ∪ ... ∪ EL}, and E1, E2, ..., EL are the sets of edges in the different layers of the

multi-layer network. The adjacency matrix corresponding to the aggregated topological

network is A = {aij}, where

aij =

1, ∃1 ≤ l ≤ L : a
[l]
ij 6= 0.

0, otherwise.
(4.4)

In order to discover anomalous nodes whose egonets are near-cliques or near-

stars in the aggregated topological network, the feature pairs - edge and node counts

of egonets - are extracted to form a two-dimensional feature space. The aggregated

topological network follows the Egonet Density Power-Law (Akoglu et al. 2010) that

defines the correlation between edge count and node count of the egonets. The power-

law equations of the aggregated networks of different datasets are shown in the last

column of Table 4.3 and the Egonet Density Power-Law plots (in log-log scale) of the

aggregated topological networks are shown in Figure 4.4.
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Figure 4.4: Log-log plots of the aggregated topological networks
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The red lines in the plots correspond to the least-squares regression fitting lines of

the two-dimensional feature space of edge count and node count. The blue and black

dashed lines with slopes 1 and 2 symbolize stars and cliques respectively. The blue line

in the log-log plot of Social Evolution network crosses the boundaries of the plot, and

therefore it is not shown in the plot.

The anomaly scores of the nodes in the network are then computed as in Phase 1 of

ADOMS. More specifically, as the edge count and node count of the egonets of nodes

in the aggregated network are highly correlated, LOF can be applied over the two-

dimensional feature space to generate the anomaly scores. Thus, after applying LOF

over the extracted feature-space, the nodes of the network are ordered in descending

fashion according to the anomaly scores to obtain the anomaly ranking. The baseline

method will be referred as Agg+AD.

4.5.4 Results and Discussion

The validation or evaluation of anomaly detection techniques is a quite difficult and

challenging issue because of the following two reasons: (i) the unavailability of la-

beled benchmark datasets with annotated ground truth (data objects labeled as normal

and anomalous) (Chandola et al. 2009; Savage et al. 2014), and (ii) there is no

standard technique for the evaluation of an anomaly detection method (Akoglu et al.

2015; Bindu and Thilagam 2016). However, the results of the proposed approach

are evaluated on real-world multi-layer networks using the baseline method and case

studies. In this section, the results obtained by applying the proposed approach to the

different multi-layer network datasets are analyzed and compared with that of the base-

line method. The proposed ADOMS approach and the baseline method Agg+AD are

compared along two dimensions: (i) anomaly ranking, and (ii) running time. From

the experimental results, it is observed that ADOMS outperforms the baseline in both

anomaly ranking and running time dimensions.
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a) Anomaly Ranking

With respect to anomaly ranking, the top ten ranked nodes obtained from ADOMS and

Agg+AD are compared. A qualitative analysis is also carried out to make sure that the

anomalous nodes determined by ADOMS are meaningful. Due to the unavailability

of labeled data with ground truths, the top ranked anomalous nodes are investigated

manually to verify whether they are actually anomalous. The top ten ranked anoma-

lous nodes discovered by ADOMS and Agg+AD on different datasets are shown in

Tables 4.4 and 4.5.

The distribution of anomaly scores determined by ADOMS and Agg+AD on dif-

ferent datasets are depicted in Figures 4.5 and 4.6 respectively. Figures 4.5a, c, e and

4.6a, c, e illustrate the anomaly score distributions of ADOMS, and Figures 4.5b, d, f

and 4.6b, d, f illustrate the anomaly score distributions of Agg+AD. From the figures it

can be observed that majority of nodes are normal and have anomaly scores near to one.

Only very few nodes are anomalous with high anomaly scores and follow the pattern of

near-stars or near-cliques in individual layers. Thus, the anomaly scores computed by

ADOMS are quite discriminative.

When ADOMS was applied on Noordin Top terrorist multi-layer network, the top

three outliers found were nodes 57, 22, and 4. It is observed that node 57 is Noordin

Mohamed Top, the head of the terrorist group. He had connections with 41 other terror-

ists in the Communication layer with 134 interactions among themselves (egonet node

count: 42, edge count: 134), 41 terrorists in Operational layer with 285 interactions

among themselves (egonet node count: 42, edge count: 285), 3 neighbors in Financial

layer with 6 connections among themselves forming a clique (egonet node count: 4,

edge count: 6), and 22 neighbors in Trust network with 90 connections among them-

selves (egonet node count: 23, edge count: 90). Therefore, node 57 is central in the

individual network layers. The distribution of anomaly scores determined by ADOMS

for the Noordin Top network is shown in Figure 4.5a.

In the aggregated topological network (Agg+AD), the top three anomalies are

nodes 57, 22, and 71. The egonet of node 57 contains 54 nodes and 457 edges in

the aggregated network. To be more clear, the neighborhood of node 57 has 54 nodes

and they interact with each other through 457 edges in the aggregated network. The

nodes are connected among each other through any of the four types of interactions. As

such, node 57 is the key actor of the terrorist network. Node 71 is a near-clique and is

the third ranked anomalous node in Agg+AD, even though it’s neighborhood in indi-
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Table 4.4: Top ten ranked nodes identified by ADOMS and the baseline method
Agg+AD along with the anomaly scores

Dataset Rank
ADOMS Agg+AD

Node Score Node Score

Noordin Top

1 57 5.2029 57 5.1897

2 22 4.4601 22 4.505

3 4 3.6415 71 3.0123

4 63 2.5531 23 2.6049

5 20 2.3108 66 2.1823

6 51 2.1686 44 1.9535

7 12 1.9003 68 1.8973

8 44 1.8975 4 1.8787

9 69 1.8633 51 1.4194

10 73 1.8508 50 1.356

Social Evolution

1 61 2.7454 47 2.7454

2 10 2.6721 52 2.6721

3 13 2.6051 83 2.6051

4 41 2.1626 63 2.1626

5 52 2.1164 50 2.1164

6 50 1.7814 10 1.7814

7 28 1.7414 61 1.7414

8 83 1.7058 9 1.7058

9 47 1.7025 40 1.7025

10 8 1.647 13 1.647

Aarhus

1 7 2.5493 7 2.4012

2 21 1.8163 1 1.9929

3 11 1.741 60 1.9206

4 23 1.6015 22 1.7571

5 51 1.5921 34 1.6992

6 44 1.5726 44 1.6446

7 29 1.5472 26 1.4655

8 20 1.4953 53 1.4401

9 8 1.4144 23 1.4372

10 57 1.3345 61 1.4163
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Table 4.5: Top ten ranked nodes identified by ADOMS and the baseline method
Agg+AD along with the anomaly scores

Dataset Rank
ADOMS Agg+AD

Node Score Node Score

DBLP C

1 6818 3.6122 558 4.5179

2 558 3.0036 4181 3.8143

3 720 2.9881 720 2.813

4 6177 2.6809 554 2.6648

5 4181 2.4325 1358 2.1376

6 7559 2.3525 6818 2.0014

7 6810 2.3157 14234 1.9106

8 6178 1.9915 3525 1.8958

9 3525 1.9875 16216 1.8703

10 6813 1.8408 233 1.707

arXiv

1 125 4.1105 479 6.4046

2 127 3.9053 83 3.9465

3 8156 3.4699 218 3.9279

4 468 3.2253 172 3.4367

5 10463 2.5829 54 3.3265

6 10464 2.5829 715 3.1468

7 3680 2.3129 578 2.8186

8 10936 2.3128 80 2.1459

9 10939 2.3127 1751 2.1403

10 480 2.2618 842 2.0029

GTD

1 406 9.4574 81 7.0232

2 253 9.2963 161 4.0266

3 241 7.7554 134 3.8925

4 372 7.747 1460 3.8573

5 1998 7.4901 2245 3.7863

6 2057 7.4901 109 3.6398

7 1784 6.876 571 3.5248

8 952 6.8502 836 3.3788

9 299 6.6552 203 3.1201

10 993 6.6467 2495 2.9675
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vidual layers are neither close to stars nor cliques. Therefore, node 71 is not detected as

a top anomalous node by ADOMS. The distribution of anomaly scores in the aggregate

topological network for the Noordin Top network is shown in Figure 4.5b.

In the Social evolution network, the top ranked node discovered by ADOMS is

node 61. The student with node index 61 has 2 close friends who are close friends

with themselves forming a clique, socialized with 4 other other students twice per week

with 10 interactions among themselves forming a clique in that layer, discussed po-

litical matters with 3 friends with 6 interactions among themselves forming a clique,

tagged photos among 20 friends in Facebook who have 210 among themselves forming

a clique, and shared blog/ LiveJournal/ Twitter activities with 16 friends who have 136

interactions among themselves forming a clique. However, in the aggregated network

of Social evolution network, the top ranked node is node 47 with 75 nodes and 2137

edges in its egonet. The neighborhood of node 47 in different layers are not close to

stars or cliques. The distributions of the anomaly scores by ADOMS and Agg+AD for

the social evolution network are shown in Figures. 4.5c and 4.5d respectively.

Similar scenarios were observed in the other datasets also. The difference in

anomaly ranking of ADOMS and Agg+AD is due to the fact that Agg+AD consid-

ers only whether an interaction exists between two nodes. It can not affirm through

which dimensions they interact or the types of interactions. Thus, the expressive power

of aggregated network is very less compared to its multi-layer counterpart and it just

shows whether an interaction exists between the nodes. In the aggregated network, as

the edges are combined from different layers, egonets can be stars or cliques even if

they are not so in the individual layers. In other words, in the case of Agg+AD, nodes

get high anomalous scores even if they do not follow the pattern of stars or cliques in

multiple individual layers. Similarly, in the aggregated network, the anomaly score can

be high even if the egonet of at least one layer is near to star or clique. In contrast to

Agg+AD, ADOMS considers the multiple interactions existing among the users in the

network, and each type of interaction contributes to the total anomaly score of the nodes

in the network.

If a node follows the pattern of near-stars or near-cliques in multiple layers, the

node is anomalous and the anomaly score of the node in the multi-layer network will be

high. More specifically, ADOMS utilizes the representational power of multi-layer net-

works. As a result, ADOMS is superior in ranking the anomalous nodes in comparison

with Agg+AD.
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Figure 4.5: Anomaly score distributions of ADOMS and Agg+AD on different datasets.
Figures 4.5(a), (c), (e) illustrate the anomaly score distributions of ADOMS and Fig-
ures 4.5(b), (d), (f) illustrate the anomaly score distributions of Agg+AD respectively.
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Figure 4.6: Anomaly score distributions of ADOMS and Agg+AD on different datasets.
Figures 4.6(a), (c), and (e) illustrate the anomaly score distributions of ADOMS and
Figures 4.6(b), (d), and (f) illustrate the anomaly score distributions of Agg+AD re-
spectively.
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Table 4.6: Running times of ADOMS and baseline method on different datasets

Sl. No. Dataset
Running Time (in seconds)
ADOMS Agg+AD

1 Noordin Top 2.74 4.87
2 Social Evolution 39.46 90.68
3 Aarhus 1.50 4.46
4 DBLP C 290.96 2130.08
5 arXiv 1572.16 8435.53
6 GTD 125.63 638.97

b) Scalability and Running Time

As mentioned earlier, the first phase of ADOMS is implemented in parallel and dis-

tributed manner by distributing the feature extraction and anomaly detection operations

on individual layers to different cores of the machine. As a result, ADOMS can scale

well to large datasets and the overall running time of ADOMS is much less compared

to that of the baseline method. The running time of the baseline method Agg+AD is

taken as the total time taken for aggregating the layers of the network and applying

the anomaly detection on the resulting aggregated topological network. The average

running times for ADOMS and the baseline method Agg+AD on different datasets are

shown in Table 4.6. It can be observed from the table that the time taken by ADOMS is

far less compared to that of Agg+AD.

4.5.5 Advantages of ADOMS Approach

The main advantages of the proposed ADOMS approach are the following:

• Unsupervised anomaly detection method: It does not require any labeled

dataset for training, as it is often difficult to find labeled data with explicit ground

truth.

• Network-structure based method: It is solely based on network topology, and

does not require any node or edge attributes.

• Parameter-free method: It does not require any user-defined parameters. It

detects the anomalies automatically without user intervention.

• Less running time: It is scalable for large datasets. As ADOMS is implemented

in a parallel and distributed fashion, the overall running time is less.
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However, ADOMS approach is developed for static multi-layer networks where

the structure of the network does not change over time. Future work could generalize

ADOMS for dynamic networks. ADOMS identifies anomalous individuals in a multi-

layer social network. Moreover, fraudulent individuals can collude with each other to

perform collaborative frauds such as auction scam, review spam, etc. Hence, detecting

the collaborative groups of anomalous individuals in multi-layer social networks is a

major area for future research. Furthermore, in social networks, nodes or edges may

be associated with features such as age, interests, educational qualifications, etc. of the

individuals, or the duration of the interactions among them. Hence, another promis-

ing future research direction is to investigate the significance of attributes associated

with the nodes or edges of the multi-layer social networks in improving the anomaly

detection process.

4.6 SUMMARY

Anomaly detection is a daunting problem in social network analysis. Even though sev-

eral techniques and tools have been developed for anomaly detection in single-layer

social networks, detecting anomalies in multi-layer social networks is an unexplored

area of research. In this chapter, we introduce and study the problem of anomaly de-

tection on multi-layer social networks and consider the two well-known anomalous

topologies of star/near and clique/near-clique in multi-layer social networks. In a social

network, if the neighborhood of a user is a star/near-star or a clique/near-clique, the

online behavior of the user can be linked to a suspicious behavior. An unsupervised,

network feature-based, and parameter-free methodology called Anomaly Detection On

Multi-layer Social networks, ADOMS, is proposed to automatically rank the nodes of

a multi-layer social network based on the degree of similarity of the nodes’ neighbor-

hoods in different layers to cliques or stars. An anomaly score is computed for each

node in each individual network layer based on the local features of its neighborhood

such as the edge count and node count of the egonet. The anomaly scores of the cor-

responding nodes in individual layers are then combined based on the relevance of the

layers to form the anomaly scores of the nodes in the multi-layer social network. The

nodes of the network are then ranked based on the anomaly scores. The experiments on

multiple real-world multi-layer networks demonstrate that the proposed approach can

detect anomalies effectively.
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CHAPTER 5

SPAMMER COMMUNITY DETECTION IN MULTI-
LAYER SOCIAL NETWORKS

5.1 INTRODUCTION

Spamming is the most prevalent malicious activity in social networks. Spamming in-

volves undesirable users sending tweets consisting of text and HTTP URLs to large

number of legitimate users. The motivations for spammers to spread spam messages

is with an intention for promotional marketing by capturing trending topics, spreading

views, and generating revenues based on URL clicks. It leads to uncontrolled dissem-

ination of content, virus/malware, scams, pornography, and advertisements leading to

huge wastage of network bandwidth and revenue losses of organization. It can lead to

psychological, financial, or physical harassment of legitimate users by these malicious

users leading to dissatisfaction with the service and environment provided by social

network platforms.

Twitter is one of the most popular and fastest growing online social networks.

The most widely recognized type of spamming in Twitter is to capture the trending

topics (Martinez-Romo and Araujo 2013). Whenever a noteworthy event occurs, users

try to express their opinion or share information on the event using hashtags. If the

topic is most tweeted-about in the day, it is visible to all the Twitter users in Twitter

homepage as trending topic. The spammers use the same hashtags to be visible to a large

user base following the particular trending event but with unsolicited URLs leading to

unrelated websites. Due to the 140 character limitation in twitter, the users usually share

URLs using URL shortening service. Moreover, the spammers take advantage of URL

shortening service to make the identification of spam related URLs difficult for users.
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A study shows that 45% of users in social networking platforms readily click any URL

posted by a friend. Thus, spammers are attracted to use social networking platforms to

send unsolicited messages and malicious links to legitimate users, and hijack trending

topics. It has been reported that more than 11% of tweets in Twitter are spams.

Twitter uses its “Follow Limit Policy” to filter possible spam accounts. Accord-

ing to Twitter Rules1,“a Twitter account can be considered to be spam account, and

thus can be suspended by Twitter, if it has comparatively a small number of followers

compared to the amount of accounts that it follows.” However, different from other

social networks, microblogging platform such as Twitter allows the user to follow any

account without their consent. This unidirectional binding allows the spammers to fol-

low a large base of random accounts. Many legitimate users, also called supporters or

social capitalists, blindly follow back the accounts for the sake of courtesy, after they

are being followed by someone. A recent study on microblogging websites proves that

a large fraction of such supporters follow back the spammers helping them to break

through the Twitter “Follow Limit Policy” thereby increasing the accounts’ popularity

and credibility (Ghosh et al. 2012). The following of these accounts also helps the

spammers to increase their influence on their followers along with avoidance of suspi-

cion or detection. Additionally, the spammers can purchase followers from websites

(Yang et al. 2013). These websites have a large base of bot accounts that follow their

customers once the payment is done.

Spammers usually mimic the patterns of legitimate user behavior to avoid being

detected by spam detection techniques. Spammers develop tools and techniques to

evade the existing techniques for detection. Additionally, the current research trends on

spammer detection have complexity constraints or have some caveats that can be by-

passed by the spammers. In this regard, it is highly desirable to detect and block/remove

spammers from social networks such as Twitter to save resources and human efforts

from unwanted users. Including more robust features that are harder to mimic and us-

ing the interaction of users within and outside the community structures can be used to

build spam classification models making it difficult for spammers. Spammers majorly

form a bunch of fake accounts and follow all of them and other spammers forming a

closely knit community. Thus, spammers tend to be socially well-connected with high

clustering coefficient (Yang et al. 2012). Essentially, the spammers collaborate with

each other and form a close knit community to increase their credibility. The accounts

1http://help.twitter.com/entries/18311-the-twitter-rules
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sitting at the center of such communities are generally referred to as spammer hubs and

are inclined to follow large base of spamming accounts. These well-connected commu-

nities target a large base of random accounts by spamming them with shortened URLs.

Even though a substantial amount of research work has been carried out in the

field of detecting spam messages and social spammers, not much work has been done

in detecting spammer communities. Hence, in this chapter, the spammer communi-

ties residing in Twitter are detected by analyzing the spammers’ community features

and robust characteristics of these accounts that are difficult to evade by spammers.

Like legitimate users, spammers also participate in many overlapping communities and

can send different or same spam messages in different communities. Consequently,

the overlapping community based features existing in Twitter network, the structural

characteristics, URL (content) based characteristics, user behavior, and user account

characteristics are employed to detect spammer communities in Twitter. In order to

represent the content, behavioral, and structural characteristics of the users of Twitter

network for detecting spammer communities, the network is modeled as a directed and

attributed multi-layer social network. The goal is to classify the accounts as spammers

and legitimate users, and find social connections between the spammers. To the best of

our knowledge, this is the first in-depth effort to detect spammer communities existing

in Twitter.

In summary, the major contributions of this study are as follows:

• Modeling the topological, tweet content, and behavioral characteristics of the

users of Twitter network by using a directed and attributed multi-layer social

network with two layers - Follower and Tweet network layers

• Proposing a novel and efficient, unsupervised approach called SpamCom to de-

tect spammer communities by employing community-based features, robust struc-

tural and user-behavior characteristics, URL (content) based characteristics, and

user profile characteristics that are difficult to evade by spammers

• Capturing the hidden spammers that try to hide in communities and spread mali-

cious information through other spammers using the proposed framework

• Evaluating the performance of the proposed approach based on the communities

detected by the algorithm. The experimental results show that the spammer com-

munities have very high clustering coefficients and target users collectively. The

spammer detection algorithm is found to be 89 % precise.
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5.2. Twitter Multi-layer Social Network

The rest of this chapter is organized as follows. Section 5.2 presents how the

Twitter network is modeled as a multi-layer social network. Section 5.3 deals with the

problem statement which includes the formal definition of the problem. In Section 5.4,

the solution methodology for the problem is explained. The experimental results are

presented in Section 5.5 and the summary of the chapter is presented in the last section.

5.2 TWITTER MULTI-LAYER SOCIAL NETWORK

In order to represent the tweet content, behavioral, and structural characteristics of the

users of Twitter network for detecting spammer communities, the network is modeled as

a directed and attributed multi-layer social network with two layers, M = {GF , GT},
whereGF is the Follower network layer andGT is the Tweet network layer respectively.

The Twitter multi-layer social network considered in our study is a heterogeneous net-

work; the Follower layer is an attributed network with the nodes labeled with profile

features, whereas the Tweet layer is an attributed network with the edges labeled with

the tweet URLs posted by the users. The Follower and Tweet layers can also be modeled

as attributed network layers with both node attributes and edge attributes. For instance,

in Follower layer, we can include edge attributes showing when the relationships have

been created. This auxiliary information may be used to detect spammers when com-

paring with the time of tweets. However, in this work, we have considered Follower

layer as node-attributed and Tweet layer as edge-attributed. The layers are explained in

detail as follows:

1. Follower network layer: This layer represents the Follower/Followee relationship

in Twitter. The layer is modeled asGF (V,EF , A), where V is the set of users in the net-

work, EF = {< i, j > |i, j ∈ V } is the set of Follower/Followee relationships among

the users, and A is the set of profile attributes. The directed edge (i, j) indicates that

user i is following user j. User i is said to follow j and is called a Follower of user j.

Hence, the number of followers of a user is the set of incoming links or the in-degree

of the node. It can be represented as Nfer. In the case of the edge (i, j), user j is said

to be the Follow of user i. Hence, Follow is the set of outgoing edges of a node. The

total number of Follow is the out-degree of the node and is represented as Nfing. The

nodes of the Follower layer are labeled with profile characteristics such as node ID and

the time-stamp when the user account has been created. The time-stamp information of

the node is used to find the age of the corresponding user account.
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2. Tweet network layer: The second layer of Twitter network considered for our study

is the Tweet network layer, GT . As the spam in twitter mainly comprises of URLs, we

have a set of URLs tweeted by the users. Hence, Tweet layer models the tweets of URLs

posted by the users in the network. This layer is attributed with tweet contents or tweet

URLs associated with the edges of the layer. It is represented as GT (V,ET , U), where

V is the set of users , ET = {< i, j > |i, j ∈ V } is the set of edges, and U is the set of

URLs posted by the users. Each edge < i, j > is associated with a set of URLs posted

by the user i to user j. The tweet URL information of the edges is used to determine

the uniqueness and similarity of the URLs tweeted by the users.

5.3 PROBLEM STATEMENT

Given the directed and attributed Twitter multi-layer social network M = {GF , GT},
where GF (V,EF , A) is the Follower network layer and GT (V,ET , U) is the Tweet net-

work layer, the aim of the work presented in this chapter is to develop an unsupervised

approach that extracts the overlapping community structure existing in the social net-

work and analyzes the user’s clustering coefficient, neighborhood, behavior, and con-

tent information to detect spammer communities in Twitter. The output is multiple

connected components from the Twitter network that represent the set of socially con-

nected spammer communities. The set of all the symbols used in this work is defined

in Table 5.1.

To explain the working of the proposed methodology, the following terms are

defined:

• Spammer community: A group of highly connected spammers in the Twitter

ecosystem to increase their credibility and spread. The higher the number of

followers, the more credibility it obtains. Additionally, this community acts as a

medium to interact to other spammers.

• Hidden spammer: A hidden spammer is a spam account having connections with

multiple spam accounts, but not with legitimate accounts. Even though the hidden

spam account can act as spam hub and operate the functioning of other spam

accounts, it does not perform spamming of legitimate accounts to prevent ban

from Twitter. This is done to increase the importance of the account by increasing

the number of followers.
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Table 5.1: Symbols and definitions used in this chapter

Symbols Definitions

M Twitter multi-layer social network

GF Follower network layer of M

GT Tweet network layer of M

n Number of nodes in M

i, j Node indices 1≤i, j≤n

U Set of all URLs posted by the users in the dataset

V Set of nodes in GF and GT

EF Set of edges representing following relationship in GF

ET Set of edges representing tweet relationships in GT

A Set of all profile attributes of the users

H Hypergraph of overlapping communities detected from GF

Nfer(v) Number of followers of user v

Nfing(v) Number of users followed by user v

Uv The URL posted in tweet by user v

• Local mining: Local mining uses the features that are local to a community to

detect spammers.

• Global mining: Global mining uses the features that are globally the same through-

out the communities.

An example of possible social network ecosystem is shown in Figure 5.1. The

spammers are shown as shaded nodes in the figure. The approach intends to use the

community structure in social networks to cluster the users. Later, each community is

analyzed in parallel to detect spammers. It can be seen that there are four legitimate

users and seven spammers in the ecosystem. Suppose, three communities are obtained

after applying the overlapping community algorithm as shown in the figure. Overlap-

ping communities are detected because in online social networks it is likely that a user

belongs to multiple communities and hence, the communities naturally overlap. The

number of communities an individual can belong to is essentially unlimited because the

individual can simultaneously associate with as many groups as he wishes based on his
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Figure 5.1: Example for a social network
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Figure 5.2: Overlapping communities in the network

interests. Like legitimate users, a spammer also can participate in many communities

and can send the same or different spam messages in different communities.

The overlapping communities detected are shown in Figure 5.2. Our main aim is

to detect all the possible spammers in the network. There is a highly connected network

of spammers in Community 2, which includes users 5, 6, 7, and 8, and is a spammer

community. Additionally, let us assume that user 6 is hidden spammer who acts as

single point to spread malicious URLs to other accounts. In Community 1, users 2, 3,

and 5 can be detected as spammers based on their behavioral features. The spammers

will particularly post a large number of same URLs in tweets. The “large” and “same”

URLs act as our behavioral feature to detect spammers. This behavioral feature will be

locally mined for that particular community.
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In Community 2, users 5, 6, 7, and 8 can be detected as spammers based on their

content similarity. Based on the assumption that the spam accounts are related, the

URLs posted by these accounts will be similar. This content similarity is a local feature

and other accounts connected to spammers will be ignored. Additionally, the quality

of accounts who follow them, i.e., mainly spam accounts, will be poor. The quality

or credibility of accounts can be quantitatively evaluated based on the number of fol-

lowers of an account. This is a global feature, that will help to find the hidden spam

accounts. It can be noted that, user 6 is a hidden spam account that does not interact

with any legitimate account and will not be detected by any of the previous works. We

intend to analyze the strong connections with the spammers (clique formation or high

local clustering coefficient) and the quality of neighborhood as a major factor to detect

user 6 as spammer. In case of Community 3, user accounts 7, 8, and 9 can be detected

as spammers using its local connection with spammers, topological, behavioral, and

content similarity. These spammers are connected to each other (spam clusters) and

will show content similarity among each other. The large number of same URLs posted

by these accounts will also help to mark these accounts as suspects. Consequently, the

proposed approach will give three clusters viz., one cluster having users 2, 3, and 5,

other cluster having users 5, 6, 7, and 8, and another cluster having accounts 7, 8, and

9. The spammer community containing the user accounts 5, 6, 7, and 8 is a root spam

community that spreads malicious links to users in other communities.

Using the overlapping community structure in Twitter, the aim of this work is to

identify spam accounts acting individually as well as in a community based on its con-

tent similarity, topological, behavioral, and account features. This framework helps to

unearth hidden communities existing in social networks and to study the social relation-

ships between the spammers.

5.4 PROPOSED METHODOLOGY

The unsupervised approach named SpamCom is proposed to identify spammer com-

munities in the network. As a first step, the efficient Link Aggregate (LA) and Improved

Iterative Scan (IS2) algorithms (Baumes et al. 2005) are used to identify the overlap-

ping communities in the network. Then the behavioral, structural, and contextual fea-

tures are used to identify certain accounts as benign or malicious. In this section, we

describe SpamCom through which we cluster, identify, and group potential spammers
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Figure 5.3: Flow description of SpamCom

into a well-formed community. Figure 5.3 shows the flowchart of SpamCom. The

description of each step is given below:

5.4.1 Identifying Base Spammers

As a first step towards detecting the spammer communities, a set of suspect nodes that

will be at the base of the attack cluster are identified. Each user in the Tweet network

layerGT (V,ET , U) is tested for a behavioral characteristic, and if it does not satisfy the

minimum threshold, the user is marked as a base spammer. This behavioral property of

Unique URL ratio is intuitively derived from the findings of related work by researchers

(Lee et al. 2010). It is a fact that spammers post same URL multiple times to increase

their click ratio. The spammer would want the legitimate users to visit the particular
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Algorithm 5.3 BaseSpammers(GT)

Input: Tweet graph GT (V,ET , U)

Output: Set of base spammers

1: Base Spammers← φ;

2: for all v ∈ V inGT do

3: U ← Unique URL Ratio(v);

4: if U ≤ threshold then

5: Base Spammers← Base Spammers ∪ {v};

6: end if

7: end for

8: return Base Spammers;

site, and would post it numerous times to get more visits. The lower the Unique URL

ratio, the higher the chances of it being a spam account. This property is used to prune

out the set of suspect nodes. We define the Unique URL ratio property as follows:

Unique URL Ratio(v) =
Number of uniqueURLs(v)

Total number of URLs(v)
(5.1)

The set of suspect nodes that will be at the base of attack cluster is identified using

Algorithm 5.3. The algorithm initially takes an empty set of base spammers and checks

for the Unique URL ratio property with each user in the Tweet network layer. The ratio

is compared with a threshold, and all users not satisfying the threshold are added to the

set of base spammers. A threshold of 0.05, has been tested with the Honeypot dataset

and found to achieve 90% precision in detecting base spammers.

5.4.2 Detecting Overlapping Communities

This step involves detecting node level overlapping communities in Twitter from

the Follower network layer GF (V,EF , A) using the efficient LA and IS2 algorithm

(Baumes et al. 2005). The Follower layer involves the following relationship and

the LA and IS2 algorithm does not rely on contents of the message and uses only the

communication graph. Unlike the traditional community detection methods, LA and

IS2 algorithm is an overlapping community detection method which tries to discover

a group of users that hide their communication, possibly for malicious reasons. Users

in social networks tend to form groups and associate with people that reflect their in-
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terests. Thus, users in social networks belong to many such groups or communities.

Hence, such groups in Follower network layer are extracted using the LA and IS2 algo-

rithm with primary motivation to filter out hidden malicious communities existing in the

social network based on the work of Baumes et al. (2004). The LA and IS2 algorithm

handles sparse networks efficiently and identifies high quality overlapping communities

in networks. The running time of LA and IS2 algorithm is significantly less for sparse

networks compared to dense networks.

The output of this step is represented as a hypergraph. A hypergraph is a graph

where multiple nodes belong to one community or edge known as hyperedge. It is

a graph with edges containing nonempty subset of nodes. The formal definition of

hypergraph is as follows.

Hypergraph: Let H = (V,Eh) be a hypergraph, where V represents a finite set of

nodes and Eh the set of hyperedges such that for any ei ∈ E, ei ⊂ V . Let Hi be a

hypergraph incidence matrix with h(v,e) = 1, if vertex v is in edge e.

5.4.3 Identifying Spammers in Each Community

In order to avoid detection by spammer detection techniques, a spammer will connect to

many other spammers in the social network. As a set of base spammers have been iden-

tified, the malicious hidden communities existing in the network are to be discovered.

Thus, the FindSpammer algorithm is introduced in Algorithm 5.4 to identify spammers

in each community. In order to speed up the overall computation, the spammers in each

community are identified in parallel by distributing the tasks to different cores of the

machine.

To identify spammers in each community, first the spammer suspects in the com-

munity are discovered. The intuition behind this step is that the spammers will have

high local clustering coefficient with other spammers. The hypergraph formed in the

previous step H(V,Eh) and the Follower network layer G(V,EF , A) are the inputs to

this step. For each vertex in the hyperedge, we check if it exists in the identified set of

base spammers and mark it as a suspect node. Let S be the maximum clique formed by

the suspect node in the Follower layer. The neighborhood (NS) of the maximum clique

identified will consist of victims, spammers, and legitimate users. The spammers attack

in a random way to any legitimate user. Hence, the clustering coefficient of a legitimate

user will be very less with a group of spammers. However, the spammers will have a

high clustering coefficient among themselves. Consequently, all the nodes in NS that
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have high connectivity with the identified clique S are added to suspect set.

Local clustering coefficient: The local clustering coefficient for a vertex is defined

as the ratio of a number of nodes it forms within its neighborhood to the number of

edges that can possibly exist between them. We consider the bi-directionality of links

in the Follow network layer and hence the number of possible links is multiplied by a

factor of 2. This metric will be used to identify how close is the vertex to the clique S.

The local clustering coefficient can be defined as:

LC(v,G) =
2.|ev|

Nv.(Nv − 1)
(5.2)

where, Nv is the sum of Nfer and Nfing of vertex v in graph GF and |ev| is total number of

edges built by all the neighbors of v.

Each node in NS is checked with the local clustering coefficient. If it has a good

connectivity above a threshold called support, the node is added to the suspect set.

The spammers in the community are then identified from the spammer suspects (Algo-

rithm 5.5) by using certain robust features that are difficult for the spammers to evade.

These feature sets comprise of content similarity, topology-based features, user behav-

ior, and user account features. They express the role and similarity of the nodes with

the identified spammers, i.e., whether the suspect sends the same set of URLs, follows

the users randomly, etc. These features are taken from the attributes associated with the

Tweet and Follow network layers. Each account in the suspect set is checked with these

features to extract its role in spam activity. The various features used in this work are

described as follows:

Jaccard’s similarity coefficient for URLs: The Jaccard index is used to compare

the similarity and diversity between the suspect and spam accounts. It is known that

the spammers in a community are related or use Sybil accounts to post a large amount

of legitimate users with a small set of URLs. Using this intuition, the similarity and

diversity between the URLs posted by spammer and suspect accounts are compared.

Jaccard similarity coefficient is defined as the ratio of the size of intersection to the

size of union of the sets. Henceforth, let Ubase and Ususbe the URLs posted by base

spammer and suspect accounts respectively. The Jaccard index for URL similarity is

thus defined as:

J(Ubase, Usus) =
|Ubase ∩ Usus|
|Ubase ∪ Usus|

(5.3)

Average Neighbors’ Followers: Average Neighbors’ Followers (Yang et al. 2013)
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Algorithm 5.4 FindSpammers(H,GF,Base Spammers)

Input: Hypergraph H(V,Eh), GF(V, EF,A), Base Spammers

Output: Set of spammers in each community

1: Spam accounts← φ;

2: for all Eh ∈ H do

3: Suspect set← φ;

4: for all nodes v ∈ Eh do

5: if v ∈ Base Spammers then

6: S ←MAX − CLIQUE(v);

7: NS ← neighborhood of S;

8: for all nodes u ∈ NS do

9: if LC(u, S) ≥ support then

10: S ← S ∪ {u};

11: end if

12: end for

13: Suspect set← Suspect set ∪ S;

14: spams← Spammers(Suspect set, v);

15: Spam accounts← Spam accounts ∪ spams

16: end if

17: end for

18: end for

19: return Spam accounts;

is a neighbor-based feature to distinguish spammer and legitimate accounts based on

account’s quality of choice of friends. Let Nfer and Nfing denote the followers and fol-

lowings of suspect account. The number of followers of an account usually reflects the

reputation of the accounts; the more the number of followers, the better the account’s

credibility. Spammers usually increase their credibility by forming a community among

themselves to increase the followers. Still, the quality of accounts followed by legiti-

mate users obviously is better compared to spammers. Additionally, this feature is

found to be highly robust to evade by spammers (Yang et al. 2013). The Average
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Algorithm 5.5 Spammers(Suspect set, base spammer)

Input: Suspect set, base spammer, GF(V,EF,A), H(V,Eh), GT(V,ET,U)

Output: Set of spammers identified from the set of suspects

1: spammers← φ;

2: for all v ∈ Suspect set do

3: J ← J(v, base spammer);

4: A← ANF (v);

5: U ← URL Tweet Ratio(v);

6: age← Age of Account(v);

7: spam score← GetSpamScore(J,A,U, age);

8: if spam score ≥ spam threshold then

9: spammers← spammers ∪ {v};

10: end if

11: end for

12: return spammers;

Neighbors’ Followers is defined as:

ANF (v) =
1

Nfer(v)
.

∑
u∈Nfing(v)

Nfer(u) (5.4)

URL to Tweet Ratio: Spammers post a large amount of URLs as compared to

legitimate users. Based on this impression, the ratio of number of URLs posted by the

suspect to the number of tweets posted by suspect is taken. Spammers usually evade

content blacklisting or keyword based filtering by content obfuscation. However, they

additionally post shortened URLs to dupe the legitimate users into clicking it. If Uv is

the total number of URLs posted and Tweetv is the total number of tweets by user v,

then the URL to Tweet ratio is defined as:

URL Tweet Ratio(v) =
Uv

Tweetv
(5.5)

Age of Account: It has been found that the spam accounts are usually newly created

compared to legitimate users. The age of an account has best discriminating power to

detect spammers. Additionally, this feature cannot be evaded at all by the spammers.

If toldest, tnewest, and tv are time-stamps for creation of oldest, newest, and suspect
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account, the age of account is calculated as:

Age of Account(v) =
tv − toldest

tnewest − toldest
(5.6)

Based on the above mentioned features, a spam score is calculated based on a

weighted average function. The GetSpamScore function takes the Jaccard’s similarity

coefficient for URLs, Average Neighbors’ Followers, URL to Tweet Ratio, and Age of

Account to return a spam score. The accounts are then ranked according to the spam

score. The top spammers can be highlighted using this approach.

5.4.4 Identifying Connections of Spammers

The main objective of this step is to find the connections of spammers between com-

munities and to identify the nature of relationships. This will be useful to identify if

spammers really have community structure, and can be used to detect the accounts that

interconnect two or more communities. The hypergraph H described above is converted

to a reduced representation in the form of a line graph.

Let L(H) be the line graph of the hypergraph, H. The line graph L is defined as

L(H) = (V’,E’), where V ′ = E(H) and E ′ = {(e1, e2)| e1, e2 ∈ E(H), e1 ∩ e2 6= φ}.
The line graph representation helps us to identify the connections among the communi-

ties. We mark each hyperedge Eh as corrupt if it contains a single spammer. Later, as the

hypergraph is converted to line graph, the hyperedges in hypergraph will be converted

to nodes in line graph. The resulting line graph will have nodes marked as corrupt. We

find the connected subgraph component based on the marked property to identify the

spread of spammers. This representation of spammers connectivity via line graph is the

global behavior of spammers. Additionally, the local behavior of spammer connectivity

is captured in hyperedges.

Finally, all the connected components are identified to detect spammer communi-

ties. Every spam account behavior can be analyzed based on its local and global con-

nectivity. Accounts having high internal and external connections with spammers need

to be targeted as they try to hide in Twitter but spread malicious information through

other accounts.

99



5.5. Experimental Results and Analysis

Table 5.2: Characteristics of the dataset

Feature Value

Twitter accounts 41,499

Legitimate users 19,276

Malicious users 22,223

Tweets of legitimate users 3,263,238

Tweets of malicious users 2,380,059

Total number of Tweets 5,643,297

URLs extracted 2,292,339

Links in follower layer 58,750,578

5.5 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the experimental results of the proposed approach SpamCom are pre-

sented. We implemented the algorithms in R language and evaluated their accuracy and

behavior for detecting spammers. The experiments were carried out on a Linux ma-

chine with a 3.40 GHz Intel Core i7 processor and 8 GB RAM. To speed up the overall

computation, the tasks are distributed to multiple cores of the processor using the R

parallel package.

The dataset used to demonstrate the effectiveness of the proposed approach is the

Twitter Honeypot dataset (Lee et al. 2011) which is explained in the next subsection.

The effectiveness of the features in detecting spammers is studied and the results ob-

tained by the proposed approach when applied to the experimental setup are evaluated.

Finally, the characteristics of the communities and relationships among spammers are

studied.

5.5.1 Twitter Honeypot Dataset

The Twitter Honeypot dataset (Lee et al. 2011) is used to classify the users as spammers

or legitimate users using the community, content, behavioral, and topological features.

The honeypot dataset contains tweets that were captured during the eight month period

of 2010. The dataset consists of the tweets posted by users that are classified as legiti-

mate users and content polluters or spammers by Lee et al. (2011). The dataset consists
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of 41,499 user accounts, with pre-classified accounts of 22,223 spammers and 19,276

legitimate users. It consists of 5,643,297 tweets in total posted by all the users in that

period. As the spammers mainly spam the users by adding URLs in tweets, a script

is developed to extract all the URLs existing in tweets. Totally 2,292,339 URLs from

the tweets were extracted. To extract the follower relationship among the users, a web

crawler was developed based on Twitter API to extract 58,750,578 social relationships

among users. The basic characteristics of the dataset are shown in Table 5.2. The Twit-

ter multi-layer social network consisting of the Follower and Tweet layers is constructed

from the honeypot dataset.

5.5.2 Evaluation of Features

As mentioned in previous sections, various robust features have been used to identify

the spam accounts. Apart from Jaccard index, all the features are independent of the

neighborhood and community characteristics. The importance of these attributes in

identifying the spammers is illustrated by plotting the cumulative distribution function

(CDF) to depict the differences between spammers and legitimate users. The following

four attributes are considered: Age of Account, Average Neighbors’ Followers, Unique

URL Ratio, and URL to tweet Ratio. The CDFs of these attributes are shown in Figs. 5.4.

It can be clearly noted from Figure 5.4a that the age of spam accounts have low values

compared to legitimate users. Spam accounts are usually newly created compared to

legitimate users probably because they are constantly being blocked by other users and

Twitter. Figure 5.4b shows that the average number of followers of non-spammers is

much higher as compared to spammers as they follow a good quality of accounts usu-

ally. Figure 5.4c shows the Unique URLs in Tweets between spammers and legitimate

users. It is clearly visible that spammers have very low value of unique URLs as they

repeatedly post the same URLs to their victims. Finally, Figure 5.4d shows the CDF

of URL to Tweet ratio between legitimate users and spammers with high discriminative

power. Legitimate users have very less URL to Tweet Ratio while spammers post a

large amount of URLs in their tweets. In general, the analysis of these behavioral, con-

tent, and topological characteristics shows that they have the potential to differentiate

spammers and legitimate users effectively.
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Table 5.3: Performance on Twitter Honeypot dataset

Classifier TP Rate FP Rate Precision Recall F-Measure

ADTree 0.857 0.194 0.856 0.857 0.856

J48 0.853 0.196 0.852 0.853 0.853

IBk 0.842 0.213 0.841 0.842 0.841

SVM 0.824 0.209 0.827 0.824 0.825

Naive Bayes 0.805 0.199 0.819 0.805 0.809

SpamCom 0.867 0.132 0.895 0.867 0.880

5.5.3 Spammer Classification

In order to demonstrate the effectiveness of the proposed approach, standard machine

learning classification algorithms are applied on the Social Honeypot dataset. The

classification is performed based on the features calculated and described in the pre-

vious sections. The performances of five classifiers including two decision tree based

(ADTree (Kohavi and Quinlan 2002), J48 (Freund and Mason 1999)), one k-nearest

neighbor based (IBk (Aha et al. 1991) using k=5 nearest neighbors), Support Vector

Machine based, and Naive Bayes Algorithm (John and Langley 1995) are compared

with that of the proposed approach. We use 10-fold cross validation for each classifica-

tion algorithm on the Honeypot dataset. The evaluation metrics of precision and recall

obtained for the classifiers are compared with the results obtained from SpamCom in

Table 5.3. It can be observed that the proposed approach gives better precision and

recall compared to all the algorithms. The false positive rate is also the best, showing

the low rate of legitimate users being classified as spammers. The F-measure is not that

high due to the classification of many spammers as legitimate users. The F-measure

can be further improved by lowering the threshold values. It can be concluded from

the classification results that the proposed approach yields better performance using the

community-based features and other robust features compared to other machine learn-

ing algorithms.
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Table 5.4: Spammer community statistics

Feature Value

Nodes 4047

Edges 339359

Nodes in largest WCC 3993

Edges in largest WCC 339354

Nodes in largest SCC 3495

Edges in largest SCC 85454

Average clustering coefficient 0.156007

Number of triangles 10704978

Diameter (largest shortest path) 9

Size of largest cliques in graph 35

5.5.4 Community Structure

The experimental results are concluded by analyzing the community structure of spam-

mers. Initially, a subgraph of spammers from the Follower network layerGF (V,EF , A)

is constructed. The spammer graph is denoted as S. The graph is decomposed into clus-

ters based on strong and weak connections. The weak connections form 51 clusters with

a single cluster of size 3993, while the remaining clusters consist of only one or two

spammers. Similarly, the strong connections form a total of 421 clusters with a single

cluster of size 3495, whereas other clusters consist of only one or two spammers. The

statistics of these strong and weak components of spammer network is described in Ta-

ble 5.4. The table shows the nodes and edges in weakly connected component (WCC)

and strongly connected components (SCC) in spammer network. The average cluster-

ing coefficient is not significantly high, showing the low number of triangles formed

between spammers. There are two large cliques of size 35 in the spammer network

showing the large highly connected spammer communities existing in social networks.

We identify 18 and 19 communities existing in spammer network for unidirectional and

bidirectional links respectively.

Based on the experimental results, it is evident that there are communities of spam-

mers working collectively to spread spam and evade spam detection techniques. Hence,

there is an urgent need to detect and curb the formation of such communities to enhance

the user experience in social networks.
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5.6 SUMMARY

A novel and robust approach called SpamCom to detect spammer communities based

on overlapping community structure, topological, behavioral, and content attributes in

the online social network Twitter is proposed in this chapter. After identifying over-

lapping community structure existing in Twitter, the suspects are identified based on

content similarity and connectivity with spam accounts. Finally, the spammers are

identified from the set of suspects based on content, age of account, neighborhood,

and behavioral attributes of each user. The dual behavior of spammers to pose as le-

gitimate users and perform malicious activities is overcome using this approach. The

identified spammers are clubbed together to identify the core spammer network spread

in social networks. Our aim is to identify the hidden communities and to study them in

detail to tackle the significant problem of spammers in Twitter. Even though the pro-

posed approach needs evaluation in much finer detail, the preliminary experiments show

significant performance in detecting spammers. Additionally, this is the first effort to

study the spammer community structure existing in social networks. In future, we aim

to provide much detailed and extended study of our approach and its performance in

real-world scenario. More specifically, the Honeypot dataset cannot precisely represent

the real Twitter ecosystem, and the follower network layer constructed from Honeypot

dataset is not complete. Hence, collecting the real Twitter data from streaming API and

crawling user profiles for the finer evaluation of the approach is a future work.
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CHAPTER 6

CONCLUSIONS AND FUTURE SCOPE

Detecting suspicious and illegal behavior is a daunting problem in social network anal-

ysis. Anomaly detection is helpful in detecting such behavior. Even though several

techniques and tools have been developed for anomaly detection in single-layer so-

cial networks, anomaly detection in multi-layer social networks is an unexplored area

of research. In this thesis, the problem of anomaly detection on multi-layer social net-

works is introduced and studied. The two well-known anomalous topologies of star/near

and clique/near-clique in multi-layer social networks are considered as anomalies in

this work. In a social network, if the neighborhood of a user is a star/near-star or a

clique/near-clique, the online behavior of the user can be linked to a suspicious behav-

ior. An unsupervised, network feature-based, and parameter-free methodology called

Anomaly Detection On Multi-layer Social networks, ADOMS, is proposed to automat-

ically rank the nodes of a multi-layer social network based on the degree of similarity

of the nodes’ neighborhoods in different layers to cliques or stars. An anomaly score

is computed for each node in each individual network layer based on the local features

of its neighborhood such as the edge count and node count of the egonet. The anomaly

scores of the corresponding nodes in individual layers are then combined based on the

relevance of the layers to form the anomaly scores of the nodes in the multi-layer social

network. The nodes of the network are then ranked based on the anomaly scores.

The experiments on multiple real-world multi-layer networks demonstrate that ei-

ther the analysis of one mode of interaction or the analysis of the aggregated topological

network does not provide a complete picture of the relationships among the users of the

networks. Thus, multi-layer analysis of the networks is required to identify the anoma-

lies by using the rich information hidden in individual network layers. Even though the
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proposed approach is applied on multi-layer social networks, it can be applied to any

multi-layer network with intra-layer connections. For example, the proposed approach

can identify important hub cities in multi-layer transportation networks and important

proteins and genes that have critical roles in biological networks.

This work secondly addresses the detection of spammer communities in Twitter.

Spamming is the most predominant form of anomalous activity prevalent in online so-

cial networks that involves malicious users sending unsolicited messages to legitimate

users with the intention of wasting their time, bandwidth, and money. Being one of the

fastest growing online social networks, Twitter has become a primary target platform

for social spammers. One of the important security issues in Twitter is that the social

spammers collaborate with each other and form collective anomalies or spammer com-

munities to spread spam messages to a large set of legitimate users. Therefore, in this

work, an unsupervised approach called Spammer Community detection (SpamCom)

is developed for detecting spammer communities in Twitter by using graph-theoretic

features of the network and the network attributes.

The overlapping community based features existing in the Twitter network, the

structural characteristics, URL (content) based characteristics, user behavior, and user

account characteristics are employed to detect spammer communities in Twitter. Af-

ter identifying overlapping community structure existing in Twitter, the suspects are

identified based on content similarity and connectivity with spam accounts. Finally,

the spammers are identified from the set of suspects based on content, age of account,

neighborhood, and behavioral attributes of each user. The dual behavior of spammers

to pose as legitimate users and perform malicious activities is overcome using this ap-

proach. The identified spammers are clubbed together to identify the core spammer net-

work spread in social networks. It is observed that the social spammers tend to be well-

connected with high clustering coefficient. The approach is evaluated on real-world

dataset, and the experimental results demonstrate significant performance in detecting

spammers and spammer communities.

Future Scope

As the approaches proposed in this thesis are pioneering approaches for detecting anoma-

lies in multi-layer networks, there is a significant scope for future research. Further

research can be carried out in the following directions:
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• ADOMS identifies anomalous individuals in a multi-layer social network. How-

ever, fraudulent individuals can collude with each other to perform collaborative

frauds such as auction scam, review spam, etc. Hence, detecting the collaborative

groups of anomalous individuals in multi-layer social networks is a major area

for future research.

• ADOMS is solely based on network topology and does not require node/edge

attributes. However, in social networks, nodes or edges may be associated with

features such as age, interests, educational qualifications, etc. of the individuals,

or the duration of the interactions among them. Hence, another promising future

research direction is to investigate the significance of attributes associated with

the nodes or edges of the multi-layer social networks in improving the anomalous

node detection process.

• SpamCom is an effort to study the spammer community structure existing in so-

cial networks. The approach needs evaluation in much finer detail, and a much

detailed and extended study of the approach and its performance in real-world

scenario are interesting future works.

• The approaches proposed in this thesis are developed for static multi-layer social

networks where only one snapshot of the networks is considered for anomaly

detection. However, social networks are highly time-evolving, and generalizing

the approaches for time-evolving multi-layer social networks is a future work.

Here, the challenges are to identify the suitable feature space that characterizes

the neighborhood of the nodes, and to extract the features dynamically.

• Exploring and identifying the different types of anomalies (anomalous nodes,

edges, and/or subgraphs) that can occur in multi-layer social networks and their

real-world applications are promising research directions in this area.

In conclusion, this dissertation proposes unsupervised approaches for detecting

anomalies in multi-layer social networks by using graph-theoretic features of the net-

works and data mining techniques. More specifically, an unsupervised approach is

proposed to detect anomalous nodes in a multi-layer social network by analyzing the

structure of the network. In addition, an unsupervised approach is proposed to de-

tect anomalous spammer communities in a multi-layer social network by analyzing the

structure and attributes of the network.
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