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Abstract

The Bone Age is a fairly reliable measure of persons growth and maturation

of skeleton. Bone age assessment (BAA) has been a standard procedure to

predict the age of a person from hand radiograph. The difference between

chronological age and bone age indicates the presence of endocrinological

problems. The automated bone age assessment system (ABAA) based on

Tanner and Whitehouse method (TW3) requires monitoring the growth of

radius-ulna and short bones (phalanges) of a left hand. The Tanner and

Whitehouse - 3 (TW3) method involves assigning scores to the bones of

interest of left hand and assessing the age of a person using the aggregate

of scores. Due to the complexity and involved processing time, it is difficult

for pediatricians to use the TW3 method in clinics. Hence, automating

the whole procedure avoids human error at the same time reduces the pro-

cessing time.

This thesis investigates design and development of ABAA system to pre-

dict bone age of a person from hand radiograph. Fully ABAA system

consists of 5 main stages which are (1)Pre-processing, (2)ROI extraction,

(3)Segmentation, (4)Feature extraction and (5)Classification. In this con-

text, two fully automatic extraction methods are proposed for the region

of interest of phalanges (PROI) and radius-ulna bones (RUROI) using the

left-hand radiograph. Experimental results demonstrate that fully auto-

mated PROI and RUROI extraction methods are simple, accurate and fast

because underlying mechanism is free from complex mathematical proce-

dure.

Segmentation of hand bones plays a vital role in process of ABAA, though

it is a challenging task to segment bones from the soft tissue. The prob-

lem arises because of overlapping pixel intensities between the bone region

and soft tissue region and also overlapping pixels between soft tissue re-

gion and background. Hence, there is a need for a robust segmentation

technique. In this context, two segmentation techniques are proposed, one

for extracted PROI images and other for RUROI images. Quantitative
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and qualitative results of proposed segmentation techniques are evaluated

and compared with other state-of-the-art segmentation techniques. The

segmentation accuracy achieved by proposed segmentation techniques is

94 percent and is 97 percent on PROI and RUROI extracted images re-

spectively. Medical experts have also validated the qualitative results of

proposed segmentation techniques. Experimental results reveal that pro-

posed techniques provide higher segmentation accuracy as compared to

the other state-of-the-art segmentation techniques.

Further, the development of an ABAA system requires robust feature ex-

traction and efficient classification methods. In this context, this thesis im-

plements and analyzes three different feature extraction methods namely

texture feature analysis, Histogram of Oriented Gradients (HOG) and Bag

of Features (BoF) methods on segmented PROI images. Also, three differ-

ent classifiers namely Artificial Neural Networks (ANN), Support Vector

Machines (SVM), and Random Forest classifier are implemented to evalu-

ate the performance of extracted features. Further, experimental results of

BoF with random forest classifier yields a mean error (Merr) of 0.58 years

and root mean square error (RMSE) of 0.77 years for the bone age range of

0-18 years and outperforms other existing BAA methods. Finally, exper-

imental results have also proved that the use of gender bias improves the

classification performance. The best performance is obtained from ring,

middle and index fingers. Hence, the proposed fully automated technique

can be used for bone age assessment of a person with enhanced accuracy.

Keywords: Automated Bone Age Assessment, Hand Bone Segmentation,

Extraction of phalanges, radius and ulna bones, Edge-based Segmentation,

Feature extraction and Classification.
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Chapter 1

INTRODUCTION

This chapter gives a brief introduction to the field of bone age assessment (BAA). An

overview of BAA and the underlying system are discussed. A short background infor-

mation is also presented in this chapter. In closing, problem formulation, contribution

of the thesis and its organisation are discussed.

X-ray radiography was the first non-invasive method used to study the internal

structure of the human body and to diagnose an illness. Owing to its simplicity in

acquiring an image, it is one of the most widely used imaging methods for diagnosis

and research. The advent of digital image processing methods have boosted the field

of diagnostic medicine and increased the accuracy of results obtained. In past few

decades, there has been a growing interest in bone age determination by applying

digital image processing techniques on hand radiographs.

1.1 Overview

Bone age assessment is one of the most important procedures for the evaluation of bio-

logical maturity of children whose age is ambiguous. It is defined as a clinical method

for evaluating the stage of skeletal maturation of a child, hence it is also called as

skeletal age assessment. Skeletal maturity gives the measure of the development of a

bone incorporating its shape, size, and degree of mineralization (Gilsanz and Ratib

(2005)).

Bone age assessment is often used to determine the difference between the skeletal

1



bone age and the chronological age (age from the date a person is born). Normally, the

bone age should be approximately within 10 percent of chronological age (Gilsanz and

Ratib (2005)). The discrepancies between the two, (i.e. chronological age and bone

age), shows that there are abnormalities in the skeletal growth of children or there

is a hormonal imbalance. BAA is based on occurrences of the three major events as

follows

1. Appearance of primary and secondary centres of ossification,

2. Growth of the ossification centers,

3. The time when fusion of the primary and secondary center occurs.

Primary ossification center is a region in the long shaft of bone, where initial

calcification begins as shown in the Figure 1.1, which is obtained from the book on

hand bones by Gilsanz and Ratib (2005). Many flat bones, like carpal bones (wrist

bones), completely ossify from a primary center; but all long bones develop a secondary

center that appears at the cartilage of extremities of a bone.

Figure 1.1: Development of bone.

It is still unclear, which factors exactly affect the maturity and growth; but it is

certain that hormones, genetics, diet and environmental factors play an important

role (Gilsanz and Ratib (2005)). The judgment about the age is based on the identifi-

cation of the time at which ossification centers appear and epiphyseal fusion happens.

BAA is performed usually by comparing an X-ray of a left-hand wrist with an atlas

of known sample bones which is the most commonly used method in clinical practice

known as Greulich and Pyle (1959) (GP) method which contains a reference set of

normal standard images.
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Another procedure is the Tanner and Whitehouse-3 (TW3) method, which is more

flexible and has been derived from a solid mathematical base (Tanner et al. (2001)).

In the TW3 method, a detailed analysis of every bone of left hand is done, which

further leads to assigning scores to each bone and the sum of all scores assesses the

bone age. GP method is outdated and based on human judgment, but preferred by

pediatricians due to ease of use over the complexity and time-consumed by the TW3

bone assessment process. Automating the TW3 procedure would reduce the com-

plexity and give a second opinion to radiologists and pediatricians while reducing the

overall execution time.

However, automation of assessment process is obstructed by the presence of non-

uniformities in X-ray exposure on the hand bones. This non-uniform exposure is

inherent to the radiography which is largely credited to the ‘heel effect’. The intensity

inhomogeneity is a smoothly varying function of spatial location. The relative bright-

ness of an object placed for X-ray image acquisition is position dependent. According

to Behiels et al. (2002) this is due to the fact that image acquisition parameters that

affect intensity inhomogeneity differ due to the position of hand from the recording

device. It poses a major challenge to the automation of BAA along with the problem

of pixel intensity overlapping between bone and soft tissue region.

1.2 Motivation

An open document of United Nations Children’s Fund (UNICEF), says that “In In-

dia, an estimated 27 million births take place every year. The current level of birth

registration in the country is 70 percent (UNICEF (2011)). Thus, around 30 percent

(approx. 8 million) newly born children are not registered even within one year of

birth. This leads to difficulty in getting them access to basic services and protection,

including prevention of child labor, trafficking, countering child marriage, and provid-

ing appropriate care and protection.”

According to the Census of India (2011), the birth registration is less than 80

percent in 8 states (viz. Andhra Pradesh, Bihar, Chhattisgarh, Jammu and Kashmir,

Jharkhand, Sikkim, Uttarakhand and Uttar Pradesh) and 2 union territories (viz.

Dadra and Nagar Haveli, Lakshadweep). Statistics of birth registration is approxi-
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mately 50-60 percent in other developing countries. Without evidence, the children

are at risk of underage recruitment into armed forces or early marriage. There also

exists unaccounted child labour which thrives because it is unchecked. There is a

major problem of early marriage in India before the legal age of 18 years. Children

without an identity proof are vulnerable to judgment as an adult rather than child or

juvenile in criminal courts.

The endocrinological problems in youngsters are already evident in many coun-

tries, varying in scale and intensity for different age groups and sex. Also, change in

lifestyle and eating habits of people are the modern factors that lead to endocrine dis-

orders. Thus, BAA plays a significant role because of its reliability and practicability

in diagnosing hereditary diseases and growth disorders.

1.3 Background

Angerer in 1886, was the first person who stated that the carpal bones (wrist bones)

can be used for the estimation of age in young people (Van Lenthe et al. (1998)).

Soon after Roentgen discovered x-ray radiography, Franz Boas came up with a phrase

tempo of growth and predicted that by the end of the century, there will be differ-

ences in the rate of maturity in children (Van Lenthe et al. (1998)). Events that occur

during puberty and throughout adolescence such as the eruption of a certain tooth,

occurrence of the first menstrual period, the degree of testicular activity and appear-

ance of pubic hair were used as indicators for the maturity. But all these are coarsely

spaced event sequences that lead to incomplete and uneven coverage of developmental

age span (Tanner et al. (2001)). This motivates the usage of hand and wrist bones

for BAA which contains sufficient number of sequences that could cover the age span.

The Figure 1.2 shows bones of hand and wrist which is procured from an online source

(www.pinterest.com).

In 1959 and 1975, the most important methods for the estimation of age based on

radiological analysis were defined by Greulich and Pyle (1959) (GP method) and Tan-

ner et al. (1975) (TW1 method) respectively. GP method which is an atlas matching

method is still the most commonly used technique because the evaluation is very sim-

ple and less time-consuming. The TW1 method is more flexible and has been derived
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Figure 1.2: Bones of hand and wrist.

from a solid mathematical base. The TW1 method calculates maturity score which

is known as Skeletal maturity score(SMS). It takes one bone at a time, in the order

radius, ulna, metacarpals I, III, V, proximal phalanges I, III, V, middle phalanges III,

V, distal phalanges I, III, V, capitates, hamate, triquetral, lunate, scaphoid, trapez-

ium, trapezoid, and assigns score to each bone by reference to the text. The scores

are then aggregated to give the final skeletal maturity score (SMS). The SMS is then

mapped to bone age with the help of charts and tables given in the TW reference book

by Tanner et al. (1975). The major differences in these two methods are summarised

in the Table 1.1.

Table 1.1: Comparison between GP method and TW Method.

Sr. No. GP Method TW Method

1 Atlas matching method. Score assigning method.

2 Faster and easier to use. Complex and time consuming.

3 Not easily reproducible. Easily reproducible.

4 Error margin is more. Error margin is less.

5



The TW2 method Tanner et al. (1975) was a revised version of TW1 in terms of

scores associated to each stage and also the differences between both sexes. In the

TW2 method, the regions of interest (ROIs), considered for the bone age evaluation

are as follows:

1. Epiphysis/metaphysis ROI (EMROI) of Radius, Ulna and Short bones (pha-

langes) which is aggregated to give the RUS score.

2. Carpal bones (CROI), which give the carpal score.

The bone development in each ROI is divided into nine discrete stages, and each

stage is given a letter (A to I). RUS score spans the development of bones from 0-18

years, but carpal score can only predict from 1-14 years. In EMROI, there are two

important parts: Epiphysis and Metaphysis. The stages of Epiphysis and Metaphysis

are roughly described as follows:

1. Stage A - Epiphysis is absent

2. Stage B - Single deposit of calcium

3. Stage C - Epiphyseal center is visible

4. Stage D - Maximum diameter of epiphysis is half or more than the width of the

metaphysis.

5. Stage E - Border of epiphysis is concave.

6. Stage F - Epiphysis is as wide as the metaphysis.

7. Stage G - Epiphysis forms a sharp articulation and has distinct C- shape.

8. Stage H - Epiphysis caps the metaphysis.

9. Stage I - Epiphysis is fused to metaphysis.

A numerical score is further associated with each stage of every bone in ROI.

Aggregating the scores of all ROIs, an overall maturity score is obtained. The Figure

1.3 shows stages of radius which is procured from the literature (Aja-Fernández et al.

(2004)).

The TW2 method has been modified throughout the years, evolving to TW3

method (Tanner et al. (2001)) which maintains the description for the bone stages

but calibrates the scoring method on the North American and European children.

Other difference between the two methods is that TW2 collects the maturity evidence
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Figure 1.3: Bones of hand and wrist.

Table 1.2: Difference between TW2 method and TW3 Method.

Sr. No. TW2 Method TW3 Method
1 British population. American & European population.
2 20 bone score. RUS score & Carpal score.
3 TW2 & TW3 scores are different. A year ahead from age 10 upwards.

from twenty bones consisting of the combination of radius, ulna and short bones (RUS)

and carpals. Whereas, TW3 collects maturity evidence separately from RUS or Carpal

scores. Scores of TW2 and TW3 are different for a few bones. Thus, the conversion

of SMS to bone age is changed; TW3 bone ages are a year ahead of TW2 ages from

age 10 upwards. The TW3 method is seldom used because of its high complexity,

yet its modular structure makes it suitable for automation. Table 1.2 summarizes the

differences between TW2 and TW3.

1.4 Bone Age Assessment System

The automation of bone age assessment is categorised into five main stages:

1. Pre-processing of the left hand X-ray image

2. Extraction of the Region of Interest (ROI).

3. Segmentation of bones in the extracted ROI.

4. Feature Extraction from segmented bones.

5. Classification.

The pre-processing stage involves noise removal and enhancement of the X-ray

image. The next process is the extraction of ROI for further analysis namely pha-

langeal region of interest (PROI) and radius-ulna region of interest (RUROI). The

pre-processing stage renders a better segmentation of bone which is the next stage.

7



In feature extraction stage, various types of feature are extracted from the segmented

bone structures which will guide the system into proper classification and estimation

of the bone age. The generalized block diagram of Automated Bone Age Assessment

(ABAA) system is shown in Figure 1.4.

Figure 1.4: Block diagram of Automated Bone Age Assessment system.

1.5 Problem Formulation

Poor accuracy in extraction of the region of interest (ROI) and further segmentation of

bones may be caused by an absence of robust pre-processing technique. The existence

of high variations in background luminance, low contrast or excessively enhanced con-

trast in a hand bone radiograph causes a discrepancy in the bone age assessment.

The existing BAA systems are not yet fully developed due to the inherent problems in

hand radiograph processing especially incase of low contrast in ossification area. The

contrast variation of bone texture in ossification regions are of critical importance in

the TW3 bone age assessment. If both, the structure and texture of ossification bones

are well defined, then the important features are distinguishable.

Inhomogeneity in pixel intensities poses a major challenge in the segmentation

process because of the overlapping pixels between bone and soft tissue, identifying

the tissue region also as an object of interest. The segmentation technique should

not track the cancellous bone region along with the cortical bone region. Cancellous

bone is also known as the trabecular bone which is a soft osseous tissue that forms

the internal bone; whereas cortical/compact bone forms the exterior part of the bone.

8



Finally, the segmentation stage should make feature extraction easier for interpreta-

tion and accurate classification.

Feature extraction stage mainly relies on the precision of previous stages. Differ-

ent kinds of feature can be extracted from segmented bones such as morphological,

statistical, texture based etc. The ability of automated bone age assessment (ABAA)

system to correctly classify the test image depends on the type of feature extracted and

the classification method used. Most of the current classification methods are highly

conducive and productive. Hence, the focus mainly relies on finding the best possible

feature extraction method for getting a higher accuracy from the BAA system.

1.6 Objectives of the thesis

The objectives envisaged for bone age assessment (BAA) are listed as follows:

1. To propose a novel ROI extraction method and realize a suitable pre-processing

technique for application on hand radiographs.

2. To propose a novel segmentation technique and evaluate its performance on

hand radiographs for bone age assessment.

3. To frame an efficient feature extraction mechanism for classification of segmented

hand radiographs for bone age assessment.

1.7 Contributions of the thesis

The main contributions of research work are summarized as follows:

1. A fully automated ROI extraction methods are developed for hand radiographs.

Two ROI regions have been extracted which are phalangeal region (PROI) and

radius-ulna region (RUROI). The PROI extraction method is fast, accurate and

extracts all 5 phalangeal regions at the same time. The RUROI extraction

method is also fast, accurate and extracts radius and ulna bones. The process of

extraction for both ROI’s is quite simple because it was devoid of on any com-

plex mathematical framework and follows a simple hierarchical bone localization

technique.
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2. A fully automated segmentation techniques are proposed for extracted ROI’s

from hand radiograph. The phalangeal bones and radius-ulna bones are seg-

mented with moderately high segmentation accuracy. The proposed segmen-

tation techniques are based on morphological tools, active contours, and post-

processing. The proposed techniques successfully tackle the heel effect problem

or the bias field that is present in hand radiographs while segmenting the re-

quired bones which was not tackled for bone segmentation by researchers.

3. The segmentation results of proposed techniques are evaluated and compared

with many other state-of-the-art segmentation techniques which only a few re-

searchers had done before. Further, a quantitative analysis of the segmentation

results is done using various quality metrics such as peak signal-to-noise ratio

(PSNR), mean square error (MSE), jaccard similarity index (JSI), Dice similar-

ity index, Accuracy, geometric mean (GM) and Matthew’s correlation coefficient

(MCC). Such analysis has not been done before in this area of BAA and hand

bone segmentation.

4. A robust feature extraction methods have been implemented for BAA from

segmented hand radiographs. Further, different classification techniques have

been used for predicting bone age of a person with high classification accuracy.

Finally, experimental results reveal that fully automated BAA system provided

better results as compared to other existing BAA methods.

1.8 Organization of the thesis

The thesis is organized into six chapters as follows.

Chapter 2, discusses the work done in the field of bone age assessment. The lit-

erature survey is divided into 3 parts; (1) pre-processing and ROI extraction, (2)

segmentation of bones and (3) feature extraction and classification based on bone fea-

tures extracted.

Chapter 3, presents the proposed ROI extraction methods for PROI and RUROI.

This chapter also presents the extraction results of proposed ROI extraction methods

and summarizes the work done in fulfilling the first objective.
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Chapter 4, discusses the proposed segmentation techniques for PROI and RUROI

images. A quantitative and qualitative analysis is presented and quantitative as well

as qualitative results are compared with state-of-the-art segmentation techniques. The

results have also been validated by medical experts. The work is summarized at the

end which fulfills the second objective.

Chapter 5, analyses various feature extraction methods by applying it on seg-

mented PROI images. The classification results have been presented in this chapter

and the work is summarized in the end. Work presented in this chapter fulfills the

third objective.

Chapter 6 concludes with the contribution of the thesis. This chapter also presents

possible extensions and future work.
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Chapter 2

LITERATURE REVIEW

This chapter discusses the work carried out by various researchers in the field of

bone age assessment and critically analyses their work to a very minute detail. The

literature review is divided into sections based on the various stages of BAA. Hence,

the literature review is divided into pre-processing and ROI extraction, segmentation,

and feature extraction with classification. Lastly, the research gaps and opportunities

for further work in the same domain are listed.

2.1 Literature review on pre-processing and ROI

extraction techniques

The pre-processing stage is an important step before hand radiograph segmentation

as it prepares the image for extracting the required information. A pre-processing

stage may involve noise removal, contrast enhancement or any other technique based

on application to improve the quality of image for further stages. Region of interest

(ROI) extraction is done to apply the algorithm only on required areas of the image,

so that it eases the segmentation procedure and reduces complexity.

Michael and Nelson (1989) made the first attempt to automate bone age assessment

procedure and was called as HANDX system. HANDX system is a semi-automated

system which uses pre-processing and segmentation. It reduced the variability of the

observer to give a slightly better result. The accuracy was still not reasonable and

there were some overlapping pixels between the background and segmented bones.
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Various methods have been designed to remove the background of radiograph as

pre-processing. Sharif et al. (1994) used the derivative of Gaussian (DoG) for pre-

processing and segmentation of bones by thresholding, but the results were not promis-

ing. Pietka et al. (2001) proposed epiphyseal-metaphyseal region of interest (EMROI)

extraction technique, which also included a good pre-processing unit. Pre-processing

steps involved orientation correction and background removal. EMROI extraction is

done by first detecting the phalangeal tip and then step wedge function to extract the

fingers. Later, gradient function is used to mark the epiphyseal region. But thresh-

olding was not good enough to separate out the spongy region and the bone tissue.

Park et al. (2007) developed a method to extract the epiphysis using horizon-

tal profile. In this paper, authors first removed the background using least squares

algorithm and then boundary was traced. Later, the central axis of each finger was es-

timated using 3rd order polynomial, because of which even if the fingers were slightly

curved, the central axis could be estimated. Giordano et al. (2007) developed a semi-

automated system for skeletal bone age evaluation. This proposed method was based

on derivative of Gaussian (DoG) filtering and adaptive thresholding for enhancement,

but it was not feasible for low contrast images. Thresholding method identifies the

spongy tissue region also as an object of interest which is its major drawback.

Lee and Kim (2008) proposed an EMROI extraction method for the TW2 system

in which the boundary was removed using least squares algorithm and then long axis

of each finger was extracted. EMROI were localized by studying the intensity profile

along the axis. Chai et al. (2013) proposed a histogram equalization technique called

as multi-objective beta-optimized bi-histogram equalization was designed which used

multi-objective optimization technique for histogram equalization. Before segmenta-

tion, anisotropic diffusion was also used to smoothen the image. Hsieh et al. (2012)

have focused on PROI extraction using projection profile of the fingers and gamma

parameter enhancement. Authors compared the results with and without gamma en-

hancement for two popular segmentation techniques namely k-means algorithm and

gradient vector flow (GVF) snakes. The summary of different pre-processing and ROI

extraction techniques is presented in Table 2.1.
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Table 2.1: Summary of different pre-processing techniques used for bone age assessment
on hand radiographs.

Pre-processing Technique Advantages Disadvantages

Histogram Equalization

Michael and Nelson (1989),

Sharif et al. (1994)

Simple and basic method for image en-

hancement

Overlapping of pixels between bone

and background.

Orientation correction

and backgraound removal

Pietka et al. (2001)

Simple mathematical steps to correct

the orientation and background re-

moval

Not highly effective method.

DoG filtering Does not depend on X-ray acquisition Fails in noisy images.

Giordano et al. (2007, 2010) Requires good contrast images.

Background Removal Better than previous PROI extraction Complex and consumes more time.

Park et al. (2007) methods

Noise Removal Using mathematical morphology is Manual extraction of ROI and not a

Han et al. (2007) simple and fast convincing method.

Gamma Enhancement

Hsieh et al. (2012)

Gives better results and its easier for

segmentation.

Huge training data required to set the

gamma value.

Bi-histogram equalization

Chai et al. (2013)

Uses optimization technique to find the

best possible value.

Complex and takes time.

Contrast Enhancement &

Noise Filtering

Simple morphological operators used. Not very effective and applied only on

carpal and radius bones.

Guraksin et al. (2016)

2.2 Literature review on hand bone segmentation

techniques

For extracting the bone region from ROI image, segmentation techniques are essential.

Image segmentation techniques are classified into thresholding, clustering, edge-based,

region-based, deformable models and hybrid techniques. Different classes of segmen-

tation techniques are shown in Figure 2.1.

Thresholding is the earliest and first segmentation technique, also the most widely

applied segmentation technique. It is based on the postulation that both object and

background have a different range of pixel intensities. In other words, if an object or

background is mutually exclusive in terms of intensity range, then it could be separated

in different regions using a single or multiple values of pixels intensity. Segmenting

the bones from soft tissue region are achieved by Sobel gradient (Pietka et al. (1991,
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Figure 2.1: Different types of segmentation techniques.

2001)). This method has limitations as the gradient image cannot be further used for

segmentation. Overlapping of pixels are also present in the resulting image. Similar

segmentation techniques like Derivative of Gaussian (DoG) and dynamic thresholding

are also implemented on hand radiographs (Pietka et al. (1993), Sharif et al. (1994),

Giordano et al. (2007)). But these techniques also hold the same problems as the

previous technique. Otsu thresholding which is based on maximizing the inter-class

variance was implemented on hand radiographs, but the major problem with the tech-

nique was that results were not accurate (Kashif et al. (2015)).

Clustering is unsupervised learning strategy that groups similar patterns into clus-

ters. Most popular clustering technique used for segmentation is k-means clustering

wherein the pixels are classified into k clusters, based on distance measure such as

Euclidean distance. Clustering process is carried out by optimizing an objective func-

tion, in this case, to minimize a squared error function. Adaptive clustering algorithm

based on k-means clustering along with Gibbs random fields (GRF) was formulated

by Pappas (1992). This clustering technique was implemented on hand radiographs

by many researchers, but the results were appalling as it was not effective on finely
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varying textures (Gertych et al. (2007), Tristan-Vega and Arribas (2008), Giordano

et al. (2010)). The k-means clustering along with gray-level co-occurrence matrix was

used by Chai et al. (2011) for hand radiograph segmentation. The main drawbacks

of this method were that the number of gray levels were decided manually and it was

computationally intensive.

Edges are pixels which undergo abrupt changes in gray level intensity, known as

discontinuities. These edges are connected and linked to constitute closed boundary.

Pixels within the closed boundary are then labeled as objects. This type of labeling

is referred to edge-based segmentation. Particle Swarm Optimization (PSO) was used

along with edge detectors by Liu et al. (2007) and also with graph-based segmentation

by Thangam et al. (2012).

Region-based segmentation techniques seek to segment an image by classifying the

image into two sets of pixels: Interior and exterior, based on the similarity of selected

image features. It is based on the concept that the object to be segmented has com-

mon image properties and similarities such as a homogeneous distribution of pixel

intensity, texture, and pattern of pixel intensity that is unique enough to distinguish

it from another object (Gonzalez et al. (2004)). Region growing and region merging

technique was applied by Manos et al. (1994) on hand radiographs. This technique is

insensitive to image semantics and is unable to separate multiple disconnected objects

simultaneously.

Watershed algorithm is a classic example of hybrid segmentation technique. It is

based on the basic concepts; thresholding, region growing, and edge detection tech-

niques. Han et al. (2007) implemented it on hand radiographs but it had limitations

due to sensitivity towards noise and heavy dependence on gradient of the image.

Deformable model is a class of methods that implement an estimated model of

the targeted object using the model constructed by the prior information. Prior in-

formation can be edge information, image texture and shape variability of a specific

class of object. The three main classes of deformable models are active contour model

(ACM), active shape model (ASM) and active appearance model (AAM). The word

active suggests that the curves adapt themselves to fit the targeted object. Each class
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differs mainly from the prior information that they use for segmentation. Niemeijer

et al. (2003) segmented middle phalanx of the third finger using ASM. In this paper,

authors achieved an accuracy of 80 percent in terms of the observer. However, the

dataset consisted of images of age group 9-17 years. Other authors also tried using

ACM for segmentation (Luis-Garcia et al. (2003)).

Thodberg et al. (2009) proposed a complete BAA system called as BoneXpert

method. The architecture of BoneXpert can be divided into three major layers: Layer

A to reconstruct the bone borders, Layer B to compute bone age value for each bone

based on image and gender, and Layer C to transform the intrinsic bone age value

to final bone age value that can be used by the clinician. The bone reconstruction

is based on active appearance model (AAM). However, the age groups 17-19 and 0-2

were omitted from the dataset. Also, radius and ulna bones were poorly reconstructed.

The summary of different segmentation techniques is presented in Table 2.2.

2.3 Literature review on feature extraction meth-

ods and classification techniques

Based on the TW2 method, a computer-based skeletal age scoring system (CASAS)

using phalanges and radius-ulna bones was designed by Tanner and Gibbons (1994).

The result minimized the root-mean-square error between Fourier transform from the

unknown bone and Fourier transform of the available bone templates. The templates

were produced by averaging the Fourier transform coefficients using 10 images from

bone stages. The system coped well with overexposed or underexposed images but

demanded a well-positioned hand. It was highly dependent on the templates which

had been used to design the system. Rucci et al. (1995) proposed a method based

on a trained neural network for feature extraction of X-ray hand bone images. The

method was tested on 56 radiographs of low quality. Gross et al. (1995) used a neural

network which was based on linear distance measures. It did not use morphological

features that were used in GP or TW methods.

Mahmoodi et al. (1997) developed an automated system based on analysis of PROI

utilizing an active shape model and knowledge-based technique. The system applied
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Table 2.2: Summary of different segmentation techniques for bone age assessment of
hand radiographs.

Segmentation Technique Advantages Disadvantages

Binary overlay & Adaptive
contour

Simple and very basic method Contour follower fails at very noisy
edges & at corners.

Michael and Nelson (1989)

Sobel Gradient Takes less processing time. Some overlapping pixels still present.
Pietka et al. (1991, 2001) Depends heavily on contrast of the im-

age.

Dynamic-thresholding
Pietka et al. (1993)

Performs better than local and global
thresholding.

Only suitable selection of kernel size
and constant can produce optimum re-
sult.

DoG & thresholding Advantages of DoG and thresholding Fails in noisy images.
Sharif et al. (1994), Giordano
et al. (2007)

makes it slightly better. Requires good contrast images.

Region growing & Region
merging

Better than thresholding as it divides
regions into interior and exterior

Insensitive to image semantics. Unable
to separate multiple disconnected

Manos et al. (1994) objects simultaneously.

Active Shape Models Gives high segmentation accuracy. Landmark placement is manual.
Mahmoodi et al. (1997),
Niemeijer et al. (2003)

Number of landmarks has to be speci-
fied. Alignment phase is critical.
Large data required for training set.

k-means with GRF Very high segmentation accracy Bad results if noise is present.
Pietka et al. (2003), Gertych
et al. (2007), Tristan-Vega and
Arribas (2008), Giordano et al.
(2010, 2016)

Very slow compared to k-means clus-
tering. Effective for slow varying tex-
tures.

Active Contour Models Processes only specific areas. High sensitivity to noise.
Luis-Garcia et al. (2003) High computational effciency. High dependency on initial snake.

Can be easily governed. Does not consider region information.

Watershed Overcomes drawbacks of edge-based Sensitive towards noise.
Han et al. (2007) segmentation. Heavily depends on the gradient.

PSO with Edge set Better than edge-based segmentation Not effective for fused bones.
Liu et al. (2007, 2008) methods.

Active Appearance Model Powerful segmentation method. Low efficiency in real time systems.
Thodberg et al. (2009) Follows ASM method but slightly bet-

ter.
Low discriminative ability. Inconsis-
tent robustness.

Canny edge detector Simple and basic methods Depends heavily on the gradient and
Giordano et al. (2010), Gu-
raksin et al. (2016)

contrast of the image.

GLCM with k-means Simple and effective for largely similar No. of gray levels manually decided.
Chai et al. (2011) regions in image. Computationally intensive & time con-

suming.

Graph-based Segmenta-
tion

Overcomes drawbacks of edge-based
methods

Requires manual landmarks if gradient
are not clear.

Thangam et al. (2012) Cannot segment multiple disconnected
objects simultaneously.

Otsu thresholding Most simplest and basic method. Manual threshold vales to be given.
Kashif et al. (2015, 2016) End segmentation results are not accu-

rate.

a hierarchical search to localize the bones and then an active shape model was per-

formed by a bone contour. Age estimation was done using the Bayesian estimator and

regression model. Pietka et al. (2003) developed an end-to-end system using k-means
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clustering algorithm and Gibbs random fields for segmentation (Pappas (1992)). The

features were extracted using wavelet transform, which was then further classified us-

ing fuzzy classifiers.

Aja-Fernández et al. (2004) designed a computational TW3 classifier for bone age

assessment. The classifier was built upon a modified version of a fuzzy ID3 decision

tree. A unique advantage was that it did not require a large dataset to train, but

only a few to fine tune it. Tristán and Arribas (2005) developed an end-to-end system

focussing on radius and ulna bones. It used a modified k-means algorithm for seg-

mentation (Pappas (1992)). Further, 89 features were extracted from each bone and

classification was done with the help of generalized softmax perceptron (GSP) neural

network. Feature selection was done using linear discrimination analysis (LDA). The

dataset was really small with only 4 stages of TW3. As a further attempt by Tristan-

Vega and Arribas (2008), a detailed methodology was described but it did not cover

all the stages of TW3.

Liu et al. (2008) proposed automatic bone age assessment based on intelligent al-

gorithms. In this paper, the main focus of authors was on the extraction of RUS and

carpal features as well as classification technique using back-propagation algorithm.

Even though accuracy achieved was good, the training of neural network took a lot of

time. Hsieh et al. (2007) focused on the extraction of features from PROI and classify

them using fuzzy logic. The feature selection was done using principal component

analysis (PCA). In their further attempt, Hsieh et al. (2010) demonstrated the same

work with a slightly larger database and also showed which features were dominant.

Thodberg et al. (2009) proposed a complete BAA system called as BoneXpert

method. Features include shape, intensities, texture information. Final stage maps

the result to either GP Bone age or TW2 bone age. Giordano et al. (2010) developed

a fully automated system for bone age assessment. Authors compared their results

with Pietka et al. (1991, 1993) and Gertych et al. (2007). The performance was good

but not as high as the BoneXpert method. But the system can evaluate low-quality

images as compared to BoneXpert as it rejects such images.

Recently Harmsen et al. (2013) have used support vector machines (SVM) with
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Table 2.3: Summary of various feature extraction techniques and classification meth-
ods.

Segmentation Method Features Extracted Classification Results

Sobel Gradient Phalangeal length ME = 1.57
Pietka et al. (1991) Std = 0.32

ASM Principal Components Bayes decision theory Acc = 83(M)/85(F)
Mahmoodi et al. (1997) E-M width ratio

k-means with GRF Wavelet Transform Fuzzy classifiers ME = 0.94(M), 1.13(F)
Pietka et al. (2003) Morphological features

ASM Correlation values TW model compare Acc = 73.2
Niemeijer et al. (2003)

Manual Segmentation Epiphysis curvature
measure.

Fuzzy Decision tree Acc = 93.5

Aja-Fernández et al. (2004) E-M width Ratio.

k-means with GRF Wavelet Transform Fuzzy classifiers Acc = 80
Gertych et al. (2007) Morphological features

DoG and thresholding E-M width ratio Acc = 87
Giordano et al. (2007) Morphological features

k-means with GRF E-M width ratio Neural networks ME= 0.89
Tristan-Vega and Arribas
(2008)

Zerinke Moments,
Fourier and Haar
wavelet

PSO with edge set E-M width ratio Neural Networks ME = 0.84
Liu et al. (2008) Morphological features Std = 4.4

AAM Shape of phalange Calibrated GP/TW Std(GP) = 0.42
Thodberg et al. (2009) Gabor energies Std(TW) = 0.8

k-means with GRF E-M width ratio TW model compare ME = 0.67
Giordano et al. (2010) Convex hull of Epiphysis Std = 0.43

Region growing Cross corellation values SVM ME = 0.83 (Gender)
Harmsen et al. (2013) Me = 0.96 (No Gender)

Semi-auto with Otsu SIFT SVM ME = 0.6053 (Gender)
Kashif et al. (2016) ME = 0.7461 (No Gen-

der)

Deep Learning Deep CNN transfer CNN ME = 0.93(F)
Lee et al. (2017) ME = 0.82 (M)

Deep Learning CNN features CNN ME = 0.79
Spampinato et al. (2017)

cross-correlation to prototype age for each class. Guraksin et al. (2016) have worked on

morphological operators for pre-processing, segmentation and feature extraction. In

this paper, authors have used SVM for classification and their main work was focused

on carpal bones and radius bone only for an age group of 0-6 years. Scale Invariant

Feature Transform (SIFT) feature extraction was used for BAA by Kashif et al. (2015)

and later Kashif et al. (2016) proved that SIFT is better than other feature extraction
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techniques like BRISK, FREAK etc. But the authors use a semiautomatic procedure

involving Otsu’s thresholding as the main segmentation technique. Seok et al. (2016)

have extracted 17 ROI’s altogether from phalanges and radius, ulna bones and used

multi-layered fuzzy classifiers for classification. Lee et al. (2017) and Spampinato et al.

(2017) have used deep learning techniques for bone age assessment. The summary of

various feature extraction techniques and classification methods is presented in Table

2.3.

2.4 Research gap analysis

1 The TW2 system is obsolete.

The differences between TW2 and TW3 systems have been discussed earlier.

The creators of TW system do not recommend the use of TW2 system after it

has been revised. The TW3 system mentions that the skeletal maturity scores

have been mapped to bone ages which have been derived from larger populations

(European, North-American and European derived populations).

2 Need for a larger dataset.

Ideally, to test the technique and derive a conclusion on the fitness of the tech-

nique there is a need to have a large dataset. There has been good work done

in this field, with various approaches to tackle the BAA problem, but the major

drawback is the limited number of images used for validating the results.

3 A system to cater the whole age group.

The TW3 system can be used to predict ages from 0-18 years. The literature

survey clearly shows that researchers have not tested their BAA systems on the

whole age group except for a few systems which gave bad accuracy. This may be

due to the failure in segmenting the bones at different ages or failing to classify

them.

4 End-to-end TW3 system for BAA.

For the benefit of larger and rural masses, the BAA system should be simple,

easy-to-use and fast. Hence, there is a need to have a fully automated system

that will assess the bone age from a radiograph with minimal or no human

intervention. The underlying software should be light, so that it can run on any

processing machine, from a desktop to a mobile phone.
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Chapter 3

PRE-PROCESSING AND ROI

EXTRACTION

3.1 Introduction

This chapter presents pre-processing and ROI extraction blocks of the ABAA system.

Pre-processing and ROI extraction techniques used for the phalangeal region of in-

terest (PROI) and radius-ulna region of interest (RUROI) are discussed. Later the

segmentation stage is applied which common to both ROI’s i.e. PROI and RUROI,

which will be discussed in the chapter 4.

Pre-processing of an image is a set of operations applied to image data that will

either suppress unwanted distortions or enhance particular image features. It is an

important procedure which prepares the image for further analysis. Pre-processing

techniques are broadly divided into contrast enhancement, noise filtering, histogram

modification and geometrical transformations. Contrast or image enhancement is

basically a set of operations that are used to improve the quality of an image such

that it is better suited for human or machine interpretation. Noise filtering is used to

remove any unnecessary information if present. Histogram reflects the characteristics

of an image. Thus, by varying the histogram it can unlock any hidden information

that can be useful for any particular application. Geometric transformations such as

scaling, rotation, translation, skewing were not considered as pre-processing techniques

until recently. The region of interest (ROI) is a portion of an image under study, on

which further image processing techniques are applied.
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Figure 3.1: Block diagram of the proposed ROI extraction technique.

The schematic block diagram of the proposed ROI extraction technique for both

phalangeal and radius-ulna is shown in Figure 3.1. In this figure, the first pre-

processing stage involves noise removal and preparation of the hand radiograph image

I for ROI extraction stage. Let the output image after this stage be called as A.

The next step is the extraction of ROI’s (Phalangeal and Radius-Ulna ROI). Let the

extracted image be B. In the next stage edge enhancement or edge preservation is

performed and then segmentation of bones is carried out in ROI which is discussed in

the chapter 4.

3.2 Pre-processing and extraction of PROI and RUROI

It is important to prepare the image before an extensive procedure of ROI extraction

followed by segmentation stage. The pre-processing stage is same for both ROI extrac-

tion techniques. For efficient and accurate ROI extraction, the X-ray image of the left

hand is subjected to Gaussian filtering (Gonzalez and Woods (2004)). The Gaussian

filter removes the noise present in the hand radiograph to give image A. After study-

ing the shape and structure of fingers, the extraction of ROI is done with the help

of morphological operators (Dougherty and Lotufo (2003)) using SDC morphology

toolbox.

3.2.1 Pre-processing and PROI extraction technique

The steps for PROI extraction technique are as follows:

1. Gaussian filtering for noise removal (Gonzalez and Woods (2004). The filter has

a Gaussian profile which is convolved with the image and presented in equation
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(3.1)

O(x, y) = I(x, y) ∗G(x, y) (3.1)

where O(x, y) is the output image after filtering stage and I(x, y) is the in-

put radiograph and G(x, y) = 1
2πσ2 e

−x
2+y2

2σ2 . In the equation (3.1), ∗ stands for

convolution and σ is the standard deviation.

2. Multi-level Otsu thresholding to get the boundary of hand (Otsu (1975)).

σ2
w(th) = ω1(th)σ

2
1(th) + ω2(th)σ

2
2(th) (3.2)

where ωi(th) stands for probabilities of two classes (i = 1, 2) separated by a

threshold th. In Otsu (1975), author proved that minimizing the intra-class

variance σ2
w(th) is same as maximizing the inter-class variance σ2

b (th).

3. Morphological erosion is used to smoothen the boundary of hand. Assume the

output after thresholding stage is T , then the morphological erosion operation

on the input image T by structuring element S is given by equation (3.3):

T 	 S = x : Sx ⊂ T (3.3)

where ⊂ denotes subset and T 	 S is made up of all the points x for which the

translation of S by x fits in T (Dougherty and Lotufo (2003)). The structuring

element used for this step is cross.

4. Unnecessary objects present in the binary image are removed with the help of

edge-off function and area opening function. The edge-off function discards any

object connected to borders of the image. Area opening filter removes an object

from the image if it’s size is less than some value ν, which is given in equation

(3.4).

T ◦ (ν)n =
⋃

P, area(P ) ≥ ν (3.4)

where T is the input image and P is the area of n-connected component,

(Dougherty and Lotufo (2003)).

5. Skeleton function and thinning operation to get the skeleton of thresholded

image.

6. Use region properties function to find bounding box, orientation and area of all

skeletons.
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7. Use above properties to draw a rectangular box around the phalanges and crop

to get PROI. The output PROI image is B(x, y).

3.2.2 Pre-processing and RUROI extraction technique

The steps for RUROI extraction technique are as follows:

1. Gaussian filtering for noise removal as defined in equation (3.1).

2. Multi-level Otsu thresholding to get the boundary of hand as defined in the

equation (3.2).

3. Morphological erosion to smoothen the boundary of hand as defined in the equa-

tion (3.3).

4. Edge off and area opening function to remove any unnecessary objects present

in the binary image as defined in the equation (3.4).

5. Find the mean of all the columns to get the column with maximum value and

use this as a reference line for finding the vertical borders of the ROI.

6. With the help of reference column from previous step which divides the hand

into two parts, first non-zero values are found from the left and right borders

of hand radiograph. These non-zero values form the left and right borders of

RUROI.

7. To find the top horizontal border of RUROI, the mean of all the rows is used to

choose a border line of RUROI based on the information extracted.

8. Use the above properties to crop a rectangular region containing the bones radius

and ulna.

3.3 Experimental results and discussion

In this section, the results of PROI and RUROI extraction techniques on digital hand

radiographs between age group of 0-18 years is presented. All results are obtained on

a 64-bit system with MATLAB 2015a software, having an 8 GB RAM and an Intel i7

processor with clock speed of 3.6 GHz. The section consists of image database details,

MATLAB implementation procedure, results obtained and discussion.
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3.3.1 Image database

The database used for experimentation is acquired from an online website,

http://www.ipilab.org/BAAweb/. The images in this database were collected from

Childrens Hospital Los Angeles (CHLA), United States of America (Gertych et al.

(2007)). This database consists of 1101 digital radiographs of left hand out of which

552 were of male and 549 were of female children. The manual segmentation or

ground truth images are constructed with the help of different medical experts from

Goa Medical College (GMC), Bambolim, Goa, India for result comparison. Test hand

radiograph images used for experimentation are shown in Figure 3.2.

(a) 1 year (b) 3 years (c) 5 years

(d) 7 years (e) 12 years (f) 10 years

(g) 14 years (h) 16 years (i) 18 years

Figure 3.2: Test hand radiograph images used for ROI extraction and segmentation.
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3.3.2 Implementation of PROI extraction technique

The implementation steps of proposed fully automatic PROI extraction are given as

follows:

1. Noise removal: The first step is pre-processing, where Gaussian low pass fil-

tering is used for noise removal as given in equation (3.1). The filter size is 3×3

with sigma value set to 5. Please note that hand radiographs are not resized.

2. Boundary extraction: The PROI extraction stage begins with multi-level

Otsu thresholding to extract the boundary of hand. Matlab function multi-

thresh and morphology toolbox function mmthreshad are used to perform this

operation. The resulting output image is binary. Smoothen the boundary of

hand in radiograph using erosion operation mmero as given in the equation

(3.3). Structuring element used here is cross with size 2. Please note that func-

tions starting with mm are morphology toolbox functions and rest are Matlab

functions.

3. Superfluous object removal: Unnecessary objects present in the image are

removed by using mmedgeoff and mmareaopen functions.

4. PROI extraction: The skeleton of hand is extracted using mmskelm, mmthin,

mmendpoints functions and then labeled using bwlabel function. These labeled

objects are further processed using regionprops function to extract information

and then cropped to get the PROI image from hand radiograph. Orientation

option from regionprops function is used to align the PROI’s vertically.

3.3.3 Implementation of RUROI extraction technique

The implementation of the proposed automatic RUROI extraction is explained in

following steps:

1. Noise removal: As mentioned earlier, as a pre-processing step, Gaussian low

pass filtering is used for noise removal as given in equation (3.1). The filter

size is kept 3×3 and the sigma value is set to 5. The hand radiographs are not

resized before applying this step.

2. Extracting boundary of hand: Boundary of hand is extracted using multi-

level Otsu thresholding. Matlab functions used are multithresh and SDC tool-

box function mmthreshad for this operation. The binary image obtained after
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thresholding is further smoothened using erosion operation mmero as given in

the equation (3.3) and structuring element used here is cross with size 2.

3. Vestigial object removal: Unwanted objects present in the image are removed

with the help of mmedgeoff and mmareaopen functions.

4. RUROI extraction: The borders of RUROI image are found using simple

mathematical logic as explained in the earlier section. The MATLAB functions

used in this step are mean and find. The mean function is used to find the mean

of all column and rows whereas find function is used to find the first non-zero

values from the left and right borders of hand radiograph.

3.3.4 PROI and RUROI extraction results

The extraction of PROI and RUROI images is done according to the guidelines of TW3

assessment as given in Tanner et al. (2001). For assessing the score, phalanges and a

small part of a metacarpal bone in PROI are required, whereas in RUROI extraction,

only radius and ulna bones are required. The PROI images extracted are shown in the

Figures 3.3 and 3.4 along with the CPU processing time required for extraction and the

RUROI images extracted are shown in Figure 3.5. The adjoining phalange if present

in the PROI is removed in the post-processing step after segmentation stage which is

explained in chapter 4. Note that the CPU processing time taken for extraction varies

due to the different sizes of the images.

3.3.5 Discussion

The pre-processing stage involves only noise removal as the enhancement of the im-

age is done after ROI extraction stage. The PROI and RUROI extraction results are

fairly accurate by isolating the required bones for further application of segmentation

technique. The extraction process is fairly swift as mentioned in Figures 3.3 and 3.4.

Figures 3.3, 3.4, and 3.5 shows the CPU processing time in seconds taken by the

PROI and RUROI extraction techniques respectively. It clearly indicates that com-

putational cost of each ROI extraction technique is very less. Also, the automatic ROI

extraction stage is independent of hand placement and orientation. The automatic

ROI extraction stage (PROI and RUROI) is simple and takes a negligible amount of

time because it does not involve any complex mathematical procedure.
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Image Pinky Ring Middle Index Thumb Time(sec)

1 year old

5173.jpg

[1430x1099]

8.635

3 years old

6102.jpg

[1542x1152]

12.438

5 years old

7143.jpg

[1728x1248]

9.538

7 years old

5154.jpg

[1890x1330]

16.937

Figure 3.3: PROI images extracted from the hand radiographs.
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Image Pinky Ring Middle Index Thumb Time(sec)

10 years old

5113.jpg

[1900x1380]

17.587

12 years old

5322.jpg

[2081x1592]

16.511

14 years old

5237.jpg

[2509x1844]

36.529

16 years old

5257.jpg

[2149x1879]

21.368

18 years old

6145.jpg

[2376x1616]

31.869

Figure 3.4: PROI images extracted from the hand radiographs.
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Image RUROI Image Time(sec)

1 year old

5173.jpg

[1099x1430]

0.730

3 year old

6102.jpg

[1542x1152]

0.777

5 year old

7143.jpg

[1728x1248]

0.774

7 year old

5154.jpg

[1890x1330]

0.874

10 year old

7076.jpg

[1728x1216]

0.771

12 year old

5322.jpg

[2081x1592]

0.923

14 year old

5237.jpg

[2509x1844]

1.127

16 year old

5257.jpg

[2149x1879]

1.009

18 year old

6145.jpg

[2376x1616]

0.943

Figure 3.5: RUROI images extracted from the hand radiographs.
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3.4 Summary

• Fully automated ROI extraction techniques are designed for phalanges (PROI)

and radius-ulna bones (RUROI).

• Both ROI extraction techniques are simple, accurate and fast.

• Both ROI extraction techniques are robust as they performed well on hand

radiographs of varying intensities.

• Proposed ROI extraction techniques are independent of hand placement and

orientation.

• The extracted regions are quite adequate to be processed further by next stages

of ABAA system.
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Chapter 4

SEGMENTATION OF HAND

BONES

4.1 Introduction

This chapter describes the segmentation stage of ABAA system. In this connection,

two segmentation techniques are proposed for PROI and RUROI images. The results

of both proposed segmentation techniques are discussed and compared with other

state-of-the-art segmentation techniques. The chapter also presents the validation of

obtained results by different medical experts.

Segmentation is a mathematical process which divides an image into separate re-

gions, where each region is homogeneous. It is meaningful or useful for image analysis

and interpretation only, if the regions are strongly related to the depicted objects or

features of interest. Meaningful segmentation is the first step of transforming an image

from low level image processing into high-level image description in terms of features

and objects. An accomplishment of image analysis depends highly on segmentation,

but an accurate partitioning of an image is a very challenging task. As mentioned

earlier, intensity inhomogeneity and overlapping pixels between the soft tissue region

and hand bones are the major challenges in the segmentation of hand bones from the

digital hand radiograph.

The extraction of a phalangeal region of interest(PROI) and radius-ulna bones

region of interest (RUROI) is done separately as explained in the chapter 3. Next
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step is the segmentation of extracted PROI and RUROI images for BAA. In this

context, robust segmentation techniques are proposed. The schematic block diagram

of proposed segmentation techniques for PROI and RUROI images is shown in Figure

4.1. The proposed segmentation technique is subdivided into 3 stages which are:

1. Edge Preservation for PROI/Edge Enhancement for RUROI,

2. Segmentation of the bones in ROI’s and

3. Post processing of the segmented image.

Figure 4.1: Schematic block diagram of the proposed segmentation technique.

In Figure 4.1, B is the extracted ROI image, pre-processing is performed for edge

enhancement or edge preservation to give image C. Segmentation of bones in ROI is

done based on level set method (Osher and Sethian (1988)). Segmented image D is

further post-processed and the end result is given in image E. Due to non-uniform

distribution of X-ray intensities in hand radiograph, the segmentation step is followed

by post-processing stage to increase the segmentation accuracy. This stage removes

any vestigial regions that might be present after segmentation stage.

4.2 Edge preservation for PROI

Prior to segmentation of the bones in the PROI, anisotropic diffusion algorithm is

applied for edge preservation (Perona and Malik (1990)). The reason for applying

anisotropic diffusion on extracted PROI images is that it selectively diffuses regions

having less gradient while preserving the edges. The output of previous stage is B(x, y)

which is the extracted PROI image and input image for the segmentation stage. The

mathematical formulation of anisotropic diffusion is defined in equation (4.1).

δ(B(x, y, t))

δt
= div(J(x, y, t)∇(B(x, y, t))) (4.1)
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where ∇(B) is the image gradient and the diffusion function J(x, y) depends on the

image gradient magnitude ||∇(B)||. For larger gradient values, the diffusion is low

and for smaller gradient values, the diffusion is high (Hum (2013)).

The anisotropic diffusion algorithm preserves the edges by smoothing the texture

inside the object and sharpening the edges of the object. Two diffusion functions were

proposed by Perona and Malik (1990) which are defined in equations (4.2) and (4.3)

respectively.

G(x, y, t) = exp

(
−
(
∇(B(x, y, t))

λ

)2)
(4.2)

G(x, y, t) =
1

1 +
(
||∇(B(x,y,t))||

λ

)1+a ; a > 0 (4.3)

where a is empirical constant and λ is a parameter which is used to control the

diffusion strength. The equation (4.2) is used for implementation with λ value set to

the variance of the image.

4.3 Edge enhancement for RUROI

Prior to segmentation of RUROI images, edge enhancement is required for better

segmentation accuracy. In this case, the image is modified in such a way that edges

and other features of bones in the RUROI are enhanced. This is achieved by three

steps which are given below:

1. Use alternating sequential filtering to diffuse the image with less effect on the

edges and curves (Dougherty and Lotufo (2003)). The ouput of close-open filter

with m = 3 is given in equation (4.4).

Fm
CO = (((((B • S) ◦ S) • 2S) ◦ 2S).... •mS) ◦mS (4.4)

where m is the number of times structuring element (S) is applied to the image

B, and disk is used as the structuring element in all these steps. In equation

(4.4), • and ◦ stand for morphological closing and opening respectively.

2. Take morphological gradient of negative image of resulting filtered image which

is given in equation (4.5).
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K = (F ′ ⊕ S)− (F ′ 	 S) (4.5)

where F ′ is compliment of image F , ⊕ and 	 are dilation and erosion operators

respectively.

3. Add the resulting image K from previous step to the extracted RUROI image

B to get edge-enhanced image C.

4.4 Segmentation using Level Set Method

The pre-processed and edge-enhanced/edge-preserved ROI images C are modeled by

the mathematical equation (4.6):

C = bZ + n (4.6)

where Z is the true image, b is the bias field and n is the additive noise.

In the equation (4.6), the true image Z is the depiction of physical characteristics

of hand. Therefore, it might be safe to assume that true image is approximately con-

stant. The image C is a function C : Ω → R, defined on the continuous domain Ω.

The bias field b is assumed to be smoothly varying. The true image Z is divided into

N different regions Ω = ∪Ni=1Ω. Each of this region takes a constant value p1, p2, .., pN .

Consider a centre point c of a circular area with radius r, c belongs to Ω, Vc =

x : |x− c| < r. If Ω is divided into N regions ΩN
i=1, this will divide the circular area

Vc ∩ Ωi, (Li et al. (2011)). According to above formulation, equation (4.6) is re-

formulated as given in equation (4.7).

C(x) = b(x)pi + n(x) for x belongs to Vc ∩ Ω (4.7)

The equation (4.7) is similar to k-means clustering (Theodoridis et al. (2010)) and

can be written in continuous energy form which is given in equation (4.8).

W =

∫
Vc

|C(x)− qi|2ui(x)dx (4.8)
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where qi is the cluster center of the ith cluster and ui is the membership function of

region Ωi.

Further, it can be safely assumed that qi ≈ b(x)pi and is defined in the region Vc.

The membership function will have a value 1 in this region and zero outside, hence

equation (4.8) is rewritten as follows:

W (b, p) =

∫
Ω

|C(x)− b(x)pi|2dx (4.9)

Using the Chan and Vese (CV) model (Chan et al. (2001)), now level set function

is used to minimize the energy function. Level set methods are one of the many

numerical techniques designed to track the evolution of interfaces (Osher and Sethian

(1988)). Level set function focuses on moving boundaries by exploiting a strong link

between moving interfaces and equations from computational fluid dynamics (Sethian

(1987), Osher and Sethian (1988)). The mathematical expression of CV model is given

in equation (4.10).

Q(b, p, φ) =

∫
Ω

|C(x)− b(x)p1|2 H(φ(x))dx

+

∫
Ω

|C(x)− b(x)p2|2 (1−H(φ(x)))dx

+µ

∫
Ω

|∇H(φ(x))|dx

(4.10)

where φ is the level set function and H is the Heaviside function.

In the equation (4.10), the Heaviside function is a discontinuous function which

is zero for all negative arguments and one for all positive arguments. The first two

terms in the equation (4.10) are data fitting terms, whereas the last term regularizes

the zero level contour (Osher and Sethian (1988)). The level set function performs

division of the image into two parts Ω1 = x : φ(x) < 0 and Ω2 = x : φ(x) > 0. Hence,

the segmentation of bones is fulfilled by finding parameters like level set function φ,

bias field b and a constant p that minimizes the energy function.

In order to divide image into object and background, it is defined as u1(φ) = H(φ)
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and u2(φ) = 1 − H(φ), where ui represents membership function for the regions Ωi.

Hence, the revised form of energy function is defined in equation (4.11).

W (b, p, φ) =

∫
Ω

N∑
i=1

|C(x)− b(x)pi|2ui(φ(x))dx (4.11)

Now this energy term is used as data term in equation (4.10) and it is reformulated

as given in equation (4.12).

Q(b, p, φ) = W (b, p, φ) +$R(φ) (4.12)

where$ is the weight andR(φ) is the regularization term which is equal to
∫

Ω
|∇H(φ(x))|dx.

The above equation (4.12) is minimized with respect to variables b, p and φ to seg-

ment the bones from hand radiograph. The minimization is achieved by performing

iterations, where in each iteration any two variables are fixed and then minimize the

equation (4.12) with respect to the third variable. The output image of segmentation

stage is D(x, y) which is the input for the post-processing stage. The minimization

steps are as follows:

1. Energy minimization with respect to φ: For fixed values of p and b, the min-

imization of Q(b, p, φ) is achieved by using standard gradient descent method

and solving gradient flow equation.

∂φ

∂t
= −∂Q

∂φ
(4.13)

From calculus of variations:

∂φ

∂t
= −δ(φ)(d1 − d2) + µδ(φ)div

(
∇(φ)

|∇(φ)|

)
(4.14)

where di =
∫
|C(x)− b(x)pi|2dx and i = 1, 2.

2. Energy minimization with respect to p: For fixed values of φ and b, the optimized

value of p is denoted as:

p̃i =

∫
bC(x)ui(φ(x))dx∫
b2ui(φ(x))dx

where i = 1, 2 (4.15)

3. Energy minimization with respect to b: For fixed values of φ and p, the optimized
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value of b is denoted as:

b̃ =
C(x)[(p1u1(φ(x))) + (p2u1(φ(x)))]

[(p2
1u1(φ(x))) + (p2

2u1(φ(x)))]
(4.16)

4.5 Post-processing

This step is necessary for the procedure to extract accurate information from the

segmented bones. Sometimes the contours which are initialized by level set function

to track the bone edges might not behave in the required way. This is due to either

or both of the following reasons:

1. It tracks the cancellous bone region along with the cortical bone region.

2. Due to intensity inhomogeneity and overlapping pixels between bone and soft

tissue, the tissue region also gets identified as an object of interest.

To mitigate these errors morphological operators are used. To rectify the first type

of error, image filling function along with erosion and dilation operations are used. To

correct the second type of error, area opening function along with erosion and dilation

operations are used. The area opening and erosion operations are given in equations

(3.4) and (3.3) respectively. The dilation operation is defined as:

I ⊕ S =
(
I

′ 	 Sc
)′

(4.17)

where I denotes the input image, Sc is the 180 degrees rotated version of structuring

element and I
′
denotes the complement of an image. The dilation operation is denoted

by ⊕. The structuring element used for post-processing steps is cross as it performs

better than disk and there is no loss of information.

At last, edge off function is used to remove any unnecessary objects or other bone

parts that might be present at the boundary of ROI. All the functions and operators

used in pre and post-processing operations are applied from SDC morphology toolbox

based on Dougherty and Lotufo (2003).
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4.6 Implementation and illustrations

In this section, the proposed techniques are implemented and illustrated in a stepwise

manner with the help of output images from each stage.

4.6.1 Implementation of phalangeal segmentation technique

The implementation steps of proposed fully automatic segmentation technique for

extracted PROI images are given as follows:

1. Anisotropic Diffusion: Anisotropic diffusion algorithm is used to preserve the

edges present in the image. Time step t in equation (4.1) is set to 5 and the

value of λ in equation (4.2) is made equal to variance of the image.

2. Initialization of level set function: Initialization of level set contour on the

image is done randomly. The contours initialized in a shape of box or circle get

trapped in a region and are not able to proceed further. The Heaviside function

H used during implementation is the smoothed version of Heaviside function

which is defined in the equation (4.18) (Osher and Sethian (1988)).

Hν(x) =
1

2

[
1 +

2

π
arctan

(x
ν

)]
(4.18)

where ν = 1.

3. Energy minimization: For energy minimization the weight of regularization

parameter ($) in equation (4.12) is set to any smaller value. It is found to be

best if it is made equal to the standard deviation of the extracted PROI image.

Energy minimization is achieved by using the equations (4.14), (4.15) and (4.16).

The number of iterations is set to 100.

4. Post-processing: The functions used for post processing are image filling func-

tion imfill and dialtion operation mmdil. Area-opening and edge-off functions

are used to remove unnecessary bone parts present in the ROI.

4.6.2 Illustration of phalangeal segmentation technique

From the theory explained in sections 4.2 and 4.4, the proposed segmentation tech-

nique is divided into three stages which are: (1) edge-preservation (Pre), (2) segmen-

tation (Seg) and (3) post-processing (Post). The stage-wise results are illustrated in
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Figures 4.2 to 4.4, which presents the implementation of proposed technique on hand

radiographs of ages 1, 10 and 16-year-old person respectively. Quantitative results of

each stage are evaluated and compared in terms of quality metrics like peak signal

to noise ratio (PSNR), mean squarred error (MSE), and structure similarity (SSIM)

index, which are given in the Table 4.1. The mathematical expressions of these quality

metrics is given in sub-section 4.7.1. Please note that the output image after an edge-

preservation stage is compared with PROI image where both are grayscale images,

whereas the output images of other two stages are compared with ground truth image

in which all images are binary. It is noticed that there is a considerable improvement

in the results at each stage of the proposed technique and the final output image is

similar to ground truth image.

4.6.3 Implementation of radius and ulna segmentation

The implementation steps of the proposed automatic segmentation technique for ex-

tracted RUROI images are explained as follows:

1. Edge - Enhancement: The steps for edge-enhancement are described in the

section 4.3 and section 4.4. Function mmasfrec is used for alternate sequential

filtering of image. Close-open-close filtering is done as value of m was set to 3.

Structuring element used is disk with size 1. Further mmgradm function is used

with disk structuring element of size 2 to get the gradient.

2. Level set function: Level set contour is initialized randomly on the image

as contours initialized in a shape of box or circle get trapped in some regions.

Smoothed version of Heaviside function is used for implementation purposes

which is given in equation (4.18) (Osher and Sethian (1988)).

3. Energy minimization: The weight of regularization paramenter ($) in equa-

tion (4.12) is set to any smaller value or it is made equal to the standard deviation

of the extracted RUROI image. Energy minimization is achieved by using the

equations (4.14), (4.15) and (4.16). The number of iterations is set to 100.

4. Post-processing: The functions such as image filling function imfill and di-

altion operation mmdil are used for post processing. Area-opening function

mmareaopen and edge-off function mmedgeoff are used to remove carpal bones

and other vestigial parts present in the RUROI.
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Table 4.1: PSNR, MSE, and SSIM performance comparison of results after each stage
of the proposed technique on hand radiographs of ages 1, 10 and 16 year old person.

Image PROI QM Edge Preservation Segmentation Post-processing

1 year,
[5173.jpg]

Pinky
PSNR 19.977 45.592 65.079
MSE 653.660 1.794 0.020
SSIM 0.914 0.812 0.999

Ring
PSNR 19.117 45.840 65.142
MSE 796.786 1.695 0.020
SSIM 0.907 0.825 0.999

Middle
PSNR 19.830 47.787 61.864
MSE 676.210 1.082 0.042
SSIM 0.897 0.880 0.996

Index
PSNR 21.807 45.944 64.269
MSE 428.892 1.655 0.024
SSIM 0.943 0.831 0.998

Thumb
PSNR 20.772 47.787 65.115
MSE 544.356 1.082 0.020
SSIM 0.933 0.875 0.999

10 year,
[5113.jpg]

Pinky
PSNR 19.085 46.240 62.606
MSE 802.816 1.546 0.036
SSIM 0.848 0.838 0.997

Ring
PSNR 24.133 46.730 63.070
MSE 251.062 1.381 0.032
SSIM 0.849 0.855 0.997

Middle
PSNR 23.000 46.904 61.824
MSE 325.894 1.326 0.043
SSIM 0.869 0.860 0.997

Index
PSNR 25.790 46.403 64.823
MSE 171.436 1.489 0.021
SSIM 0.864 0.845 0.998

Thumb
PSNR 21.172 46.470 64.218
MSE 496.485 1.466 0.025
SSIM 0.861 0.849 0.998

16 years,
[5257.jpg]

Pinky
PSNR 21.16 47.088 62.601
MSE 497.145 1.272 0.036
SSIM 0.887 0.877 0.997

Ring
PSNR 22.573 47.537 61.874
MSE 359.611 1.147 0.042
SSIM 0.919 0.877 0.996

Middle
PSNR 20.563 47.663 61.835
MSE 571.167 1.114 0.043
SSIM 0.973 0.880 0.996

Index
PSNR 24.310 46.969 63.972
MSE 241.055 1.307 0.026
SSIM 0.956 0.859 0.998

Thumb
PSNR 21.657 47.133 60.181
MSE 444.010 1.258 0.062
SSIM 0.905 0.868 0.994

4.6.4 Illustration of radius and ulna segmentation technique

The proposed segmentation technique is divided into 3 major stages as discussed in

section 4.3 and section 4.4. Quantitative results of each stage are evaluated using the

quality metrics (QM) like PSNR, MSE, SSIM (Gupta et al. (2015)) which are given

in the Table 4.2. Please note that the edge-enhanced image is compared with RUROI

image and the output image of other two stages are compared with ground truth image
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Figure 4.2: Output images from each stage of the proposed technique on extracted
PROI image of 1 year old person [5173.jpg].
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Figure 4.3: Output images from each stage of the proposed technique on extracted
PROI image of 10 year old person [5113.jpg].
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Figure 4.4: Output images from each stage of the proposed technique on extracted
PROI image of 16 year old person [5257.jpg].
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for calculating PSNR, MSE and SSIM. Output images of each stage is given in Figures

4.5, 4.6 and 4.7 respectively. After edge-enhancement stage, a clear demarkation of

edges which is apparent in the Figures 4.5, 4.6 and 4.7 has been achieved. Figure

4.5 shows the implementation of proposed technique on hand radiograph of 1 year

old child. The smaller bone is ulna and the larger is radius. The small bone above

radius is called epiphysis which will fuse with metaphysis of radius as the child grows.

Metaphysis is the head portion of any bone. These bones are a part of analysis for

BAA (Tanner et al. (2001), Gilsanz and Ratib (2005)). Similarly Figure 4.6 presents

the output results using hand radiograph of 7 year old person. A part of carpal bone

is present in RUROI, which is removed after post-processing. It is clear from Figure

4.6, that the epiphysis has grown in size and will later fuse with radius bone. In

Figure 4.7, the output images of hand radiograph of 18 year old person at each stage

of proposed technique are presented.

Table 4.2: Performance results after each stage of the proposed technique

Image QM Edge-Enhancement Segmentation Post-processing

1 year

[5173.jpg]

PSNR 33.109 46.471 65.891

MSE 31.781 1.466 0.017

SSIM 0.967 0.847 0.999

7 years

[5154.jpg]

PSNR 32.150 47.430 65.172

MSE 39.635 1.175 0.020

SSIM 0.960 0.881 0.999

18 years

[6145.jpg]

PSNR 30.751 45.941 68.753

MSE 54.702 1.656 0.009

SSIM 0.956 0.830 0.999

(a)Original Image (b)RUROI Image (c)Edge-Enhancement

(d)Segmentation (e)Post-processing (f)Ground Truth

Figure 4.5: Output images from each stage of the proposed technique on extracted
RUROI image of 1 year old [5173.jpg].
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(a)Original Image (b)RUROI Image (c)Edge-Enhancement

(d)Segmentation (e)Post-processing (f)Ground Truth

Figure 4.6: Output images from each stage of the proposed technique on extracted
RUROI image of 7 year old [5154.jpg].

(a)Original Image (b)RUROI Image (c)Edge-Enhancement

(d)Segmentation (e)Post-processing (f)Ground Truth

Figure 4.7: Output images from each stage of the proposed technique on extracted
RUROI image of 18 year old [6145.jpg].

4.7 Experimental results and discussion

The experimental results of the proposed segmentation techniques and other state-

of-the-art segmentation techniques are evaluated and discussed in this section. All

segmentation results are obtained on a 64-bit system with MATLAB 2015a software,

having an 8 GB RAM and an Intel i7 processor with clock speed of 3.6 GHz.

4.7.1 Performance metrics

To evaluate the quantitative performance of proposed technique (PT), improvement at

each stage is validated by using quality metrics like PSNR, MSE and SSIM. The math-
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ematical expression for PSNR, MSE and SSIM are given in equations (4.20), (4.19),

and (4.21) respectively. To judge the robustness of proposed technique with other

state-of-the-art segmentation techniques mentioned earlier, various quality metrics

such as Structure similarity index (SSIM), Jaccard Similarity Index (JSI), Dice, Ac-

curacy (ACC), Geometric Mean (GM) and Matthews Correlation Coefficient (MCC)

are the automatic choice for the researchers in the field of medical image segmentation.

The mathematical expressions for PSNR and MSE are as follows:

MSE =
1

MN

M∑
i=1

N∑
j=1

(
S(i, j)−G(i, j)

)2

(4.19)

where S stands for segmented image and G for ground truth image.

PSNR(dB) = 10 ∗ log10

( 2552

MSE

)
(4.20)

Structure similarity (SSIM) index is given by equation:

SSIM(S,G) =
(2µSµG + λ1)(2σSG + λ2)

(µ2
S + µ2

G + λ1)(σ2
S + σ2

G + λ2)
(4.21)

where µS is the mean of segmented image, σ2
S is the variance of segmented image, µG

is the mean of ground truth image, σ2
G is the variance of ground truth image, σSG

is the covariance between segmented and ground truth images, λ1 and λ2 are small

constants to stabilize the denominator. The numerical value of SSIM lies between 0

and 1. If the proximity of SSIM value is closer to 1, better the segmentation technique.

Jaccard similarity index (JSI) and Dice similarity index as mentioned by Gupta

et al. (2015) is used for performance analysis:

JSI =
|S ∩G|
|S ∪G|

(4.22)

Dice = 2
|S ∩G|
|S +G|

(4.23)

Dice coefficient is also called as the F1 score. Jaccard coefficient and Dice coefficient

look similar but they are not same. Both are used to measure the similarity index but

Dice does not satisfy the triangle inequality. The numerical values of both coefficients
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lie between 0 and 1. If the proximity of JSI and Dice values are closer to 1, better the

segmentation technique.

Accuracy (ACC) as used by Gupta et al. (2015) gives information about the ratio of

the pixels contained within the segmented region achieved by the test algorithm with

the pixels of the manually segmented region. The segmentation accuracy is defined

as,

ACC =
tp + tn

tp + fp + tn + fn
(4.24)

where tp = true positive, tn= true negative, fp= false positive and fn=false negative.

The numerical value of ACC lies between 0 and 1, where 0 corresponds to failed seg-

mentation and 1 corresponds to best segmentation accuracy.

The geometric mean (GM) given by Orlando et al. (2017) is calculated as:

GM =

√
tptn

(tp + fn)(tn + fp)
(4.25)

The numerical value of GM lies between 0 and 1. If the proximity of GM value is

closer to 1, better the segmentation technique.

The mathematical equation for Matthews Correlation Coefficient (MCC) as used

by Orlando et al. (2017) is given as in equation (4.26).

MCC =
(tptn)− (fpfn)√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
(4.26)

MCC is considered as a balanced measure as it can be used also when the classes

vary in sizes. The MCC value varies between -1 and +1. Where +1 means a perfect

segmentation and -1 indicates complete fallout between segmented and ground truth

images.

4.7.2 Experimental settings for segmentation of phalanges

The hand radiograph is divided into 3 regions namely background, the soft tissue re-

gion, and the bones. Hence, the parameter values of segmentation techniques used for

49



result comparison are set accordingly. Otsu’s thresholding is done using two levels to

separate the 3 regions while other techniques like k-means algorithm (KMS), k-means

with Gibb’s random fields (KGRF) and PSO based segmentation algorithm (PSO)

have a number of classes set to 3 for segmentation. Table 4.3 shows the parameters

used for simulation of these segmentation techniques and their values. The first four

techniques namely Otsu, KMS, KGRF, and PSO are implemented in the field of hand

bone segmentation by Kashif et al. (2015), Pietka et al. (2003), Tristan-Vega and

Arribas (2008), Liu et al. (2007) respectively. Adaptively Regularised Kernel-based

Fuzzy C-means clustering technique (AKFM) is a recent fuzzy based clustering al-

gorithm which was implemented on brain tissues by Elazab et al. (2015), and it is

also included for result comparison. BFV algorithm (BFV) developed by Gong et al.

(2015) is a recent fuzzy based level set algorithm, which is also included for compari-

son. All hand radiographs used for comparison are also been subjected to anisotropic

diffusion as pre-processing step before applying various segmentation techniques for

fair comparison with PT.

Table 4.3: Simulation parameters and their values used for various segmentation tech-
niques of PROI images

Parameters Otsu KMS KGRF PSO AKFM BFV PT

Number of thresholds 2

Number of clusters 3 3 3 3

Number of iterations 30 150 200 100

Clique potential 0.5

Local filtering median gaussian gaussian

Local window size 3 10 3

Population 150

Inertial weight 1.2

Weight 1 0.8 1

Weight 2 0.8 1

Min velocity -5

Max velocity 5

Lower bound of position 1

Upper bound of position 256

Constant positive integer 2

Time step 0.1 0.1

Heavyside weight 1
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4.7.3 Quantitative and qualitative analysis of phalangeal seg-

mentation

The quantitative performance analysis of proposed fully automatic segmentation tech-

nique and other existing segmentation techniques are obtained on extracted PROI

images at ages 1, 3, 5, 7, 10, 12, 14, 16 and 18 which are given in Table 4.4. In Table

4.4, the results shown are the average values of all 5 fingers i.e. pinky, ring, middle,

index and thumb. The qualitative results of proposed fully automatic segmentation

technique and other state-of-the-art segmentation techniques are given in Figures 4.9

to 4.17 for ages 1, 3, 5, 7, 10, 12, 14, 16 and 18 respectively. Ground truth images

(GT) are also included for comparison in the Figures 4.9 to 4.17.

Box-plot is used to compare all the segmentation techniques with respect to vari-

ous quality metrics and is shown in Figure 4.8, wherein the sample size is 9 (number

of images). The interquartile range (IQR) is denoted by box and whiskers denoted

by line with breaks which define the range. The median is denoted by a line in the

IQR which is skewed in some cases due to the sample distribution being skewed pos-

itively or negatively. From the box-plot shown in Figure 4.8, it is noticed that PT

has less variation as compared to other segmentation techniques and also achieves

higher segmentation accuracy. The SSIM values of other segmentation techniques are

above 0.95 whereas the proposed technique has values around 0.99. The boxplot of

JSI shown in Figure 4.8(b) shows proposed technique takes the value around 0.9 and

supersedes other state-of-the-art techniques. Similarly in all other boxplots i.e. Fig-

ures 4.8(c), 4.8(d), 4.8(e) and 4.8(f) the proposed technique has higher quality metric

values against other existing techniques (approximately 0.95).

The visual comparison of segmentation results of the proposed technique and other

state-of-the-art segmentation techniques are given from Figures 4.9 to 4.17. It is no-

ticed from Figures 4.9 to 4.8 that proposed segmentation technique (PT) for PROI

images gives better segmentation results as compared to other state-of-the-art tech-

niques. The statistical values such as minimum (MIN), maximum (MAX), mean,

median and standard deviation (SDEV) of various quality metrics against segmenta-

tion techniques are presented in Table 4.5.
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Table 4.4: Performance comparison of different segmentation techniques on PROI

Image QM Otsu KMS KGRF PSO AKFM BFV PT

1 year

[5173.jpg]

SSIM 0.650 0.965 0.966 0.967 0.967 0.965 0.998
JSI 0.274 0.468 0.462 0.461 0.415 0.491 0.912

DICE 0.213 0.634 0.629 0.628 0.580 0.655 0.954
ACC 0.386 0.734 0.731 0.731 0.708 0.745 0.956
GM 0.575 0.760 0.767 0.764 0.767 0.801 0.955

MCC 0.198 0.475 0.483 0.478 0.482 0.547 0.913

3 years

[6102.jpg]

SSIM 0.681 0.978 0.977 0.977 0.978 0.970 0.994
JSI 0.287 0.603 0.595 0.593 0.595 0.549 0.833

DICE 0.231 0.748 0.741 0.740 0.741 0.703 0.904
ACC 0.403 0.802 0.798 0.796 0.798 0.774 0.916
GM 0.586 0.832 0.832 0.831 0.831 0.828 0.925

MCC 0.212 0.630 0.629 0.626 0.632 0.606 0.842

5 years

[7143.jpg]

SSIM 0.676 0.969 0.969 0.970 0.968 0.969 0.996
JSI 0.317 0.436 0.529 0.525 0.417 0.548 0.881

DICE 0.245 0.594 0.690 0.686 0.569 0.706 0.936
ACC 0.403 0.718 0.764 0.762 0.709 0.774 0.941
GM 0.582 0.660 0.791 0.784 0.672 0.774 0.941

MCC 0.217 0.375 0.543 0.532 0.406 0.820 0.882

7 years

[5154.jpg]

SSIM 0.673 0.975 0.975 0.975 0.975 0.966 0.998
JSI 0.315 0.592 0.588 0.586 0.588 0.536 0.912

DICE 0.243 0.741 0.738 0.746 0.738 0.697 0.954
ACC 0.401 0.796 0.794 0.793 0.794 0.768 0.956
GM 0.581 0.824 0.826 0.825 0.827 0.825 0.957

MCC 0.216 0.615 0.618 0.615 0.618 0.600 0.913

10 years

[7076.jpg]

SSIM 0.700 0.975 0.977 0.977 0.976 0.971 0.997
JSI 0.314 0.506 0.595 0.590 0.575 0.575 0.901

DICE 0.253 0.653 0.743 0.739 0.725 0.728 0.948
ACC 0.415 0.753 0.798 0.795 0.788 0.788 0.951
GM 0.592 0.747 0.817 0.812 0.824 0.837 0.951

MCC 0.226 0.512 0.606 0.596 0.617 0.632 0.904

12 years

[5322.jpg]

SSIM 0.697 0.978 0.978 0.979 0.978 0.968 0.995
JSI 0.309 0.617 0.615 0.615 0.616 0.549 0.852

DICE 0.249 0.758 0.757 0.757 0.757 0.707 0.919
ACC 0.413 0.809 0.808 0.808 0.808 0.775 0.926
GM 0.591 0.822 0.828 0.827 0.823 0.830 0.925

MCC 0.223 0.622 0.628 0.628 0.621 0.614 0.851

14 years

[5237.jpg]

SSIM 0.705 0.976 0.976 0.976 0.976 0.971 0.996
JSI 0.302 0.575 0.581 0.577 0.524 0.563 0.858

DICE 0.248 0.726 0.731 0.728 0.679 0.717 0.924
ACC 0.417 0.787 0.791 0.789 0.762 0.782 0.929
GM 0.595 0.748 0.813 0.806 0.791 0.832 0.928

MCC 0.224 0.506 0.594 0.583 0.575 0.620 0.859

16 years

[5257.jpg]

SSIM 0.804 0.969 0.973 0.972 0.975 0.978 0.996
JSI 0.370 0.413 0.475 0.446 0.586 0.671 0.893

DICE 0.347 0.575 0.632 0.610 0.728 0.800 0.943
ACC 0.496 0.706 0.738 0.723 0.793 0.835 0.946
GM 0.647 0.676 0.687 0.666 0.790 0.861 0.946

MCC 0.296 0.469 0.483 0.463 0.597 0.697 0.893

18 years

[6145.jpg]

SSIM 0.714 0.985 0.986 0.987 0.986 0.981 0.998
JSI 0.379 0.694 0.742 0.766 0.711 0.706 0.938

DICE 0.294 0.816 0.850 0.866 0.826 0.828 0.968
ACC 0.431 0.847 0.871 0.883 0.855 0.853 0.969
GM 0.596 0.871 0.874 0.891 0.889 0.879 0.969

MCC 0.247 0.752 0.753 0.772 0.774 0.738 0.938
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Figure 4.8: Boxplots of segmentation techniques against various quality metrics for
segmented PROI images.
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Table 4.5: Statistical values of various quality metrics against segmentation techniques

QM Statistic Otsu KMS KGRF PSO AKFM BFV PT

SSIM

MIN 0.650 0.961 0.964 0.965 0.965 0.958 0.994

MAX 0.983 0.985 0.986 0.987 0.986 0.981 0.999

MEAN 0.844 0.974 0.974 0.975 0.974 0.969 0.997

MEDIAN 0.964 0.975 0.975 0.976 0.975 0.969 0.997

SDEV 0.139 0.006 0.005 0.005 0.005 0.005 0.001

JSI

MIN 0.274 0.390 0.423 0.416 0.395 0.435 0.833

MAX 0.669 0.694 0.742 0.766 0.711 0.711 0.938

MEAN 0.440 0.540 0.561 0.556 0.532 0.548 0.895

MEDIAN 0.425 0.554 0.581 0.577 0.524 0.548 0.903

SDEV 0.130 0.091 0.079 0.085 0.087 0.073 0.026

DICE

MIN 0.213 0.551 0.589 0.581 0.553 0.602 0.904

MAX 0.799 0.816 0.850 0.866 0.826 0.830 0.968

MEAN 0.492 0.691 0.711 0.708 0.683 0.703 0.944

MEDIAN 0.589 0.707 0.731 0.728 0.679 0.703 0.949

SDEV 0.228 0.080 0.065 0.071 0.077 0.060 0.015

ACC

MIN 0.386 0.695 0.712 0.708 0.697 0.718 0.916

MAX 0.834 0.847 0.871 0.883 0.855 0.855 0.969

MEAN 0.606 0.770 0.780 0.778 0.767 0.774 0.948

MEDIAN 0.712 0.777 0.791 0.789 0.762 0.774 0.951

SDEV 0.181 0.045 0.039 0.043 0.044 0.037 0.013

GM

MIN 0.575 0.660 0.687 0.666 0.660 0.741 0.925

MAX 0.846 0.871 0.874 0.891 0.889 0.879 0.969

MEAN 0.699 0.775 0.800 0.794 0.780 0.822 0.947

MEDIAN 0.731 0.789 0.813 0.806 0.790 0.825 0.951

SDEV 0.104 0.061 0.041 0.049 0.057 0.031 0.012

MCC

MIN 0.198 0.363 0.440 0.412 0.347 0.436 0.842

MAX 0.674 0.752 0.753 0.772 0.774 0.820 0.938

MEAN 0.401 0.544 0.576 0.567 0.549 0.614 0.897

MEDIAN 0.431 0.541 0.594 0.583 0.575 0.606 0.905

SDEV 0.174 0.105 0.078 0.087 0.103 0.082 0.025

54



GT Otsu KMS KGRF PSO AKFM BFV PT

P
in

k
y

R
in

g
M

id
d

le
In

d
ex

T
h
u
m

b

Figure 4.9: Segmentation results of different algorithms on hand radiograph taken
from 1 year old person [5173.jpg].
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Figure 4.10: Segmentation results of different algorithms on hand radiograph taken
from 3 year old person [6102.jpg].
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Figure 4.11: Segmentation results of different algorithms on hand radiograph taken
from 5 year old person [7143.jpg].
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Figure 4.12: Segmentation results of different algorithms on hand radiograph taken
from 7 year old person [5154.jpg].
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Figure 4.13: Segmentation results of different algorithms on hand radiograph taken
from 10 year old person [5113.jpg].
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Figure 4.14: Segmentation results of different algorithms on hand radiograph taken
from 12 year old person [5322.jpg].
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Figure 4.15: Segmentation results of different algorithms on hand radiograph taken
from 14 year old person [5237.jpg].
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Figure 4.16: Segmentation results of different algorithms on hand radiograph taken
from 16 year old person [5257.jpg].
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Figure 4.17: Segmentation results of different algorithms on hand radiograph taken
from 18 year old person [6145.jpg].
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4.7.4 Experimental settings for segmentation of Radius-Ulna

Experimental results of the proposed segmentation technique are evaluated compared

with popular and widely used segmentation techniques such as KMS (Hartigan and

Wong (1979)), KGRF (Pappas (1992)), PSO based segmentation technique (PSO)

(Eberhart and Kennedy (1995)), DPSO based segmentation technique (DPSO) (Tillett

et al. (2005)), and AKFM technique (Elazab et al. (2015)). The first three techniques

namely KMS, KGRF and PSO have been used in the field of hand bone segmentation

(Pietka et al. (2003), Tristán and Arribas (2005), Liu et al. (2007)). Hence, the

parameter values of state-of-the-art segmentation techniques are set accordingly. Table

4.6 shows the parameters used for these segmentation techniques and their values.

Table 4.6: Simulation parameters and their values used for various segmentation tech-
niques of RUROI images

Parameters KMS KGRF PSO DPSO AKFM PT

Number of clusters 3 3 3 3 3

Number of iterations 30 150 150 100

Clique potential 0.5

Local filtering median gaussian

Local window size 3 3

Population 150 30

Inertial weight 1.2 1.2

Weight 1 0.8 0.8

Weight 2 0.8 0.8

Min velocity -5 -1.5

Max velocity 5 1.5

Lower bound of position 1 1

Upper bound of position 256 256

Stagnancy 10

Time step 0.1

Heavyside weight 1

4.7.5 Quantitative and qualitative analysis of radius and ulna

segmentation

The quantitative results comparison of different segmentation techniques on extracted

RUROI images are presented in Tables 4.4 and 4.7 in terms of different quality metrics.
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Table 4.7: Performance comparison between different segmentation techniques on
RUROI based on various quality metrics

Image QM KMS KGRF PSO DPSO AKFM PT

1 year

[5173.jpg]

SSIM 0.980 0.981 0.981 0.983 0.965 0.999

JSI 0.688 0.695 0.685 0.695 0.570 0.956

DICE 0.815 0.820 0.813 0.820 0.726 0.977

ACC 0.844 0.847 0.843 0.848 0.785 0.978

GM 0.827 0.865 0.862 0.864 0.782 0.978

MCC 0.610 0.711 0.704 0.710 0.472 0.956

3 years

[6102.jpg]

SSIM 0.986 0.986 0.986 0.987 0.960 0.999

JSI 0.728 0.745 0.742 0.744 0.570 0.960

DICE 0.843 0.854 0.852 0.853 0.726 0.980

ACC 0.864 0.872 0.871 0.872 0.785 0.980

GM 0.832 0.867 0.871 0.871 0.862 0.984

MCC 0.623 0.743 0.738 0.738 0.740 0.969

5 years

[7143.jpg]

SSIM 0.988 0.987 0.988 0.987 0.983 0.998

JSI 0.754 0.747 0.755 0.739 0.677 0.950

DICE 0.860 0.855 0.861 0.850 0.808 0.974

ACC 0.877 0.873 0.878 0.870 0.839 0.975

GM 0.879 0.864 0.870 0.860 0.823 0.981

MCC 0.766 0.760 0.764 0.753 0.708 0.963

7 years

[5154.jpg]

SSIM 0.982 0.980 0.982 0.982 0.978 0.999

JSI 0.735 0.715 0.723 0.715 0.677 0.964

DICE 0.847 0.834 0.839 0.834 0.808 0.982

ACC 0.868 0.858 0.861 0.857 0.839 0.982

GM 0.854 0.847 0.853 0.853 0.835 0.979

MCC 0.681 0.721 0.724 0.724 0.707 0.959

10 years

[7076.jpg]

SSIM 0.976 0.983 0.983 0.983 0.971 0.999

JSI 0.673 0.723 0.718 0.718 0.644 0.963

DICE 0.805 0.839 0.836 0.836 0.784 0.981

ACC 0.837 0.861 0.859 0.859 0.822 0.981

GM 0.850 0.862 0.863 0.862 0.834 0.980

MCC 0.675 0.719 0.717 0.717 0.684 0.962

12 years

[5322.jpg]

SSIM 0.974 0.969 0.973 0.972 0.970 0.998

JSI 0.648 0.580 0.620 0.607 0.589 0.942

DICE 0.786 0.734 0.765 0.756 0.741 0.970

ACC 0.824 0.790 0.810 0.804 0.795 0.971

GM 0.780 0.775 0.802 0.794 0.791 0.969

MCC 0.571 0.562 0.606 0.592 0.587 0.941

14 years

[5237.jpg]

SSIM 0.968 0.968 0.970 0.970 0.963 0.997

JSI 0.568 0.563 0.594 0.585 0.616 0.930

DICE 0.724 0.721 0.745 0.738 0.762 0.964

ACC 0.784 0.782 0.797 0.793 0.808 0.965

GM 0.802 0.761 0.784 0.784 0.759 0.954

MCC 0.603 0.547 0.577 0.577 0.546 0.914

16 years

[5257.jpg]

SSIM 0.964 0.963 0.964 0.964 0.963 0.998

JSI 0.570 0.550 0.557 0.551 0.535 0.958

DICE 0.726 0.710 0.716 0.710 0.697 0.978

ACC 0.785 0.775 0.779 0.775 0.767 0.979

GM 0.781 0.756 0.762 0.762 0.758 0.959

MCC 0.562 0.528 0.535 0.535 0.530 0.922

18 years

[6145.jpg]

SSIM 0.963 0.965 0.963 0.963 0.964 0.999

JSI 0.544 0.546 0.543 0.543 0.546 0.976

DICE 0.704 0.707 0.704 0.704 0.706 0.988

ACC 0.772 0.773 0.771 0.772 0.773 0.988

GM 0.815 0.811 0.817 0.817 0.815 0.983

MCC 0.587 0.581 0.591 0.590 0.587 0.966
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Box-plot has been used to compare all the segmentation techniques with respect

to various quality metrics and has been shown in Figure 4.18, wherein the sample size

is 9 (number of images). The statistical values such as minimum (MIN), maximum

(MAX), mean, median and standard deviation (SDEV) of various quality metrics

against segmentation techniques are presented in Table 4.8.
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Figure 4.18: Boxplots of segmentation techniques against various quality metrics for
segmented RUROI images.
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Table 4.8: Statistical values of various quality metrics against segmentation techniques

QM Statistic KMS KGRF PSO DPSO AKFM PT

SSIM

MIN 0.963 0.963 0.963 0.963 0.960 0.997
MAX 0.988 0.987 0.988 0.987 0.983 0.999

MEAN 0.976 0.976 0.977 0.977 0.969 0.998
MEDIAN 0.976 0.980 0.981 0.982 0.965 0.999

SDEV 0.009 0.009 0.009 0.009 0.007 0.001

JSI

MIN 0.544 0.546 0.543 0.543 0.535 0.930
MAX 0.754 0.747 0.755 0.744 0.677 0.976

MEAN 0.656 0.652 0.660 0.655 0.603 0.955
MEDIAN 0.673 0.695 0.685 0.695 0.589 0.958

SDEV 0.075 0.084 0.078 0.078 0.051 0.012

DICE

MIN 0.704 0.707 0.704 0.704 0.697 0.964
MAX 0.860 0.855 0.861 0.853 0.808 0.988

MEAN 0.790 0.786 0.792 0.789 0.751 0.977
MEDIAN 0.805 0.820 0.813 0.820 0.741 0.978

SDEV 0.055 0.062 0.057 0.058 0.039 0.007

ACC

MIN 0.772 0.773 0.771 0.772 0.767 0.965
MAX 0.877 0.873 0.878 0.872 0.839 0.988

MEAN 0.828 0.826 0.830 0.828 0.801 0.978
MEDIAN 0.837 0.847 0.843 0.848 0.795 0.979

SDEV 0.037 0.042 0.039 0.039 0.025 0.006

GM

MIN 0.780 0.756 0.762 0.762 0.758 0.954
MAX 0.879 0.867 0.871 0.871 0.862 0.984

MEAN 0.825 0.823 0.832 0.830 0.807 0.974
MEDIAN 0.827 0.847 0.853 0.853 0.815 0.979

SDEV 0.032 0.045 0.039 0.039 0.034 0.010

MCC

MIN 0.562 0.528 0.535 0.535 0.472 0.914
MAX 0.766 0.760 0.764 0.753 0.740 0.969

MEAN 0.631 0.652 0.662 0.659 0.618 0.950
MEDIAN 0.610 0.711 0.704 0.710 0.587 0.959

SDEV 0.062 0.090 0.079 0.079 0.089 0.019

The qualitative results of proposed segmentation technique (PT) for RUROI im-

ages and other state-of-the-art segmentation techniques are given in Figure 4.19 for

ages 0-18 years old respectively.

4.7.6 Segmentation accuracy and its validation

The quality metrics like SSIM, JSI, Dice, and Accuracy are used for quantitative

results comparison of proposed segmentation techniques and other state-of-the-art

segmentation techniques. The experimental results of proposed segmentation tech-

niques for PROI and RUROI images are validated by different medical experts from

Goa Medical College, Goa, India. The ratings are given between values 1-5 with value

1 being very poor, 2 for a poor result, 3 for average, 4 for good result and 5 for an

excellent result achieved. These ratings are given in Table 4.9 for segmented PROI

images and Table 4.10 is for segmented RUROI images. These ratings used for de-
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Figure 4.19: Segmentation results of different techniques on RUROI of different ages.

noting segmentation accuracy of the proposed technique are given after assessment by

same medical experts who created the ground truth images for hand radiographs.
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Table 4.9: Ratings given by medical experts to the PROI segmentation results of
proposed technique.

Age
(years)

Finger Expert-1 Expert-2 Expert-3 Expert-4 Average
Rating

Overall
Average

01

Pinky 5 5 5 5 5

4.4

Ring 5 5 5 5 5

Middle 3 4 3 4 3.5

Index 3 4 4 3 3.5

Thumb 5 5 5 5 5

03

Pinky 3 3 4 3 3.25

4.4

Ring 4 3 4 4 3.75

Middle 5 5 5 5 5

Index 5 5 5 5 5

Thumb 5 5 5 5 5

05

Pinky 4 4 4 4 4

3.3

Ring 4 4 4 4 4

Middle 3 3 3 3 3

Index 2 3 3 3 2.75

Thumb 2 3 3 3 2.75

07

Pinky 5 5 5 5 5

4.45

Ring 4 5 5 5 4.75

Middle 5 3 4 4 4

Index 4 3 4 3 3.5

Thumb 5 5 5 5 5

10

Pinky 5 2 4 3 3.5

4.25

Ring 4 4 4 4 4

Middle 4 4 4 5 4.25

Index 5 4 5 4 4.5

Thumb 5 5 5 5 5

12

Pinky 3 4 4 3 3.5

3.6

Ring 3 3 3 4 3.25

Middle 3 4 4 3 3.5

Index 3 3 3 4 3.25

Thumb 4 4 5 5 4.5

14

Pinky 3 3 4 3 3.25

3.85

Ring 2 3 4 4 3.25

Middle 5 4 5 4 4.5

Index 4 4 5 4 4.25

Thumb 2 4 5 5 4

16

Pinky 4 4 4 4 4

4.45

Ring 4 4 5 5 4.5

Middle 4 4 4 4 4

Index 5 5 5 5 5

Thumb 5 4 5 5 4.75

18

Pinky 5 5 5 5 5

5

Ring 5 5 5 5 5

Middle 5 5 5 5 5

Index 5 5 5 5 5

Thumb 5 5 5 5 5
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Table 4.10: Ratings given by medical experts to the RUROI segmentation results of
proposed technique.

Age

(years)

Expert-1 Expert-2 Expert-3 Expert-4 Overall

Average

1 4 5 5 5 4.75

3 5 5 5 5 5

5 5 5 5 5 5

7 5 5 5 4 4.75

10 3 4 4 5 4

12 3 3 4 4 3.5

14 2 4 3 3 3

16 5 5 5 5 5

18 3 5 4 5 4.25

4.8 Discussion

From the sub-sections 4.7.3 and 4.7.5, it is clear that SSIM, JSI, Dice, Accuracy, GM,

and MCC provide indispensable information regarding the precision of segmented

output from various segmentation techniques which are used for comparison. The

boxplots in Figure 4.8 clarify that proposed segmentation technique for phalanges is

far better as compared to other existing segmentation techniques. It achieves the high-

est segmentation accuracy which is well above 0.9. Other quality metrics also present

that proposed segmentation technique (PT) performs far better than other existing

segmentation techniques with values above 0.95. Figures 4.9 to 4.17 along with the

segmentation results in Table 4.4 present the best results of phalangeal segmentation

by proposed technique (PT). Table 4.5 indicates, the performance of PT for PROI is

spotless with very less variation in mean and standard deviation.

Similarly, the box-plot shown in Figure 4.18, indicates that the proposed segmen-

tation technique (PT) for RUROI has very less variation as compared with other

existing segmentation techniques. It also achieves a higher segmentation accuracy

among all the techniques compared, with respect to all quality metric values. SSIM

values of all techniques are above 0.95 but proposed technique has a value of almost 1

as shown in Figure 4.18(a). The boxplot of JSI shows that k-means, KGRF, PSO, and

DPSO have similar ranges shown in Figure 4.18(b), and also the proposed technique

takes the value around 0.9. Similarly in other boxplots, i.e. Figures 4.18(c), 4.18(d),
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4.18(e) and 4.18(f), PT has higher values (∼ 0.95) for quality metrics like Dice, ACC,

GM and MCC respectively. Figure 4.19 along with the segmentation results in Table

4.7 clearly show that the proposed technique gives best results among all other state-

of-the-art techniques. The mean and standard deviation statistics of various quality

metrics tabulated in Table 4.8 indicates that the performance of PT for RUROI is

best among compared segmentation techniques.

The ratings given by medical experts which are presented in the Tables 4.9 and

4.10 are high, with all of them being above average values. The values allocated in Ta-

ble 4.9 to hand radiographs of 5-year-old person and 12-year-old person in phalangeal

segmentation are slightly less as the radiographs have high-intensity inhomogeneity.

Similarly in Table 4.10 hand radiographs of 12-year-old person and 14-year-old person

have less rated values. But the ratings further strengthen the claim that proposed

segmentation technique provides very good segmentation results for bones of both

PROI and RUROI.

The advantages of the proposed segmentation technique are: (1) It is very effective

and robust as it tackles intensity inhomogeneity problem in hand radiographs, (2)

It clearly delineates phalanges from hand radiographs of different ages which make

it easier for further assessment, (3) It successfully removes all spurious regions and

achieves a higher segmentation accuracy. The disadvantages of proposed segmentation

techniques are that it is slightly complex than other existing segmentation techniques.
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4.9 Summary

• The segmentation of phalanges and radius-ulna bones have been fully automized

while achieving a very high accuracy.

• Quantitative and qualitative results of proposed segmentation techniques for

PROI and RUROI were compared with other state-of-the-art segmentation tech-

niques with the help of various quality metrics.

• The segmentation accuracy for phalangeal bones is around 94% and for radius-

ulna bones is 97%.

• Quality metrics revealed that proposed segmentation techniques (PT) have per-

formed far better than other state-of-the-art segmentation techniques.

• Ground truth images were created with the help of medical experts and the

results of proposed segmentation techniques were also rated by them.

• The ratings given by medical experts were above the average value (3), which

proved that the proposed segmentation techniques have achieved high accuracy.
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Chapter 5

FEATURE EXTRACTION AND

CLASSIFICATION

5.1 Introduction

This chapter presents the implementation of final two blocks of ABAA system, which

are Feature Extraction and Classification stages. The segmentation results of pha-

langes are reported earlier in chapter 4. Segmented PROI images are used further

to predict the age of a person using robust features extraction methods and suitable

classification techniques. Robust and efficient feature extraction methods along with

conducive classification techniques are explored in this chapter.

In the field of image processing and machine learning, feature extraction plays a

very important role in helping to identify the object or a scene. Application of feature

extraction also includes identifying cancer in human body from medical images. The

process starts from an initial set of measured data and derives prominent and distinct

features which are intended to be informative and non-redundant. This further pro-

motes subsequent learning and in some cases leads to a better human interpretation of

the data. Feature extraction can also be viewed as a dimensionality reduction process

because it involves reducing the number of resources which are required to describe a

large set of data. The complexity of a problem depends on the number of variables

involved, and with a large number of variables, requires a large amount of memory

and computation power. Hence, feature extraction is a general term for various meth-

ods wherein the variables are used to solve these problems, while still being able to
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describe the data with sufficient accuracy.

Classification is one of the main topics in machine learning which involves teach-

ing machines how to group together data based on a particular criteria. This can be

divided into two types which are supervised and unsupervised learning. When ma-

chines group data together based on some predetermined characteristics, it is called as

supervised learning. In unsupervised learning/clustering, machines try to find shared

characteristics with the help of which the data can be grouped together when cate-

gories are not specified.

The block diagram of feature extraction and classification stage of ABAA system

is shown in the Figure 5.1. In the feature extraction stages, various feature extraction

methods like texture feature analysis, Histogram of Oriented Gradients (HOG) and

Bag of Features (BoF) are applied on segmented PROI images. In the classification

stage, various classification techniques like Artificial Neural Networks (ANN), Support

Vector Machines (SVM) and Random Forest classifier are used for BAA from extracted

features.

Figure 5.1: Block diagram of Feature extraction and Classification stages of ABAA
system.
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5.2 Feature extraction methods

In this section, different feature extraction methods such as texture feature analysis,

HOG, and BoF are presented in brief.

5.2.1 Texture feature analysis

Bone texture provides useful information for classification and prediction of bone age.

A total of 61 different texture features are extracted as explored by Loizou et al. (2014)

and they are listed below.

1. Statistical Features (SF): Mean, Median, Variance, Skewness and Kurtosis.

2. Spatial Gray Level Dependence Matrices (SGLDM): Angular second moment

(ASM), Contrast, Correlation, Sum of squares variance (SOSV), Inverse differ-

ence moment (IDM), Sum average (SA), Sum variance (SV), Sum entropy (SE),

Entropy, Difference variance (DV), Difference entropy (DE), and Information

measures of correlation.

3. Gray level difference statistics (GLDS): Homogeneity, contrast, energy, entropy,

and mean.

4. Neighborhood gray tone difference matrix (NGTDM): Coarseness, contrast,

busyness, complexity, and strength.

5. Statistical feature matrix (SFM): Coarseness, contrast, periodicity, and rough-

ness.

6. Laws texture energy measures (LTEM): using four vectors representing texture

features to create sixteen 2D masks from the outer products of the pairs of

vectors called as texture kernels or energy maps.

7. Fractal dimension texture analysis (FDTA): The Hurst coefficients for dimen-

sions 4, 3 and 2.

8. Fourier Power Spectrum (FPS): Radial sum and angular sum.

5.2.2 Histogram of oriented gradients

In the field of computer vision and image processing, a histogram of oriented gradi-

ents (HOG) is one of the widely used feature descriptor which is usually employed
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for object detection and recognition (Dalal and Triggs (2005)). A feature descriptor

is a portrayal of an image or an image patch that simplifies the image by extracting

useful information. The histograms of directions of oriented gradients are actually the

features in the HOG feature descriptor. The importance of using gradients is that the

magnitude of gradients is large around edges and corners, hence it is used as a feature.

Steps for HOG feature calculation as explored by Dalal and Triggs (2005) are listed

below:

1. Computation of gradient values.

Use 1-D centered discrete derivative mask in both vertical and horizontal direc-

tions as is given in equation (5.1).

∇I =

[
gx

gy

]
=

[
δI
δx
δI
δy

]
(5.1)

where δI
δx

is the derivative in x direction and δI
δy

is the derivative in y direction.

2. Creating the cell histograms.

The image is divided into cells which can be rectangular or radial. Each pixel

within the cell affects histogram channel depending on the gradient values.

3. Normalization.

The gradient values are locally normalized to take in an account for any changes

in illumination and contrast. For this purpose, group the cells together into

larger blocks. Normalization is carried out by using the equation (5.2).

ν =
v√

||v||22 + ε2
(5.2)

where v is the unnormalised descriptor vector of the block and ε is a constant.

4. Concatenation.

Normalized cell histograms are then concatenated from all of the block regions

to give the final HOG descriptor. The blocks usually overlap, so that each cell

contributes to final descriptor more than once.
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5.2.3 Bag of features

In computer vision domain, the bag-of-words model (BoW) is applied to image classi-

fication, by treating image features as words, hence the name Bag-of-Features (BoF)

(Csurka et al. (2004)). For image classification, computer vision toolbox is used and

classification is performed by creating a bag of visual words or BoF. The process

generates a histogram of visual word occurrences that represent an image. These his-

tograms are used to train an image classifier. The bag of words is treated as a bag of

features because it basically contains image features. The steps to obtain BoF are as

follows and also presented in Figure 5.2 (Image courtesy: www.mathworks.com).

Figure 5.2: Overview of Bag of Features method

1. Create a bag of features, by extracting feature descriptors from images of each

class.

2. The BoF function derives the features by using the k-means clustering algorithm

on the feature descriptors extracted from training set images. The algorithm

iteratively groups the descriptors into k mutually exclusive clusters. Each cluster

center represents a feature.

3. Then, encode method is used to encode each image from the training set. It uses

the approximate nearest neighbor algorithm to construct a feature histogram for

each image.
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4. The function then increments histogram bins based on the proximity of the

descriptor to a particular cluster center. The histogram length corresponds to

the number of visual words. The histogram then becomes a feature vector for

the image.

The actual implementation steps of BoF function in matlab are divided into fol-

lowing steps:

1. Extracts SURF features from all images.

Speeded Up Robust Features (SURF) uses box filters as an approximation of

Laplacian of Gaussian (LoG) (Bay et al. (2006)). For implementation, box filters

are used because convolution is easy and can be calculated using integral images.

Also, this step is performed parallely for different scales. The equations for LoG

and integral images are given in equation (5.3) and (5.4) respectively.

L(x, y) =
δ2

δx2
O(x, y) +

δ2

δy2
O(x, y) (5.3)

S(x, y) =
x∑
i=0

y∑
j=0

I(i, j) (5.4)

SURF depends on determinant of Hessian matrix for calcualting both scale and

location. The determinant of a Hessian matrix gives information about the

change around that point. The points are then selected in such a way that

determinant is maximal at that location (Bay et al. (2006)). Given a point

p = (x, y) in an image I, the Hessian matrix H̃(p, σ) at point p and scale σ, is

given in equation (5.5).

H̃(p, σ) =

[
Lxx(p, σ) Lxy(p, σ)

Lyx(p, σ) Lyy(p, σ)

]
(5.5)

2. Construction of visual vocabulary using k-means clustering.

The number of features can be reduced using k-means clustering algorithm (Gon-

zalez et al. (2004)). The algorithm aims at minimizing an objective function

78



which is known as squared error function and is given in equation (5.6).

J(V ) =
c∑
i=1

ci∑
j=1

(||xi − vj||)2 (5.6)

where ||xi − vj||2 is the Euclidean distance between pixel xi and centre vj.

3. Use encode method.

Encoding of images is done to produce a histogram of visual word occurances

that becomes a new and reduced representation of an image. This histogram

now is the basis for training any classifier for image classification. Basically, it

encodes an image into a feature vector (Csurka et al. (2004)).

5.3 Classification techniques

In this section, different classification techniques such as ANN, SVM and random

forest classifiers are presented and discussed.

5.3.1 Artificial Neural Networks

Artificial Neural Networks (ANN) are biologically inspired network of artificial neurons

with a particular activation function to perform specific tasks (Haykin (1998)). The

network is made up of a collection of nodes called artificial neurons and each connection

between artificial neurons can transmit a signal from one to another. This system

mimics the natural brain of a human. The artificial neuron receives an input signal and

process it to give an output signal based on the activation function or threshold value.

Most commonly, artificial neurons are organized in different layers, input layer, hidden

layers and output layer. Different layers may perform different kinds of operations on

their inputs based on the activation functions and also the weights attached to it.

ANNs have been used to solve many real-life problems in the areas such as computer

vision, face and voice recognition, and medical diagnosis.

5.3.2 Support Vector Machines

Support Vector Machine (SVM) is one of the most powerful and widely used classifiers

in signal and image processing field. It is applied on a given set of training data which
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generates a model and then used to classify any new data (Cortes and Vapnik (1995)).

Usually a kernel function is used to map any input data to feature space, such that a

hyperplane is found that can divide the data into sets or classes. Kernel function can

be linear, polynomial, sigmoid, radial basis etc. Most commonly used kernel function

is the Radial Basis Function (RBF).

5.3.3 Random Forest Classifier

Random Forest Classifier is an ensemble algorithm. Ensemble algorithms combine

more than one algorithms of a same or different kind of classification of objects,

(Breiman (2001)). Random forest classifier creates a set of decision trees from a

randomly selected subset of a training set. It then aggregates the votes from different

decision trees to decide the final class of the test object. Decision tree concept is

more like the rule-based system. Given the training dataset with targets and features,

the decision tree algorithm will come up with some set of rules. The same set of

rules can be used to perform prediction on the test dataset. The steps for building

a random forest classifier are mentioned below and is shown in Figure 5.3 (Image

courtesy: www.youtube.com).

Figure 5.3: Steps for building a Random Forest Classifier
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1. Select k features out of m features randomly, where k << m.

2. Calculate the node d using the best split point from the k features.

3. Using best split point, divide the node into daughter nodes.

4. Repeat the steps 1 to 3 until only one node remains.

5. Repeat the steps 1 to 4 for n number times to create a forest of n number of

trees.

5.4 Implementation

The feature extraction and classification techniques are implemented on a 64-bit sys-

tem having an Intel i7 processor with clock speed of 3.6 GHz and an 8 GB RAM. The

implementation of feature extraction methods is simple and straightforward. Texture

based feature analysis is based on the research work by Loizou et al. (2014). HOG

feature descriptor with 64×64 as cell size is used for implementation. BoF using SURF

descriptor is implemented with varying vocabulary size for analysis and finally fixed

to 500.

Implementation of SVM is done using LIBSVM library version 3.22 (Chang and

Lin (2011)). In this case, a multiclass SVM function is used for classification using

one-versus-rest approach. The kernel function used is third-degree polynomial rather

than radial basis function as it is not suitable for a large number of features (Kashif

et al. (2016)). ANN is designed with 2 hidden layers and the learning constant is set

to 0.1. The activation function used is tanh with a maximum number of iterations set

to 100. Random Forest classifier is designed using treebagger function from MATLAB

2015a software. For implementation, number of trees is set to 200 and minimum leaf

size to 5.

5.5 Experimental results and discussion

This section presents the experiments performed on segmented regions (PROI) with

and without gender specification. Lower error rates are achieved on subsets of regions.

Using iterative adding and removal of regions, the best combinations can be chosen.
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5.5.1 Results

In this section, the experiments are performed on segmented PROI images (Simu

et al. (2017a)). To compare the results with preceding work presented in Thodberg

et al. (2009) and Kashif et al. (2016), a separate dataset of 2-17 years is created.

Each hand radiograph will give 5 PROI regions. Some segmented PROI images are

rejected due to bad results. Finally, we have used a total of 3082 PROI images for

feature extraction out of which 1396 male segmented PROI images and 1686 female

segmented PROI images. The images were resized to a common size which is a mean

size of all segmented PROI. Table 5.1 shows the age groups and corresponding number

of segmented PROI images used for feature extraction and classification. The analysis

was accomplished using five-fold cross-validation and each of the datasets were divided

into training (80%) and testing phase (20%). The dataset is imbalanced because the

hand radiograph dataset acquired from USC is an imbalanced dataset.

Table 5.1: Age group and corresponding number of segmented PROI images

Age 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Male

(1396)

18 31 34 39 14 66 61 66 70 56 103 159 89 123 104 86 107 81 89

Female

(1686)

8 24 49 51 35 66 73 70 74 81 121 139 166 164 121 122 122 75 125

Combined

(3082)

26 55 83 90 49 132 134 136 144 137 224 298 255 287 225 208 229 156 214

For the bone age assessment analysis, mean error (Merr), root mean squared error

(RMSE), and standard deviation of error (Sdev) are the automatic choice for the

researchers for results comparison of different bone age assessment methods. The

experimental results obtained from all 3 feature extraction methods using ANN, SVM,

and Random Forest are presented in Tables 5.2-5.4 for combined, male and female

datasets respectively. Tables 5.2-5.4 present the mean error (Merr), root mean square

error (RMSE) and standard deviation of error (Sdev). The values shown are an

average of all 5 PROI’s (Avg5) and an average of the ring, middle and index fingers

(Avg3) in the bone age range of 0-18 years. From the Tables 5.2-5.4, it is observed

that random forest classifier provided the lowest value of Merr, RMSE, and Sdev on

combined dataset as well as separate datasets. Hence, random forest classifier is best

suited for BAA analysis as compared to ANN and SVM classifiers.

82



Table 5.2: Classification results for different feature extraction methods on combined
dataset

ANN SVM Random Forest

Segmented PROI Merr RMSE Sdev Merr RMSE Sdev Merr RMSE Sdev

Texture (Avg5) 1.967 2.661 1.797 1.646 2.496 1.634 1.090 1.459 0.976

Texture (Avg3) 1.963 2.687 1.840 1.518 2.314 1.501 1.064 1.435 0.970

HOG (Avg5) 2.062 2.687 1.672 1.457 1.969 1.328 0.723 0.968 0.644

HOG (Avg3) 2.046 2.688 1.655 1.443 1.952 1.319 0.694 0.944 0.642

BoF (Avg5) 1.737 2.252 1.438 1.318 1.540 1.511 0.681 0.872 0.550

BoF (Avg3) 1.697 2.216 1.430 1.061 1.203 1.232 0.634 0.816 0.514

Table 5.3: Classification results for different feature extraction methods on male
dataset

ANN SVM Random Forest

Segmented PROI Merr RMSE Sdev Merr RMSE Sdev Merr RMSE Sdev

Texture (Avg5) 1.776 2.459 1.708 1.630 2.486 1.648 1.092 1.485 1.016

Texture (Avg3) 1.797 2.379 1.563 1.506 2.419 1.702 1.057 1.438 0.990

HOG (Avg5) 1.901 2.517 1.657 1.429 1.943 1.329 0.707 0.984 0.692

HOG (Avg3) 1.947 2.528 1.615 1.398 1.935 1.345 0.692 0.980 0.704

BoF (Avg5) 1.403 1.837 1.193 1.201 1.749 1.235 0.587 0.773 0.506

BoF (Avg3) 1.401 1.777 1.119 1.095 1.508 1.102 0.536 0.702 0.458

Table 5.4: Classification results for different feature extraction methods on female
dataset

ANN SVM Random Forest

Segmented PROI Merr RMSE Sdev Merr RMSE Sdev Merr RMSE Sdev

Texture (Avg5) 2.145 2.880 1.926 1.500 2.386 1.655 1.165 1.583 1.080

Texture (Avg3) 2.199 2.886 1.868 1.395 2.272 1.605 1.104 1.527 1.059

HOG (Avg5) 2.108 2.623 1.571 1.638 2.089 1.308 0.744 0.966 0.620

HOG (Avg3) 2.117 2.595 1.511 1.562 1.982 1.231 0.706 0.921 0.593

BoF (Avg5) 1.592 2.065 1.324 1.565 1.958 1.273 0.687 0.888 0.562

BoF (Avg3) 1.565 2.012 1.273 1.377 1.648 1.168 0.630 0.815 0.517

From the Tables 5.2-5.4, it is deduced that Bag of Features (BoF) method per-

forms better as compared with other two feature extraction methods. Texture feature

analysis performs better than HOG features for the case of classification using ANN.

But the best results are achieved by BoF method as given in Tables 5.2-5.4. For clas-

sification using SVM, similar results are obtained for all feature extraction methods
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as given in Table 5.2-5.4. Tables 5.2-5.4 also show that BoF provides the lowest values

for mean error, RMSE and standard deviation of error. Best results in Tables 5.2-5.4

are highlighted. Further, from the Tables 5.2-5.4, it is also observed that BoF method

using ANN, SVM, and random forest classifiers provided the lowest value of Merr,

RMSE, and Sdev as compared to texture feature analysis and HOG feature extrac-

tion methods. In the experimental results analysis, it is found that some regions (e.g.

index, middle, ring) achieved lower mean error and RMSE than others. Hence, best

regions can be combined and used to predict the final bone age.

5.5.2 Selection of number of clusters for BoF method

The results of BoF method presented in Tables 5.2-5.4 are found to be better with

a value of k = 150 (i.e. 150 clusters), but the number of clusters is taken without

any analysis. Therefore, for the selection of an appropriate value of a number of

clusters, an analysis with a number of clusters versus error is performed. In Figure

5.4, the number of clusters is increased from 150 to 1500 and the change in error is

plotted. Figure 5.4 clearly shows that there is a minimum change in error after k=500.

Hence, the appropriate value of a number of clusters, k=500 is selected for further

experimental analysis.

Figure 5.4: Graph of error values versus number of clusters in bag of features
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A bag of features is constructed and results are computed which are presented

in Table 5.5. The results presented in Table 5.5 show that they are better than the

previous two methods of texture analysis and HOG features. To compare the results

with existing BAA method presented in Thodberg et al. (2009), a reduced dataset

for ages between 2-17 years is created. The results of BoF method for the reduced

dataset(RD) is presented in Table 5.5 with k=500 using random forest classifier.

Table 5.5: Random Forest classifier results for BoF with k=500 and with reduced
dataset (2-17 years)

Combined dataset Male dataset Female dataset

Segmented PROI Merr RMSE Sdev Merr RMSE Sdev Merr RMSE Sdev

BoF-500 (Avg5) 0.616 0.786 0.488 0.527 0.691 0.446 0.633 0.839 0.550

BoF-500 (Avg3) 0.581 0.744 0.464 0.484 0.646 0.425 0.588 0.777 0.506

BoF(RD) (Avg5) 0.584 0.757 0.481 0.505 0.677 0.451 0.530 0.667 0.406

BoF(RD) (Avg3) 0.557 0.721 0.458 0.466 0.617 0.405 0.501 0.637 0.394

5.5.3 Result comparision with other existing BAA methods

To prove robustness of improved ABAA system with BoF method using random for-

est classifier, the results are compared with existing BAA methods presented in the

literature (Thodberg et al. (2009), Kashif et al. (2016), Harmsen et al. (2013), and

Spampinato et al. (2017)). Classification results of improved ABAA system and other

existing BAA methods for combined and reduced datasets are presented in Table 5.6.

Table 5.6: Comparison between our results and various other existing methods from
literature

BA

range

Used

Gen-

der

Metric All

PROI

Best

PROI

Thodberg

et al.

(2009)

Kashif

et al.

(2016)

Harmsen

et al.

(2013)

Spampinato

et al.

(2017)

0-18 Yes
Merr 0.5801 0.4622 - 0.6172 0.832 0.79

RMSE 0.7650 0.6085 - - - -

0-18 No
Merr 0.6156 0.5662 - 0.7509 0.9637 -

RMSE 0.7856 0.7135 - - - -

2-17 Yes
Merr 0.5177 0.4525 - 0.6082 0.8265 -

RMSE 0.6720 0.5926 0.61 - - -

2-17 No
Merr 0.5837 0.5446 - 0.856 0.985 -

RMSE 0.7565 0.7203 - - - -

Table 5.6 clearly shows that BoF method with random forest classifier outperforms

all the methods present in the literature except for Bonexpert method (Thodberg et al.
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(2009)). The best PROI results presented are from the index finger. As mentioned

earlier, 3 PROI’s among all 5 give best results. So, taking the average of results

obtained for reduced dataset, RMSE value of 0.62 is obtained which is comparable to

Bonexpert method (Thodberg et al. (2009)) which gives RMSE as 0.61.

5.6 Summary

• Experimental results of three different feature extraction methods are compared

namely texture feature analysis, histogram of oriented gradients and bag of

features method.

• The Bag of Features method gave the best result among all three with number

of clusters set to 500.

• Three different classifiers are implemented for calculating the results which are

ANN, SVM and Random Forest.

• BoF method with random forest classifier provides lowest values of Merr, RMSE

and Sdev as compared to the other exsisting BAA methods.
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Chapter 6

CONCLUSION AND FUTURE

WORK

This thesis investigated and analyzed design and development of a fully automated

system for bone age assessment of a person from the left-hand radiograph. Two auto-

matic ROI extraction methods are designed which are independent of hand placement

and orientation. It involves simple morphological operations and basic mathematical

functions. Hence, the extraction of PROI and RUROI images from hand radiographs

is simple, accurate and fast because the proposed automatic ROI extraction tech-

niques took a negligible amount of time. A hierarchical bone localization technique

is followed to make it easier for segmentation stage of ABAA system wherein the

boundary of hand is found at first and then regions are identified.

The proposed segmentation techniques are extremely robust for segmentation of

bones in extracted regions. The proposed segmentation techniques and other existing

techniques are validated on the left hand radiograph database with an age group of

0-18 years. The proposed techniques along with previously investigated techniques

are successfully implemented on under-exposed as well as over-exposed radiographic

images. A close look at quantitative performance measures indicate that the simu-

lation results obtained using proposed segmentation techniques are better than that

achieved from previously reported techniques. The visual information obtained from

figures in chapter 4 indicate that the proposed segmentation techniques yield good

results as compared to other existing segmentation techniques as the bones can be

clearly delineated. Further, the proposed segmentation techniques deliver an approx-
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imate segmentation accuracy of 94 percent for PROI and 97 percent for RUROI. Fi-

nally, experimental results demonstrated that the proposed segmentation techniques

offer better quantitative and qualitative results as compared to other tested techniques

reported in the literature.

The segmentation results are also verified by different medical experts. Mean of

ratings given by all four medical experts for segmentation results are above the aver-

age value i.e 3. The advantages of the proposed technique are that it is very effective

and robust and disadvantage of the proposed technique is that it is a complex math-

ematical process and consumes more processing time.

Further, in this thesis, a fully ABAA system is designed and developed by integrat-

ing ROI extraction stage, segmentation stage, and feature extraction with classification

stage. In this context, 3 different feature extraction methods namely, texture feature

analysis, Histogram of Oriented Gradients (HOG), and Bag of Features (BoF) meth-

ods are implemented on segmented PROI images. These feature extraction methods

are integrated with most popular and widely used classification techniques like ANN,

SVM, and random forest classifiers. It is found that BoF method with a number

of clusters set to 500 performed better than other two feature extraction methods.

Results are compared with other existing BAA methods and analysis showed that

the obtained results are fairly satisfactory. The usage of gender bias results also in-

dicated improvement of bone age prediction, hence it can be used during practical

implementation. Further, the classification results also demonstrated that a fairly

good performance is obtained from ring, middle and index regions of hand radio-

graph. Therfore, proposed fully automatic system can be used for BAA of a person

with enhanced accuracy.

The future work in automated bone age assessment procedure is designing an

effective feature extraction for radius and ulna bones (Simu et al. (2017b)) and try to

incorporate it in the analysis of bone age estimation. A robust classification technique

which takes suitable features and improves the results further can be designed. The

estimation of age can be further improved by adding proper weights to ROI’s and

designing a complete automated BAA system.
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