
ENERGY EFFICIENT RESOURCE MANAGEMENT AND TASK

SCHEDULING AT THE CLOUD DATA CENTER

Thesis

Submitted in partial fulfilment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

by

NEERAJ KUMAR SHARMA

DEPARTMENT OF INFORMATION TECHNOLOGY

NATIONAL INSTITUTE OF TECHNOLOGY KARNATAKA

SURATHKAL, MANGALORE 575025

February 27, 2018

DECLARATION

By the Ph.D. Research Scholar

I hereby declare that the Research Thesis entitled ENERGY EFFICIENT

RESOURCE MANAGEMENT AND TASK SCHEDULING AT THE

CLOUD DATA CENTER Which is being submitted to the National

Institute of Technology Karnataka, Surathkal in partial fulfilment of

the requirements for the award of the Degree of Doctor of Philosophy in

Information Technology is a bonafide report of the research work carried out

by me. The material contained in this Research Thesis has not been submitted

to any University or Institution for the award of any degree.

Place: NITK, Surathkal Neeraj Kumar Sharma (IT13F04)

Date: Department of Information Technology

CERTIFICATE

This is to certify that the Research Thesis entitled ENERGY EFFICIENT

RESOURCE MANAGEMENT AND TASK SCHEDULING AT THE

CLOUD DATA CENTER submitted by NEERAJ KUMAR SHARMA,

(Registration Number IT13F04) as the record of the research work carried out

by him, is accepted as the Research Thesis submission in partial fulfilment of the

requirements for the award of degree of Doctor of Philosophy.

Prof. G. Ram Mohana Reddy

Research Guide

Prof. G. Ram Mohana Reddy

Chairman - DRPC

Acknowledgements

I would like to take this chance to thank those people who have made this thesis

possible. First and foremost, I would like to express my deepest gratitude to my

research guide, Prof. G. Ram Mohana Reddy, Head of Information Technology

Department, for giving me guidance and support throughput my research work.

This thesis would not have been possible without his support and suggestions.

I express my thanks to members of my RPAC committee, Prof. K. Chan-

drasekaran, and Prof. Gangadharan K V for their valuable suggestions during

my research work. I would like to thank my brother Dr. Dheeraj Sharma for his

valuable suggestions and encouragement.

I would like to thank my parents, and my sister, who gave unconditional, love

and inspiration throughout my research work.

Finally, I would like to express my gratitude to my co-researchers who made

the past three years more enjoyable and fun. I extend my sincere thanks to all

teaching, and supporting staff of the Information Technology Department, for

their support.

Last but not least, my gratitude as well as sincere appreciations go towards

my wife Mrs. Priyanka Sharma who gave unconditional cooperation, love during

my Ph.D. Without them, surely, this research work would not have been possible.

Place: NITK-Surathkal Neeraj Kumar Sharma

Date: February 27, 2018

ABSTRACT

Due to the growing demand for cloud services, allocation of energy efficient

resources (CPU, memory, storage, etc.) and utilization of these resources are

the major challenging issues of a large cloud data center. To meet the ever

increasing demand of the customers, more number of servers are needed at the

data center. These data centers require more cooling devices in order to keep the

data center at a specified temperature resulting in more energy consumption and

CO2 emission. The user requested on demand virtual machine (VM) allocation

problem is widely known as a combinatorial optimization problem. Due to the

large number of PMs present in the data center, the specified VM allocation

problem is related to the NP-hard/NP-complete complexity class. Finding an

optimal solution to the specified VM allocation problem with the multi-objective

approach in the polynomial time will thus create a lot of challenges. Further, the

networking devices of data center like switches consume 10% to 20% of the total

energy consumed by IT devices in the data center. Hence, the network-aware VM

allocation algorithm is required to minimize the energy consumption of switches

and physical machines (PMs) at the cloud data center. Further, a policy for

migrating VMs from underutilized PMs to the energy efficient PMs is required

over a period of time without violating the service level agreement (SLA) between

the cloud service provider and the customer.

In order to minimize both the energy consumption and resources wastage, this

thesis presents multi-objective VM allocation to PM using hybrid bio-inspired

algorithms (HGACSO, HGAPSO, and HGAPSOSA) based on GA, CSO, PSO,

and SA algorithms. Further, to save the energy consumption of networking

switches in the cloud data center, a branch-and-bound based exact algorithm

is proposed for VM allocation problem. The proposed branch-and-bound based

exact algorithm saves the energy consumption of PMs and networking switches

at the cloud data center. Further, the proposed VM migration technique and a

9

task scheduling technique based on the First-Fit approximation algorithm will

not only reduce the energy consumption at the cloud data center but also avoids

the SLA.

The experimental results were carried out in both homogeneous and het-

erogeneous cloud data center environments. Experimental results demonstrated

that the proposed VM allocation algorithms outperform the state-of-the-art

benchmark and peer research algorithms.

Keywords: Energy efficiency, Data center, Virtual machine,

Physical machine, Resources utilization, SLA.

10

Contents

1 Introduction 1

1.1 Cloud Computing . 1

1.2 Cloud Computing Characteristics 2

1.3 Types of Cloud Computing Models 4

1.3.1 Service Models . 4

1.3.2 Deployment Models . 6

1.4 Cloud Computing Technologies . 8

1.4.1 Virtualization . 8

1.4.2 Load Balancing . 9

1.4.3 Scalability and Elasticity . 12

1.4.4 Monitoring . 13

1.4.5 Service Level Agreement . 14

1.4.6 Billing Models . 14

1.5 Energy Efficient Green Cloud Computing 15

1.5.1 Green Data Center . 15

1.5.2 Power Consumption at Cloud Data Center 18

1.6 Challenges . 19

1.7 Motivation . 21

1.8 Organization of Thesis . 22

1.9 Summary . 23

2 Literature Review 25

2.1 Data Center Power Management Techniques 25

2.1.1 Static Power Management Techniques 26

2.1.2 Dynamic Power Management Techniques 28

2.1.2.1 Hardware Level Solution 29

2.1.2.2 Software Level Solution 30

i

2.2 Outcome of Literature Review . 43

2.3 Problem Statement . 47

2.4 Research Objectives . 47

2.5 Summary . 48

3 Energy Efficient VM Allocation, Migration Using HGACSO 49

3.1 Proposed Work . 50

3.1.1 VM Allocation Using Proposed HGACSO 50

3.1.2 VM Migration Using First-Fit 65

3.2 Experimental Setup, Results and Analysis 66

3.3 Summary . 83

4 Energy Efficient VM Allocation, Migration, and Task Scheduling

Using HGAPSO 85

4.1 VM Allocation Using Proposed HGAPSO Algorithm 87

4.1.1 Energy Efficient SLA Aware Task Scheduling 98

4.1.2 Energy Efficient SLA Aware VM Migration 102

4.2 Experimental Setup, Results and Analysis 104

4.3 Summary . 124

5 Energy Efficient Thermal Aware VM Allocation and Migration

Using HGAPSOSA 125

5.1 Proposed Work . 126

5.1.1 VM Allocation Using Proposed HGAPSOSA 126

5.1.2 Energy Efficient Thermal Aware VM Migration 135

5.2 Experimental Setup, Results and Analysis 136

5.3 Summary . 147

6 Energy Efficient Network-Aware Resource Management Using

Exact Algorithm 149

6.1 Proposed Work . 150

ii

6.1.1 VM Allocation Using Branch-and-Bound Based Exact Al-

gorithm . 150

6.1.2 VM Migration Policy . 165

6.2 PERFORMANCE EVALUATION 169

6.3 Summary . 183

7 Performance Evaluation of HGACSO, HGAPSO, HGAPSOSA

and Exact Algorithms 185

7.1 Performance Evaluation . 185

7.2 Summary . 196

8 Conclusion and Future Directions 199

References . 205

List of Publications . 219

iii

List of Figures

1.1 Cloud Service Models (Nguyen et al. 2013). 5

1.2 Cloud Deployment Models (Gao et al. 2013). 7

1.3 Virtualizatrion (Wang et al. 2013). 8

1.4 Type-1 Hypervisor (Cheng et al. 2016). 9

1.5 Type-2 Hypervisor (Cheng et al. 2016). 10

1.6 Power Consumption at the Data Center (Wang et al. 2017). 18

2.1 Classification of Power Management Techniques (Guyon et al. 2017). 27

3.1 Flow Chart of VM Allocation, and Migration. 50

3.2 VM Allocation Scenario. 54

3.3 Flow Chart of HGACSO. 56

3.4 Chromosome Representation. 57

3.5 Cat Representation. 58

3.6 Crossover Operation. 61

3.7 Mutation Operation. 61

3.8 % of CPU Utilization in Heterogeneous Data Center. 69

3.9 % of RAM Utilization in Heterogeneous Data Center. 69

3.10 % of Storage Utilization in Heterogeneous Data Center. 69

3.11 % of CPU Utilization in Homogeneous Data Center. 70

3.12 % of RAM Utilization in Homogeneous Data Center. 71

3.13 % of Storage Utilization in Homogeneous Data Center. 71

3.14 Power Consumption in Homogeneous Data Center Environment. . . 71

3.15 Function Value in Homogeneous Data Center Environment. 72

3.16 Power Consumption in Heterogeneous Data Center Environment. . 72

3.17 Function Value in Heterogeneous Data Center Environment. 73

3.18 % of CPU Utilization in Constant Heterogeneous Data Center. . . . 74

v

3.19 % of RAM Utilization in Constant Heterogeneous Data Center. . . 74

3.20 % of Storage Utilization in Constant Heterogeneous Data Center. . 75

3.21 % of CPU Utilization in Constant Homogeneous Data Center. . . . 75

3.22 % of RAM Utilization in Constant Homogeneous Data Center. . . . 75

3.23 % of Storage Utilization in Constant Homogeneous Data Center. . . 76

3.24 Power Consumption in Constant Homogeneous Data Center. 76

3.25 Power Consumption in Constant Heterogeneous Data Center. . . . 77

3.26 Number of VMs Requested. 77

3.27 Time Duration of Requested VM. 78

3.28 Number of PM Used to Allocate VM. 78

3.29 Energy Consumption at the Data Center. 79

3.30 % of CPU at the Data Center. 79

3.31 Total Energy Consumption at the Data Center. 80

3.32 Average CPU Utilization at the Data Center. 80

3.33 Execution Time of HGACSO in Minutes. 80

3.34 Minimization of Power Consumption on Each Iteration. 81

3.35 Performance of HGACSO Over Crossover Rate. 81

3.36 Performance of HGACSO Over Mutation Rate. 82

4.1 Flow Chart of VM Allocation, Task Scheduling, and VM Migration. 87

4.2 Flow Chart of the Proposed HGAPSO Algorithm. 91

4.3 Binary Representation of a Particle. 92

4.4 % of CPU Utilization in Heterogeneous Data Center. 107

4.5 % of RAM Utilization in Heterogeneous Data Center. 107

4.6 % of Storage Utilization in Heterogeneous Data Center. 108

4.7 % of CPU Utilization in Homogeneous Data Center. 109

4.8 % of RAM Utilization in Homogeneous Data Center. 109

4.9 % of Storage Utilization in Homogeneous Data Center. 110

4.10 Power Consumption in Homogeneous Data Center Environment. . . 110

4.11 Power Consumption in Heterogeneous Data Center Environment. . 111

4.12 Objective Function Value in Homogeneous Data Center. 111

vi

4.13 Objective Function Value in Heterogeneous Data Center. 111

4.14 % of CPU Utilization in Constant Heterogeneous Data Center. . . . 113

4.15 % of RAM Utilization in Constant Heterogeneous Data Center. . . 113

4.16 % of Storage Utilization in Constant Heterogeneous Data Center. . 114

4.17 % of CPU Utilization in Constant Homogeneous Data Center. . . . 114

4.18 % of RAM Utilization in Constant Homogeneous Data Center. . . . 115

4.19 % of Storage Utilization in Constant Homogeneous Data Center. . . 115

4.20 Power Consumption in Constant Homogeneous Data Center. 115

4.21 Power Consumption in Constant Heterogeneous Data Center. . . . 116

4.22 Task Allocation on Type1 VM. 116

4.23 Task Allocation on Type2 VM. 117

4.24 Task Allocation on Type3 VM. 117

4.25 Task Allocation on Type4 VM. 118

4.26 Energy Consumption in Homogeneous Data Center. 118

4.27 Energy Consumption in Heterogeneous Data Center. 119

4.28 Energy Consumption with VM Migration Policy at Data Center. . . 119

4.29 Average Resource Utilization. 120

4.30 Total Energy Consumption. 120

4.31 Execution Time of HGAPSO in Minutes. 121

4.32 Minimization of Power Consumption on Each Iteration. 121

4.33 Performance of HGAPSO Over Crossover Rate. 122

4.34 Performance of HGAPSO Over Mutation Rate. 123

5.1 Flow Chart of the Proposed HGAPSOSA Algorithm. 130

5.2 Mutation Operation. 133

5.3 Power Consumption. 136

5.4 Temperature Variation. 137

5.5 % of CPU Utilization at the Data Center. 138

5.6 % of RAM Utilization at the Data Center. 138

5.7 % of Storage Utilization at the Data Center. 139

5.8 Power Consumption at the Data Center. 139

vii

5.9 Temperature of the Data Center. 140

5.10 % of CPU Utilization at Constant Data Center. 141

5.11 % of RAM Utilization at Constant Data Center. 141

5.12 % of Storage Utilization at Constant Data Center. 142

5.13 Power Consumption at the Constant Data Center. 142

5.14 Temperature of the Constant Data Center. 142

5.15 Users Requested VMs at the Data Center. 144

5.16 Time Duration of Users Requested VMs at the Data Center. 144

5.17 Switched-on PMs at the Data Center. 145

5.18 Energy Consumption at the Data Center. 145

5.19 Resources Utilization at the Data Center. 146

5.20 Execution Time of VM Allocation Algorithms. 146

6.1 Fat-tree Architecture of Data Center (Son et al. 2017). 152

6.2 Allocation of VMs to a PM. 153

6.3 VM Migration at the Cloud Data Center. 165

6.4 % of CPU Utilization . 173

6.5 % of RAM Utilization . 174

6.6 % of Storage Utilization . 174

6.7 Server Power Consumption . 175

6.8 Switch Power Consumption . 176

6.9 Total Power Consumption . 176

6.10 Number of VMs Requested by Users. 177

6.11 Time Span of VMs allocated to Data Center. 178

6.12 Number of PMs used for VM allocation. 179

6.13 Number of VMs Migrated on ul = 30%. 179

6.14 Energy Consumption at the Data Center. 180

6.15 % of CPU Utilization. 181

6.16 Total Energy Consumption. 181

6.17 Average Resource Utilization. 182

6.18 Lower Utilization Threshold. 182

viii

6.19 Execution Time on Different Threshold Values. 183

7.1 % of CPU Utilization at the Data Center 188

7.2 % of RAM Utilization at the Data Center 188

7.3 % of Storage Utilization at the Data Center 189

7.4 % of CPU Utilization at Constant Data Center. 190

7.5 % of RAM Utilization at Constant Data Center. 190

7.6 % of Storage Utilization at Constant Data Center. 190

7.7 Power Consumption at the Data Center 191

7.8 Power Consumption at the Constant Data Center 192

7.9 Energy Consumption at the Data Center. 193

7.10 Total Energy Consumption. 194

7.11 Average Resource Utilization. 195

7.12 Execution time of VM Allocation Algorithms. 195

ix

List of Tables

1.1 Monitoring Metrics in Cloud Computing 13

1.2 Criteria for Defining SLA in the Cloud Computing 14

1.3 List of Billable Resources . 16

2.1 Existing Works on Power Saving Techniques at the Data Center . . 44

2.2 Existing Works on Power Saving at Network Aware Data Center . . 45

2.3 Existing Works on Reducing Power and Temperature at Data Center 46

3.1 Configuration of PMs . 67

3.2 Configuration of VMs . 67

3.3 Number of PMs Used for VM Allocation at the Cloud Data Center 68

3.4 Number of PMs Used for VM Allocation at the Constant Data Center 74

3.5 HGACSO Parameters . 82

4.1 Configuration of PMs . 105

4.2 Configuration of VMs . 105

4.3 Number of PMs used for VM Allocation at Data Center 106

4.4 Number of PMs used for VM Allocation at Constant Data Center . 112

4.5 HGAPSO Parameters . 123

5.1 Number of Switched-on PMs at the Data Center 138

5.2 Number of Switched-on PMs at the Constant Data Center 140

6.1 Configuration of PMs . 170

6.2 Configuration of VMs . 171

6.3 Data Center Configuration . 171

6.4 Number of PMs Used at the Cloud Data Center 172

6.5 Number of Switches Used for VM Allocation 172

7.1 Number of PMs Used at the Cloud Data Center 187

xi

7.2 Number of PMs Used at the Constant Data Center 189

xii

Abbreviations

v⃗i Velocity of a Particle

x⃗i Position of a Particle

x⃗gbesti Global Best Position of a Particle

x⃗lbesti Local Best Position of a Particle

Ak kth Application

b, aij, fij, zk Binary Variables

Be Bandwidth Requested by a VM

Bs
i Set of PM Types Contain VMi

Ce Total Capacity of a Link e

cmig
i Migration Cost of a VM

chri ith Chromosome in a Generation

fnew
i New Fitness Value of a Chromosome

f old
i Old Fitness Value of a Chromosome

fitk Fitness Value of a Chromosome

Lmc Lower Bound

mo
i Migration Overhead of a VM

n(p) Number of Active Ports

P i
1, P

i
2, P

i
3 Inertia Weight Coefficients

Pk Probability of a Chromosome to go for Next Generation

xiii

P idle
s Power Consumption of a Switch in Idle Mode

P port
s Port Power Consumption of a Switch

P switch
s Power Consumption of a Switch

pmMIPS Amount of MIPS of a PM

pmPe Number of Processing Elements of a PM

pmRAM Amount of Ram of a PM

PMs Set of PM Connected to Switch s

q1, q2, q3 Uncertain Bit Values

slt SLA Penalty

Tamb Ambient Temperature of a PM

Tj Temperature of pmj

Tmax
j Maximum Temperature of a pmj

VM bw Amount of Bandwidth Requested by a VM

VMmips Amount of mips Requested by a VM

VMpe Number of Processing Elements Requested by a VM

VM ram Amount of Ram Requested by a VM

VM storage Amount of Storage Requested by a VM

VMlarge(n3) Large Number of VMs

VMmedium(n2) Medium Number of VMs

VMsmall(n1) Small Number of VMs

VMx.large(n4) Extra Large Number of VMs

xiv

zkk′i Binary Variable

CDC Count of Dimension

CSO Cat Swarm Optimization

d Resource d

DCu Data Center Resource Utilization

DVFS Dynamic Voltage Frequency Scaling

E Energy Consumption of CPU

f Minimization Function

fmax Maximum Frequency of CPU

fmin Minimum Frequency of CPU

FF First Fit

FFD First Fit Decreasing

GA Genetic Algorithm

HGACSO Hybrid Genetic Algorithm and Cat Swarm Optimization

HGAPSO Hybrid Genetic Algorithm and Particle Swarm Optimization

HGAPSOSA Hybrid Genetic Algorithm Particle Swarm Optimization and Sim-

ulated Annealing

ILP Integer Linear Programming

l Level of a Search Tree

LB(N) Lower Bound

m Number of PMs at the Data Center

MFD Modified First Fit Decreasing

xv

MIPS Millions of Instructions Per Seconds

MR Maximum Ratio

n Number of VMs at the Data Center

OPT Optimal

PIdle Idle Power Consumption of CPU

Pmax Maximum Power Consumption of CPU

Pmin Minimum Power Consumption of CPU

PMs Physical Machines

PSO Particle Swarm Optimization

R Thermal Resistance of a PM

S Set of Switches

s Number of Chromosomes in a Generation

S’(N) Set of Unallocated VM

SA Simulated Annealing

SLA Service Level Agreement

SMP Seeking Mode Pool

SRD Select Range of Dimension

t Time Instant

u Rate of CPU Utilization

ud Utilization of Resource d of CPU

UB(N) Upper Bound

xvi

VMs Virtual Machines

w Learning Coefficient

xvii

Chapter 1

Introduction

This chapter introduces the concepts of cloud computing, its characteristics, de-

ployment models, and their technologies. Further, this chapter also gives the

overview of energy efficient green cloud computing, and its significance and chal-

lenges. In addition to this, challenges in the development of energy efficient re-

sources management at the cloud data center, and motivations for the present

research work are discussed.

1.1 Cloud Computing

Cloud computing is an Internet based computing. It provides on demand resources

such as processing elements, storage, memory, network, and other devices to the

customers on rent basis. The on demand resources from the cloud resource pool are

accessed by the customers on shared basis. These shared resources are released

and provisioned by the minimal management effort. Further, cloud computing

provides the capability to users and enterprises to store and process their data to

private or remote data centers. The data center may be located near or far from

the city. Hence, cloud computing relies on sharing of resources like electricity grid

in an electrical network.

The high bandwidth network, low cost sharing computers, hardware virtual-

ization, service oriented architecture, and utility computing achieve high growth of

the cloud computing in the present scenario. It is reported that cloud computing

was the highly utilized services due to the high computing capacity of servers, low

cost of services, scalability, availability etc. (Gartner 2013). Further, in the near

future the growth rate of cloud computing is 50% per year (Kreith 1999). Hence,

due to the dependency of large and small scale industries on cloud computing,

more resource is required to give the services to the cloud customers. Hence, to

match the future requirement of industry, size of the data center is continuously

1

increasing day by day due to addition of more number of servers to fulfill the

customers demand (Bermejo et al. 2016).

The main advantage of cloud computing is, to allow small and large scale en-

terprises for optimal utilization of modern and updated software and hardware

resource, without any additional investment in the infrastructure (e.g. purchasing

servers on rent basis). Thus, cloud computing allows customers to concentrate on

their core businesses as compared to investment on time and money to improve

the computer infrastructure. Cloud computing gives a good environment to enter-

prises for running their applications faster with less maintenance. Therefore cloud

computing enables more friendly environment to the Information Technology (IT)

teams, to adjust resources according to the floating business demand. Hence, cloud

computing provides the resources to customers based on pay-as-you-go model.

1.2 Cloud Computing Characteristics

Broad Network Access: The cloud computing existing resource can be

accessed through the Internet with the help of standard resource access mech-

anism. Further, this resource access mechanism provides platform independent

access through the use of heterogeneous client platform i.e. workstation, laptop,

tablet, smart phone etc.

Rapid Elasticity: In cloud computing, the existing resources are provisioned

or allocated to customers rapidly and elastically. The cloud resources can go up

and down according to the current resources requirement. There are two types of

resources scaling options exist at the cloud data center.

• Horizontal Scaling: Horizontal scaling involves in adding more number of

servers by keeping constant resource capacity of a server and thus resulting

in higher resource capacity at the cloud data center.

• Vertical Scaling: Vertical scaling involves in improving the resource capac-

ity of individual server and thereby keeping the number of servers constant

at the cloud data center.

2

Resource Pooling: The multi-tenant architecture allows the multiple users

served by the same Physical Machine (PM). Further, using the virtualization tech-

nique, virtual resources in the form of Virtual Machines (VMs) which run on a

single PM are assigned to the users. There are various kinds of virtualization used

in the cloud computing namely, para-virtualization and hardware virtualization.

Measured Services: The cloud resources are provided to the users using

pay-as-you-go model. The resources utilization is measured and charged based on

the specific metric. The specific metric like the amount of CPU cycles used, the

amount of storage space used, number of network I/O request generated by the

user, etc. are used to calculate the utility charge of cloud resources.

In addition to these essential characteristics of cloud computing other desir-

able characteristics are required for reducing the cost of cloud computing and the

following are the details.

Performance: Cloud computing shows improved performance for the appli-

cation because of resources provided to the application can be scaled up and down

according to the dynamic workload of the application.

Reduced Cost: In the cloud computing, resources are provisioned dynami-

cally based on the computing power, storage, and other resources required for the

application. By this way, we can avoid the upfront investment in purchasing the

computing assets in the worst-case scenario and thus saving the significant cost

for organizations and individuals. Different applications have a large variation in

their workload, due to seasonal and other factors. For example, E-Commerce type

of applications experience higher workload during holiday season. Therefore, to

ensure the market requirements, adequate resources are to be provisioned for the

applications to meet the workload demand, and thus satisfying the Service Level

Agreement (SLA) between the cloud service provider and the customer.

Reliability: Cloud computing services provider ensures the reliability to the

deployed application by managing the IT infrastructure proficiently. Further, the

cloud services provider guarantees the reliability and availability of adequate re-

3

sources in the form of SLA.

Outsourced Management: Cloud computing allows the users to outsource

the IT infrastructure required for the external cloud services provider. Thus, the

customers can save the huge amount of upfront capital expenditure in selecting

the required IT infrastructure and thus paying only for the used resources.

Multi-tenancy: Using the multi-tenancy approach, cloud computing allows

multiple users to make use of same shared resources. Nowadays, applications like

E-Commerce, Business-to-Business, Banking & Financial, Retail, Social Network-

ing etc. are deployed in multi-tenant cloud computing environment. The different

forms of multi-tenancy are as follows.

• Virtual Multi-tenancy: In the case of virtual multi-tenancy, the resources

like computing power and storage are shared among multiple users. Multiple

tenants are served from the different VMs which are executed concurrently

on top of the computing and storage resources of the same PM.

• Organic Multi-tenancy: In the case of organic multi-tenancy, every com-

ponent in the system architecture is shared among multiple tenants, such as

hardware, OS, database servers, application servers, load balancers etc.

1.3 Types of Cloud Computing Models

There are two types of models exist in the cloud computing such as service model,

and deployment model. The details of the of the service and deployment models

are described as follows.

1.3.1 Service Models

The cloud services offered by the service provider are in different forms. The

National Institute of Standards and Technology (NIST) has defined three service

models of cloud computing as shown in Figure 1.1 and the details are as follows.

Infrastructure-as-a-Service (IaaS) Model: IaaS provides the cloud re-

sources (computing, and storage) to the users based on pay-as-you-go model.

These resources are provided to the users in the form of VM and virtual stor-

age. In this deployment model, users can start, stop, manage, and configure the

4

Figure 1.1: Cloud Service Models (Nguyen et al. 2013).

VM and virtual storage according to their requirement. Users can deploy operat-

ing systems and applications on the provisioned VM according to their own choice.

Further, the cloud services provider manages the cloud underlying infrastructures.

The billing of provisioned virtual resources is done by the pay-as-you-go paradigm.

The metrics used for the billing purpose are based on the number of VM, types

of VM, time duration, and amount of virtual storage provisioned to the users.

Platform-as-a-Service (PaaS) Model: PaaS provides the capability to the

users to develop, and deploy their applications in the cloud environment with the

help of development tools, application programming interfaces (APIs), software

libraries (provided by the cloud services provider). In this model, the cloud ser-

vices provider will manage the underlying cloud infrastructure such as network,

operating systems, and storage etc.

Software-as-a-Service (SaaS) Model: SaaS provides a complete software

application or the Graphical User Interface (GUI) to the users. In this deployment

model, cloud services provider will manage the underlying cloud infrastructure

(servers, network, operating systems, storage, and application software). Users

are unaware about the underlying architecture of the cloud. All the SaaS applica-

tions are provided to the users through a client interface such as a web browser.

5

The provided SaaS applications are platform independent, and these can be ac-

cessed by different client devices such as workstations, tablets, laptops and smart-

phones, running on different operating systems. Since, all the services (application

and related data) are managed by the service provider, hence the user can access

applications from anywhere.

1.3.2 Deployment Models

Cloud computing deployment models define the category of cloud environment,

and we can distinguish it on the basis of ownership, size, and access. The cloud

deployment models tell about the purpose and nature of cloud. Hence, the NIST

defined four cloud deployment models such as Public cloud, Private cloud, Hybrid

cloud, and Communicate cloud shown in Figure 1.2 and the details are as follows.

Public Cloud: The existing infrastructure of cloud data center (CPU, Stor-

age, Communication network, etc.) is provisioned for open use by the customers

over a network. This type of cloud model is the real representation of cloud as an

entity. Further, this type of cloud is owned, managed, and operated by a business,

academic, or government organizations. The customer does not have any control

on the geographically distributed data centers. Further, public cloud deployment

model is the most suitable model for the businesses, because of low capital over-

head, and less operational cost. Hence, this model is economical among all the

cloud deployment models. In this cloud deployment model, the services provider

provides services to customers free of cost or in the form of license. An example

of public cloud is Google.

Private Cloud: This type of cloud deployment model is also known as an

internal cloud. The platform for cloud computing under this category is deployed

in a secure environment using a firewall, and this firewall works under the gov-

ernance of particular corporate. Further, this type of cloud deployment model

permits authorized users to use the cloud services and gives the direct and full

control to the organization over the data center. The following conditions such as

security alarm, management demands, and up-time requirements are suitable to

adopt this type of cloud model.

6

Figure 1.2: Cloud Deployment Models (Gao et al. 2013).

Hybrid Cloud: This is an integrated cloud deployment model of public and

private clouds. Hence, in this model, two or more types of services are combined

into a single entity, but their services will remain individual from each other. The

hybrid cloud model crosses the isolation and the boundaries of the organization.

Therefore, it cannot be categorized into private, public, or community cloud. It

allows the users to increase the capacity or capability of cloud by using another

cloud package/services. In this type of cloud deployment model, resources are

allocated or managed by either in-house or external services provider. Further, it

is the combination of two platforms where workload is exchanged among public

or private clouds according to the demand. Workload or data which is not critical

like testing, deployment can be in-house in a public cloud, while the critical or sen-

sitive data can be housed internally. Let us consider an example of an E-commerce

website which is hosted on a private cloud that gives the security and scalability,

and the brochure is running on a public cloud, therefore it is more economical

to private cloud. Hybrid cloud consists of features like scalability, security, and

flexibility etc.

7

Figure 1.3: Virtualizatrion (Wang et al. 2013).

1.4 Cloud Computing Technologies

1.4.1 Virtualization

In cloud computing, virtualization is defined as a partition of resources (comput-

ing, storage, network, and memory) of a PM into a number of VMs. Virtualization

is the key technology in the cloud computing, which allows the pooling of differ-

ent kind of resources. Further, resources are pooled to serve multiple users using

multi-tenancy architecture. Figure 1.3 shows the architecture of virtualization

technology in cloud computing. Using the virtualization layer, multiple operating

systems will run concurrently on VM in the same underlying PM.

Hypervisor: The virtualization is created using a hypervisor or a Virtual

Machine Monitor (VMM). The hypervisor acts as a virtual operating platform to

a guest operating system (OS). There are two types of hypervisor such as Type-1

hypervisor and Type-2 hypervisor as shown in Figures 1.4 and 1.5 respectively.

Further, Type-1 hypervisor runs directly on the host hardware of a PM not only

controls the hardware, but also monitors the guest operating systems. Type-2

hypervisor runs on the main/host operating system and monitors only the guest

operating systems. In virtualization, a guest operating system is installed on a

VM. In virtualization, the guest OS and host OS can be different from each other.

There are various forms of virtualization existing in the cloud computing and the

details are as follows.

8

Figure 1.4: Type-1 Hypervisor (Cheng et al. 2016).

Full Virtualization: In this type of virtualization, the virtualization layer

decouples the guest OS from the underlying hardware of a PM. Thus, guest OS

requires no further modification and guest OS is not aware of what is being vir-

tualized. Full virtualization is enabled by direct execution of user requests and

binary translation of OS requests.

Para Virtualization: In this type of virtualization, the guest OS is modified

through the communication with a hypervisor, for improving the performance and

efficiency of the virtualization. The kernel of the guest OS is modified by replacing

non-virtualizable instructions with hypercall, by that way guest OS communicates

directly with the virtualization layer (hypervisor).

Hardware Virtualization: In this type of virtualization, the hardware fea-

tures (Intel’s virtualization technology (VT-x) and AMD’s AMD-V) are virtual-

ized. In hardware virtualization, privilege and sensitive calls are set automatically

trapped inside to the hypervisor. Hence, in this virtualization, there is no need of

binary translation or para virtualization.

1.4.2 Load Balancing

Scalability is one of the important feature of cloud computing. To meet the per-

formance requirements of applications, resources can be scaled up at the data

center. A load balancing technique is used to distribute the application workload

across multiple servers. Hence, by load balancing, we can achieve several benefits

9

Figure 1.5: Type-2 Hypervisor (Cheng et al. 2016).

such as maximum utilization of resources, minimum user response time, maximum

throughput etc. at the cloud data center. Using the load balancing, we can achieve

high reliability and availability for cloud based applications. Since, multiple re-

sources work under the load balancer to serve the user requests, hence the load

balancer can automatically reroute the user traffic to the healthy resources when

one or more resources are failed at the cloud data center. In cloud computing,

under load balancer makes a pool of servers for accessing the cloud based applica-

tion. This load balancer appears as a single server with high computing capacity.

Further, routing of users request is determined by the load balancing algorithm.

Commonly used load balancing algorithms for routing the user’s requests are used

in the cloud computing and the details are as follows.

Round Robin: In a round robin load balancing algorithm, existing servers at

the cloud data center are selected one by one to serve the incoming user requests

in a circular manner. In this algorithm, no priority is assigned to any specific

server at the cloud data center.

Weighted Round Robin: In a weighted round robin load balancing algo-

rithm, each server is assigned with some weights. Thus, by this way the incoming

user requests are proportionally routed to the servers using a static and dynamic

ratio of respective weights.

Low Latency: In a low latency load balancing algorithm, load balancer con-

tinuously monitors the latency of each server at the cloud data center. Further,

each incoming user requests are routed to the lowest latency server.

10

Least Connections: In the least connections load balancing algorithm, the

incoming user requests are routed to the server which has the least number of

connections.

Priority: In priority load balancing algorithm, a priority number is assigned

to each server at the data center. Further, the incoming user requests are assigned

to the highest priority server, if it is available at the data center. In case of failure

of higher priority server, user requests are assigned to lower priority server.

Overflow: The overflow load balancing approach is same as the priority load

balancing algorithm. Here, incoming user requests are assigned to higher priority

server, and if this higher priority server is in an overflow condition, then requests

will be routed to lower priority server.

Sticky Sessions: In this load balancing approach, all the requests belonging

to a user session (sticky session) are routed to the same server at the data center.

The major advantage of this approach is that it makes session management simple.

However, the major disadvantage of this approach is that in case of server failure

condition, sessions belonging to that server will be lost since there is no automatic

failover mechanism in this approach.

Session Database: In this approach, all the sessions related information is

maintained externally in a separate session data base which is replicated to avoid

a single point of failure. Thus, this approach involves the extra overhead of stor-

ing the session information. However, in place of sticky sessions, this approach

provides automatic fail over.

Browser Cookies: In this approach, the user session information is stored

on the client side in the form of browser cookies. The advantage of this approach

is that, it makes the session management easy and consists of least amount of

overheads at the load balancer side.

URL Re-writing: In this approach, an URL re-write engine stores the client

session information by updating the URL on the client side. Hence, it avoids

the overhead to the load balancer, but the drawback of this approach is that the

amount of session information that can be stored is limited. Further, this approach

11

will not work when applications require large amounts of session information.

The load balancing can be implemented on two levels such as software and

hardware. In the case of software based load balancing, load balancer runs on stan-

dard operating system, and like other cloud resources balancer is also virtualized.

Whereas the hardware load balancer can be implemented in Application Specific

Integrated Circuits (ASICs). Further, in a hardware load balancing, the incoming

user requests are routed to the underlying servers using some pre-configured load

balancing strategy, and the response from the servers is sent back either directly

to the user or back to the load balancer where it is being manipulated before being

sent back to the user.

1.4.3 Scalability and Elasticity

The multi-tier applications (social networking, e-commerce, business-to-business,

etc.) will experience rapid changes in their traffic over the periods of time. Fur-

ther, each website has a different traffic pattern which can be calculated by number

of factors that are generally hard to predict beforehand. Nowadays, applications

have multiple tiers of deployment and each tier consists of multiple servers. Thus,

the capacity planning is the crucial task for such applications so that it calculates

the right size of each tier of the deployment of an application in terms of number

of resources and the capacity of each resource required to execute. Capacity plan-

ning may also determine the computing resources, storage, memory or networking

resources.

Traditional approaches for capacity planning are mainly based on the pre-

dicted demands for an application, and account for the worst-case peak load of

an application. In case of increasing or decreasing the workload we use the tradi-

tional approaches like scale up or scale down. The scale up process enhances the

hardware resources (additional computing memory, storage or network resources).

Further, scale down process reduces the hardware resources. Traditional scale up

and scale down approaches are based on the demand forecast at regular intervals

of time. In the case of rapid variation in the workload, traditional approaches are

unable to keep track with the demand and lead to either over provisioning or under

12

Table 1.1: Monitoring Metrics in Cloud Computing

Type Metrics

CPU CPU Usage, CPU Idle

Disk Disk Usage, Bytes/sec (read/write), Operations/sec.

Memory Memory Used, Memory Free, Page Cache (incoming/outing).

Interface Octets/sec(incoming/outing).

provisioning of cloud resources. Therefore, over provisioning will lead to higher

capital expenditure as compared to required expenditure. On the other hand un-

der provisioning of resources lead to traffic overload resulting in slow response

time, low throughput, and resulting in loss to the customers.

1.4.4 Monitoring

Cloud resources are monitored by the cloud services provider. Further, monitoring

of cloud resources allows the cloud users to analyze the data variation using various

monitoring metrics. During the monitoring of cloud services, users collect the data

on various systems and application metrics from the cloud computing instances.

Monitoring cloud services provide several pre-defined metrics, users can also define

their customized metrics for monitoring the cloud resources. Users can define

various actions which are based on the monitoring data. For example, we need

auto-scaling of cloud deployment, when the CPU usage of monitoring resources

become high. Further, monitoring of cloud services also provides various statistics

based on the data collected during monitoring phase. Table 1.1 describes the

list of used monitors metrics for cloud computing resources. The cloud resources

monitoring is an important phase for allowing the users to keep track of health

of applications and services deployed in the cloud. For example, an organization

wants to monitor the performance of its website, then it needs to monitor the

traffic based on the available data at run time. Hence, monitoring the available

data at run time is useful to make correct operational decisions such as scaling up

or scaling down the cloud resources according to the traffic.

13

Table 1.2: Criteria for Defining SLA in the Cloud Computing

Criteria Details

Availability
Percentage of time the service is guaranteed

to be available.

Performance Response time, Throughput.

Disaster Recovery Mean time to recover.

Problem resolution
Process to identify problems, support option,

resolution expectation.

Security and privacy of data
Mechanism for security of data in storage and

transmission.

1.4.5 Service Level Agreement

A Service Level Agreement (SLA) is a contract between the cloud service provider

and the cloud customer. SLA specifies the level of service provided by the cloud

services provider in the form of minimum level of guaranteed service and a target

level. Further, SLA consists of various performance metrics and their correspond-

ing service level objectives. Table 1.2 describes the common criteria to define the

SLA in the cloud computing.

1.4.6 Billing Models

A cloud service provider offers a number of billing models for the customers and

the details are described as follows.

Elastic Pricing: Elastic pricing is based on a pay-as-you-go model, and ac-

cordingly the cloud customers are charged based on the usage of cloud resources.

Further, cloud computing provides the benefits to the users based on the provi-

sioning of the cloud resources as per demand. The on demand provisioning of

resources and elastic pricing model give the advantage to the customers in terms

of saving the cost. The elastic pricing model in the cloud computing is the best

option for the customers who are using the cloud services for a short duration of

time and thus predicting the usage of resources beforehand.

14

Fixed Pricing: In case of the fixed pricing model, cloud customers are charged

at a fixed rate on weekly, monthly, or yearly basis for the resources. For example,

fixed amount has to be charged for running the VM instances irrespective of the

actual usage. This model is beneficial for the cloud customer who wants to use

cloud resources for longer duration of time and also wants more control over the

price of the cloud.

Spot Pricing: In case of spot pricing model, cloud service provider charges

variable pricing for the cloud resource used by the customers. When the demand of

cloud resources is high, the resources price will increase, and when the demand for

cloud resources is low then the cloud resources will decrease. Table 1.3 describes

a list of billable resources for the customers in the cloud computing.

1.5 Energy Efficient Green Cloud Computing

Cloud computing is a paradigm shift from computing as a-product to computing as

a-service. Due to its several benefits, the cloud computing has a lot of applications

in the fields of businesses, educational institutions, governments and individuals

in both developed and emerging markets etc. The usages of cloud services are

continuously increasing day by day, and, hence this created a huge demand of

the data center that supports the cloud. To fulfill the users demand and creating

a new service, vendors use large scale data centers which comprise thousands of

servers, networking devices with other infrastructure such as cooling, storage and

communication networks etc. Thus, due to the growing demand of services the

energy consumption at the data centers is also increasing. Then how we can

make the cloud data centers greener? Cloud computing is a green solution as the

infrastructure of cloud data center embraces two critical elements of a green IT

namely, resource efficiency and energy efficiency.

1.5.1 Green Data Center

Geographically distributed cloud data centers are growing in terms of number,

capacity, and power consumption due to current technological trends in edge

computing. IBM reports (IBM 2014) highlighted that the power consumption of

worldwide data centers is currently 100 KWH a year. The carbon footprint of data

15

Table 1.3: List of Billable Resources

Resource Details

Virtual Machines
CPU, memory, storage, disk I/O,

Network I/O.

Network
Network I/O load balancers, DNS,

firewall, VPN.

Storage
Cloud storage, storage volumes,

storage gateway.

Data services

Data import/export services, data

encryption, data compression,

data backup, data redundancy,

content delivery.

Security services
Identiy and access management,

isolation, compliance.

Support
Level of support, SLA, fault

tolerance.

Application services
Queuing service, notification

services, work-flow, payment service.

Deployment and management

services
Monitoring service, deployment service.

16

centers is increasing day by day dramatically due to higher energy consumption by

IT devices and cooling systems at the data centers. The cloud computing based

companies like Google, IBM, Microsoft, etc., invest (tens of millions of dollars)

on electricity bill as an operating cost (Asemi et al. 2015). A U.S. Environment

Protection Agency (EPA) (Wang et al. 2016) reported, in the year 2006 that U.S

data centers consumed 61 billion kilowatt-hours of electrical energy, which is equal

to 1.5% of the total energy consumed by the U.S. in the same year.

Continuous usage of Internet and other web applications are causing the rapid

growth of data centers and resulting higher energy consumption. Further, to

handle more transactions in less period of time, to process and store more trans-

action, and to automate, the more business related processes, many enterprises

are installing more number of servers or expanding the server capacity at the data

centers resulting in more computing power to process the data. As energy cost

is increasing then the operational cost of the data centers is also increasing. The

energy cost of the data center is nearly equivalent to 30% of the total operational

cost of a data center. Thus, minimizing the energy consumption of a data center

is one of the major challenging issue of IT industry.

The number of new servers are installed 6 times more in the last decade at the

worldwide data centers, and modern server’s energy consumption is much higher

than that of an earlier server model. Hence, providing an uninterrupted power

supply is becoming the critical issue of IT industry whose data centers are ex-

panding continuously. Further, electrical energy suppliers require time and money

to supply a huge amount of additional electrical power for the data centers. These

practical, social, and finical constraints force IT industry towards green data cen-

ters with minimum energy consumption.

Therefore, the infrastructure of green data centers in terms of IT equipment,

air conditioners, electrical and mechanical systems, and the building that houses

the data center should give maximum energy efficiency, low carbon emission, and

less adverse impact on environment. Further, modern data centers use advanced

cooling, heating, and IT devices. There are different ways to save the energy

17

consumption at the cloud data center such as (server, storage, and network) vir-

tualizaion, usage of blade servers, clustering and consolidation of servers, energy

efficient power supply etc.

1.5.2 Power Consumption at Cloud Data Center

Figure 1.6: Power Consumption at the Data Center (Wang et al. 2017).

According to the report of the Natural Resources Defence Council (NRDC), a

worldwide distributed data centers consumed 91 billion KWH of energy in 2013,

and further estimated that the energy consumption may reach 139 billions of KWH

by 2020 which is 53% more compared to the current energy consumption. Further,

out of the total supplied electrical energy to the data center, 10%-15% electricity

is consumed by PMs. The main reason for high energy consumption of the PM is

due to inefficient usage of these PMs. Even though the PM is in ideal condition,

but it still consumes 70% of their peak power. Therefore, energy efficient utiliza-

tion of PM at the cloud data center is an important issue for saving the electricity

cost of the cloud data center. Hence, to resolve this problem, the virtualization

18

technology is used by the cloud data centers.

The main sources of energy consumption in a data center are Cooling de-

vices (Air Conditioners), Computing resources (PM) and, Networking elements

(Switches, Routers). Figure 1.6(a) shows the power consumption of IT devices at

the cloud data center.

Power Consumption of a Server (PM): The main components of server

which consume the energy are CPU (Processing Element) 43%, Peripheral 17%,

Memory 12%, Motherboard 8% and, other components 16%. Hence, among all

the components of a sever, the energy consumption of CPU is maximum. Figure

1.6 (b) shows the power consumption of the server at the data center.

Power Consumption of Network Switches: The fat tree architecture

based data centers consist of three types of networking switches (access switches,

core switches, and aggregation switches). The power consumption of different

components for a switch is shown in Figure 1.6 (c).

The use of renewable energy sources (solar, wind energy, etc.) will reduce the

energy consumption and CO2 emission at the data center. The other way of re-

ducing the energy consumption of IT devices is to introduce energy aware resource

allocation and migration policy at the cloud data center.

1.6 Challenges

The challenges that must address for the development of an energy efficient green

cloud data center are given below:

Energy Efficient VM Allocation: The energy efficient VM allocation

problem is widely known as a combinatorial optimization problem. It is also

known as a multi-dimensional variable size bin-packing problem, where items are

the VMs and bins are the PMs. Due to the large number of PMs present in the

data center, the specified VM allocation problem is related to the NP-hard/NP-

Complete complexity class. Hence, to resolve the energy efficient VM allocation

problem, we need resources allocation policy which not only saves the power

consumption but also gives the solution in polynomial time.

19

Energy Efficient SLA Aware Task Scheduling: The energy con-

sumption of a PM is dependent on the current CPU utilization. Hence, by

scheduling the tasks to less number of PMs, we can switch-off idle PMs at

the cloud data center, resulting in less energy consumption at the data center.

Further, SLA is based on the response time of the end users. Hence, scheduling

of more number of tasks to less number of PMs, will result in high response time.

Thus, task scheduling is a challenging problem of cloud computing, and hence

we need an energy efficient SLA aware task scheduling policy for the cloud data

center.

Energy Efficient VM Migration: Since cloud computing is based on a

pay-as-you-go model, hence users demand different types of VM instances for

a specified period of time. Hence, allocation of new VMs and destruction of

time expired VMs is continuous processes in the cloud data center, and thus

there may be a chance of a PM is in underutilization (idle) condition. Thus,

an energy efficient VM migration policy is required to migrate the VM from

the underutilized PM to the energy efficient PM and thereby switching-off

underutilized (idle) PMs at the cloud data center.

Reduction of Network Switches’ Energy Consumption: Further, the

networking devices of data center like switches consume approximately 10% to

20% of the total energy consumed by IT devices at the data center, therefore

we need to reduce the energy consumption of network switches. Hence, the

network-aware VM allocation algorithms are required to minimize the energy

consumption of switches and PM at the cloud data center.

Thermal Aware VM Allocation: The overutilization of PM generates

an excessive amount of heat, therefore thermal management of the data center

is an important criteria for preventing the overheating of the PM and other

damages. Hence, there is a need of an optimal resources allocation policy which

not only reduces the energy consumption, but also minimizes the resources

wastage, and thereby avoiding overheating of the PM at the cloud data center.

Thus, multi-objective VM allocation algorithm is required to minimize the energy

20

consumption, resources wastage, and thermal temperature at the cloud data

center.

1.7 Motivation

The energy efficient VM allocation and migration can reduce the energy con-

sumption at the cloud data center. Further, to schedule the tasks on VM in such

a manner that we not only reduce the energy consumption but also avoid the SLA

violation at the cloud data center. However, energy efficient thermal aware VM

allocation algorithm can reduce the energy consumption, resources wastage, and

thermal temperature at the cloud data center. Hence, research work in this thesis

focuses on the design and development of VM allocation & migration algorithms,

and energy efficient SLA aware task scheduling policy and thus motivated the

following issues.

1. Reducing the electricity cost of the data center by energy efficient VM allo-

cation and migration.

2. Improving the corporate image towards Green IT while minimizing the power

consumption and CO2 emission and thereby saving the energy consumption

at the cloud data center.

3. Providing sustainability to the data center by optimal utilization of the re-

sources at the data center.

4. Extending the overall hardware life of the data center by reducing the ther-

mal temperature of the data center.

5. Reducing the energy consumption and SLA violation at the data center by

energy efficient SLA aware task scheduling.

6. Reducing the networking device energy consumption by network aware en-

ergy efficient VM allocation and migration.

21

1.8 Organization of Thesis

The reminder of this thesis is organized as follows. Chapter 2 reviews the existing

works on energy saving at the cloud data center in terms of energy efficient VM

allocation, migration, and tasks scheduling. Based on the outcome of the litera-

ture survey, the problem statement and research objectives are defined. Finally,

highlighting the scope of the proposed research work for VM allocation, VM mi-

gration, and task scheduling algorithms at the cloud data center.

In Chapter 3, we describe proposed VM allocation algorithm based on Genetic

Algorithm (GA) and Cat Swarm Optimization (CSO) known as the Hybrid of

Genetic Algorithm and Cat Swarm Optimization (HGACSO). Further, to check

the performance of proposed HGACSO algorithm for VM allocation, we compared

our proposed algorithm with other state-of-the-art algorithms such as First-Fit,

First Fit Decreasing (FFD), GA, and CSO.

In Chapter 4, we describe our proposed VM allocation algorithm known as Hy-

brid Genetic Algorithm and Particle Swarm Optimization (HGAPSO). Further,

to check the performance of the proposed HGAPSO algorithm, we compared our

proposed HGAPSO algorithm with First-Fit, FFD, GA, and Particle Swarm Op-

timization (PSO). After allocation of VMs to PMs, we proposed energy efficient

VM migration and energy efficient tasks scheduling algorithms at the cloud data

center. The proposed VM allocation, migration, and task scheduling algorithms

not only save the power consumption, but also avoid SLA violation at the cloud

data center.

In Chapter 5, we describe the proposed VM allocation algorithm based on the

hybrid combination of GA, PSO, and SA known as HGAPSOSA. The proposed

HGAPSOSA algorithm reduces the energy consumption, resources wastage, and

thermal temperature at the cloud data center. Further, to check the performance

of the HGAPSOSA algorithm, we compared HGAPSOSA with other state-of-the-

art algorithms such as GA, PSO, and HGAPSO.

In Chapter 6, we describe our proposed exact algorithm for VM allocation in

network data center environment. The proposed exact algorithm is based on the

22

branch-and-bound technique. Further, to select the optimal number of PMs and

switches for VM allocation, we proposed lower bound. To migrate the VMs from

one PM to another PM, we describe our proposed energy efficient VM migration

algorithm for network-aware cloud data center.

In Chapter 7, we describe the performance evaluation of our proposed VM

allocation algorithms known as HGAPSO, HGACSO, HGAPSOSA, and branch-

and-bound based Exact algorithms.

Finally, Chapter 8 summarizes the contributions of the research work and high-

lights the possible directions for future research to save the energy consumption

at the cloud data center.

1.9 Summary

This chapter described the cloud computing characteristics and types of cloud

computing models, such as service model and deployment model. Further, this

chapter discussed the cloud computing technologies such as virtualization, load

balancing, service level agreement, etc., and energy efficient green cloud computing

challenges, and motivation for research.

23

Chapter 2

Literature Review

This chapter presents the review of the existing power saving techniques at the

cloud data center. The chapter also gives the problem statement, objectives, and

the outcome of the literature survey from the existing power saving techniques

at the cloud data center. Further, the main sources of power consumption in a

cloud data center are Cooling devices (A.C.), Computing resources (PM), and

Networking elements (Switches, Routers). Further, a PM in the cloud data center

consumes two types of power, such as static power, and dynamic power. The

power consumption of networking switch is dependant on the number of switched-

on ports. Hence, to reduce the power consumption of the data center, we use

different techniques such as energy efficient VM allocation, migration, and task

scheduling etc. at the cloud data center.

Further, the energy efficient resources allocation in the form of VMs to PMs

not only saves the energy consumption, but also reduces the resources wastage at

the cloud data center. The migration of VMs from underutilized PM to energy

efficient PM will switch-off underutilized or idle PM at the cloud data center.

Hence, energy efficient VM migration not only saves the power consumption, but

also reduces the SLA violation in terms of response time at the cloud data center.

The energy efficient task scheduling allocates the task to the VM which not only

saves the energy consumption, but also reduces the SLA violation at the cloud

data center. Following are the details of the various state-of-the-art approaches

for reducing the power consumption at the cloud data center.

2.1 Data Center Power Management Techniques

The cloud data center consists of two types of devices such as IT devices (eg. PM,

Switches, Routers, Cables, etc.), and non IT devices (eg. Cooling devices, Pump

room, Lights, Switch gear, etc.). Hence, the power management techniques at the

25

cloud data center are broadly classified into two categories such as IT devices, and

non IT devices power management techniques. Figure 2.1 shows the classification

of power management techniques at the cloud data center. Further, IT devices,

power management techniques are again classified into two categories such as PM

power management techniques and switch power management techniques. The

PM power management techniques are again classified into two categories such as

static and dynamic power management techniques.

The static power management techniques deal with different levels, such as

circuit level, logic level, and architecture level of the PM. On the other hand,

dynamic power management techniques are classified into two categories such

as hardware and software level power management techniques. Further, we can

reduce the power consumption of non IT devices by using energy efficient cooling

devices, designing energy efficient cloud architecture, and appropriate site selection

for the construction of cloud data centers. The power management of non IT

devices at the cloud data center is beyond the scope of this thesis. Hence, the

detailed description of IT devices, power management techniques are described

as follows. Further, to reduce the power consumption of PM at the cloud data

center, we need to discuss the static and dynamic power management techniques

at the cloud data center. Hence, the existing works on PM power consumption

using static and dynamic power management techniques are described as follows.

2.1.1 Static Power Management Techniques

The static power is consumed by the system components of a PM. The static

power consumption is due to the leakage current of active circuits which are under

the switched-on condition of a PM. Hence, this type of power consumption is in-

dependent of the clock rates of the CPU. Thus, it does not rely on the utilization

of CPU. Further, we can specify this power consumption by the type of transis-

tor used, and the technology applied to the processor of the PM. Thus, we can

reduce the static power consumption by reducing the leakage current of the PM.

The leakage current of the PM is reduced by three ways (reducing the supplied

voltage, reducing the size of the circuit in the system, and cooling the system

26

Figure 2.1: Classification of Power Management Techniques (Guyon et al. 2017).

by applying cooling technologies). Further, all three static power management

techniques require a low level system design, and thus reduce the static power

consumption of the PM at the cloud data center.

Many state-of-the-art works on static power management techniques of a PM

have been developed. Further, these static power management techniques include

all the optimization methods for efficient design of logic, circuit, and architecture

of the PM. Andersen et al. (2009) designed a novel system architecture referred to

as a fast array of wimpy nodes (FAWN). Further, they reduced static power con-

sumption by using FAWN low power data intensive computing. In their proposed

architecture, authors combined the low power CPU with small amount of local

flash storage and thus resulting in an efficient parallel data access in the system.

Further, to reduce the static power consumption, Vasudevan et al. (2010) con-

ducted the experiment on FAWN by applying various types of workloads. The

experimental results demonstrated that low power CPU nodes were more energy

efficient as compared to the conventional high performance CPU nodes in terms of

energy efficiency. Caulfield et al. (2009) designed a novel power efficient architec-

27

ture referred to as Gordon architecture for reducing the static power consumption

of cloud data centers. Further, authors reduced the static power consumption of

the cloud data center by utilizing the low power processor and flash memory of

the Gordon architecture. Further, Valentini et al. (2013) discussed more details

about the static power consumption technique of a PM.

Thus, to save the static power consumption of a PM, we need an energy efficient

hardware level system design. In addition to energy efficient hardware design, it

is also important to consider the implementation of programs that are to be exe-

cuted on the system. Hence, in efficient software design we can create the adverse

effect on static power saving of the PM, and this may lead to power loss. Thus,

code generation, instructions used in the code, and their order of execution are

also important for the execution of an application at the CPU.

Tiwari et al. (1993), Su et al. (1994) analyzed the power consumption caused

by the software at the hardware level. Further, the details of hardware level power

management solution is beyond the scope of this thesis.

2.1.2 Dynamic Power Management Techniques

The dynamic power consumption of a PM relies on the current utilization of PM.

Hence, dynamic power consumption depends on the clock rates, I/O activity, and

usage scenario of CPU. Further, there are two sources of dynamic power con-

sumption, such as switched capacitance, and short circuit current. The switched

capacitance is the major source of dynamic power consumption and, it is due

to the charging and discharging of the capacitor. Further, short circuit current

is the minor source of dynamic power consumption. Hence, the dynamic power

consumption of a PM is described by Eq. 2.1.

PDynamic = αCV 2f (2.1)

Where, α represents the switching capacity of the PM; C, and V are the physi-

cal capacitance and voltage of the PM respectively; f is the frequency of the PM.

Thus, dynamic power consumption is reduced by reducing the switching activ-

ity of a PM, reducing the physical capacitance (by designing low level parameter

such as transistor size), reducing the supply voltage of the PM, and reducing the

28

clock frequency of the PM. Further, to reduce the dynamic power consumption of

the PM, we can classify this dynamic power management technique on the basis

of applied levels such as (Hardware, Software).

2.1.2.1 Hardware Level Solution

The hardware level dynamic power management technique of a PM works on the

basis of designing a methodology for providing the requested services generated

by an application using minimum number of components. Further, the dynamic

power management technique at the hardware level will switch-off the idle compo-

nents of the system, and varies the frequency of CPU between two modes such as

(minimum frequency (fmin), and maximum frequency (fmax)). Hence, to reduce

the dynamic power consumption of a PM, Benini et al. (2000), Kuo & Lu (2014)

designed a technique by switching the frequency of CPU between two modes.

Further, the well known hardware level dynamic power management techniques

like Dynamic Voltage Frequency Scaling (DVFS) and Dynamic Voltage Scaling

(DVS) are widely used in today’s modern PM (Snowdon et al. 2005). To reduce

the power consumption of a PM, the voltage frequency of the CPU will be varied

on the basis of its current workload. Thus, CPU works in between two modes of

frequency, such as minimum frequency and maximum frequency. When the CPU

is in idle condition (no workload) then CPU works on minimum frequency mode

by switching-off the server components which are not useful.

Hence, using DVFS we can save up to 30% power consummation of a PM

at the cloud data center. In the case of full workload, the CPU works in the

full frequency mode. To reduce the dynamic power consumption at the hardware

level, Ge et al. (2005) and Hsu & Feng (2005) suggested DVFS based approaches

for energy efficiency of a single PM by restricting the use of CPU utilization well

below the upper threshold value of CPU utilization.

The time-out based approach proposed by Kveton et al. (2007) kept the CPU

in the low power state under no workload condition beyond a certain time-out

threshold. The main limitation of this approach is that it does not keep the CPU

in the lower state until the time-out period has passed; hence, it will not save the

29

energy during this time period.

Further, to save the dynamic power consumption of a PM at the cloud data

center, Wu et al. (2014) proposed a DVFS based dynamic power management

technique for reducing the energy consumption of the cloud data center. Their

approach was based on DVFS that takes the task on priority basis and scheduled

on the minimum amount of resources. By this way, the overall utilization of the

data center is increasing and resulting in lower energy consumption at the data

center. The disadvantages of their work are lower priority task suffered by lower

response time and there may be a chance of SLA violation. The key limitation

of dynamic power management techniques at the cloud data center is that these

techniques are very sophisticated in nature but deal with single PM only and it

is very difficult to change its policy. Hence, in order to resolve this issue, the

software level power management techniques are described below.

2.1.2.2 Software Level Solution

Since, hardware level dynamic power saving techniques are very sophisticated,

and at this level, it is very difficult to implement and modify this technique. But,

DVFS based hardware level power saving technique provides an efficient direction

to reduce the power consumption of a PM. The power consumption of the PM

in the idle condition is approximately 70% power of its peak power consumption.

Hence, multiple PM power saving techniques by switching-off the idle PM is the

only solution to save the power consumption at the cloud data center. Thus, there

is a need to provide the solution for saving the power consumption in the cloud

data center environment. Further, the dynamic power consumption at software

level in the cloud data center environment is reduced using energy efficient VM

allocation and migration, energy efficient tasks scheduling, network aware VM al-

location, and migration, etc. The detailed description of dynamic power saving

techniques at the software level are described as follows.

A. Energy Efficient VM Allocation and Migration

The main focus in this approach is to minimize the energy consumption of the

data center by using the minimum number of energy efficient PMs for the VM

30

allocation while switching-off unused PMs at the cloud data center. To solve VM

allocation problem, Ajiro & Tanaka (2007), and Coffman et al. (1997) used approx-

imation approaches, such as First-Fit, Best-Fit respectively. But approximation

approaches will not provide a global optimum solution and Best-Fit approxima-

tion approach is not scalable in nature due to the long convergence time, and the

other limitation of their suggested work is based on a single objective function.

Further, Beloglazov & Buyya (2013) suggested a Modified Best Fit Decreasing

(MBFD) algorithm by first sorting the VMs in the decreasing order and PM in

the increasing order on the basis of their processing capacity. After sorting of

VMs and PMs, allocation of VM on PM is done by using First Fit Decreasing

(FFD). The limitations of their work are: single objective based VM allocation,

and MBFD which is not scalable in nature when large number of requested VMs

are arriving at the cloud data center.

To save the energy consumption at the cloud data center by VM allocation, and

migration, Chowdhury et al. (2015) designed number of VM allocation techniques

based on the approximation algorithms. In their suggested work, authors placed

the VMs energy efficiently on the PMs at the cloud data center. Further, authors

migrated VMs from one PM to another PM by making clustering of the VMs at

the cloud data center. Further, they used the CloudSim simulator (Calheiros et al.

2011) to check the performance of their proposed VM allocation and migration

algorithm at the cloud data center. The limitation of their work is that the same

types of VMs and PMs are considered for creating the homogeneous cloud data

center environment. But, the authors did not consider the heterogeneous cloud

data center environment.

Kim et al. (2014) designed a model for calculating the energy consumed by

the VM without measurement of hardware at the cloud data center. Further,

their suggested model estimated the energy consumption by the VM based on in-

processor events generated by the VM. Based on this energy measurement model

of VM, the authors suggested a VM scheduling algorithm for reducing the energy

consumption at the cloud data center.

31

For energy efficient VM allocation in multi-tenant cloud data center environ-

ment, Dai et al. (2016) suggested two algorithms. Further, in their approach,

authors considered the approximation algorithm and then explored two greedy

approximation algorithms known as minimum energy VM scheduling algorithm

(MinES), and minimum communication VM scheduling algorithm (MinCS). Fur-

ther, these algorithms not only save the energy consumption, but also avoid the

SLA violation at the cloud data center. But, the authors did not consider the

heterogeneous cloud data center environment.

In addition to the existing approximation algorithms for the allocation of VMs

at the cloud data center, some other works used different algorithms for similar

type of VM allocation problem. Other researchers used bio-inspired and nature-

inspired algorithms, such as GA, PSO, CSO, etc. for VM allocation at the cloud

data center. Xiong & Xu (2014) designed energy efficient algorithm for VM allo-

cation problem using PSO. The limitation of this work is that authors considered

a single type of VM. Gao et al. (2013) suggested a multi-objective ant colony

based VM allocation at the cloud data center. The limitation of this work is that

authors considered the homogeneous data center in the form of VMs and PMs.

Wang et al. (2013) suggested the energy efficient VM placement in the cloud

data center using PSO. The limitation of their work is that non-energy aware ran-

dom reallocation of VM after velocity changes takes a lot of iterations and gave a

non-optimal solution.

Further, in order to reduce the energy consumption and resources wastage,

Xu & Fortes (2010) developed the multi-objective based VM placement in the

cloud data center, and thereby minimizing both the energy consumption and the

resources wastage using GA and fuzzy logic techniques. The problem with this

approach is that some infeasible VMs are reallocated randomly to the PMs after

crossover and mutation operations and this has resulted in an inferior quality so-

lution for the next generation of chromosomes.

In addition to the existing approximation and bio-inspired algorithmic ap-

proaches, several predictive frameworks were proposed by Tighe & Bauer (2014),

32

Prevost et al. (2011) and thus reduced the number of switched-on PM. Rather

than reserving the VM for each application all the time, Nguyen et al. (2013)

dynamically adjusted the number of switched-on PM by predicting the workload

of the cloud data center.

Xie et al. (2013) suggested a heuristic based VM allocation algorithm at the

cloud data center. In their proposed VM allocation work, authors considered only

the heterogeneous cloud data center environment. Further, different types of re-

sources (CPU, Ram, Storage) are requested by the VM at the cloud data center.

But the key limitation of their proposed work is that authors did not consider the

energy efficient VM migration.

Further, Congestion-aware VM placement at the cloud data center is proposed

by Yan et al. (2017). In their work, authors formulated a root assignment problem

to VM by minimizing the maximum link utilization at the cloud data center with

controlling splitting paths. Further, they proposed a polynomial time heuristic

known as perturbation algorithm for the VM placement at the cloud data center.

The key limitation of their work is that authors considered only the bandwidth

requirement of the VM but did not consider other resources requirements such as

(MIPS, Ram, and Storage etc.) at the cloud data center.

In order to resolve the problem of energy consumption at the cloud data center,

Liu et al. (2017) proposed decision making models for participants in cloud en-

ergy storage. The proposed decision making models are developed for both users

and Cloud Energy Storage (CES) operator. In the case of first decision model,

authors assumed that consumers and CES operator consist of perfect forecast of

loads and prices. In the case of second decision model, authors assumed that

consumers use a more rudimentary control strategy and CES has only imperfect

information about what is going to happen. Further, CES allows the consumers

to charge and discharge their energy cost in the same way as they would with

their self-owned distributed devices. Hence, by this way, we can save the energy

consumption at the cloud data center. However, authors considered homogeneous

cloud data center environment and their proposed work is not dealing with any

33

energy efficient VM allocation algorithm. Further, the energy consumption at the

cloud data center is reduced by energy efficient task scheduling and the details are

as follows.

B. Energy Efficient Task Scheduling

In order to reduce the energy consumption of the cloud data center, Shu et al.

(2014) designed an improved clonal selection algorithm (CSA) for energy efficient

workload scheduling based on cost and energy consumption model. Further, au-

thors reduced the response time, and SLA violation at the cloud data center using

CSA. The key limitation of this work is that the authors considered only the ho-

mogeneous cloud data center environment and further they directly applied task

to the PM without considering the virtualized data center environment.

Wang & Zhang (2011) developed a green algorithm for the cloud data center

network. The proposed algorithm not only reduced the completion time of task,

but also reduced the energy consumption at the cloud data center. Further, in

their proposed algorithm, authors effectively assigned the tasks via partial task

shuffling, and thus adjusted the cloud servers speed. The key limitation of their

proposed work is that authors directly applied the task to the PM without con-

sidering the virtualized cloud data center environment.

In order to reduce the limitations of the above works, Dabbagh et al. (2015)

considered the virtualized cloud data center environment, and designed an energy

efficient resource allocation and provisioning framework in virtualized cloud data

center environment. In their proposed work, authors used the machine learning

and stochastic approaches to predict the workload and thus predicted the VM as

requested by the users. Using the predicted VM, authors switched-on those PMs

which are used for the allocation of VMs at the cloud data center. Thus, by this

way, authors switched-off those PMs which are not used for the VM allocation

(idle PM) at the cloud data center, and thus reduced the energy consumption at

the cloud data center. After allocation of VMs to PMs, authors allocated the task

energy efficiently on VM at the cloud data center. The key limitation of their pro-

posed work is that inaccurate work load prediction will lead to the SLA violation

34

at the cloud data center.

A novel task scheduling and server provisioning approach for reducing the

energy consumption at the cloud data center is proposed by Liu et al. (2013).

In their proposed task scheduling and sever provisioning approach, authors used

greedy approach for task scheduling. Further, they proposed most efficient server

first task scheduling scheme to minimize the energy consumption at the cloud data

center. But, the key limitation of their proposed algorithm is that authors aggres-

sively reduced the energy consumption by scheduling the task to the least number

of servers at the cloud data center thus resulting in overutilization condition of

PM, and there may be a chance of SLA violation at the cloud data center.

Further, to resolve the problem of energy consumption at the geographically

distributed cloud data centers, Cheng et al. (2016) proposed an elastic power aware

resource provisioning policy for heterogeneous workloads in self sustainable cloud

data center. In their proposed work, authors scheduled workload on geographically

distributed cloud data centers by powering the data center using renewable energy

sources. Further, the core idea of their proposed work for searching an optimal

energy efficient resources allocation is based on the simulated annealing and fuzzy

logic. Their proposed resource provisioning approach (ePower) mainly dependant

on renewable energy for powering the world-wide distributed cloud data centers

to compute the heterogeneous workload. In their proposed work, authors reduced

the energy consumption and SLA violation at the cloud data centers. But the key

limitation of their proposed work is that the energy efficient workload scheduling

within a data center is not consider by the authors.

Further, Beaumont et al. (2013) suggested several approaches to assign a set

of servers to the client’s at the cloud data center using the greedy heuristic. The

goal of their proposed work was to maximize the overall throughput at the cloud

data center. Further, authors considered both cases such as offline (clients known

before), and the online (clients can join and leave the system at any instance)

versions of resource allocation at the cloud data center. The key limitation of

their proposed work is that authors maximized the overall throughput, but they

35

did not compute the energy consumption of the cloud data center.

In order to solve the energy consumption problem for an enterprise cloud, Pan-

tazoglou et al. (2016) proposed the decentralized workload management technique.

In their proposed work, authors designed a technique for energy efficient manage-

ment of VMs instances which are provided by the enterprises. Further, authors

maintained a hypercube to scale up and scale down the cloud when workload is

varied over the period of time. Further, authors proposed VM migration technique

by migrating the VMs from the underutilized cube and thereby switching-off the

underutilized cubes, resulting in higher energy efficiency of the cloud data centers.

Dalvandi et al. (2017) proposed a workload scheduling model at the cloud data

center. In their work, authors proposed a Sliding-Scheduling tenant request model

that enables the tenants to specify the required time duration of their application

and resources requirement within a certain window. Further, authors proposed a

heuristic algorithm that not only reduced the power consumption, but also allo-

cated the required resources by considering the request duration and current shut

down time of the PM. Hence, by their proposed approach, authors reduced the

power consumption and thus provided the resources guarantee to the application

in the cloud computing. But the key limitation of their suggested work is that

authors considered the calculation of resources request in advance, but it is a dif-

ficult task in real time scenario and further, authors did not minimize the energy

consumption at the cloud data center.

Further, PSO based Adaptive Multi-objective Task Scheduling (AMTS) policy

for the cloud data center is proposed by He et al. (2016). In their proposed ap-

proach, authors not only maximized the resources utilization but also minimized

the task completion time at the cloud data center. The convergence time of their

proposed PSO based AMTS algorithm is high, and there may be a possibility of

SLA violation at the cloud data center.

In order to reduce the energy consumption at the cloud data center, a fast

energy aware VM allocation, and task scheduling algorithms are proposed by Li

et al. (2017). Further, in their proposed iterative algorithm, authors divided the

36

resources provisioning and task scheduling into multiple steps, and thereby re-

ducing the energy consumption, time complexity, and execution of the proposed

algorithms. Further, in their proposed energy efficient VM allocation and tasks

scheduling algorithm, authors allocated the task to the energy efficient VM at the

cloud data center. The key limitation of this approach is that it saved a very

less amount of energy at the cloud data center, but authors did not consider the

heterogeneous cloud data center environment.

Further, by applying aggressive energy efficient workload scheduling, and VM

allocation policy using minimum number of PMs for task scheduling and VM al-

location at the cloud data center, there may be a chance of increased thermal

temperature of PM (due to overutilization of PM) at the cloud data center. We

need a thermal aware VM allocation algorithm at the cloud data center. Thus,

the detailed description of existing energy efficient thermal aware VM allocation,

and task scheduling algorithms at the cloud data center are described below.

C. Thermal Aware VM Allocation, and Task Scheduling

Energy efficient resources allocation in the form of VMs to PMs and utilization

of resources at the cloud data center for avoiding thermal hotspots (due to PM

overheating) are conflicting objectives. Since by maximizing resources utilization,

we can minimize the energy consumption of the cloud data center, but overuti-

lization of resources will increase the thermal temperature, and thus resulting in

thermal hotspots. Hence, for resources allocation at the cloud data center, we

need to consider both of the aforementioned objectives.

Thus, to minimize the energy consumption and thermal hot spots, Lee et al.

(2012) proposed a proactive cross-layer approach for providing an automatic man-

agement of the cloud data center. Further, in their proposed approach, authors

required a continuous processing and analysis of real time feedback from multiple

layers at the cloud data center. But the key limitation of their proposed work is

that authors required information about the previous status of the data center to

manage the thermal hot spots at the cloud data center, but the authors did not

consider any thermal aware VM allocation algorithm at the cloud data center.

37

In order to resolve the problem of needing information about the previous sta-

tus of cloud data center, Polverini et al. (2014) designed an online multi-objective

batch job scheduling algorithm known as GreFar for the distributed cloud data

centers. In their work, authors satisfied the energy cost, queuing delay, and ther-

mal temperature of the cloud data centers. Further, using GreFar jobs scheduling

algorithm, jobs are processed when the length of the queue is sufficiently large, or

electricity prices are sufficiently low. The limitation of their work is that authors

did not consider the thermal aware VM allocation, and task scheduling at a single

cloud data center.

Further, energy efficient CPU utilization based thermal aware VM migration

algorithm is suggested by Kinger & Goyal (2013). In their proposed work, authors

suggested VM live migration approach on the basis of CPU utilization. Further,

to migrate the VMs from one PM to another PM, authors set an upper and lower

thresholds for CPU utilization and kept the CPU utilization between these thresh-

old utilization values. Hence, by this way, authors reduced the energy consumption

and thermal temperature of the cloud data center. The limitation of this work is

that authors did not consider the thermal aware VM allocation algorithm at the

cloud data center.

The thermal aware workload load balancing approach is proposed by Yao et al.

(2015) for the cloud data center. In their proposed approach, authors suggested an

adaptive power control policy by using the correlation between power consump-

tion of servers and CRACs. Further, authors solved the power control problem by

exploiting the Recursive-Least Square based Predicative Control (RPC). Hence,

in their proposed method, the tasks were assigned uniformly to each of the servers

(PMs) at the cloud data center and resulting in no overutilization of PM and

thus kept the thermal temperature low. Their work is mainly focused on thermal

aware task scheduling but did not focus on the thermal aware VM allocation and

migration at the cloud data center.

Oxley et al. (2014) suggested a multi-objective (thermal, power, and co-location

aware) resources allocation in heterogeneous cloud data center environment. In

38

their proposed work, authors suggested the most efficient task assigning to CPU

core techniques using greedy heuristic, genetic algorithm, and nonlinear program-

ming. Hence, using their proposed work, authors reduced the power consumption,

and thermal temperature of a PM at the cloud data center. But, their work is

focused on the energy efficient thermal aware task assigning but not focused on

the VM allocation at the cloud data center. Further, genetic algorithm takes huge

amount of time for the convergence, hence their algorithm did not give the optimal

solution in terms of energy efficient thermal aware task assigning to the CPU core

at the cloud data center.

Hence, in order to resolve the problem of minimizing the energy consumption,

and thermal temperature at the cloud data center, Li et al. (2014) suggested an

energy efficient thermal aware VM allocation algorithm at the cloud data cen-

ter. In their proposed work, authors suggested an optimal trade-off between load

consolidation and balance. Further, authors defined two values of CPU utilization

(lower, and normal) and found the optimal PM for the VM allocation using GA at

the cloud data center. The limitation of their proposed work is that, this approach

will not give the optimal solution in the case of large search space and further it

takes a lot of convergence time.

In addition to the existing energy efficient thermal aware VM allocation al-

gorithm, Chen et al. (2015) designed a VLSI floor-planning algorithm for the

cloud computing platform and thus reduced the thermal temperature of a PM.

Further, authors suggested a parallel floor-planning algorithm using advanced ad-

jacency probability cross entropy optimization and a new integer linear program-

ming based resources provisioning for efficiently using the computing resources,

and thus handled the thermal temperature of the PM at the cloud data center.

But the limitation of their proposed work is that it deals with a hardware level

thermal temperature reduction but it does not deal with software level, thermal

temperature reduction at the cloud data center.

In order to reduce the energy consumption and thermal temperature of the

cloud data center, Wang et al. (2015) proposed a power and thermal aware VM mi-

39

gration technique at the cloud data center. Further, authors divided the proposed

VM migration technique into three steps such as (i) identification of overloaded

and underloaded PM, (ii) selection of VMs for the migration, (iii) migration of

VMs to the underutilized PM at the cloud data center. Hence, by their pro-

posed thermal aware VM migration technique authors migrated the VMs from

the overutilized PM to underutilized PM and thereby reducing power consump-

tion, thermal temperature, and SLA violation at the cloud data center. Their

proposed work dealt with VM migration only, but not dealt with energy efficient

thermal aware VM allocation policy at the cloud data center.

Further, PM level temperature prediction at the cloud data center is pro-

posed by Wu et al. (2016). In their proposed work, authors predicted the thermal

temperature of CPU using Virtual Machine Manager (VMM), and temperature

sensor. Hence, a Support Vector Machine (SVM) model was trained using the

collected data and deployed this thermal temperature prediction model to real

cloud data center environment. But the limitation of this work is that this model

will not accurately predict the thermal temperature of CPU and wrong thermal

temperature prediction may lead to SLA violation at the cloud data center.

The GA based energy efficient, thermal aware job scheduling algorithm known

as (PETs) is proposed by Alsubaihi & Gaudiot (2016). Authors combined job

mapping, core scaling, and thread allocation into one scheduler. Further, this

scheduler does the job scheduling in terms of less (energy consumption, thermal

temperature, and execution time) under peak power and peak temperature con-

straints at the cloud data center.

In order to resolve the energy consumption and thermal temperature prob-

lem at the cloud data center, Li et al. (2017) proposed a GRANITE holistic VM

scheduling algorithm for energy efficient thermal aware VM allocation at the cloud

data center. Further, the proposed GRANITE is based on the Greedy approach

and thus minimized the total energy consumption of the cloud data center in two

stages such as initial VM placement, and dynamic live migration. Meanwhile the

CRACs capacity at the cloud data center is dynamically updated for achieving

40

better cooling efficiency. But, the authors did not consider the SLA violation dur-

ing VM allocation and migration at the cloud data center.

All the above mentioned existing works with reference to reducing energy

consumption, and thermal temperature dealt with non-network aware cloud data

center environment, and saved only PM power consumption. Further, the existing

works on networking device power consumption are described below.

D. Network Devices Power Consumption

The networking devices consume a significant amount of power (30%) of the IT

device power consumption at the cloud data center. Hence, to reduce the net-

working devices power consumption at the cloud data center, Lawey et al. (2014)

designed an energy efficient framework for multiple cloud services over non-bypass

IP/WDM core networks. In their approach, authors reduced the energy consump-

tion of cloud network by migrating the content on the basis of its access frequency.

Further, they developed a heuristic approach for the placement of VMs, and thus

saved the power consumption of networking devices at the data center. In their

work, authors gave less emphasis on reducing the server energy consumption when

compared to the network devices energy consumption. Thus, reducing the server

energy consumption at the data center will play a vital role in minimizing the

overall energy consumption of the cloud data center.

In order to reduce the power consumption at network aware data center en-

vironment by applying renewable energy sources, Gattulli et al. (2014) suggested

a dynamic routing of on-demand optical circuit to power the data center using

renewable energy. Hence, in their approach, authors reduced the CO2 emission

and energy consumption at the cloud data centers. Their work dealt with geo-

graphically distributed data centers in IP-over-WDM networks and thus energy

saving within a single data center was not consider by them. Further, to reduce

the power consumption of network switches, Li et al. (2015) suggested greedy ap-

proach for power saving at the data center. In their approach, authors showed that

the power consumption of network switches at the cloud data center is dependent

on both the number of active switches and its working duration. But authors did

41

not consider the PM power consumption at the cloud data center.

Gunaratne et al. (2008) studied the adaptive link rate for wired networks. Us-

ing the adaptive link rate method, authors dynamically adjusted the data rate of

links in the wired network on the basis of their traffic requirements. By this way

the idle components of switches in the network will be switched-off, however the

remaining active components of the switches will fulfill the future network require-

ments. Hence, while saving the power consumption of the networking devices, the

quality of service (QoS) should be satisfied by using the adaptive link rate. But

the limitation of their proposed work is that authors did not consider the PM

power consumption at the cloud data center.

Further, to reduce the networking switches power consumption, Nedevschi

et al. (2008) designed and evaluated the performance of two methods of power

management techniques of wired networks. In the first work, authors kept the

switch components in sleep mode when they were in idle condition, whereas in the

second case authors adjusted the rate of network operation on the basis of their

offered workload. Further, their experimental results demonstrated that there was

50% energy saving in the case of lightly utilized wired networks. But authors did

not consider the PM power consumption at the cloud data center.

A dynamic power management technique known as an Elastic Tree for the

data center network is suggested by Heller et al. (2010). On the basis of current

workload at the data center, the Elastic Tree technique determines the set of active

networking elements such as switches, and links dynamically. In their work, au-

thors proposed a greedy bin packing algorithm and a heuristic using the topology

of data center network. But authors did not consider the PM power consumption

at the cloud data center.

An energy aware algorithm for the management of data center network is pro-

posed by Mahadevan et al. (2009). In their work, authors considered the sleep

mode of idle components of networking switch in place of keeping the network-

ing switches into sleep mode. Their proposed data center network power saving

algorithm performed following operations such as (i) disabling the switch port in

42

the case of not forwarding any traffic, (ii) dynamically setting the data forwarding

capacity of the port. (iii) switching-off those line cards when they do not have

any active port. (iv) switching-off networking switches that are not in use.

Hence, in case of network aware cloud data center environment, the authors

mainly focused on reducing the switch power consumption, but they did not take

into account the PM power consumption at the cloud data center.

Table 2.1 summarises the existing power saving techniques of PM and their

limitations, Table 2.2 summarises the existing power saving techniques of net-

working elements and their limitations, and Table 2.3 summarises the reduction

of power consumption, thermal temperature, and their limitations at the cloud

data data center, respectively.

2.2 Outcome of Literature Review

After an extensive literature review of the existing power management techniques

as detailed in Table 2.1, Table 2.1, and Table 2.3, we identified the following open

issues and research gaps for further reduction of the power consumption at the

cloud data center.

• Most of the existing works on energy efficient resources allocation at the

cloud data center considered the homogeneous cloud data center environ-

ment. Hence, we need a VM allocation technique for both homogeneous and

heterogeneous cloud data center environments.

• In most of the existing works on energy efficient VM allocation, authors

considered only one resource (CPU) requested by the VM. Hence, we need

a multi-constraints (CPU, RAM, Storage, bandwidth) VM allocation algo-

rithm at the cloud data center.

• To reduce the energy consumption, resources utilization, and thermal tem-

perature at the cloud data center, we need a muli-objective VM allocation

technique at the cloud data center.

• Most of the authors did not consider the SLA violation during VMmigration,

and task scheduling. Hence, we need an energy efficient SLA aware VM

43

Table 2.1: Existing Works on Power Saving Techniques at the Data Center

Authors Methodolgy Limitations

Liu et al. (2017)

SW based model,

VM consolidation

using DVFS.

Single PM power management in

homogeneous data center environment.

Nathuji & Schwan (2007)

SW based model,

VM consolidation

using DVFS.

Single PM power management in

heterogeneous cloud data center environment.

Nathuji et al. (2007)

SW based model,

VM consolidation

using DVFS.

Single PM power management in

homogeneous cloud data center environment.

Raghavendra et al. (2008)

SW based model,

VM consolidation

using DVFS.

Single PM power management in

homogeneous cloud data center environment.

(Verma et al. 2008)

SW based model VM

consolidation

using DVFS.

Single PM power management in

heterogeneous cloud data center environment.

Kusic et al. (2008)
SW-based Model,

On/Off Switching.

Single PM power management in

homogeneous cloud data center environment.

Gmach et al. (2009)
VM consolidation using

DVFS, on-off switching.

Single PM power management in

homogeneous cloud data center environment.

Cardosa et al. (2009) DVFS based SW model.
Single PM power management in

homogeneous cloud data center environment.

Kumar et al. (2009)
SW model,

VM consolidation.

Single PM power management in

homogeneous cloud data center environment.

Jung et al. (2009) SW based model.
Single PM power management in

homogeneous cloud data center environment.

Song et al. (2009)
SW-based Model,

VM Consolidation

Single PM power management in

heterogeneous cloud data center environment.

Stillwell et al. (2009)
SW-based Model,

On/Off Switching.

Single PM power management in

homogeneous cloud data center environment.

Lefevre & Orgerie (2010)
SW-based Model,

VM Consolidation.

Single PM power management in

homogeneous cloud data center environment.

Gulati et al. (2012)
SW-based Model,

VM Consolidation.

Single PM power management in

homogeneous cloud data center environment.

44

Table 2.2: Existing Works on Power Saving at Network Aware Data Center

Authors Methodology Limitations

Son et al. (2017)

A SLA and energy efficient

dynamic overbooking of resources

for VM in SDN-based

cloud data center.

Not dealing with energy

efficient network aware

VM allocation, and

migration problem.

Wang et al. (2017)

Energy efficient bandwidth

allocation using

artificial intelligence

based abstraction Model.

Not dealing with energy

efficient physical resources

allocation at the cloud

data center.

Fioccola et al. (2016)

Energy aware resource framework for

distributed cloud infrastructures

to manage the network and

IT infrastructure in network aware

cloud data center.

Not dealing with energy

efficient network aware

resources allocation at

the cloud data center.

Abdelaal et al. (2016)

Cost aware VM allocation

technique using Software Defined Network (SDN)

resource allocation strategy

at the cloud data center.

Not consider the

minimization of energy

consumption in network

cloud data center environment.

Duggan et al. (2016)

Network aware VM

migration based on artificial

intelligence technique known

as Reinforcement Learning (RL).

Not dealing with energy

efficiency and VM

allocation at the cloud

data center.

Li et al. (2016)

Energy aware workload

scheduling based on heuristic

algorithm at cloud data center.

Not dealing with VM

allocation and migration

at network aware cloud

data center environment.

45

Table 2.3: Existing Works on Reducing Power and Temperature at Data Center

Authors Methodology Limitations

Chen et al. (2014)

Reduced data center thermal

temperature using cyber physical

approach with Computational

Fluid Dynamics (CFD) model.

Adjusting transient temperature

distribution and calibrate it

using sensor feedback, not

dealing with VM allocation

and migration at the

cloud data center.

Chaudhry et al. (2012)

Compared the inactive and

proactive thermal aware

scheduling and monitoring

techniques at the cloud data center.

Did not consider energy efficient

thermal aware VM allocation

and migration at the cloud data center.

Song et al. (2015)

A muti-tiers thermal intelligent

workload placement algorithm

at the cloud data center.

Not dealing thermal-aware VM

allocation and migration at the

cloud data center.

He et al. (2015)

High Temperature Ambient (HTA)

corrosion resistant technology

for cooling data center temperature.

Not dealing with energy efficient

thermal aware resources allocation

at cloud data center.

Aransay et al. (2015)

Energy efficient thermal aware

VM allocation using

Trust-and-Reputation System (TRS).

Not dealing with VM migration

policy, and considered

homogeneous cloud data center

environment.

Karn & Elfadel (2016)

Multi-objective

(power, thermal, and performance)

aware VM auto scaling policy

at the cloud data center.

Not considered energy efficient

thermal-aware VM allocation

at the cloud data center.

46

migration, and task scheduling at the cloud data center.

• Most of the authors did not consider the PM power consumption in the

direction of minimizing the energy consumption in network aware cloud

data center environment. Hence, in order to reduce the power consumption

of networking devices, and PM at the cloud data center, a network aware

VM allocation and migration technique is required at the network aware

cloud data center environment.

• Most of the authors did not consider the SLA violation during task schedul-

ing, and VM migration at the network aware cloud data center. Hence,

we need a SLA aware energy efficient task scheduling, and VM migration

algorithms in network aware cloud data center environment.

2.3 Problem Statement

In order to solve the open issues and research gaps discussed in the previous

section, we need to design and develop multi-objective (minimizing energy con-

sumption, resources wastage, and thermal temperature), multi-constraint (CPU,

RAM, Storage, etc.) VM allocation algorithm in both non-network and network

aware cloud data center environments. Further, we need to design and develop

an energy efficient SLA aware task scheduling, and VM migration policy for both

non-network and network aware cloud data center environments. Further, the per-

formance evaluation is to be carried out in both heterogeneous and homogeneous

cloud data center environments. Hence, the research problem is stated as follows:

”To design and develop an energy efficient network/SLA aware VM allocation,

migration, and tasks scheduling algorithms for the cloud data center”.

2.4 Research Objectives

The objectives of this research work are as follows:

• To design and develop non-network aware energy efficient VM allocation al-

gorithms at cloud data center using HGACSO, HGAPSO, and HGAPSOSA.

47

• To design and develop network aware energy efficient VM allocation algo-

rithm at cloud data center using Branch-and-Bound based Exact algorithm.

• To design and develop energy efficient task scheduling policy for non-network

and network aware data center using First-Fit approximation algorithm.

• To design and develop energy efficient VM migration policy for non-network

and network aware data center using First-Fit approximation algorithm.

In order to accomplish the aforementioned objectives, we designed number

of energy efficient VM allocation algorithms (HGACSO, HGAPSO, and HGAP-

SOSA) in non-network aware cloud data center environment, and branch-and-

bound based Exact algorithm in network aware cloud data center environment.

Further, we developed energy efficient SLA aware First-Fit approximation based

task scheduling, and VM migration policies for both non-network and network

aware cloud data center environments. The experimental results are carried out

in both homogeneous and heterogeneous cloud data center environments.

2.5 Summary

This chapter provided a review of the classification of power management tech-

niques at the cloud data center. Further, we discussed various existing works, such

as multi-objective VM allocation and migration, energy efficient task scheduling,

minimizing energy consumption of networking devices, etc. at the cloud data cen-

ter. The research problem statement and objectives were defined based on the

outcome of the literature review.

The following chapters discuss the issues and solution of multi-objective, multi-

constraints VM allocation, migration, and task scheduling problems in both non-

network, and network aware cloud data center environments. Further, the perfor-

mance evaluation of proposed methods is carried out for both homogeneous and

heterogeneous cloud data center environments.

48

Chapter 3

Energy Efficient VM Allocation, Migration

Using HGACSO

The VM allocation, and migration are the crucial technologies in improving the

efficiency of the cloud data center in terms of reducing the energy consumption,

resources wastage, etc. This chapter deals with the multi-objective VM allocation

to the PM using the proposed HGACSO algorithm at the cloud data center.

The proposed HGACSO is the hybrid combination of Genetic Algorithm (GA)

and Cat Swarm Optimization (CSO) known as HGACSO. The multi-objective

based VM allocation to PM not only minimizes the energy consumption, but

also maximizes the resource utilization at the cloud data center. Hence, to solve

the Pareto optimal VM allocation problem (minimizing the energy consumption,

and maximizing the resources utilization), we make an Euclidean distance based

objective function to select the optimal number of PMs for the allocation of VMs.

Further, allocation and destruction of on demand VMs on commercial cloud

data center are the common practices. Hence, we need an energy efficient SLA

aware VM migration policy at the cloud data center. Thus, consolidates the VMs

to less number of energy efficient PMs in such a way that we not only reduce the

energy consumption but also avoid the SLA violation at the cloud data center.

The research contributions towards designing an energy efficient cloud data center

by VM allocation, and migration are described as follows.

1. To design and develop a multi-objective energy efficient VM allocation tech-

nique using HGACSO.

2. To design and develop an energy efficient VM migration policy using the

First-Fit approximation.

49

Figure 3.1: Flow Chart of VM Allocation, and Migration.

3.1 Proposed Work

The details of the proposed VM allocation, and migration techniques at the cloud

data center are given in the following sections. Figure 3.1 shows the flow chart

of the proposed VM allocation, and migration at the cloud data center. The

proposed VM allocation, and migration techniques follow a systematic approach to

resolve the energy consumption problem at the cloud data center. First we allocate

the users requested VMs to PMs at the cloud data center using the proposed

HGACSO. After allocation of VMs to PMs, we applied the proposed VMmigration

policy to migrate the VMs from underutilized PM to the energy efficient PM at

the cloud data center.

Further, each user’s request consists of information about of number of VMs,

type of VMs, and time duration of the VM at the cloud data center. We considered

four different types of VMs in our proposed work. Hence, the user requested query

for time duration (t) is defined in terms of Ri={VMsmall(n1), VMmedium(n2),

VMlarge(n3), VMx−large(n4)}, where VMsmall(n1), VMmedium(n2), VMlarge(n3)

VMx−large(n4) are the number of small, medium, large, and extra large types of

VMs requested by a user at the cloud data center, respectively.

3.1.1 VM Allocation Using Proposed HGACSO

Before applying the HGACSO for the allocation of VMs to PMs at the cloud data

center, we need to define a power consumption model of a PM at the cloud data

50

center, and design a mathematical model for multi-objective multi-constraints VM

allocation problem at the cloud data center. The details of the power consump-

tion model, a mathematical model for VM allocation problem, and description of

proposed HGACSO are described as follows.

A. Energy Consumption Model of a PM

A dynamic power management technique for reducing the power consumption of a

PM such as Dynamic Voltage Frequency Scaling (DVFS) is based on two states of

the CPU (idle state, workload state). During idle (no workload) condition of the

CPU, Operating System (OS) will switch-off those components of the PM which

are not useful and thereby reducing the power consumption of the PM. Hence,

CPU works on the minimum frequency mode (fmin). Further, in case of work-

load condition, the power consumption of the PM is dependant on the amount of

workload applied to the CPU, and utilization rate of CPU.

The CPU works on the maximum frequency mode (fmax) under the condition

of full CPU utilization. Thus, CPU works on two frequency modes such as (fmin,

fmax). Further, in our proposed work, we consider all the PMs based on inbuilt

DVFS technique and the power and energy consumption of a PM based on the

approach of (Minas & Ellison 2009). The power consumption (Pj) and the energy

consumption (Ej)(during the time duration of t1 to t2) of (pmj) are described by

Eqs. 3.1 and 3.2 respectively.

Pj = ([Pmax
j − Pmin

j])u+ P idle
j (3.1)

Ej =

∫ t=t2

t=t1

Pjdt (3.2)

Where, Pmax
j and Pmin

j are the maximum and minimum power consumptions

of pmj, respectively; u is the rate of CPU utilization between 0 and 1; Ej is total

energy consumption of pmj during time duration of t1 to t2.

If a data center has m number of PMs, then the total energy consumption of a

data center (DCenergy) is defined by Eq. 3.3. The resources (mips, ram, storage)

utilization of pmj (ud
j) is defined by Eq. 3.4. The average resource utilization of

51

the data center (DCu) over time duration of t1 to t2 is defined by Eq. 3.5.

DCenergy =
m∑
j=1

Ej (3.3)

ud
j =

∑n
i=1 aij ∗ VMd

i

pmd
j

∀d∈ {mips, ram, storage} (3.4)

aij =

1 if V Mi allocated to pmj

0 else

DCu =

∫ t=t2

t=t1

∑m
j=1 u

mips
j +

∑ram
j=1 u

ram
j +

∑m
j=1 u

storage
j

|d|
∑m

j=1 bj
dt (3.5)∑m

j=1 bj > 0 & |d| = 3

Where, bj is a binary variable indicating whether pmj is used for VM alloca-

tion or not. The value of bj = 1 if pmj is used for the VM allocation otherwise it

is 0; |d|=3 is defined for the number of resources such as mips, ram, storage.

B. Multi-Objective VM Allocation Problem Formulation

Let us consider a data center with n number of VMs and m number of PMs. We

need to allocate VMs to PMs at the cloud data center in such a manner that it pro-

vides the global optimal solution in terms of minimizing the energy consumption

(p = min
∑m

j=1 Pj) and maximizing the resources utilization (u = max
∑m

j=1 u
d
j)

at the cloud data center. Thus, multi-objective VM allocation problem is referred

to as Pareto optimal problem. Therefore, to calculate the global optimal solution

for the VM allocation with two conflict objectives (minimizing energy consump-

tion, maximizing resources utilization), we designed an objective function based

on an Euclidean distance. The Euclidean distance based objective function gives

a global optimal solution for both minimizing the energy consumption and maxi-

mizing the resources utilization is described by the following example.

Further, the other distance metrics such as the Hamming distance (it measures

the distance between two strings bit by bit), Mahalanobis distance (it measures

the distance between a point P and distribution D), Haversine distance (it gives

the distance between two points on a sphere) etc. are not useful and feasible for

making the objective function of a Pareto optimal optimization problem. Hence,

52

the considered Euclidean distance gives the minimum distance between two points

in d dimension-space.

Further, Euclidean distance in this proposed work is not indicating the dis-

tance between the servers in the cloud data center, but Euclidean distance based

objective function is used for selecting the best PM for the VM allocation. This

can be achieved by calculating an optimal point between energy consumption and

resource utilization. Therefore Euclidean distance is the feasible and the best

choice for our proposed work. Further, the current resources utilization of PMj

(ud
j) is in between 0 and 1. Thus, we use the normalized value of power consump-

tion between 0 and 1 by dividing the current power consumption of PMj (Pj) by

their maximum power consumption value (Pjmax).

Example:- Let us consider two different types of PMs at the data center. The

type1 PM consists of one processing element of 1000 mips and maximum power

consumption of (Pmax
type1). The type2 PM has two processing elements of 2500 mips

each and maximum power consumption of (Pmax
type2). From the specification of Intel

Xeon processors available on Intel’s web site (Minas & Ellison 2009), the power

consumption is about 30% more on advance CPUs. Hence, on the basis of power

model, the inequality conditions Pmax
type1 < Pmax

type2 and 2∗Pmax
type2 > Pmax

type1 are satisfied.

Further, we consider 4 VMs requested at the data center with one processing

element of 500 mips each. Hence, there are 16 different VM allocations possible

at the data center. Out of these 16 combinations, we consider the most power

efficient feasible allocations of VMs. The allocation of VMs at the data center is

done using three cases and the details are shown in Figure 3.2. The function value

of case two (f2) is less as compared to the function value of case three (f3) such as

(f2 < f3) due to more wastage of mips in case 3 as compared to case 2. Further,

the function value of case 1 (f1) is more as compared to case 2 even though the

wastage of mips in case 1 is 0% because of power inequality condition. Hence, the

minimum optimization function value f2 gives the optimal placement of VMs at

the data center.

53

Figure 3.2: VM Allocation Scenario.

min f =
m∑
j=1

√
(

Pj

Pmax
j

)2 + (ud
j − 1)2 (3.6)

VMpe
i ∗ aij ≤ pmpe

j ∀j ∈ {1, 2, 3, ..,m} (3.7)

n∑
i=1

VMmips
i ∗ aij ≤ pmmips

j ∀j ∈ {1, 2, 3, ..,m} (3.8)

n∑
i=1

VM ram
i ∗ aij ≤ pmram

j ∀j ∈ {1, 2, 3, ..,m} (3.9)

n∑
i=1

VM storage
i ∗ aij ≤ pmstorage

j ∀j ∈ {1, 2, 3, ..,m} (3.10)

The multi-objective minimization function is described by Eq. 3.6. The

constraints satisfaction of different resources such as processing elements, MIPS,

RAM, and Storage, are defined by Eqs. 3.7 to 3.10 respectively.

C. Basics of GA, and CSO

Since the proposed HGACSO algorithm for multi-objective VM allocation is the

hybrid combination of GA, CSO, hence to understand the functionally of the pro-

posed HGACSO, we need to know the basic concepts of GA, and CSO.

(i) GA: The searching of solution to a problem is based on the random search-

ing techniques in the search space. Further, each chromosome in the GA gives the

possible solution in the search space. In the beginning we need to generate the

number of chromosomes for the initial population. Further, we need to apply

the crossover and mutation operations on the chromosomes. Hence, based on the

fitness function value of chromosome, the new population is generated iteratively

using crossover and mutation operations.

54

(ii) CSO: The CSO works on a random population of cats to search the so-

lution of a problem. Further, each cat in the population of cats gives the possible

solution to a problem. In the first iteration, we need to generate the number of

cats for the initial population of cats. Further, we need to divide the cats into two

modes such as seeking mode and tracing mode. In the seeking mode operation,

we need to generate the number of copies of each cat which belongs to the seek-

ing mode, and further to change the position of the cats randomly. Hence, after

generating the copies of cats and changing the position of the cats randomly, we

need to select the fittest cat position among the copies of the cats.

Further, in the tracing mode operation, we need to change the position of the

cat by applying the velocity to the current position of the cat. The velocity of

the cat is calculated by using the global best cat position. Hence, after applying

seeking and tracing modes of operations, we need to select the fittest cats for the

next generation. At each time step t using the global best cat position x⃗lbesti, both

velocity and position for time step (t+1) are calculated by Eqs. 3.11 and 3.12

respectively.

V t+1
i = wV t

i + cr(X t
gbest −X t

i) (3.11)

X t+1
i = X t

i + V t+1
i (3.12)

D. Description of HGACSO

GA is based on the operations such as selection, crossover and mutation for the

generation of new chromosomes. In GA, chromosomes share information with each

other resulting in whole population moves in a group towards near global optimal

solution. However, GA takes more convergence time if the solution space is large.

In CSO, each of the cats deal with one of two operating modes such as seeking

mode or tracing mode.

Cats go from one position to another position through the problem space by

following the current optimum cat by changing its velocity and position. Hence,

CSO has fast convergence, but due to dependency on the current optimum cat,

sometimes the solution falls in local optima. Therefore, CSO and GA will comple-

ment each other from solution and convergence point of view. Initially generated

55

Figure 3.3: Flow Chart of HGACSO.

chromosomes are considered as cats in the applied CSO for the improvement of

chromosomes. Crossover and mutation operations are applied for finding the best

solution in successive iterations. Hence, by this way, we can allocate VMs on

minimum number of energy efficient PMs.

The detailed flow chart of the proposed HGACSO algorithm is shown in Fig-

ure 3.3. In HGACSO, finite number of chromosomes is generated in the initial

iteration. After the generation of chromosomes for the initial population, sort the

chromosomes in the decreasing order on the basis of their fitness function. Discard

half of the chromosomes from the population and remaining half chromosomes will

go for the further operations. The best selected chromosomes will treat initial cats

56

for the CSO. Further, apply CSO algorithm for the treatment of initial solution

by randomly dividing the cats in the swarm into two groups. One group of cats

is treated in seeking mode and the other group of cats in tracing mode. After

applying the operation of seeking mode and tracing mode, calculate the best cats

among two groups of cats. Create a copy of the best cats and consider this created

copy as chromosomes for the crossover and mutation operations.

After applying the crossover and mutation operations, arrange cats and chro-

mosomes in the decreasing order on the basis of their fitness value. Discard half

of the cats or chromosomes with least fitness value and remaining half cats or

chromosomes will go for the new generation. The proposed HGACSO consists of

three major operations namely, enhancement, crossover, and mutation. Details of

these operations, chromosome encoding and population are presented below.

Chromosome Encoding: Let us consider a generation has ’2s’ number of

chromosomes then out of theses 2s chromosomes generate ’2s-1’ chromosomes ran-

domly i.e. Map VM to PM randomly likemapi=(VMi map to PMj) and the coded

chromosome is shown in Figure 3.4. The remaining one chromosome is generated

by using FFD technique (sorting the VMs in decreasing order on the basis of their

resource capacity, and then allocate VM to PM using First Fit). The size of the

chromosome is equal to the number of PMs in a cloud data center.

Figure 3.4: Chromosome Representation.

Fitness Function: The fitness of the chromosome is carried out by applying

Euclidean distance based objective function f to each chromosome; the fitness

value and the probability of the chromosome selection are defined by Eqs (3.13)

and (3.14) respectively. The chromosomes with maximum Fitk value will be con-

57

sidered for the next generation.

fitk =
1∑m

j=1

√
(

pmj

pmmax
j

)2 + (ud
j − 1)2

(3.13)

pk =
fitk∑s
k=1 fitk

. (3.14)

Cat Position and Encoding: The cat position is defined by m bit vector

where m represents the number of PMs in a data center. The position of ith cat

in a m-bit vector at iteration t is given as X t
i={xt

i1, x
t
i2,, x

t
im} and each bit of

the position vector is either 0 or 1. In CSO, each chromosome is treated as a

cat. Hence, we need to convert the cat into binary representation like those PMs

contain VMs by assigning 1 otherwise 0 and the details are shown in Figure 3.5.

Figure 3.5: Cat Representation.

Seeking Mode: The steps performed in seeking mode are as follows:

(1) Select Maximum Ratio (MR) randomly such as (nc) fraction of cats are in

seeking mode and the remaining cats are in tracing mode.

(2) Produce Seeking Memory Pool (SMP) copies of the selected seeking cat.

(3) On the basis of Count of Dimensions (CDC) update the position of each copy

by randomly adding or subtracting the Seeking Range of selected Dimensions

(SRD) fraction of the current position value of copy cats with dimension=d.

(4) Evaluate the fitness value of all the copies.

(5) Select the best cat from all copies and place at selected seeking cat.

(6) Repeat Step 2 for all seeking cats.

Tracing Mode: The tracing mode operation changes the position of VM

from one PM to another PM by applying the velocity to the cat. Further, the

tracing mode operation consists of cat velocity, subtraction operator, addition

operator, multiplication operator. The detailed description of cat velocity, and

58

these operators are described as follows:

Cat Velocity: The ith cat velocity at iteration t is defined as m bit velocity

vector V t
i ={vti1, vti2,, vtim}. This velocity vector changes the cats position and

changing the cats position by velocity is meant for changing the position of a VM

from one PM to another PM. Each bit of the velocity is either 0 or 1. In the first

iteration, we apply the random velocity to the cats. The random velocity is the

m (number of PM) length binary stream of 0s and 1s.

Subtraction Operator: The subtraction operator is defined as the position

difference between two VM position vectors. In CSO, the subtraction operator

is represented by symbol Θ. The resultant bit value of the subtraction of two

position vectors (X t
i Θ X t

i) is 1 if both have same bit value; otherwise it is 0 (Ex:

(1,1,1,0,1) Θ (1,0,1,0,0)=(1, 0, 1, 1,0)).

Addition Operator: The addition operator is defined as the velocity change

of the cat. In CSO, it is represented by symbol ⊕ and is defined as P1V
t
1 ⊕

P2V
t
2⊕, ...PnV

t
n . This represents the velocity change using V t

1 with probability P1,

and using V t
n with probability Pn. In CSO, each probability Pi,

∑n
i=1 Pi = 1 is

defined as an inertia coefficient. The results of the addition operation are explained

as follows. For example, 0.3(1,1,0,1,0)⊕0.7(1,1,1,0,0)=(1,1, ̸=, ̸=, 0). In this

case, the probability of occurrence of 1 at 1st and 2nd bit positions is 1 and the

probability of occurrence of 0 at the 5th bit position is 1. So the bit values at 1st,

2nd, and 5th positions are 1, 1, and 0 respectively, and the remaining positions

are uncertain (denoted by ̸=). To calculate the uncertain bit, we need two inertia

weight coefficients P i
1, P

i
2, and these are defined as follows:

f(X t
i) =

m∑
j=1

√
(

Pj

Pmax
j

)2 + (ud
j − 1)2 (3.15)

P1i =
f(X t

i)

f(X t
i) + f(X t

gbest)
(3.16)

P2i =
f(X t

gbesti)

f(X t
i) + f(X t

gbest)
(3.17)

Where, f(X t
i) denotes the fitness of a cat i for the solution X t

i ; X
t
gbest represents

the global best cat position. For calculation of inertia weight coefficients, we need

59

to consider high energy efficiency and maximum utilization with high probability.uncertain bit = q1, if rand ≤ P1i

uncertain bit = q2, if P1i < rand ≤ P2i

Where, q1 is the respective bit of the cats velocity vector before updating; q2 is

the corresponding bit value of the global best cat vector.

Multiplication Operator: The multiplication operator is represented by op-

erator ⊗. It is defined for updating the cat position (X t
i ⊗ V t+1

i) that represents

the ith cat current position X t
i and it is updated by velocity V t+1

i . The computa-

tion rule for the new cat position is as follows:

(i) If the corresponding bit value of the velocity vector is 1, then the cor-

responding bit value of the new position vector is not adjusted; (ii) If the corre-

sponding bit value of the velocity vector is 0, then it will be adjusted. For example

(1,1,1,0,1)⊗(1,0,1,0,1), where (1,0,1,1,1) is the position vector and (1,0,1,0,1) is the

velocity vector. The 2nd and 4th bits of the velocity vector are 0s and hence VMs

are allocated to PMs when the 2nd and 4th positions of VM are updated. Fi-

nally, the CSO is used for computing the velocity and updated position as per the

following details.

V t+1
i = wV t

i,d ⊕ c ∗ r(X t
gbest,iΘX t

i) (3.18)

X t+1
i = X t

i ⊗ V t+1
i (3.19)

Crossover Operation: After improving the fitness quality of the chromo-

somes using CSO, we need to apply GA operations (crossover, and mutation).

Further, before applying the crossover and mutation operations, we need to store

one copy of the cats temporarily, and another copy will go for the crossover op-

eration as shown in Figure 3.3. The CSO generated cats are considered as chro-

mosomes for applying the crossover, and mutation operations. In the proposed

HGACSO algorithm, we used single point crossover operation on the chromo-

somes since multi-point crossover operation not only migrates more number of

VMs from one chromosome to another chromosome, but also degrades the fitness

value of the chromosomes and further generates more number of infeasible VMs

60

in the chromosomes. Therefore, reallocating these infeasible VMs, we need an

extra computational time and hence, we did not consider multi-point crossover

operation. In the proposed HGACSO, we randomly selected a mapi location on

each chromosome and after this location, we exchanged all the VMs between two

chromosomes in the current generation. The details of single-point crossover op-

eration are shown in Figure 3.6.

Figure 3.6: Crossover Operation.

Figure 3.7: Mutation Operation.

Mutation Operation: After completion of the crossover operation, we per-

formed a mutation operation on the chromosomes by randomly selecting two PMs

in a chromosome and the details are shown in Figure 3.7. We select one VM on

each of the selected PM and then exchange the selected VM.

Reallocation of Infeasible VMs: After applying the CSO, crossover, and

mutation operations to the chromosomes, there is a possibility that some cats and

chromosomes will be in infeasible condition because of migration of VMs from one

61

PM to another PM. Hence, we need to reallocate the infeasible VMs in the cats

and chromosomes after each operation. The feasibility of the cats and chromo-

somes is calculated by using constraints defined by Eqs. 3.7 to 3.10.

The reallocation of infeasible VMs in the cats and chromosomes is carried out

by First-Fit based approximation. At the end of each iteration (after applying

CSO, and GA), we have one set of cats and another set of chromosomes. Hence,

by using these sets of cats and chromosomes, we need to select the fittest chromo-

somes and cats for the next iteration. The selection of buffer cats and chromosomes

is done by using roulette wheel selection policy as defined by Eq. 3.14.

Termination Conditions: The proposed HGACSO will be terminated when

one of the following conditions is satisfied. (i) When the number of iterations is

greater than the maximum set value of iterations. (ii) When there is no improve-

ment in successive iterations or the repetition of chromosomes and cats value.

The steps of the proposed HGACSO are described by Algorithm 3.1. Steps

1-11 describe the initialization of (s-1) number of random chromosomes. Step

12 describes the generation of one chromosome using the FFD technique. Step

13 describes the termination conditions of the proposed HGACSO. Steps 14 to

16 describe the mapping of chromosomes to cats. Step 17 describes the calling

of Procedure 3.1 for applying CSO operations. Step 18 describes the calling of

crossover operation. Step 19 describes the calling of Procedure 3.2 for back-filling

infeasible VMs. Steps 20 to 21 describe the calling of mutation operation. Step 22

describes the back-filling of infeasible VMs. Steps 23 and 24 describe the selection

of fittest (cats and chromosomes), and increment the iteration value respectively.

Finally, Step 25 generates the final mapping list of VMs to PMs at the data enter.

The detailed steps of CSO operation are described by Procedure 3.1.

Further, the CSO consists of two operations such as (seeking and tracing). Steps

1-4 describe the calculation of position and initialization of velocity in the case of

initial iteration. Position and velocity reassignment are described by Steps 5-8.

Random flag values (0 or 1) assignment for division of cats in seeking and tracing

modes are described by Steps 9-10. Step 11 describes the calculation of best cat

62

Algorithm 3.1 HGACSO

Initialize: t←1, tmax, s

Input: VMs list (VM[]), PM list (PM[])

Output: Mapping of VM to PM

1: for i← 1 to (s-1) do

2: while VM [] ̸= empty do

3: Randomly select VMi from VM[]

4: Randomly select pmj from PM[]

5: for Each d do

6: if VMd
i ≤ pmd

j then

7: Allocate VMitopmj

8: Update pmd
j = pmd

j − VMd
i

9: Remove VMi form VM[].

10: else

11: go to 4

12: Call FirstFit(Chr2s)

13: while Termination condition==false do

14: Select s fittest Chromosomes.

15: for i← 1 to s do

16: Cati ← Chri

17: Call Procedure 3.1

18: Call Crossover(Parent1, Parent2)

19: Call Procedure 3.2

20: for i← 1 to s do

21: Call Mutation(Chri)

22: Call Procedure 3.2

23: Select s fittest cats or chromosomes.

24: t← t+1

25: Output: Mapping list of VM tp PM.

63

Procedure 3.1: Applying CSO

1: if t == 1 then

2: for k ← 1tos do

3: X t
i ← X0

k ;

4: V t
i ← V 0

K ;

5: Else

6: for k← 1 to s do

7: X t
i ← X t+1

k ;

8: V t
i ← V t+1

K ;

9: for k← 1 to s do

10: Catflagk = 0 or 1

11: Calculate(X t
best)

12: for k ← 1tos do

13: if Catflagk == 1 then

14: Cat is in seeking mode

15: for l← 1 to SMP do

16: Catlk

17: Change dimension d

18: Calculate best Cat

19: Catk ← Catbest

20: for k← 1 to s do

21: if Catflagk == 0 then

22: Cat is in tracing mode

23: Calculate V t+1
k Using Eq. 3.18

24: X t+1
k ← X t

k + V t+1
k

64

Procedure 3.2: Removing/Refilling of Infeasible VMs

1: for i← 1 to s/2 do do

2: VM ′[i] == empty

3: for i←1 to s/2 do do

4: for j←1 to m do do

5: for k← 1 to d do do

6: if
∑n

i=1 aijVMd
i > pmd

j then

7: Remove VMi from pmj

8: VM ′[i].add(VMi)

9: for i← 1 to s/2 do

10: Backfill VM from VM ′[i] to Chri or Parti using FFD

position. Steps 12-19 describe the seeking mode operation. Steps 20-24 describe

the tracing mode operation.

Further, the detailed steps of removing and backfilling infeasible VMs to PMs

are described by Procedure 3.2. Steps 1 to 2 describe the initialization of empty

VM list for all individuals. Checking of infeasible VMs using different dimensions

of the PM, and further adding these infeasible VMs (by applying FFD technique)

is described by Step 10.

3.1.2 VM Migration Using First-Fit

After allocation of VMs to PMs at the cloud data center, we need to check the

lifetime of the VM as specified by the users in their request. Thus, we need to de-

stroy the time expired VMs at the cloud data center. Further, destroying the time

expired VMs from the PM may lead to an underutilized condition of PM at the

cloud data center. Hence, we need to migrate the VMs from underutilized PMs to

the energy efficient PMs and thereby switching-off underutilized/idle PMs at the

cloud data center. This will result in saving energy consumption at the cloud data

center. Further, the migration of VMs from underutilized PM to energy efficient

PM not only saves the energy consumption, but also avoids the SLA violation at

the cloud data center. Hence, we need a VM migration algorithm which migrates

65

the VM from underutilized PM to energy efficient PM in a quick period of time.

Hence, we designed a First-Fit approximation based energy efficient SLA aware

VM migration policy for a cloud data center.

Each PM consists of two different states such as overutilization and under-

utilization. The underutilization and overutilization states are related to energy

saving and SLA violation respectively. Underutilization state is related to the

wastage of energy for PM due to the idle or underutilized state of PM which

consumes 70% of the peak energy of a PM. In the case of overutilized state the

utilization of the PM is more compared to specified maximum utilization. Further,

when the CPU utilization of the PM is less compared to specified minimum CPU

utilization value then the migration of VM takes place from the underutilized PM

and the details are described as follows.

Let us consider the minimum threshold value of CPU utilization for a PMi

is pmmin
i and the current CPU utilization at instance t is pmu

i . The migration of

VM from PMi will take place when pmu
i < pmmin

i . After selection of underutilized

PM, we need to remove all the VMs form the selected underutilized PM and real-

locate the removed VMs using FFD (sort the PMs on the basis of their resources

utilization in decreasing order and reallocate VMs using First-Fit technique). In

the proposed work we used less than 30% and greater than 75% of CPU utilization

as the underutilized and overutilized states of a PM respectively.

3.2 Experimental Setup, Results and Analysis

To check the performance of proposed HGACSO, and VM migration technique,

we consider different types of VMs and PMs at the cloud data center. Further,

we conducted the experiment in both homogeneous and heterogeneous cloud data

center environments. The details of the experimental setup and results & analysis

are discussed as follows:

A. Experimental Setup: The proposed VM allocation and migration tech-

niques deal with large number of PMs and VMs at a single data center. Therefore,

we used CloudSim simulator (Calheiros et al. 2011) for checking the performance

of the proposed work. In the simulator, we changed the default VMs instances

66

Table 3.1: Configuration of PMs

PM Type PE MIPS RAM(GB) STORAGE(GB)

ProLiantM110G5XEON3075 2 2660 4 160

IBMX3250Xeonx3480 4 3067 8 250

IBM3550Xeonx5675 12 3067 16 500

Table 3.2: Configuration of VMs

VM Type PE MIPS RAM (GB) STORAGE (GB)

Small 1 500 0.5 40

Medium 2 1000 1 60

Large 3 1500 2 80

X.large 4 2000 3 100

by Amazon EC2 VMs instances (Amazon-Website 2014) and three different con-

figured PMs such as Dell (Wu et al. 2014), and IBM (IBM-Switch-Model 2014)

for creating the real homogeneous and heterogeneous data center environments in

the form of PMs and VMs. The overall configuration of the PMs and VMs are

described in Table 3.1 and Table 3.2 respectively.

B. Results and Analysis: To evaluate the performance of our proposed

HGACSO algorithm with other state-of-the-art algorithms such as First-Fit, First

Fit Decreasing (FFD), GA, and CSO in terms of energy consumption and re-

sources utilization. The experimental results are carried out in two different cases.

In Case-1, we consider different combinations of PMs and VMs (PMs are fixed at

60% of VMs) in two different data center environments (homogeneous and hetero-

geneous). Further, in Case-2, we check the performance of our proposed HGACSO

algorithm by keeping number of PMs constant and varying number of VMs in both

cloud data center environments (homogeneous and heterogeneous). The number

and types of PMs used for different amount of VM allocation in heterogeneous

and homogeneous data center environment is shown in Table 3.3 (Case-1). The

HGACSO algorithm utilizes less number of PMs for VMs allocation as compared

67

Table 3.3: Number of PMs Used for VM Allocation at the Cloud Data Center

VMs(PMs)
Homogeneous Heterogeneous

First Fit FFD GA CSO HGACSO First Fit FFD GA CSO HGACSO

100(60) 48 46 44 41 37 (14, 18, 8) (13,16,8) (11, 15, 8) (10, 14,7) (10,12,6)

200(120) 96 92 88 82 74 (28, 36, 16) (26,32,16) (22,30,16) (20,28,14) (20,24,12)

400(240) 192 184 176 164 148 (56,72, 32) (52,64,32) (44,60,32) (40,56,28) (40,48,24)

600(360) 288 276 264 246 222 (84,108,48) (78,96,8) (66,90,48) (60,84,42) (60,72,36)

800(480) 384 368 352 328 296 (112,144,64) (104,128,64) (88,120,64) (80,112,56) (80,96,48)

1000(600) 480 460 440 410 370 (140,180,80) (130,160,80) (110,150,80) (100,140,70) (100,120,60)

to the First-Fit, FFD, GA, and CSO. Since, a hybrid combination of GA, and

CSO has improved the fitness of the chromosomes by applying CSO before ap-

plying the crossover and mutation operations. Thus, the crossover and mutation

operations produced good quality children, and thereby achieving the near global

optimal solution for VM allocation.

Case-1

Figure 3.8, Figure 3.9 and Figure 3.10 show the CPU, RAM, and Storage

utilization respectively in heterogeneous cloud data center environment while tak-

ing different combinations of VMs and PMs using First-Fit, FFD, GA, CSO, and

HGACSO algorithms. The CPU utilization, RAM utilization, and Storage uti-

lization of the proposed HGACSO are high as compared to the First-Fit, FFD,

GA, and CSO. Since, HGACSO used near optimal combination of (Type 1, Type

2, Type 3) PMs for VMs allocation and hence, HGACSO results in very less CPU

wastage as compared to the First-Fit, FFD, GA, and CSO. The CPU utilization

in the case of HGACSO is more as compared to First-Fit, FFD, GA, and CSO

since HGACSO uses less number of PMs used for VMs allocation. The utlilization

of CPU, RAM, and Storage for the proposed HGACSO is improving when more

number of requested VMs are allocated to the PM. The number of used PMs

for the VMs allocation in HGACSO is continually decreasing as compared to the

other VM allocation techniques.

Further, to check the performance of proposed HGACSO based VM allocation

algorithm in a homogeneous environment, we consider only a single type of PM

(Type 2 PM) in the cloud data center. The configuration details of Type 2 PM

68

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
2 6
2 8
3 0
3 2
3 4
3 6
3 8
4 0
4 2
4 4
4 6
4 8
5 0

% o
f C

PU
 Ut

iliza
tion

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.8: % of CPU Utilization in Heterogeneous Data Center.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0

% o
f R

AM
 Ut

iliza
tion

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.9: % of RAM Utilization in Heterogeneous Data Center.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5
1 1 0

% o
f St

ora
ge

Util
iza

tion

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.10: % of Storage Utilization in Heterogeneous Data Center.

is given in Table 3.1. The number of PMs used by the different VM allocation

techniques for different combinations of VMs(PMs) is shown in Table 3.3. The

HGACSO used less number of PMs for the VM allocation due to the global op-

timal placement of VMs to PMs. The experimental results for the homogeneous

69

environment show that HGACSO algorithm performs better than other VM allo-

cation techniques in terms of energy consumption and resources utilization.

Figure 3.11, Figure 3.12, and Figure 3.13 show the CPU, RAM, and Storage

utilization of the homogeneous data center for different VM allocation techniques

using different combinations of VMs(PMs) respectively. The CPU, RAM, and

Storage utilization of the data center is maximum in the case of HGACSO when

compared to other VM allocation techniques. This is due to the less number of

energy efficient PMs used for the VM allocation. Since, more number of PMs are

switched-off and thus, minimizes the resources wastage. The resources utilization

graph is almost straight line in all VM allocation techniques in both homogeneous

and heterogeneous cloud data center environments because of number of used PMs

are increasing in the same proportion as number of VMs are increasing resulting

in less variation in resources utilization.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
3 8
4 0
4 2
4 4
4 6
4 8
5 0
5 2
5 4

% o
f C

PU
 Ut

iliza
tion

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.11: % of CPU Utilization in Homogeneous Data Center.

Figure 3.14 and Figure 3.15 show the power consumption and multi-objective

function value of the cloud data center for different VM allocation techniques us-

ing different VMs(PMs) combinations in homogeneous data center environment.

The power consumption of the data center in the case of HGACSO is low when

compared to the First-Fit, FFD, GA, and CSO. Since, HGACSO has used less

number of PMs for VM allocation since, idle PMs (which are not used for VM al-

location) are switched-off and hence HGACSO consumes less power consumption.

Further, the multi-objective function value is low in the case of HGACSO when

70

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
5 0

6 0

7 0

8 0

9 0

1 0 0

% o
f R

AM
 Ut

iliza
tion

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.12: % of RAM Utilization in Homogeneous Data Center.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
5 0

6 0

7 0

8 0

9 0

1 0 0

1 1 0

% o
f St

ora
ge

Util
iza

tion

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.13: % of Storage Utilization in Homogeneous Data Center.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

Pow
er i

n W
atts

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.14: Power Consumption in Homogeneous Data Center Environment.

compared to other First-Fit, FFD, GA, CSO due to less resources wastage and

low power consumption at the cloud data center.

Figure 3.16 and Figure 3.17 show the power consumption and resources uti-

lization based on multi-objective function for different combinations of VMs and

71

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
0

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

Fun
ctio

n V
alu

e

V M s (P M s)

 F i r s t F i t F F D
 G A C S O
 H G A C S O

Figure 3.15: Function Value in Homogeneous Data Center Environment.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

Pow
er i

n W
atts

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.16: Power Consumption in Heterogeneous Data Center Environment.

PMs using First-Fit, FFD, GA, CSO, and HGACSO algorithms in heterogeneous

data center environment. The multi-objective function value is low in HGACSO

when compared to the other VM allocation techniques since HGACSO gives the

global optimal solution by minimizing both the resource wastage and power con-

sumption for different combinations of VMs(PMs). The difference between power

consumption and multi-objective function value of HGACSO as compared to other

VM allocation techniques is increasing when more number of VMs are allocated

to the data center. Further, more number of PMs are switched-off in the case of

HGACSO as compared to the First-Fit, FFD, GA, and CSO techniques.

Case-2

Table 3.4 shows the number of PMs used for VM allocation while taking dif-

ferent number of VMs and constant number of PMs at the cloud data center.

Further, we check the performance of cloud data center in terms of CPU, RAM,

72

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (5 6 0) 1 0 0 0 (6 0 0)
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0

Fun
ctio

n V
alu

e
V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.17: Function Value in Heterogeneous Data Center Environment.

and Storage utilization by taking different number of VMs and constant number

of PMs in both (homogeneous, heterogeneous) cloud data center environments.

Figures. 3.18, 3.19, and 3.20 show the % of CPU, RAM, and Storage utilization

while keeping number of PMs constant at the heterogeneous cloud data center

environment. The CPU, RAM, and Storage utilization of the data center is high

in the case of HGACSO when compared to First-Fit, FFD, GA, and CSO tech-

niques. Figures 3.21, 3.22, and 3.23 show the % of CPU, RAM, and Storage

utilization while keeping number of PMs constant at the homogeneous cloud data

center environment. The % of CPU, RAM, and Storage utilization is high in the

case of proposed HGACSO when compared to that of other state-of-the-art VM

allocation algorithms. Further, performance of CPU, RAM, and Storage utiliza-

tion is varying while taking different number of VMs and keeping number of PMs

constant in both homogeneous and heterogeneous cloud data center environments.

Since, size of the chromosome is large in proportion to the number of VMs as re-

quested by the user, hence there is a high probability that bio-inspired and hybrid

bio-inspired algorithms such as GA, CSO, HGACSO select idle PMs in the chro-

mosome for the allocation of VMs at the cloud data center.

Figures 3.24 and 3.25 show the power consumption while taking variable num-

ber of VMs and constant number of PMs at the cloud data center in homogeneous

and heterogeneous data center environments respectively. The power consumption

of the proposed HGACSO algorithm is low when compared to that of other VM

73

Table 3.4: Number of PMs Used for VM Allocation at the Constant Data Center

VMs(PMs)
Homogeneous Heterogeneous

First Fit FFD GA CSO HGACSO First Fit FFD GA CSO HGACSO

100(600) 48 46 45 42 38 (14, 18, 8) (13,16,8) (12, 15, 8) (11, 14,7) (10,13,6)

200(600) 96 92 90 85 77 (28, 36, 16) (26,32,16) (24,31,16) (22,30,14) (22,26,12)

400(600) 192 184 175 165 149 (56,72, 32) (52,64,32) (45,60,32 (41,56,28) (41,48,24)

600(600) 288 276 265 247 223 (84,108,48) (78,96,8) (67,90,48) (61,84,42) (61,72,36)

800(600) 384 368 356 332 299 (112,144,64) (104,128,64) (90,121,66) (82,113,57) (84,97,49)

1000(600) 480 460 442 412 371 (140,180,80) (130,160,80) (112,150,80) (101,140,70) (101,120,60)

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
2 6
2 8
3 0
3 2
3 4
3 6
3 8
4 0
4 2
4 4
4 6
4 8
5 0

% o
f C

PU
 Ut

iliza
tion

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.18: % of CPU Utilization in Constant Heterogeneous Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0

% o
f R

AM
 Ut

iliza
tion

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.19: % of RAM Utilization in Constant Heterogeneous Data Center.

allocation algorithms since our proposed HGACSO algorithm is dealing with less

number of switched-on PMs.

Further, to check the performance of the proposed energy efficient VM mi-

gration policy with HGACSO, we need to allocate the users requested VMs in

time varying manner at the cloud data center. Hence, in our proposed work we

considered total number of 50 users with their different VM requests for a pre-

74

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

1 0 5

1 1 0

% o
f St

ora
ge

Util
iza

tion
V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.20: % of Storage Utilization in Constant Heterogeneous Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
3 8
4 0
4 2
4 4
4 6
4 8
5 0
5 2
5 4

% o
f C

PU
 Ut

iliza
tion

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.21: % of CPU Utilization in Constant Homogeneous Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)

7 0

8 0

9 0

% o
f R

AM
 Ut

iliza
tion

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.22: % of RAM Utilization in Constant Homogeneous Data Center.

defined period of time at the cloud data center. Figure 3.26 shows the number

of VMs (small, medium, large) requested by the 50 users. Figure 3.27 shows the

duration of VMs requested by different users during different time intervals. The

total time duration of a user requested VMs allocated to the cloud data center is

75

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
7 0

8 0

9 0

1 0 0

% o
f St

ora
ge

Util
iza

tion

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.23: % of Storage Utilization in Constant Homogeneous Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

Pow
er i

n W
atts

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.24: Power Consumption in Constant Homogeneous Data Center.

calculated by subtracting the allocation time from the destroy time, i.e. (destroy

time-allocation time) and the details are shown in Figure 3.27.

Figure 3.28 shows the number of PMs used by the different techniques during

different time instances for the allocation of users requested VMs. The proposed

HGACSO takes less number of PMs for the allocation of VMs as compared to

other VM allocation techniques. Since, HGACSO gives near optimal solution in

terms of VM allocation to PM, hence HGACSO uses less number of PMs for the

VM allocation. Initially in Figure 3.28, the graph is going upward due to continu-

ous arrival of users requests at the cloud data center. After 50 time instances the

graph is going down due to the destroying of those VMs which completed their

specified time slots and also due to the switching-off idle PMs. Further, migra-

tion of VMs from the underutilized PM to the energy efficient PM using First-Fit

technique results in more number of switched-off PMs.

76

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

Pow
er i

n W
atts

V M s (P M s)

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.25: Power Consumption in Constant Heterogeneous Data Center.

1 0 2 0 3 0 4 0 5 0
46
81 01 21 41 61 82 02 22 42 62 83 03 23 43 63 8

Num
ber

 of V
Ms

U s e r - I D

 T y p e 1 - V M T y p e 2 - V M T y p e 3 - V M

Figure 3.26: Number of VMs Requested.

The energy consumption and resources utilization of the data center during

different period of time is shown in Figures 3.29 and 3.30, respectively. The energy

consumption of the data center is low in the case of the proposed HGACSO ap-

proach when compared to the other VM allocation techniques due to less number

of energy efficient PMs used by HGACSO, further migration of VM from the un-

derutilized PM to the energy efficient PM and thus switching-off the underutilized

PM will result in more energy saving at the cloud data center.

The energy consumption graph as shown in Figure 3.29, at the starting, is go-

ing upward due to the continuous increment of number of PMs used by the cloud

data center for the allocation of user requested VMs. After 50 seconds this graph

is going down because there are no further requests coming from the user side

and those VMs completed their time slots will be destroyed from the data center

and this will result in switching-off more number of idle PMs. Further migration

77

0 1 0 2 0 3 0 4 0 5 0
0

2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0
2 2 0

 T o t a l T i m e S p a n o f a U s e r V M s

VM
s T

ime
 Sp

an
in M

inut
es

U s e r - I D

Figure 3.27: Time Duration of Requested VM.

0 5 0 1 0 0 1 5 0 2 0 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Nu
mb

er
of P

Ms
 Us

ed

T i m e i n M i n u t e s

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.28: Number of PM Used to Allocate VM.

of VMs from underutilized PM to the energy efficient PM will result in further

reduction of energy consumption of the data center.

Figure 3.30 shows the % of CPU utilization of the data center during different

time instances. The CPU utilization of the proposed HGACSO algorithm is more

when compared to the other VM allocation techniques, since HGACSO uses less

number of PMs for the VM allocation. Hence, the resource wastage in the case of

HGACSO is less when compared to other VM allocation techniques.

Figure 3.31 shows the total energy consumption of the data center during the

specified time period. The energy consumption of the data center by the proposed

HGACSO algorithm is (20%, 17%, 14%, and 8%) less when compared to First-

Fit, FFD, GA, and CSO respectively. Figure 3.32 shows the average % of CPU

utilization. The CPU utilization is (37%, 30%, 27%, and 15%) more in the case

78

0 5 0 1 0 0 1 5 0 2 0 0
0

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0
9 0 0 0 0

1 0 0 0 0 0

Ene
rgy

 in W
att*

Sec
T i m e i n M i n u t e s

 F i r s t - F i t F F D
 G A C S O
 H G A C S O

Figure 3.29: Energy Consumption at the Data Center.

0 5 0 1 0 0 1 5 0 2 0 0
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

% o
f CP

U U
tiliz

atio
n

T i m e i n M i n u t e s

 F i r s t - F i t F F D G A
 C S O H G A C S O

Figure 3.30: % of CPU at the Data Center.

of HGACSO as compared to the First-Fit, FFD, GA, and CSO respectively.

To check the scalability of the proposed algorithm, we conducted the exper-

iment on HP Compaq LE1902x with 8 GB RAM, 3.40 GHz i-7 Processor and

calculated the execution time of the proposed HGACSO algorithm. The execution

time of the proposed HGACSO algorithm is mainly dependant on the crossover

operation, mutation operation, and CSO. Hence, total execution time of the pro-

posed HGACSO algorithm is shown in Figure 3.33. The total execution time for

the placement of 1000 VMs at the data center is approximately 4.5 minutes which

is scalable in nature for the large data center.

The minimization of power consumption on each iteration is considered for

three evolutionary algorithms such as GA, CSO, and HGACSO and its conver-

gence is shown in Figure 3.34. The convergence of HGACSO is fast as compared

to that of GA and CSO, since we improved the fitness of the chromosomes by

applying the CSO just before using the crossover and mutation operations of GA.

79

F i r s t - F i t F F D G A C S O H G A C S O
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Ene
rgy

 in
KW

*Se
c

V M A l l o c a t i o n A l g o r i t h m s

 E n e r g y

Figure 3.31: Total Energy Consumption at the Data Center.

F i r s t - F i t F F D G A C S O H G A C S O
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0

Ave
rag

e R
eso

urc
e U

tiliz
atio

n in
 %

D i f f e r e n t V M A l l o c a t i o n T e c h n i q u e s

 R e s o u r c e U t i l i z a t i o n

Figure 3.32: Average CPU Utilization at the Data Center.

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0

Tim
e in

 se
con

ds

N u m b e r o f V M s

 C r o s s o v e r t i m e
 M u t a t i o n t i m e
 C S O
 T o t a l t i m e

Figure 3.33: Execution Time of HGACSO in Minutes.

Further, this will result in less number of iterations required for the convergence

of our proposed HGACSO algorithm.

The generation size (s), number of iterations (t), crossover rate (CR), mu-

tation rate (MR) are the important parameters for the performance of proposed

HGACSO algorithm. Figure 3.35 shows the performance of the HGACSO over dif-

80

0 3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 0 3 3 3 6 3 9 4 2
2 4 0 0 0
2 6 0 0 0
2 8 0 0 0
3 0 0 0 0
3 2 0 0 0
3 4 0 0 0
3 6 0 0 0

Pow
er c

ons
upt

ion
 in

Wa
tt

N u m b e r o f I t e r a t i o n s

 G A
 C S O
 H G A C S O

Figure 3.34: Minimization of Power Consumption on Each Iteration.

ferent crossover rates. When the crossover rate is low, then the objective function

value is high; thus the HGACSO converges to non-global optimal point and takes

more number of iterations. Further, by increasing the crossover rate, the objective

function value is continuously going down, and an optimal crossover point of 0.6

is considered for the proposed HGACSO. Further, increasing the crossover rate

from 0.6 increases the objective function value due to the early stagnation of the

chromosomes resulting in sub-optimal value of objective function.

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
2 7 0
3 0 0
3 3 0
3 6 0
3 9 0
4 2 0
4 5 0
4 8 0
5 1 0
5 4 0
5 7 0
6 0 0

Fun
ctio

n v
alu

e

C r o s s o v e r r a t e

 H e t e r o g e n e o u s D a t a C e n t e r
 H o m o g e n e o u s D a t a C e n t e r

Figure 3.35: Performance of HGACSO Over Crossover Rate.

The performance of HGACSO on mutation rate is shown in Figure 3.36. The

mutation rate of 0.03 gives the near global optimal allocation of VMs to the PMs

by the proposed HGACSO. The value of mutation rate less than 0.03 gives very

little divergence in the solution space resulting in sub-optimal solution. Mutation

rate greater than 0.03 gives higher divergence in the solution space thus, HGACSO

diverges from the final near global optimal solution. To check the performance of

proposed HGACSO on solution size, we set different generation sizes (5 to 25).

81

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0
6 0 0

Fun
ctio

n v
alu

e
M u t a t i o n r a t e

 H e t e r o g e n e o u s D a t a C e n t e r
 H o m o g e n e o u s D a t a C e n t e r

Figure 3.36: Performance of HGACSO Over Mutation Rate.

Table 3.5: HGACSO Parameters

Parameters GA CSO HGACSO

Population size 10 10 10

Max. Iteration 50 50 50

Crossover rate 0.6 - 0.6

Mutation rate 0.03 - 0.03

Selection Roulette Wheel - Roulette Wheel

(c1, c2,w) - (0.5, 0.5,0.5) (0.5, 0.5,0.5)

The performance of HGACSO is high for generation size 10. The solution size

less than 10 takes more number of iterations and gives sub-optimal solution due

to less diversity in the solution space. The solution size more than 10 gives the

same solution as that of 10 but the simulation running time is increased due to

high of computation time of the proposed HGACSO.

The best values of the parameters for our proposed HGACSO algorithm are

given in Table 3.5. The best values of crossover and mutation parameters are cal-

culated for checking the performance of HGACSO on each crossover point between

0.1 and 1 by increasing the crossover rate from 0.01 to 0.08. In this process, we

kept all other parameters such as population size, constants (c1, c2) and weight

w constant. After getting best values of crossover and mutation operations, we

increased the population size and fixed the minimum generation size for optimal

allocation of VMs to PMs. The best constant values c1, c2 and weight value w are

82

calculated by taking initial values c1=0.1, c2=0.1, and w=0.1 and increase these

values by 0.1 till it will not reach to 0.9. Let us consider the minimum values of

c1, c2, and w so that there will not be any further performance improvement in

the proposed HGACSO.

Time Complexity Analysis The time complexity of proposed HGACSO

with VM migration technique is based on GA, and CSO. Let us consider maxi-

mum iteration size is ′k′, individual size is ′m′(number of PM), Number of VM is

′n′, generation size is ′s′, and crossover point for each generation is ′p′. The time

complexity of GA is dependent on the individual generation, crossover, and muta-

tion operations. The time complexity of CSO is dependent on (Seeking mode, and

Tracing mode). Further, the First Fit Decreasing (FFD) based VM migration re-

quires O(nlogn) time complexity. HGACSO=O(O(Individual generation)+ Total

iterations*(O(Fitness calculation*Size of generation)+ O(Crossover*Size of gen-

eration)+O(Mutation*Size of generation))+ O(CSO)+O(VM migration). Hence,

resultant time complexity of HGAPSO=O(O(n∗s)+O(k*(O(m∗s)+O(n∗m∗s−p∗

m∗s)+O(s))) + O(k*(O(s∗m)+O(s∗m)+O(s)+ O(s)+ O(n∗m∗s))+O(nlogn))

which is equal to O(n. ∗m ∗ s ∗ k+O(nlogn) polynomial in nature.

3.3 Summary

This chapter discussed the proposed HGACSO based VM allocation and energy

efficient SLA aware VM migration policy at the cloud data center. Further,

the experiments are conducted in both (homogeneous and heterogeneous) cloud

data center environment. The experimental results demonstrated that proposed

HGACSO with VM migration policy consumed (20%, 17%, 14%, and 8%) less

energy over First-Fit, FFD, GA, and CSO respectively. Further, the resources

utilization by proposed HGACSO was (37%, 30%, 27%, and 15%) more when

compared to that of First-Fit, FFD, GA, and CSO respectively at the cloud data

center. Hence, multi-objective based VM allocation technique is more efficient

when compared to the existing state-of-the-art VM allocation. The proposed VM

allocation and migration algorithm takes about 4.5 minutes to allocate 1000 num-

ber of VMs at the cloud data center. Hence, these techniques are useful for the

83

allocation and migration of VM at the commercial cloud data center.

But the key limitations of the proposed work in this Chapter 3 are: we did not

consider the energy efficient task scheduling policy, and the proposed HGACSO

algorithm takes more convergence time to give the solution of multi-objective VM

allocation problem. Thus, in order to solve these issues we propose HGAPSO

algorithm for multi-objective VM allocation to PM, and energy efficient SLA

aware task scheduling policy at the cloud data centre. The detailed description of

HGAPSO, and task scheduling policy are discussed in Chapter 4.

84

Chapter 4

Energy Efficient VM Allocation, Migration, and

Task Scheduling Using HGAPSO

The allocation of different instances of VMs to PMs is known as a combinatorial

optimization problem of the cloud computing. Further, it is also referred to as

a multi-dimensional variable size bin-packing problem where items are the VMs

and the bins are the PMs (Kim et al. 2014). The time complexity of the multi-

dimensional VM allocation problem is NP-hard/NP-complete class (Gao et al.

2013). Hence, finding an optimal solution of the multi-dimensional VM allocation

problem with multi-objective approach will thus create a lot of challenges for the

researcher. Further, the complexity of the multi-objective, multi-dimensional VM

allocation problem is generally defined in two different ways.

(i) When the similar types of VMs and PMs are considered in the data center

(homogeneous environment), then the reduction of resources wastage can also re-

duce the energy consumption.

(ii) When different types of VMs and PMs are considered in the data center

(heterogeneous environment), then the reduction of resources wastage may not

guarantee similar reduction of energy consumption (Whitley et al. 1994).

Thus, we need a global optimal solution in the polynomial time and, thus we

can achieve both the energy efficiency and minimization of resources wastage in

homogeneous and heterogeneous data center environments. Further, we need an

energy efficient SLA aware task scheduling policy for not only reducing the energy

consumption, but also for avoiding the SLA violation at the cloud data center.

After allocation of VMs to PMs, VM will start executing the tasks at the cloud

data center. Further, we need an energy efficient SLA aware VM migration policy

for migrating the VM from the underutilized PM to the energy efficient PM at

85

the cloud data center. Thus, resulting in switching-off underutilized/idle PM and

saves the energy consumption with no SLA violation at the cloud data center.

In Chapter 3, we discussed multi-objective VM allocation to PM problem using

HGACSO at the cloud data center. But, the limitation of HGACSO algorithm is,

it takes more convergence to give the solution for the VM allocation problem. Fur-

ther, in Chapter 3 we did not consider energy efficient SLA aware task scheduling

policy at the cloud date center.

Thus, to resolve these issues, in this chapter, we describe the multi-objective

VM allocation on PM, task scheduling, and VM migration policy at a cloud data

center in terms of energy efficiency, minimization of resources wastage, and avoid-

ing SLA violation. We propose an hybrid algorithm referred to as a HGAPSO

based on Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Eu-

clidean distance and thus achieving the optimal energy efficiency and resource

utilization. Further, we design a First-Fit approximation based task scheduling

and VM migration policy for reducing the energy consumption and thereby avoid-

ing the SLA violation at the cloud data center.

The key research contributions towards energy efficient VM allocation, migra-

tion and energy efficient task scheduling techniques are described as follows:

1. To design, a multi-objective VM allocation policy for the cloud data center

using proposed HGAPSO algorithm.

2. To design an energy efficient SLA aware task scheduling algorithm at the

cloud data center using the First-Fit approximation algorithm.

3. To design an energy efficient SLA aware VM migration policy.

Figure 4.1 shows the flow chart of the VM allocation, task scheduling, and VM

migration at the cloud data center. The proposed VM allocation, task schedul-

ing, and VM migration techniques follow a systematic approach to resolve the

energy consumption problem at the cloud data center. First, we allocate the users

requested VMs to PMs at the cloud data center using the proposed HGAPSO.

After allocation of VMs to PMs, we applied our proposed energy efficient work-

86

Figure 4.1: Flow Chart of VM Allocation, Task Scheduling, and VM Migration.

load policy to schedule the tasks to VM, and then after, we applied our proposed

VM migration policy to migrate the VM from underutilized PM to energy ef-

ficient PM at the cloud data center. Further, each user’s request consists of

information about the number of VMs, type of VMs, and time duration of the

VM at the cloud data center. We considered four different types of VMs in our

proposed work. Hence, the user’s requested query for time duration (t) is de-

fined in terms of Ri={VMsmall(n1), VMmedium(n2), VMlarge(n3), VMx.large(n4),},

where VMsmall(n1), VMmedium(n2), VMlarge(n3), VMx.large(n4) are the numbers

of small, medium, large, and extra large types of VMs requested by a user at the

cloud data center respectively.

4.1 VM Allocation Using Proposed HGAPSO Algorithm

Before applying the HGAPSO for the allocation of VMs to PMs at the cloud data

center, we need to define a power consumption model of a PM and then we need to

design a mathematical model for multi-objective multi-constraints VM allocation

problem at the cloud data center.

Hence, in this chapter, we used the same power consumption model of a PM,

and mathematical model for multi-objective VM allocation problem as discussed

in Section 3.1. Thus, the power consumption (Pj) and the energy consumption

(Ej)(during time duration of t1 to t2) of (pmj) are described by Eqs. 4.1 and 4.2

respectively.

Pj = ([Pmax
j − Pmin

j])u+ P idle
j (4.1)

87

Ej =

∫ t=t2

t=t1

Pjdt (4.2)

Where, Pmax
j and Pmin

j are the maximum and minimum power consumption of

pmj respectively; u is the rate of CPU utilization between 0 and 1; Ej is the total

energy consumption of pmj during time duration of t1 to t2.

If a data center has m number of PMs, then the total energy consumption of

a data center (DCenergy) is defined by Eq. 4.3. The resource (mips, ram, storage)

utilization of pmj (ud
j) is defined by Eq. 4.4. The average resource utilization of

the data center (DCu) over time duration of t1 to t2 is defined by Eq. 4.5.

DCenergy =
m∑
j=1

Ej (4.3)

ud
j =

∑n
i=1 aij ∗ VMd

i

pmd
j

∀d∈ {mips, ram, storage} (4.4)

aij =

1 if V Mi allocated to pmj

0 else

DCu =

∫ t=t2

t=t1

∑m
j=1 u

mips
j +

∑ram
j=1 u

ram
j +

∑m
j=1 u

storage
j

|d|
∑m

j=1 bj
dt (4.5)∑m

j=1 bj > 0 & |d| = 3

Where, ′b′j is a binary variable indicating whether pmj is used for VM

allocation or not. The value of bj = 1 if pmj is used for the VM allocation

otherwise it is 0; |d|=3 is defined for the number of resources such as mips, ram,

storage.

Further, Euclidean distance based objective function for multi-objective VM

allocation problem is defined as:

min f =
m∑
j=1

√
(

Pj

Pmax
j

)2 + (ud
j − 1)2 (4.6)

VMpe
i ∗ aij ≤ pmpe

j ∀j ∈ {1, 2, 3, ..,m} (4.7)

n∑
i=1

VMmips
i ∗ aij ≤ pmmips

j ∀j ∈ {1, 2, 3, ..,m} (4.8)

n∑
i=1

VM ram
i ∗ aij ≤ pmram

j ∀j ∈ {1, 2, 3, ..,m} (4.9)

88

n∑
i=1

VM storage
i ∗ aij ≤ pmstorage

j ∀j ∈ {1, 2, 3, ..,m} (4.10)

The multi-objective minimization function is described by Eq. 4.6. The

constraints satisfaction of different resources such as processing elements, MIPS,

RAM, and STORAGE, are defined by Eqs. 4.7 to 4.10 respectively.

A. Basic Concepts of GA, and PSO

The proposed HGAPSO algorithm is based on the hybrid combination of GA and

PSO. Hence, we need to understand the basic terminology and operations of these

algorithms. Further, we already discussed the basics of GA in Section 3.1. Hence,

the detailed description of PSO is described as follows.

The PSO starts searching a solution for the problem by using a population of

particles. Further, the initial population of the particles are generated randomly

by random allocation of VMs to PMs at the cloud data center. Each particle in

the population of particles gives the feasible solution of the VM allocation prob-

lem with reference to objective function. Each particle in the population consists

of a position vector such as (x⃗i). Further, a swarm (group of particles) moves in

the solution space by applying the velocity to the particle. This particle velocity

is represented by a velocity vector (v⃗i). Further, at each time step ′t′, using the

local best particle position x⃗lbesti and the global best particle position x⃗gbest; both

velocity vector and position of the particle for time step (t+ 1) are calculated by

Eqs. 4.11 and 4.12 respectively.

v⃗i(t+ 1) = wv⃗i(t) + c1r1(x⃗lbesti(t)− x⃗gbest(t)) + c2r2(x⃗gbest(t)− x⃗i(t)) (4.11)

x⃗i(t+ 1) = x⃗i(t) + v⃗i(t+ 1). (4.12)

Where, w is a learning coefficient between 0 and 1; c1 and c2 are the constants

between 0 and 1; r1 and r2 are the uniformly distributed random numbers between

0 and 1.

D. Description of HGAPSO

The flow chart of proposed HGAPSO is shown in Figure 4.2. Further, the moti-

vation to use the hybrid combination of GA and PSO is described as follows.

Both GA, and PSO techniques work on a random population in order to

89

search the solution for discrete optimization problem. In the proposed HGAPSO,

the crossover operation of GA changes the placement of VM from one chromosome

to another chromosome by migrating the VM from one chromosome to another

chromosome. However, the performance of GA is poor, and it takes more con-

vergence time when the fitness values of the parent chromosomes are low and the

searching space is large. Further, the other reason for giving the poor quality of

solution is due to the random migration of VMs from one PM to another PM

in the chromosome during crossover and mutation operations. The other reason

for generating the poor quality solution in GA is due to the random migration of

VM in the chromosome by selecting the random crossover point during crossover

operation. But due to the random migration of VMs from one PM to another

PM, the probability of searching for a optimal solution in GA is high.

On the other hand in PSO, particles move their position from one place to

another place in the search space using the migration of VMs from one PM to an-

other PM by following the global and local best positions of the particle. Hence,

this will result in migration of VMs from non-efficient PM to energy efficient PM.

Thus, PSO has fast convergence, but due to the dependency on the local best par-

ticle position, sometimes the final solution falls in local optima. Therefore, before

applying the crossover and mutation operations of GA, we need to apply PSO for

improving the fitness value of the parent chromosomes, and thus obtaining the

global optimal allocation of VMs to the PMs in less time. Hence, the proposed

HGAPSO consists of GA, and PSO operations and the details are as follows.

First of all we need to generate the finite number of chromosomes in the ini-

tial population. Further, each chromosome ’s’ represented by (Chr.s) consists of

a fitness value (Fit.s) as shown in Figure 4.2. Further, in proposed HGAPSO,

the total s number of chromosomes (Chr.1, Chr.2,....Chr.s) are generated in the

initial iteration and these chromosomes have fitness values (Fit.1, Fit.2,....Fit.s).

Hence, after the generation of chromosomes in the initial population, we need to

sort the chromosomes in the decreasing order on the basis of their fitness value.

Discard half of the chromosomes (less fittest) from the population and remaining

90

Figure 4.2: Flow Chart of the Proposed HGAPSO Algorithm.

half chromosomes (more fittest) will be considered for further operations. The

best selected chromosomes are treated by the initial particles using PSO. Further,

in the proposed HGAPSO, the quality of the best selected chromosomes can be

improved by using the PSO and then apply the GA operations (crossover and

mutation operations respectively) to the said fine quality chromosomes. At the

end of GA operations, we need to select the fittest particles or chromosomes for

the the next iteration. The HGAPSO algorithm terminates the iteration and thus

allocates VMs to PMs when one of the termination conditions is satisfied.

Hence, the detailed description of generation of chromosomes using GA, en-

hancement of chromosomes using PSO, crossover and mutation operations using

GA are defined as follows:

Further, in this chapter, we used the same approaches for the generation of

chromosomes, and selection of fittest chromosomes as discussed in Section 3.1.

Hence, the fitness value of the chromosome k, and their probability to go for the

next computation are defined by Eq. 4.13, and Eq. 4.14 respectively. The fitness

value of the chromosome is in between 0 and 1.

fitk =
1∑m

j=1

√
(

pmj

pmmax
j

)2 + (ud
j − 1)2

(4.13)

pk =
fitk∑s
k=1 fitk

. (4.14)

91

Figure 4.3: Binary Representation of a Particle.

To select the fittest chromosomes from the population, we need to calculate

the fitness value of chromosomes. Let s be the size of a generation then half of the

fittest chromosomes, such as s/2 number of chromosomes will be considered for

further computation and thereby destroying remaining half of the chromosomes

in the population. The selected fittest chromosomes are considered for PSO, and

GA operations (crossover, mutation).

Particle Encoding and Position: After selecting the fittest chromosomes

from the initial population, we need to apply the PSO to improve the fitness

quality of the chromosomes. Hence, mapping of a chromosome to a particle is

described as follows: The current position of a particle is defined in terms of m-bit

vector, where m is the number of PMs at the data center. Thus, position of ith

particle is defined as X t
i = {xt

1, x
t
2,, x

t
m}, where each bit of the position vector

is either 0 or 1. Hence, we assign binary digit 1 to those PM which contain VM,

otherwise, the value of PM is 0. Thus, m bit binary vector describes the position

of a particle. The binary representation of a particle is shown in Figure 4.3.

Particle Velocity: The velocity of the ith particle at iteration t is defined

by m bit velocity vector V t
i = {vt1, vt2,, vtm}. By applying the velocity to the

current position of the particle, we changed the position of the particle. Hence, by

changing the position of the particle, we changed the position of the VM from one

PM to another PM. Each bit of the velocity vector is either 0 or 1. We, applied

the random velocity in the first iteration to change the position of the particle.

Subtraction Operator: The subtraction operator calculates the difference

between two position vectors of VM. The subtraction operator is defined by Θ in

the proposed HGAPSO. After applying the subtraction operator on two position

vectors such as (X t
i Θ X t

i), we got binary 1 if both position vectors have same

92

bit value, otherwise the outcome value is 0. For example (Ex: (1,1,1,0,1) Θ

(1,0,1,0,0)=(1, 0, 1, 1,0)).

Addition Operator: The addition operator calculates the changes in velocity

of the particle. In the proposed HGAPSO algorithm, the addition operator is

defined by symbol⊕. By applying the addition operator, we calculated the changes

in the velocity of the particle such that P1V
t
1 ⊕ P2V

t
2⊕, ...PnV

t
n represents the

velocity change using V t
1 with probability P1, and using V t

n with probability Pn. In

the proposed HGAPSO algorithm, each probability Pi, (
∑n

i=1 Pi = 1) is defined by

an inertia coefficient. The detailed description of the addition operator is defined

by the following example: Let us consider, 0.3(1,1,0,1,0)⊕0.7(1,1,1,0,0)=(1,1, ̸=,

̸=, 0), where the probability of occurrence of 1 at 1st and 2nd bit positions is 1 and

the probability of occurrence of 0 at the 5th bit position is 1. Thus, bit values at

1st, 2nd, and 5th positions are 1, 1, and 0 respectively, and the remaining positions

are uncertain (denoted by ̸=). Further, to calculate the uncertain bit value, we

need to define three inertia weight coefficients such as P i
1, P

i
2, P

i
3, and these inertia

weight coefficients are defined as follows:

f(X t
i) =

m∑
j=1

√
(

Pj

Pmax
j

)2 + (ud
j − 1)2 (4.15)

P1i =
f(X t

i)

f(X t
i) + f(X t

lbest,i) + f(X t
gbest)

(4.16)

P2i =
f(X t

lbest,i)

f(X t
i) + f(X t

lbest,i) + f(X t
gbest)

(4.17)

P3i =
f(X t

gbesti)

f(X t
i) + f(X t

lbest,i) + f(X t
gbest)

(4.18)

Where, f(X t
i) represents the fitness value of ith particle for the solution

X t
i ;X

t
lbesi, and X t

gbesi represent the local best position and global best position of ith

particle respectively. To calculate the inertia weight coefficients, we need to con-

sider the high energy efficiency and the maximum utilization with high probability.
uncertain bit = q1, if rand ≤ P1i

uncertain bit = q2, if P1i < rand ≤ P2i

uncertain bit = q3, if P2i < rand ≤ p3i

93

Where, q1 is the corresponding bit of the particle velocity vector before updat-

ing; q2 is the corresponding bit value of the local best particle vector; and q3 is the

corresponding bit of the best global particle velocity vector.

Multiplication Operator: To update the position of the particle, we need

to apply a multiplication operator in the proposed HGAPSO. The multiplication

operator is represented by ⊗ in the proposed HGAPSO. The multiplication op-

erator is applied between particle position X t
i and updated velocity, and thereby

calculating the new position of the particle such that (X t
i ⊗ V t+1

i) gives X t+1
i .

The proposed computation rule for calculating the new position of the particle is

described as follows:

(i) If the corresponding bit value of the velocity vector is 1, then the correspond-

ing bit value of the new position vector is not adjusted; (ii) If the correspond-

ing bit value of the velocity vector is 0, then it will be adjusted. For example,

(1,1,1,0,1)⊗(1,0,1,0,1), where (1,0,1,1,1) is the position vector and (1,0,1,0,1) is

the velocity vector. The 2nd and 4th bits of the velocity vector are 0s and hence

VMs are allocated to PMs when the 2nd and 4th positions of VMs are updated.

Finally, the PSO is used for computing the velocity and updated position as

per the following details.

V t+1
i = P1V

t
i ⊕ P2(X

t
lbestiΘX t

i)⊕ P3(X
t
gbestiΘX t

i) (4.19)

X t+1
i = X t

i ⊗ V t+1
i (4.20)

Crossover Operation: After improving the fitness quality of the chromo-

somes using PSO, we need to apply GA operations (crossover, and mutation).

Further, before applying the crossover and mutation operations, we need to store

one copy of the particles temporarily, and another copy will go for the crossover

operation as shown in Figure 4.2. The PSO generated particles are considered

as chromosomes for applying the crossover, and mutation operations. In the pro-

posed HGAPSO algorithm, we used single point crossover operation on the chro-

mosomes since, multi-point crossover operation not only migrates more number of

VMs from one chromosome to another chromosome, but also degrades the fitness

94

value of the chromosomes and further generates more number of infeasible VMs in

the chromosomes. Therefore, reallocating these infeasible VMs, we need an extra

computational time and hence, we did not consider multi-point crossover opera-

tion. Hence, we applied the single point crossover operation in the same manner

as discussed in Section 3.1.

Mutation Operation: After completion of the crossover operation, we per-

formed a mutation operation on the chromosomes, and the detailed description of

mutation operation is already discussed in Section 3.1.

Reallocation of Infeasible VMs: In the case of PSO, when addition and

subtraction operators are applied there is a chance of some particles reaching in-

feasible condition. The same infeasible condition arises when applying crossover

and mutation operations on these chromosomes. Thus, to remove and refill the

infeasible VMs, we used FFD approximation policy as discussed in Section 3.1.

After completion of GA and PSO, we have one set of particles and another set

of chromosomes. Using these sets of particles and chromosomes, we need to select

the best particles or chromosomes using the roulette wheel selection operation as

defined by Eq. 4.14 for the next generation.

Termination Conditions: The proposed HGAPSO will be terminated when

one of the following conditions is satisfied. (i) When the number of iterations is

greater than the maximum set value of iterations. (ii) When there is no improve-

ment in successive iterations or the repetition of chromosomes and particles value.

Algorithm 4.1 describes the allocation of VMs to PMs using the proposed

HGAPSO. Where t is the iteration, tmax is the maximum number of iterations,

and s is the generation size initialized by an integer number. Steps 1 to 11 gen-

erate the s-1 number of random chromosomes. Step 12 describes the generation

of one chromosome using FFD technique. Step 13 describes the termination con-

dition of the proposed HGAPSO algorithm when specified termination condition

such as (t = tmax or repetition of the same type of chromosomes and particles) is

satisfied. Step 14 selects the s/2 number of fittest chromosomes. Steps 15 to 16

95

Algorithm 4.1 Proposed HGAPSO

Initialize: t←1, tmax, s

Input: VMs list (VM[]), PM list (PM[])

Output: Mapping of VM to PM

1: for i ← 1 to (s-1) do

2: while VM [] ̸= empty do

3: Randomly select VMi from VM[]

4: Randomly select pmj from PM[]

5: for Each d do

6: if VMd
i ≤ pmd

j then

7: Allocate VMi to pmj

8: Update pmd
j = pmd

j − VMd
i

9: Remove VMi form VM[].

10: else

11: go to 4

12: Call FirstFit(Chrs)

13: while Termination condition==false do

14: Select s/2 fittest Chromosomes.

15: for i← 1 to s/2 do

16: Parti ← Chri

17: Call Procedure 4.1 .

18: Call Crossover(Parent1, Parent2)

19: Call Procedure 3.2

20: for i← 1 to s/2 do

21: Call Mutation(Chri)

22: Call Procedure 3.2

23: t← t+ 1

24: Allocate VM to PM

96

Procedure 4.1: Applying PSO

1: if t == 1 then

2: X t
gbest ← null

3: for i← 1 to s/2 do

4: X t
i ← RandomPosition();

5: V t
i ← RandomV elocity();

6: X t
lbesti ← X t

i

7: if f(X t
xlbesti > f(X t

gbest) then

8: X t
gbest ← X t

lbesti

9: for i← 1 to s/2 do

10: Update V t+1
i using Eq.4.19

11: Update X t+1
i using Eq. 4.20

12: if f(X t+1
i > f(X t

lbesti)) then

13: X t+1
lbest ← X t+1

i

14: if f(X t+1
lbesti > f(X t

gbest) then

15: X t+1
gbest ← X t+1

lbesti

16: Call Procedure 3.2

97

describe the mapping of Chromosomes to Particles. Step 17 calls the Procedure

4.1 for performing the PSO operation. Step 18 calls the Crossover operation, and

Step 19 calls the Procedure 3.2 (as already described in Section 3.1) for removing

and refilling the infeasible VMs. Steps 20 to 22 describe the mutation operation

and also applying the Procedure 3.2 on each chromosome. Step 23 increments the

iteration value.

For enhancing the fitness value of the chromosomes (by applying the PSO) is

described by Procedure 4.1. Random generated particle position and velocity in

the initial iteration are described by Steps 1 to 5. Current particle position to

local particle position are described by Steps 6 to 8. Steps 9 to 11 describe the

updating the velocity of particle, and its current position. Steps 12 to 15 describe

the computation of local best and global best particle positions. Removing and re-

filling of infeasible VMs by calling Procedure 3.2 is described by Step 16. Further,

the detailed description of Procedure 3.2 is described in Section 3.1.

4.1.1 Energy Efficient SLA Aware Task Scheduling

After allocation of user requested VMs to the PMs at the cloud data center,

now VMs are ready for processing the user’s generated applications. Hence, we

need to define an energy efficient SLA aware task scheduling policy at the cloud

data center. The SLA violation is measured in terms of response time, availability

of VM, and security level of the VM at the cloud data center. Hence, to avoid the

SLA violation, we need to reduce the response time, maximize the availability of

the purchased VMs, and minimize the security threats at the user end. Thus, if

we schedule the maximum number tasks to the less number of VMs then by this

way, we can switch-off idle VMs at the data center, this will result in reducing

the energy consumption at the data center. But the response time of this type of

task scheduling approach will be high at the cloud users, and this will result in

SLA violation at the cloud data center. On the other hand scheduling the small

number of tasks to the maximum number of VMs will result in more number of

PMs in switched-on condition, and thus leading to higher energy consumption but

there is no SLA violation at the cloud data center.

98

Further, response time in terms of SLA violation also depends on the execution

time of the task scheduling algorithm. Hence, we design an energy efficient SLA

aware task scheduling policy based on the First-Fit approximation with our defined

constraints. The reason behind using the First- Fit approximation is due to its fast

execution time and resulting in higher response time for an application. Further,

to reduce the SLA violation, we defined the (task, VM) constraint for scheduling

the task to the VM at the cloud data center. The details of the proposed energy

efficient SLA aware task scheduling policy are described as follows.

In our proposed work we considered user application as a stream of tasks

for the execution. Hence, we can divide an application into number of tasks of

different lengths. Further, execution of tasks requires any kind of resources, such

as CPU, RAM, Storage, or I/O devices. Hence, if a data center has k number

of users requested VMs allocated to the PM then kth user generated application

Ak is represented as a stream of tasks like Ak = {tk0, tk1, tk2, .tkl }. Where tkl is the

lth task of an application Ak. Like VM and PM, a task can also be defined as a

vector unit.

The dimension of the task vector is based on the type and amount of resources

required to execute, such as CPU, RAM, Storage, etc. Further, the user requires

the security levels such as low, medium, or high, and these levels of security is

specified at the time of VMs requested by the user. Hence, in our proposed

work, we considered the requested amount of security of a VM in between 0 and

1, where 0 represents the lowest security and 1 represents the highest security

demand of a VM. To provide the requested level of security to a VM, we assigned

a trust level to each PM in between 0 and 1, where 0 shows the least secured PM

and 1 shows the highest secured PM at the cloud data center. For the security

and billing reason, the kth user generated application, Ak tasks are applied to

their own purchased VM. Further, in the HGAPSO, we consider all the tasks of

CPU intensive. Therefore, before task scheduling, task tki (mis) must satisfy the

99

following constraints, and then this task will go to the respective VM (VM, task).

If tki (mis) ≤ VMmips
small go to VMsmall

ElseIf VMmips
small < tki (mis) ≤ VMmips

mediumgoto V Mmedium

ElseIf VMmips
medium < tki (mis) ≤ VMmips

large goto VMlarge

Else VMmips
x.large < tki (mis) ≤ VMmips

x.large goto VMx.large

If more than one task comes at the same time instance t which falls in the

same conditional range such as VMlarge < tki (mis), tki+1(mis) ≤ VMmips
x.large, then

one task will wait in the queue of VMx.large till previously assigned task is not

completed its execution. Hence, in our proposed work, we consider the sequential

task dependency in an application Ak such as task tki+1, which will be executed

after the execution of task tki .

The Service Level Agreement (SLA) is a contractual document between the

customer and the cloud service provider. The SLA violation in the cloud comput-

ing depends on the type and amount of infrastructure purchased by the customer

and the quality of service provided by the service provider. If there is a quality

mismatch from the contractual document, then the service provider will pay the

amount of money to the customer based on their contractual document. If the

application running time is longer, then in that case, in place of defined deadline

for each task, the average response time or total execution time of the application

does matter. Hence, user defines the application deadline in terms of execution

time, and this execution time depends on the amount of resources in terms of VMs

purchased by the user. Hence, on the basis of purchased VMs configuration, the

customer, thus defines the deadline time of each application. Then the formula-

tion of SLA violation is defined as follows:

Let us consider a customer purchased different type of VMs in different quantity

such as VMsmall(n1), VMmedium(n2), VMlarge(n3), VMx.large(n4) and application

Ak is running on these purchased VMs then deadline Dk, for the application Ak

is defined as follows:

Dk =

∑l
k=1 t

mis
k∑n1+n2+n3+n4

i=1 VMmips
i

(4.21)

100

If waiting time (wk
i (t)), and execution time (exk

i (t)) of a task tki for application

Ak, are considered then the response time rki (t) = wk
i (t) + exk

i (t). Therefore the

response time of an application Ak (Rk(t)) having
′l′ number of tasks is defined as

Rk(t) =
l∑

i=1

wk
i (t) + rki (t) (4.22)

Further, let us consider bi a binary variable which represents the availability of

the VMi. If VMi is available at the data center, then value of bi=1 otherwise

bi=0. Hence, SLA violation condition of an application Ak is defined as



No SLA violation if (Rk(t) ≤ Dk(t)) and∑n1+n2+n3+n4
i=1 bi ≥ [vmt

small(n1) + vmt
medium(n2)vm

t
large(n3) + vmt

x−large(n3)]

and VM security
i ≥ PM trust

j

SLA violation otherwise.

The amount of SLA violation of a given application Ak is dependent on the time

difference between the response time (Rk(t)) and the deadline time (Dk(t)), such

as (Rk − Dk). Since the commercial cloud service provider, such as Amazon

provides EC2 VMs instances on the rent basis by creating the different types of

user requested VMs to the data center during a specified period of time. Hence,

each type of VMs such as small, medium, large, and x.large, have different amount

of rent such as $0.0065 per Hour for small VM instance (Amazon-Website 2014).

Hence, we consider α, β, γ, and δ are the rents of small, medium, large, and x.large

types of VMs for unit time duration respectively. Further, if SLA violation occurs

for a user then the cloud service provider will pay the penalty to the user, and

this penalty is defined in the case of different type of VM instances given by

VMsmall(SLA) = (Rk(t)−Dk(t)) ∗ α

VMmedium(SLA) = (Rk(t)−Di(t)) ∗ β

VMlarge(SLA) = (Rk(t)−Dk(t)) ∗ γ

VMx.large(SLA) = (Rk(t)−Dk(t)) ∗ δ

101

Where, VMsmall(SLA), VMmedium(SLA), VMlarge(SLA), VMx.large(SLA) are the

penalty amounts to be paid by the service provider to the customer in the case of

small, medium, large, and x.large VMs instances respectively.

4.1.2 Energy Efficient SLA Aware VM Migration

After scheduling of tasks to the VM at the cloud data center, we need to check

the lifetime of VM requested by the users on regular time intervals. Thus, we

need to terminate the VMs which have completed their life time or executed all

the tasks which are associated with these VM. Hence, after termination of time

expired VMs from the PMs at the cloud data center, there is a chance that some

PMs will be in underutilized/idle condition. Thus, we need to migrate the VMs

from underutilized PMs to the energy efficient PMs at the cloud data center, and

thus we can switch-off idle PMs at the cloud data center. Hence, the termination

of time expired VMs from the PMs at the cloud data center gives the opportunity

to the cloud data center manager to re-optimize the placement position of VMs

to PMs by migrating the VMs from underutilized PM to the energy efficient PM

at the cloud data center.

Hence, using the VM migration techniques, we can consolidate the VMs into

less number of energy efficient PMs and thereby shutting down the idle PMs at

the cloud data center. Further, migration of VMs from one PM to another PM

will create two issues such as taking an extra period of time (SLA violation during

VM migration time) and requiring additional power consumption. Hence, our

proposed VM migration policy not only reduces the enegry consumption, but also

avoids the SLA violation at the cloud data center.

The objective function for optimum VM migration is to migrate the VMs from

the source node to the destination node so that filling the maximum number of

VMs at the destination node within their capacity, and thus switching-off source

node after VM migration. Hence, by this way we can maximize the number of

idle PMs to be turned off at the data center.

Let s be the set of non idle PMs such that |s| < m. The objective function for

102

the optimal VM migration and consolidation is defined by

max y =
∑
i∈s

Pmin
i yi −

∑
i∈s

∑
j∈s

ni∑
k=1

P ′
Kzijk. (4.23)

Where, yi=1 if pmi is used for the VM allocation, otherwise yi = 0; Variable

zijk=1 if VMk is migrating from pmi to pmj otherwise it is 0; P ′
K is the power

consumption of VMk; ni is the set of VMs to be migrated from pmi. The objective

function described by Eq. 4.23 should satisfy the following migration constraints

during the VM migration.∑
i∈s

ni∑
k=1

VMd
k zijk ≤ pmd

j (1− yj)∀d ∈ {mips, ram, storage} (4.24)

∑
j∈s

ni∑
k=1

zijk = niyi ∀i ∈ s, i ̸= j (4.25)

The constraints satisfaction for different resources is defined by Eq. 4.24.

Migration of a set of VMs (ni) from pmi to pmj is defined by Eq. 4.25. The

proposed migration policy consists of two stages for calculating when and where

to migrate VM at the data center. Further, to avoid SLA violation and also to

minimize the energy consumption at the data center, we set the lower threshold

value of CPU utilization (ul) for each PM at the data center. In the first stage, we

decide when to migrate the VM (selection of source node) and in the second stage,

we decide where to migrate the VM (selection of destination node). The migration

of VMs from pmi will take place if the current CPU utilization of pmi is less than

the lower threshold value ul such as (ucpu
j < ul), and the cost of migration for all

the VMs allocated to pmi should be less than the rent of VMs as decided by the

cloud service provider during the left over time tl. Hence, the selection of a set of

VMs ni from the source node pmi is defined by

ni =


migration of ni if ucpu

i < ul and

ctmig ∗ ni < nir ∗ tl, r ∈ {α, β, γ, δ}, i ∈ s

No migration otherwise.

(4.26)

The left over time (tl) is the difference between total life time (tt) of VMi and

current time (tc) of VMi such as tl = tt−tc. The total migration cost (ctmig) for the

103

set of VMs ni is dependant on two factors such as SLA penalty during shutdown

time st and migration overhead cost comig. Therefore, the total migration cost is

defined by

ctmig =

ni∑
k=1

st ∗ r +
ni∑
k=1

comig (4.27)

The amount of SLA penalty during the VM shutdown time is equal to the VM

rent paid by the user to the service provider during that period of time. Further,

the migration overhead cost comig is dependent on the network bandwidth, size of

memory content to be copied from the source node to the destination node etc.

Hence, the fixed power consumption P ′
k is assigned to each VM instance on the

basis of its type such as small, medium, large, and x.large as a migration overhead

cost. In the second stage, we arrange all the VMs collected by the source nodes in

the decreasing order on the basis of their resource requirement and then allocate

the VMs to the PMs using First-Fit technique.

4.2 Experimental Setup, Results and Analysis

To check the performance of proposed HGAPSO, VM migration policy, and task

scheduling policy, we consider different types of VMs and PMs at the cloud data

center. Further, we conducted experiment in both homogeneous and heteroge-

neous cloud data center environments. The details of the experimental setup and

results & analysis are discussed as follows.

Experimental Setup: To evaluate the performance of the proposed

HGAPSO algorithm, we used CloudSim (Calheiros et al. 2011) simulator with

certain modifications. The main reason for using a CloudSim simulator is due

to the proposed multi-objective VM allocation to the PM is a NP-hard problem,

hence for checking the performance of the proposed algorithm, we required a large

number of VMs(PMs) combinations. Therefore, conducting the experiment on a

simulator in place of real cloud is more feasible and beneficial.

The other reason for using the CloudSim simulator as compared to other exist-

ing simulators is that CloudSim provides heterogeneous environment in the form

of different configured PMs and VMs. Thus, we can conduct the experiment using

104

Table 4.1: Configuration of PMs

PM Type PE MIPS RAM(GB) STORAGE(GB)

ProLiantM110G5XEON3075 2 2660 4 160

IBMX3250Xeonx3480 4 3067 8 250

IBM3550Xeonx5675 12 3067 16 500

Table 4.2: Configuration of VMs

VM Type PE MIPS RAM (GB) STORAGE (GB)

Small 1 500 0.5 40

Medium 2 1000 1 60

Large 3 1500 2 80

X.large 4 2000 3 100

large amount of VMs and PMs with different combinations of VMs(PMs). We can

write our own VMs allocation policy and further, we can dynamically apply the

task to the VM.

In CloudSim simulator, we consider three different types of PMs and four dif-

ferent types of VMs for the creation of heterogeneous data center environment

in the form of VMs and PMs. The PM power consumption and other resources

characterises of PMs are downloaded from the IBM (IBM-Switch-Model 2014) and

Dell (Wu et al. 2014) websites. Further, the Amazon based VMs instances used

for the experiment is downloaded from Amazon website (Amazon-Website 2014).

The configurations of PMs and VMs used for the simulation are shown in Tables

4.1 and 4.2 respectively. Further, for all VMs(PMs) combinations, we consider

the same number of VMs and PMs (all types). For example, 100 VM and 60 PM

combination of data center consists of 25 small, 25 medium, and 25 x.large types

of VM; 20 Proliant, 20 IBM3250, and 20 IBM3550 types of PM. The experimental

results are carried out in two different cases. In Case-1, we considered different

combinations of PMs and VMs (PMs are fixed at 60% of VMs) in two different

data center environments (homogeneous and heterogeneous). Further, in Case-2,

105

Table 4.3: Number of PMs used for VM Allocation at Data Center

VMs(PMs)
Homogeneous Heterogeneous

First Fit FFD GA PSO HGAPSO First Fit FFD GA PSO HGAPSO

100(60) 48 46 44 42 38 (14, 18, 8) (13,16,8) (11, 15, 8) (10, 15,7) (10,13,6)

200(120) 96 92 88 83 75 (28, 36, 16) (26,32,16) (22,30,16) (20,29,14) (20,25,12)

400(240) 192 184 176 166 150 (56,72, 32) (52,64,32) (44,60,32) (40,58,28) (40,50,24)

600(360) 288 276 264 248 224 (84,108,48) (78,96,8) (66,90,48) (60,86,42) (60,74,36)

800(480) 384 368 352 330 298 (112,144,64) (104,128,64) (88,120,64) (80,114,56) (80,98,48)

1000(600) 480 460 440 412 372 (140,180,80) (130,160,80) (110,150,80) (100,142,70) (100,122,60)

we check the performance of our proposed HGAPSO algorithm by keeping the

number of PMs constant and varying number of VMs in both cloud data center

environments (homogeneous and heterogeneous).

Results and Analysis: For evaluating the performance of the HGAPSO al-

gorithm as compared to the other state-of-the-art VM allocation algorithm such

as First-Fit, FFD, GA, and PSO, in terms of energy consumption and resources

utilization, we considered different combinations of VMs and PMs in two different

data center environments (Homogeneous and Heterogeneous).

Case-1

The number and types of PMs used for different amount of VM allocation in

heterogeneous and homogeneous data center environment is shown in Table 4.3

(Case-1). The HGAPSO algorithm utilizes less number of PMs as compared to

the First-Fit, FFD, GA, and PSO. Since, a hybrid combination of GA, and PSO

has improved the fitness of the chromosomes by applying PSO before applying

the crossover and mutation operations of GA. Thus, the crossover and mutation

operations produced good quality children, and thereby achieving the near global

optimal solution for VM allocation. Thus, resulting in less number of PMs used

for the VM allocation in the case of HGAPSO.

Figure 4.4, Figure 4.5 and Figure 4.6 show the CPU utilization, RAM uti-

lization, and Storage utilization respectively, of the heterogeneous data center for

different VMs(PMs) combinations using First-Fit, FFD, GA, PSO, and HGAPSO

algorithms. The CPU utilization, RAM utilization, and Storage utilization of the

proposed HGAPSO are slightly higher as compared to the First-Fit, FFD, GA,

106

and PSO. Since, the HGAPSO used near optimal combination of (Type 1, Type

2, Type 3) PMs for VM allocation and hence HGAPSO results in very less CPU

wastage as compared to the First-Fit, FFD, GA, and PSO. The CPU utilization

in HGAPSO is more as compared to First-Fit, FFD, GA, and PSO due to the less

number of PMs used for VM allocation in the case of HGAPSO. The CPU, RAM,

and Storage utilization of the proposed HGAPSO is slightly improving when more

number of requested VMs are allocated to the PMs. The number of used PMs

for the VM allocation in HGAPSO is continually decreasing as compared to the

other VM allocation techniques.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
2 5
3 0
3 5
4 0
4 5
5 0
5 5
6 0

%
of

CP
U U

tiliz
atio

n

V M s (P M s)

 F i r s t F i t F F D
 G A P S O
 H G A P S O

Figure 4.4: % of CPU Utilization in Heterogeneous Data Center.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
5 0
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

%
of R

AM
 Ut

iliz
atio

n

V M s (P M s)

 F i r s t F i t F F D
 G A P S O
 H G A P S O

Figure 4.5: % of RAM Utilization in Heterogeneous Data Center.

To check the performance of HGAPSO based VM allocation algorithm in ho-

mogeneous environment, we consider only single type of PM (Type 2 PM) in the

107

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
8 0
8 2
8 4
8 6
8 8
9 0
9 2
9 4
9 6
9 8

1 0 0
1 0 2
1 0 4

%
of

Sto
rag

e U
tiliz

atio
n

V M s (P M s)

 F i r s t F i t F F D
 G A P S O
 H G A P S O

Figure 4.6: % of Storage Utilization in Heterogeneous Data Center.

data center. The detailed configuration of Type 2 PM is given in Table 4.1. The

number of PMs used by the different VM allocation techniques by taking different

combinations of VMs(PMs) is shown in Table 4.3. The HGAPSO used less number

of PMs for the VM allocation due to the global optimal placement of VMs to PMs.

The simulation results for the homogeneous environment show that HGAPSO al-

gorithm performs better than other VM allocation techniques in terms of energy

consumption and resources utilization.

Figure 4.7, Figure 4.8, and Figure 4.9 show the CPU, RAM, and Storage uti-

lization of the homogeneous data center for different VM allocation techniques

using different combinations of VMs(PMs) respectively. The CPU, RAM, and

Storage utilization of the data center is maximum in the case of HGAPSO when

compared to other VM allocation techniques. This is due to the less number of

energy efficient PMs used for the VM allocation since more number of PMs are

switched-off and, thus minimizes the resources wastage. The resources utilization

graph is almost straight line for all VM allocation techniques since used PMs are

increasing in the same proportion as number of VMs are increasing and thus re-

sulting in less variation in resources utilization.

Figure 4.10 shows the power consumption for different VM allocation tech-

niques using different VM(PM) combinations in homogeneous data center envi-

ronment. The power consumption of the data center in the case of HGAPSO is

108

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
3 8
4 0
4 2
4 4
4 6
4 8
5 0
5 2
5 4

% o
f C

PU
 Ut

iliza
tion

V M s (P M s)

 F i r s t - F i t F F D
 G A P S O
 H G A P S O

Figure 4.7: % of CPU Utilization in Homogeneous Data Center.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
5 0

6 0

7 0

8 0

9 0

1 0 0

% o
f R

AM
 Ut

iliza
tion

V M s (P M s)

 F i r s t F i t F F D
 G A P S O
 H G A P S O

Figure 4.8: % of RAM Utilization in Homogeneous Data Center.

low when compared to the First-Fit, FFD, GA, and PSO. HGAPSO has used less

number of PM for VM allocation since idle PM (which are not used for VM allo-

cation) are switched-off and hence HGAPSO consumes less power consumption.

Figure 4.11 shows the power consumption and resources utilization based

on multi-objective function for different combinations of VMs and PMs using

HGAPSO, GA, PSO, FFD, and First-Fit algorithms in the heterogeneous data

center environment. The multi-objective function value is low in HGAPSO when

compared to the other VM allocation techniques since HGAPSO gives the global

optimal solution by minimizing both the resource wastage and power consump-

tion for different combinations of VMs(PMs). The difference between power con-

sumption and function value of HGAPSO as compared to other VM allocation

techniques is increasing when more number of VMs are allocated to the data cen-

109

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0

%
of S

tor
age

 Ut
iliz

atio
n

V M s (P M s)

 F i r s t F i t F F D
 G A P S O
 H G A P S O

Figure 4.9: % of Storage Utilization in Homogeneous Data Center.

ter. Further, more number of PMs are switched-off in the case of HGAPSO as

compared to First-Fit, FFD, GA, and PSO.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

Po
we

r in
 W

atts

V M s (P M s)

 F i r s t - F i t F F D
 G A P S O
 H G A P S O

Figure 4.10: Power Consumption in Homogeneous Data Center Environment.

Figure 4.12 and Figure 4.13 show the objective function value based on re-

sources utilization and power consumption for different VM allocation techniques

over different combinations of VMs(PMs) in homogeneous and heterogeneous data

center environment respectively. The power consumption and resources wastage

are less in the case of our proposed HGAPSO algorithm when compared to other

VM allocation techniques. This is due to the global optimal placement of VMs to

PMs that results in lower overall function value in the case of HGAPSO.

110

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

Po
we

r in
 W

att
s

V M s (P M s)

 F i r s t - F i t F F D
 G A P S O
 H G A P S O

Figure 4.11: Power Consumption in Heterogeneous Data Center Environment.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
0

1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 0 0
7 0 0

Fu
nct

ion
 Va

lue

V M s (P M s)

 F i r s t F i t F F D
 G A P S O
 H G A P S O

Figure 4.12: Objective Function Value in Homogeneous Data Center.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
0

5 0
1 0 0
1 5 0
2 0 0
2 5 0
3 0 0
3 5 0

Fu
nct

ion
 Va

lue

V M s (P M s)

 F i r s t F i t F F D
 G A P S O
 H G A P S O

Figure 4.13: Objective Function Value in Heterogeneous Data Center.

111

Table 4.4: Number of PMs used for VM Allocation at Constant Data Center

VMs(PMs)
Homogeneous Heterogeneous

First Fit FFD GA PSO HGAPSO First Fit FFD GA PSO HGAPSO

100(600) 48 46 45 43 40 (14, 18, 8) (13,16,8) (12, 15, 8) (11, 15,7) (10,13,6)

200(600) 96 92 90 86 78 (28, 36, 16) (26,32,16) (24,31,16) (22,31,14) (22,26,12)

400(600) 192 184 175 167 150 (56,72, 32) (52,64,32) (45,60,32 (41,58,28) (41,48,24)

600(600) 288 276 265 249 224 (84,108,48) (78,96,8) (67,90,48) (62,84,42) (61,72,36)

800(600) 384 368 356 334 300 (112,144,64) (104,128,64) (90,121,66) (83,114,57) (84,97,49)

1000(600) 480 460 442 414 373 (140,180,80) (130,160,80) (112,150,80) (103,141,70) (101,120,60)

Case-2

The number of PMs used for the allocation of different number of VMs while

keeping constant number of PMs at the cloud data center is described in Table

4.4. Further, we keep the number of PMs constant and varying number of VMs to

check the performance of cloud data center in terms of CPU, RAM, and Storage

utilization in both (homogeneous, heterogeneous) cloud data center environments.

Figures 4.14, 4.15, and 4.16 show the % of CPU, RAM, and Storage utilization

while keeping number of PMs constant at the heterogeneous cloud data center

environment. The CPU, RAM, and Storage utilization of the data center is high

in the case of HGAPSO when compared to First-First, FFD, GA, and PSO based

VM allocation techniques.

Figures 4.17, 4.18, and 4.19 show the % of CPU, RAM, and Storage utiliza-

tion while keeping the number of PMs constant at the homogeneous cloud data

center environment. The % of CPU, RAM, and Storage utilization is high in the

case of proposed HGAPSO when compared to that of other state-of-the-art VM

allocation algorithms. Further, performance of CPU, RAM, and Storage utiliza-

tion is varying while taking different number of VMs and keeping number of PMs

constant in both homogeneous and heterogeneous cloud data center environments.

Since, size of the chromosome is large in proportion of number of VMs requested

by the user, so there is a high probability that HGAPSO selects idle PM in the

chromosome for the allocation of VMs.

Figures 4.20 and 4.21 show the power consumption while varying the number

of VMs, and constant number of PMs in homogeneous and heterogeneous cloud

112

data center environments respectively. The power consumption of the proposed

HGAPSO algorithm is low when compared to that of other VM allocation algo-

rithm since HGAPSO is dealing with less number of switched-on PMs.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
2 6
2 8
3 0
3 2
3 4
3 6
3 8
4 0
4 2
4 4
4 6
4 8
5 0

%
of

CP
U U

tiliz
atio

n

V M s (P M s)

 F i r s t - F i t F F D
 G A P S O
 H G A P S O

Figure 4.14: % of CPU Utilization in Constant Heterogeneous Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
5 5
6 0
6 5
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0

%
of

RA
M

Uti
liza

tion

V M s (P M s)

 F i r s t - F i t F F D
 G A P S O
 H G A P S O

Figure 4.15: % of RAM Utilization in Constant Heterogeneous Data Center.

After allocation of VMs to the PMs, we applied the random tasks on a

regular time interval (1 second) for the calculation of energy consumed by the data

center during specified duration of time. Hence, in our simulation, we generated

four different tasks on every 1 second during the period of 200 seconds. The task

scheduling on VM is done by using the VM(task) conditions specified in phase 2

(task scheduling). The random allocated tasks to Type1 VM, Type2 VM, Type3

113

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
7 0

7 5

8 0

8 5

9 0

9 5

1 0 0

1 0 5

1 1 0

%
of

Sto
rag

e U
tiliz

atio
n

V M s (P M s)

 F i r s t - F i t F F D
 G A P S O
 H G A P S O

Figure 4.16: % of Storage Utilization in Constant Heterogeneous Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
3 8
4 0
4 2
4 4
4 6
4 8
5 0
5 2
5 4

%
of

CP
U U

tiliz
atio

n

V M s (P M s)

 F i r s t - F i t F F D
 G A P S O
 H G A P S O

Figure 4.17: % of CPU Utilization in Constant Homogeneous Data Center.

VM, and Type4 VM during 200 seconds are shown in Figure 4.22, Figure 4.23,

Figure 4.24, Figure 4.25 respectively.

We considered the processor intensive tasks in millions of instructions through-

out our simulation. The amount of energy consumed by the data center using dif-

ferent VM allocation algorithms when 1000 VM and 600 PM combination used at

the heterogeneous and homogeneous data center environments are shown in Figure

4.26 and Figure 4.27 respectively. The energy consumption in both homogeneous

and heterogeneous data center environment is less in HGAPSO when compared to

the other VM allocation techniques. This is due to the global optimal placement

of VMs to PMs by our proposed HGAPSO resulting in switching-off more number

of PMs at the data center. Hence, energy consumed by the data center is low in

114

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
6 0

7 0

8 0

9 0

1 0 0

%
of

RA
M

Uti
liza

tion

V M s (P M s)

 F i r s t - F i t F F D
 G A P S O
 H G A P S O

Figure 4.18: % of RAM Utilization in Constant Homogeneous Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)

7 0

8 0

9 0

1 0 0

1 1 0

%
of

Sto
rag

e U
tiliz

atio
n

V M s (P M s)

 F i r s t - F i t F F D
 G A P S O
 H G A P S O

Figure 4.19: % of Storage Utilization in Constant Homogeneous Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

Po
we

r in
 W

att
s

V M s (P M s)

 F i r s t - F i t F F D
 G A P S O
 H G A P S O

Figure 4.20: Power Consumption in Constant Homogeneous Data Center.

115

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
0

5 0 0 0

1 0 0 0 0

1 5 0 0 0

2 0 0 0 0

2 5 0 0 0

3 0 0 0 0

Po
we

r in
 W

att
s

V M s (P M s)

 F i r s t - F i t F F D
 G A P S O
 H G A P S O

Figure 4.21: Power Consumption in Constant Heterogeneous Data Center.

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
0

1 0 0

2 0 0

3 0 0

4 0 0

5 0 0

6 0 0

Tas
k in

 mi
llion

s o
f in

stru
ctio

ns

T i m e i n S e c o n d s

 V M _ T y p e 1

Figure 4.22: Task Allocation on Type1 VM.

HGAPSO as compared to other VM allocation techniques.

To check the performance of our proposed VM migration policy, we generated

the user requested VMs in discrete time intervals at the data center. In this ex-

periment, we considered 600 PMs at the data center (e.g. 200 type1 , 200 type2,

200 type3). Further, to derive the system model, each user has to send the re-

quest to the service provider and thereby getting the required VMs and the type

of instances (small, medium, large, x.large). The range of VMs requested by the

user is in between [1,100]. The life time of the VM is uniform in the range of [30s

to 200s]. To migrate a VM from source node to the destination node, we used

a constant migration overhead cost comig in terms of power consumption for each

type of VMs such as 10 watt (small), 20 watt (medium), 30 watt (large), and 40

watt (x.large). On the arrival of each new user’s request at the data center, we

116

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
0

2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

Tas
k in

 mi
llion

s o
f in

stru
ctio

ns
T i m e i n S e c o n d s

V M T y p e 2

Figure 4.23: Task Allocation on Type2 VM.

5 0 1 0 0 1 5 0 2 0 0
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0

Ta
sk

in m
illio

ns
of i

nst
ruc

tion

T i m e i n S e c o n d s

V M T y p e 3

Figure 4.24: Task Allocation on Type3 VM.

applied our proposed HGAPSO for VM allocation. After completion of task by

the VM, we terminate the VM from the PM, and further applied the proposed

VM migration policy on the PM which are under utilized. Here, we considered

the lower utilization threshold of (ul=50%) for all the PMs at the data center.

Figure 4.28 shows the combined performance of proposed HGAPSO with VM

migration policy known as (HGAPSO+VM Migration) in comparison with both

(GA+VM Migration) and (PSO+VM Migration). The proposed HGAPSO+VM

Migration saves 15% and 10% energy at the data center when compared to

(GA+VM Migration) and (PSO+VM Migration) respectively. The combined ap-

proach gives better results in terms of energy saving over GA and PSO due to

switching-off underutilized PM at the data center using VM migration technique.

Hence, by this way, we can increase the effective CPU utilization of PMs at the

117

2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

Tas
k in

 mi
llion

s o
f in

stru
ctio

ns

T i m e i n S e c o n d s

V M T y p e 4

Figure 4.25: Task Allocation on Type4 VM.

2 5 5 0 7 5 1 0 0 1 2 5 1 5 0 1 7 5 2 0 0

5 0

5 2

5 4

5 6

5 8

E
n

e
rg

y
 i
n

 K
W

*S
e

c

T i m e i n S e c o n d s

 G A P S O H G A P S O

Figure 4.26: Energy Consumption in Homogeneous Data Center.

data center and consolidate the VMs to less number of energy efficient PMs at the

data center. The migration of VMs at the data center is based on a regular time

interval. In our experiment, we used the migration time interval of 30 seconds.

After each 30 seconds, we gathered the utilization status of each used PMs at the

data center and made a list of VMs which are allocated to underutilized PMs.

Further, we migrate all the VMs in the list using migration policy as defined in

Phase 3 and then we can switch-off underutilized PMs at the data center.

Figures 4.29 and 4.30 show the average resource utilization and overall energy

consumption using 600 VM and 360 PM in homogeneous and heterogeneous data

center environments respectively. The average resource utilization as shown in

Fig. 4.29 for our proposed (HGAPSO+VM) Migration algorithm is 12% and 14%

more when compared to that of GA, and PSO in heterogeneous and homogeneous

118

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 1 2 0 1 3 0 1 4 0 1 5 0 1 6 0 1 7 0 1 8 0 1 9 0 2 0 0
4 9
5 0
5 1
5 2
5 3
5 4
5 5
5 6
5 7
5 8

E
ne

rg
y

in
 K

W
*S

ec

T i m e i n S e c o n d s

 G A P S O H G A P S O

Figure 4.27: Energy Consumption in Heterogeneous Data Center.

0 5 0 1 0 0 1 5 0 2 0 0
2
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2

Ene
rgy

 in
KW

*Se
c

T i m e i n S e c o n d s

 G A + M i g r a t i o n
 P S O + M i g r a t i o n
 H G A P S O + M i g r a t i o n

Figure 4.28: Energy Consumption with VM Migration Policy at Data Center.

environments respectively. Further, the overall energy consumption is (9.8%) less

as compared to that of exact algorithm in both heterogeneous and homogeneous

environments.

To check the scalability of the proposed algorithm, we conducted the exper-

iment on HP Compaq LE1902x with 8 GB RAM, 3.40 GHz i-7 Processor and

calculated the execution time of the proposed HGAPSO algorithm. The execu-

tion time of the proposed HGAPSO algorithm is mainly dependant on the GA

operations (crossover and mutation) and PSO. Hence, total execution time of pro-

posed HGAPSO algorithm is shown in Figure 4.31. The total execution time for

the placement of 1000 VMs to the data center is approximately 3.5 minutes in

the case of HGAPSO which is 1.55 minutes low as compared to HGACSO at the

cloud data center. Hence, for the large data centers HGAPSO is more scalable in

119

G A P S O H G A P S O
5 0
5 2
5 4
5 6
5 8
6 0
6 2
6 4
6 6
6 8
7 0
7 2
7 4
7 6
7 8
8 0

Ave
rga

e %
 of

CP
U U

tiliz
atio

n

D i f f e r e n t V M A l l o c a t i o n A l g o r i t h m s

 H e t e r o g e n e o u s d a t a c e n t e r
 H o m o g e n e o u s d a t a c e n t e r

Figure 4.29: Average Resource Utilization.

G A P S O H G A P S O

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

En
erg

y in
 K*

WS
ec

D i f f e r e n t V M s A l l o c a t i o n A l g o r i t h m s

 H o m o g e n e o u s D a t a C e n t e r
 H e t e r o g e n e o u s D a t a C e n t e r

Figure 4.30: Total Energy Consumption.

nature as compared to HGACSO. Further, the detailed performance evaluation of

HGAPSO, and HGACSO in terms of energy consumption, resources utilization is

discussed in Chapter 7.

The minimization of power consumption on each iteration is considered for

three evolutionary algorithms such as GA, PSO, and HGAPSO and its conver-

gence is shown in Figure 4.32. The convergence of HGAPSO is fast as compared

to that of GA and PSO since we improved the fitness of the chromosomes by

applying the PSO, just before using the crossover and mutation operations. Fur-

ther, this will result in less number of iterations required for the convergence of

our proposed HGAPSO algorithm. For checking the reliability of the proposed

HGAPSO algorithm, we conducted algorithm 15 times on each VMs(PMs) com-

binations and calculated the frequency of the same solution. The final allocation

120

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0

1

2

3

4

5

Tim
e in

 Mi
nut

es

N u m b e r o f V M s

 C r o s s o v e r t i m e M u t a t i o n t i m e
 P S O H G A P S O
 H G A C S O

Figure 4.31: Execution Time of HGAPSO in Minutes.

of VMs to PMs at the data center is based on the solution which has the highest

frequency. Hence, by this way, we calculated the confidence interval (> 90%) of

the highest frequent solution for the HGAPSO.

0 3 6 9 1 2 1 5 1 8 2 1 2 4 2 7 3 0 3 3 3 6 3 9 4 2
2 4 0 0 0
2 6 0 0 0
2 8 0 0 0
3 0 0 0 0
3 2 0 0 0
3 4 0 0 0
3 6 0 0 0

Po
we

r c
on

sup
tion

 in
Wa

tt

N u m b e r o f I t e r a t i o n s

 G A
 P S O
 H G A P S O

Figure 4.32: Minimization of Power Consumption on Each Iteration.

The generation size (s), number of iterations (t), crossover rate (CR), mu-

tation rate (MR) are the important parameters for the performance of pro-

posed HGAPSO algorithm. Figure 4.33 shows the performance of the proposed

HGAPSO over different crossover rates. When the crossover rate is low then the

objective function value is high; thus the proposed HGAPSO converged to non-

global optimal point and takes more number of iterations. Further, by increasing

the crossover rate, the objective function value is continuously going down, and an

optimal crossover point of 0.6 is considered for the proposed HGAPSO. Further,

increasing the crossover rate from 0.6 increases the objective function value due

121

to the early stagnation of the chromosomes and this will lead to sub-optimal value

of objective function.

The performance of HGAPSO on mutation rate is shown in Figure 4.34. The

mutation rate of 0.03 gives the near global optimum allocation of VMs to PMs

by the proposed HGAPSO. The value of mutation rate less than 0.03 gives very

little divergence in the solution space resulting in sub-optimal solution. Mutation

rate greater than 0.03 gives higher diversity in the solution, thus HGAPSO moves

away from the final near global optimum solution. To check the performance of

proposed HGAPSO on solution size, we set different generation sizes (5 to 25).

The performance of HGAPSO is high for generation size 10. The solution size

less than 10 takes more number of iterations and gives sub-optimal solution due

to less diversity in the solution space. The solution size more than 10 gives the

same solution as that of 10 but the simulation running time is increased due to

the high computation time of the proposed HGAPSO.

0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
2 7 0
3 0 0
3 3 0
3 6 0
3 9 0
4 2 0
4 5 0
4 8 0
5 1 0
5 4 0
5 7 0
6 0 0

Fu
nct

ion
 va

lue

C r o s s o v e r r a t e

 H e t e r o g e n e o u s D a t a C e n t e r
 H o m o g e n e o u s D a t a C e n t e r

Figure 4.33: Performance of HGAPSO Over Crossover Rate.

The best values of the parameters for our proposed HGAPSO algorithm are

given in Table 4.5. The best values of crossover and mutation parameters are

calculated by checking the performance of HGAPSO on each crossover point be-

tween 0.1 and 1 through increasing the crossover rate from 0.01 to 0.08. In this

process, we kept all other parameters such as population size, constants (c1, c2)

and weight w are constant. After getting best values of crossover and mutation

122

0 . 0 1 0 . 0 2 0 . 0 3 0 . 0 4 0 . 0 5 0 . 0 6 0 . 0 7 0 . 0 8
2 5 0
3 0 0
3 5 0
4 0 0
4 5 0
5 0 0
5 5 0
6 0 0

Fu
nct

ion
 va

lue

M u t a t i o n r a t e

 H e t e r o g e n e o u s D a t a C e n t e r
 H o m o g e n e o u s D a t a C e n t e r

Figure 4.34: Performance of HGAPSO Over Mutation Rate.

Table 4.5: HGAPSO Parameters

Parameters GA PSO HGAPSO

Population size 10 10 10

Max. Iteration 50 50 50

Crossover rate 0.6 - 0.6

Mutation rate 0.03 - 0.03

Selection Roulette Wheel - Roulette Wheel

(c1, c2,w) - (0.5, 0.5,0.5) (0.5, 0.5,0.5)

operations, we increased the population size and considered the minimum gen-

eration size which gives optimal allocation of VMs to PMs. The best constant

values c1, c2 and weight value w are calculated by taking initial values c1=0.1,

c2=0.1, and w=0.1 and increase these values by 0.1 till it will not reach 0.9. Let

us consider the minimum values of c1, c2, and w so that there will not be any

further performance improvement in the proposed HGAPSO.

Time Complexity Analysis: The time complexity of proposed HGAPSO

with VM migration technique is based on GA, and PSO. Let us consider maxi-

mum iteration size k, individual size m (number of PMs). Number of VMs n,

generation size s, and crossover point for each generation p. The time com-

plexity of GA is dependent on the individual generation, crossover, and muta-

123

tion operations. The time complexity of PSO is dependent on (Particle genera-

tion, Initial velocity setting, Position calculation, global fitness calculation, local

fitness calculation, updating in velocity, position updating, back fill of missed

VMs, and removing of duplicate VMs for specified iterations). Further, the

First-Fit Decreasing (FFD) based VM migration requires O(nlogn) time com-

plexity. HGAPSO=O(O(Individual generation)+ Total iterations*(O(Fitness cal-

culation*Size of generation)+ O(Crossover*Size of generation)+O(Mutation*Size

of generation))+ O(PSO)+O(VM migration) Hence, resultant time complexity

of HGAPSO=O(O(n ∗ s)+O(k*(O(m ∗ s)+O(n ∗ m ∗ s − p ∗ m ∗ s)+O(s))) +

O(k*(O(s ∗m)+O(s ∗m)+O(s)+ O(s)+ O(n ∗m ∗ s))+O(nlogn)) which is equal

to O(n. ∗m ∗ s ∗ k)+O(nlogn) polynomial in nature.

4.3 Summary

This chapter highlights the hybrid approach for multi-objective VM allocation to

the PMs at the data center in both homogeneous and heterogeneous data center

environments up to 1000 VM and 600s PM. The hybrid approach of HGAPSO

allocates the VMs to PMs using both GA and PSO. The hybrid algorithm saves the

energy consumption by (26%, 22%, 18%, and 15%) in heterogeneous environment

and (20%, 16%, 12%, and 9%) in homogeneous environment over First-Fit, FFD,

GA,and PSO respectively. The average resources utilization of the data center

is also increased by the HGAPSO algorithm. The execution time of HGAPSO is

further, reduced by replacing CSO of HGACSO with PSO in the case of HGAPSO.

Further, the customer based SLA is defined for IaaS cloud model.

But the key limitations of the proposed HGAPSO is that we randomly migrate

the VMs from one PM to another PM in mutation operation. Hence, there is a

chance to lose the fitness value of the chromosomes. Further, in this chapter,

we did not consider the thermal temperature of the cloud data center. Hence, to

resolve these issues we propose energy efficient thermal aware VM allocation using

HGAPSOSA at the cloud data center. The details of HGAPSOSA are discussed

in Chapter 5.

124

Chapter 5

Energy Efficient Thermal Aware VM Allocation

and Migration Using HGAPSOSA

The multi-objective energy efficient thermal aware VM allocation to PMs at the

cloud data center is an important and challenging problem. In Chapter 3, and

Chapter 4, we discussed the multi-objective VM allocation problem by using

HGACSO, and HGAPSO algorithms respectively. Further, we considered two ob-

jectives such as minimizing both the energy consumption, and resources wastage

at the cloud data center using proposed HGACSO, and HGAPSO.

However, minimizing the energy consumption of the data center by allocating

the large number of VMs to small number of PMs will lead to overutilization of

PM (higher temperature of PM) and thus, there is a chance of failure of hardware

resources at the cloud data center. Hence, in this chapter, we propose an energy

efficient, thermal and resources aware VM allocation algorithm at the cloud data

center. The proposed VM allocation algorithm is the hybrid combination of GA,

PSO, and Simulated Annealing (SA) known as HGAPSOSA. Further, we propose

a First-Fit approximation based thermal aware VM migration policy at the cloud

data center. The research contributions towards the development of efficient VM

allocation, and migration techniques are as follows:

1. To design an Euclidean distance based multi-objective optimization function

for minimizing the energy consumption, thermal temperature, and resources

wastage at the cloud data center.

2. To design a novel hybrid bio-inspired HGAPSOSA algorithm for VM allo-

cation using GA, PSO, and SA and thus reducing the energy consumption,

thermal temperature, and resources wastage at the cloud data center.

125

5.1 Proposed Work

The energy efficient thermal aware VM allocation and migration consists of two

phases such as allocation of users requested VMs to PMs over the period of time,

and application of VM migration policy to migrate the VMs from underutilized

PM to energy efficient PM at the cloud data center. The flow chart of the proposed

VM allocation and migration policy is already discussed in Section 3.1. The details

of VM allocation and migration policies are described below.

5.1.1 VM Allocation Using Proposed HGAPSOSA

Before designing a mathematical model of VM allocation problem, we need to

know the power consumption of a PM at the cloud data center. Hence, in this

chapter, we used the same power consumption model of a PM as discussed in

Section 3.1. Further, before applying the VM allocation algorithm to the data

center, we need to know the thermal temperature dissipation model of a PM, and

a mathematical model of VM allocation problem which consists of multi-objective

function such as minimizing the energy consumption, thermal temperature, and

resources wastage. Hence, thermal temperature model, multi-objective VM allo-

cation problem formulation, and description of HGAPSOSA are discussed below.

A. Thermal Temperature Model of a PM

Thermal performance is the critical parameter to evaluate the performance of the

cloud data center. Since, hot spots are generated due to the overutilization of a

PM resulting in disruptive downtime of a PM at the data center. Further, there

is a well known duality between heat transfer and register capacitor (RC) circuit

(Kim et al. 2014). Thus, we used a thermal RC circuit to model the steady state

temperature (T) of pmj as described by Eq. 5.1.

T = PR + Tamb (5.1)

Since, there exists the linear relationship between CPU utilization and power

consumption, hence the temperature of a PM in terms of the CPU utilization is

described by Eq. 5.2.

Tj = Pmin
j + (Pmax

j − Pmin
j)R + Tamb (5.2)

126

Where, Tj is the thermal temperature of a pmj; R is the thermal resistance

between power and CPU utilization; Tamb is the ambient temperature of a PM.

B. VM Allocation Problem Formulation

To solve the Pareto optimal multi-objective VM allocation problem at the cloud

data center, we used an Euclidean distance to calculate an optimal value of

all objectives. Let us consider the resources utilization of pmj as (ud
j), ∀d ∈

{MIPS,RAM,Storage}. Since, all the individual resources are available in dif-

ferent quantity at the PM, hence we used the normalized value of resource utiliza-

tion, power consumption, and, thermal temperature.

Hence, the normalized values of resource utilization, power consumption, and

thermal temperature are given by (ud
j/ umax

j), (Pj/P
max
j), and (Tj/T

max
j) respec-

tively. Further, the normalized values of resource utilization, power consumption,

and thermal temperature are in between 0 and 1. Hence, the objective function

to minimize the resource wastage, power consumption, and thermal temperature

is described by Eq. 5.3.

min f =
m∑
j=1

√
(

Pj

Pmax
j

)2 + (ud
j − 1)2 + (

Tj

Tmax
j

)2 (5.3)

VMpe
i ∗ aij ≤ pmpe

j ∀j ∈ {1, 2, 3, ..,m} (5.4)

n∑
i=1

VMmips
i ∗ aij ≤ pmmips

j ∀j ∈ {1, 2, 3, ..,m} (5.5)

n∑
i=1

VM ram
i ∗ aij ≤ pmram

j ∀j ∈ {1, 2, 3, ..,m} (5.6)

n∑
i=1

VM storage
i ∗ aij ≤ pmstorage

j ∀j ∈ {1, 2, 3, ..,m} (5.7)

Eqs. 5.4 to 5.7 describe the constraints of (MIPS, RAM, and Storage) respec-

tively.

C. Basics of GA, PSO, and, SA

The proposed HGAPSOSA algorithm is the hybrid combination of GA, PSO, and

SA. Hence, to understand the working of the proposed HGAPSOSA algorithm,

we need to consider the basic principles of GA, PSO, and SA. Further, basics of

GA, and PSO are already discussed in Section 3.1, and Section 4.1 respectively.

127

Hence, the detailed description of SA is given as follows.

Generally SA is used to solve the larger nonlinear convex combinatorial opti-

mization problem. Further, SA is generally used when the search space is discrete

and large. It involves heating and controlled cooling of a material to increase

the size of the material and thereby removing the defects of the material. At

each iteration SA considers some neighboring state s′′ of the current state s′ and

probabilistically decides the moving of system into state s′′ or remains in the same

state. Hence, this probability will lead the system to move to a lower energy state.

Ultimately this step is repeated until the system reaches in the state which is good

enough for the objective of application.

D. Description of HGAPSOSA

Figure 5.1 shows the flowchart of the proposed HGAPSOSA algorithm. The mo-

tivation behind the hybrid combination of GA, PSO, and Simulated Annealing

(SA) techniques are explained as follows. Both GA and PSO techniques work

on a random population for finding a solution in the given search space to solve

the discrete optimization problem. In the proposed HGAPSOSA algorithm, the

crossover operation of GA changes the positions of VMs from one chromosome

to another chromosome by migrating the VMs from one chromosome to another

chromosome. However, GA takes more convergence time using two conditions

(i) When the search space is large and (ii) When the fitness value of the parent

chromosomes is low. The other important reason to generate the low quality of

solution is due to random migration of VMs from one PM to another PM. But

the migration of VMs from one PM (non-energy efficient) to another PM (energy

efficient) will ensure high probability of getting the global optimal solution for VM

allocation problem at the cloud data center.

In the case of PSO, all the particles move their position by moving the VMs

from one PM to another PM using the global and local best positions of the par-

ticles. Thus, resulting in migration of VMs from non-energy efficient PMs to the

energy efficient PMs at the cloud data center. Hence, PSO has fast convergence

speed as compared to GA because of dependency on the local best particle posi-

128

tion. But, sometimes PSO falls in local optima. Hence, to minimize the drawbacks

of both GA, and PSO, HGAPSO is designed based on the hybrid combination of

GA, and PSO. But, the crossover and mutation operations change the position of

VMs randomly, resulting in poor solution quality of the chromosomes in the case

of hybrid approach based on GA and PSO.

Hence, we modify the mutation operation of HGAPSO by applying SA to the

chromosomes, and thus we migrate the VMs from the least energy efficient PM to

the energy efficient PM. Hence, using the hybrid combination of GA, PSO, and,

SA techniques, we obtained the global best optimal solution for multi-objective

VM allocation problem at the cloud data center.

The complete operations of the proposed HGAPSOSA algorithm are described

in 18 steps as shown in Figure 5.1. In the first iteration of HGAPSOSA, we gen-

erate a finite number of chromosomes as discussed in Section 3.1. After the gen-

eration of chromosomes, we sort the chromosomes in the decreasing order based

on their fitness value.

Further, we discarded half of the least fittest chromosomes from the popula-

tion, and the remaining fittest chromosomes go for the further operations. Hence,

after selecting the fittest chromosomes we need to apply the PSO operation for im-

proving the fitness value of the chromosomes as discussed in Section 4.1. Thus, by

applying the PSO we improved the fitness value of the chromosomes and then we

applied GA operations (crossover, and mutation) on the chromosomes as discussed

in Section 3.1. In the proposed HGAPSOSA algorithm, we modified mutation op-

eration by applying simulated annealing to the chromosomes. After compilation

of all the operations of the proposed HGAPSOSA algorithm, we need to select

the fittest individual (particles or chromosomes) for performing the next iteration.

The execution of the proposed HGAPSOSA algorithm will be terminated when

one of the defined termination conditions is satisfied as discussed in Section 4.1.

Fitness Function: To select the best chromosomes, and particles for the

next iteration, we need to define the fitness function. Hence, the Euclidean dis-

tance based fitness value of the chromosome, and particles k is defined by Eq. 5.8.

129

Figure 5.1: Flow Chart of the Proposed HGAPSOSA Algorithm.

130

Further, the fitness function selects the optimal number of PMs for the allocation

of VMs and thereby reducing energy consumption, thermal temperature, and re-

sources wastage at the cloud data center. The fitness value of the chromosome is

in between 0 and 1.

fitk =
1∑m

j=1

√
(

pmj

pmmax
j

)2 + (ud
j − 1)2 + (

Tj

Tmax
j

)2

(5.8)

To select the fittest chromosomes from the population, we need to calculate the

fitness value of chromosomes. Let s be the size of a generation then half of the

fittest chromosomes, such as s/2 number of chromosomes will be considered for

further computation and thereby destroying remaining half of the chromosomes

in the population. The selected fittest chromosomes are considered for PSO, GA

operations (crossover, mutation), and simulated annealing. Hence, the probability

of the chromosomes to go for further operations is defined in Section 4.1.

After selecting the best chromosomes on the basis of fitness function from the

population, we need to apply the PSO operation to improve the fitness quality

of the chromosomes. Thus, we used the same chromosome to particle mapping

technique as discussed in Section 4.1. To change the current position of the particle

in the proposed HGAPSOSA, we need to apply the initial velocity to the particle.

Hence, we applied m bit binary velocity to the current position of the particle as

discussed in Section 4.1. To calculate the difference between two position vectors

of the VMs, we need to apply the subtraction operation as discussed in Section

4.1 of Chapter 4.

Addition Operator: The addition operator calculates the changes in velocity

of the particle. In the proposed HGAPSOSA algorithm, the addition operator is

defined by symbol⊕. By applying the addition operator, we calculated the changes

in the velocity of the particle, such as P1V
t
1⊕P2V

t
2⊕, ...PnV

t
n represents the velocity

change using V t
1 with probability P1, and using V t

n with probability Pn. In the

proposed HGAPSOSA algorithm, each probability Pi, (
∑n

i=1 Pi = 1) is defined by

an inertia coefficient. The detailed description of the addition operator is defined

by the following example: Let us consider, 0.3(1,1,0,1,0)⊕0.7(1,1,1,0,0)=(1,1, ̸=,

131

̸=, 0), where the probability of occurrence of 1 at 1st and 2nd bit positions is 1 and

the probability of occurrence of 0 at the 5th bit position is 1. Thus, bit values at

1st, 2nd, and 5th positions are 1, 1, and 0 respectively, and the remaining positions

are uncertain (denoted by ̸=). Further, to calculate the uncertain bit value, we

need to define three inertia weight coefficients such as P i
1, P

i
2, P

i
3, and these defined

inertia weight coefficients are as follows:

f(X t
i) =

m∑
j=1

√
(

Pj

Pmax
j

)2 + (ud
j − 1)2 + (

Tj

Tmax
j

)2 (5.9)

P1i =
f(X t

i)

f(X t
i) + f(X t

lbesti) + f(X t
gbest)

(5.10)

P2i =
f(X t

lbesti)

f(X t
i) + f(X t

lbesti) + f(X t
gbest)

(5.11)

P3i =
f(X t

gbesti)

f(X t
i) + f(X t

lbesti) + f(X t
gbest)

(5.12)

Where, f(X t
i) represents the fitness value of ith particle for the solution

X t
i ;X

t
lbesi, and X t

gbesi represent the local best position and global best position of ith

particle respectively. To calculate the inertia weight coefficients, we need to con-

sider the high energy efficiency and the maximum utilization with high probability.
uncertain bit = q1, if rand ≤ P1i

uncertain bit = q2, if P1i < rand ≤ P2i

uncertain bit = q3, if P2i < rand ≤ p3i

Where, q1 is the corresponding bit of the particle velocity vector before updat-

ing; q2 is the corresponding bit value of the local best particle vector; and q3 is the

corresponding bit of the best global particle velocity vector.

To update the position of the particles, we need to apply the multiplication

operator in the proposed HGAPSOSA. Hence, we applied the multiplication op-

erator as discussed in Section 4.1. At the end of PSO operation, we need to apply

the crossover operation in the proposed HGAPSOSA algorithm. Thus, we applied

crossover operation between two chromosomes as discussed in Section 4.1. At the

end, we need to apply the mutation operation in the proposed HGAPSOSA by

132

applying the SA on the chromosomes. The detailed description of the mutation

operation is described below.

Mutation Operation: In the proposed HGAPSOSA, we performed mutation

operation by applying simulated annealing on the chromosomes. Thus, in the sim-

ulated annealing, first we arranged the PMs in the decreasing order on the basis

of their fitness value in the chromosome, and then select the least fittest PM in

the chromosome. After selecting the least fittest PM, we reallocated all the VMs

of least fittest PM to the energy efficient PM and calculated the new fitness value

of chromosome. If (fitnewi > fitoldi) then change the VM position permanently

otherwise select the second least fittest PM in the chromosome and perform the

same procedure, and compare the new and old fitness values of the chromosome.

The details of the mutation operation using SA are shown in Figure 5.2.

Figure 5.2: Mutation Operation.

After applying PSO, crossover, and SA we reallocate infeasible VMs in the

particles and chromosomes using the reallocation policy as discussed in Section

4.1. Further, the termination condition of the proposed HGAPSOSA is same as

discussed in Section 4.1.

The detailed steps of the proposed HGAPSOSA for the allocation of VMs

to PMs are described in Algorithm 5.1. Where t is the current iteration initial-

ized by 1. tmax, and s are the maximum number of iterations and generation size

respectively and these values are set at the beginning of the iteration. Steps 1 to

11 generate the s− 1 number of chromosomes by applying random VM allocation

policy. Step 12 describes the generation of chromosomes using FFD approxima-

tion technique. Termination condition of the proposed HGAPSOSA algorithm is

described by Step 13. Step 14 describes the selection of half of the fittest chro-

mosomes from the generation. Mapping of particles from the chromosomes is

133

Algorithm 5.1 Proposed HGAPSOSA

Initialize: t←1, tmax, s

Input: VM-List, PM-List

Output: Final Allocated List of VM to PM

1: for i ← 1 to (s-1) do

2: while VM [] ̸= empty do

3: Select randomly VMi from VM-List

4: Select randomly pmj from PM-List

5: for Each d do

6: if (VMd
i ≤ pmd

j) then

7: Allocate VMi to pmj

8: Update dimension of pmj

9: Remove VMi from VM-List.

10: else

11: go to 4

12: Generate (Chrs) using First Fit

13: while Termination condition==false do

14: Select s/2 Number of Fittest Chromosomes.

15: for i← 1 to s/2 do

16: Parti ← Chri

17: Calling Procedure 4.1 .

18: Calling Crossover(Parent1, Parent2) Operation

19: Calling Procedure 3.2

20: for i← 1 to s/2 do

21: Calling Procedure 5.1 (Chri)

22: t← t+ 1

23: Final Allocation of VM to PM

134

Procedure 5.1 SA

1: for i←1 to s/2 do do

2: Arrange PM in the decreasing order based on the fitness value and generate

Chrnewi

3: Select all VM from the least fittest PM and reallocate VM to the energy

efficient PM.

4: if (fitnewi > fitoldi) then

5: Chroldi = Chrnewi

described by Steps 15 to 16. Improvement in the fitness value due to the PSO is

described by Step 17. The details of the PSO operation are discussed in Section

4.1. Step 18 calls the crossover operation on chromosomes. Removing and Refill-

ing of infeasible VMs is described by calling Algorithm 4.2 as discussed in Section

4.1 (Step 19). Calls of Procedure 5.1 and mutation operation are described by

Steps 20 to 22. Step 23 increments the iteration value by 1 after completion of

each iteration.

Procedure 5.1 describes the mutation operation by applying simulated anneal-

ing. Steps 1 to 2 describe sorting the PMs of all chromosomes in the decreasing

order based on their fitness value. Step 1 describes the selection of all the VMs

which are allocated to the least energy efficient PMs. Steps 4 to 5 describe real-

location of VMs from the least fittest PM to the energy efficient PM at the cloud

data center.

5.1.2 Energy Efficient Thermal Aware VM Migration

To migrate the VM from underutilized PM to energy efficient PM at the cloud data

center, we used the same First-Fit approximation based approach as discussed in

Section 4.1.2. The proposed First-Fit approximation based VM migration tech-

nique will switch-off underutilized/idle PM at the cloud data center and resulting

in reducing the energy consumption, thermal temperature, and resources wastage

at the cloud data center.

135

5.2 Experimental Setup, Results and Analysis

To evaluate the performance of the proposed HGAPSOSA algorithm for multi-

objective resources allocation at the cloud data center, we implemented our

proposed HGAPSOSA algorithm using Java 1.7. Further, the performance of

proposed multi-objective HGAPSOSA is compared with other state-of-the-art

VM allocation algorithms in terms of energy efficiency, resources utilization, and

thermal temperature by taking different number of VMs at the cloud data center.

The experimental setup and results & discussion are described below.

Experimental Setup: In order to calculate the performance of power con-

sumption and thermal temperature of the proposed HGAPSOSA algorithm, we

used power, and thermal temperature models of IBM Blade server (IBM-Switch-

Model 2014). The IBM Blade center server (PM) consists of 14 HS21 blades each

having two Xeon (Dual-Core), 2.33 GHz processors with 4 MB L2 cache, 8 GB

RAM, and 120 GB disk storage. Figure 5.3 shows the power consumption of the

blade server. It is clear from Figure 5.3 that the power consumption is linearly

dependent on the CPU utilization (%) of the server. Further, CPU temperature

is approximately linear function of the CPU utilization (%) as shown in Fig. 5.4.

0 2 0 4 0 6 0 8 0 1 0 01 1 0
1 2 0
1 3 0
1 4 0
1 5 0
1 6 0
1 7 0
1 8 0
1 9 0
2 0 0

Pow
er i

n W

% o f C P U U t i l i z a t i o n

 P o w e r i n W

Figure 5.3: Power Consumption.

In our proposed work, we considered the total temperature of a CPU as an

average temperature of 4 cores. Figure 5.4 shows the CPU temperature of 4

cores for different % of CPU utilization. To create the different types of VMs on

the PMs at the data center, we considered Amazon based three different types

of VMs instances, such as small-VM, medium-VM, large-VM (Amazon-Website

136

0 2 0 4 0 6 0 8 0 1 0 0
2 5
3 0
3 5
4 0
4 5
5 0

Tem
per

ture
 (C

)
% o f C P U U t i l i z a t i o n

 P r o c e s s o r 1
 P r o c e s s o r 2
 P r o c e s s o r 3
 P r o c e s s o r 4

Figure 5.4: Temperature Variation.

2014). The overall configuration of small-VM (number of processing elements is

1, mips is 500, ram 0.5 GB, storage 40 GB), medium-VM (number of processing

elements is 2, mips is 1000, ram 1 GB, storage 60 GB), and large-VM (number of

processing elements is 3, mips is 1500, ram 2 GB, storage 80 GB).

Results and Discussion: To check the performance of the proposed

HGAPSOSA algorithm, experimental results are carried out in two different

cases. In Case-1, we considered different combinations of VMs and PMs (PMs are

fixed at 60% of VMs) in two different data center environments (homogeneous and

heterogeneous). Further, in Case-2, we check the performance of our proposed

HGAPSOSA algorithm by keeping number of PMs constant and taking variable

number of VMs at the cloud data center.

Case-1

The number of switched-on PMs at the cloud data center for the allocation of

different number of VMs is shown in Table 5.1. Hence, number of switched-on

PMs for the VMs allocation (based on different VMs(PMs) combinations) is less

in the case of our proposed HGAPSOSA, due to modified crossover operation

using simulated annealing. Thus, we switched-off underutilized PMs by migrating

the VM from underutilized PM to the energy efficient PM at the cloud data

center. This will result in less number of switched-on PMs in the case of proposed

HGAPSOSA when compared to that of GA, PSO, and HGAPSO. After

allocation of VMs to PMs, we checked the resources (CPU, RAM, and Storage)

utilization on different VMs(PMs) combinations at the cloud data center. The

137

Table 5.1: Number of Switched-on PMs at the Data Center

VM(PM) GA PSO HGAPSO HGAPSOSA

100(60) 50 48 42 39

200(120) 98 95 83 77

400(240) 196 191 166 153

600(360) 294 287 249 230

800(480) 390 380 332 307

1000(600) 487 477 415 384

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
5 0

5 5

6 0

6 5

7 0

7 5

8 0

%
of C

PU
 Ut

iliz
atio

n

V M s (P M s)

 G A P S O
 H G A P S O H G A P S O S A

Figure 5.5: % of CPU Utilization at the Data Center.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

%
of R

AM
 Ut

iliz
atio

n

V M s (P M s)

 G A P S O
 H G A P S O H G A P S O S A

Figure 5.6: % of RAM Utilization at the Data Center.

138

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
8 0

8 5

9 0

9 5

1 0 0

1 0 5

%
of S

tor
age

 Ut
iliz

atio
n

V M s (P M s)

 G A P S O
 H G A P S O H G A P S O S A

Figure 5.7: % of Storage Utilization at the Data Center.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)

5

1 0

1 5

2 0

Po
we

r C
ons

um
ptio

n in
 KW

att

V M s (P M s)

 G A
 P S O
 H G A P S O
 H G A P S O S A

Figure 5.8: Power Consumption at the Data Center.

resources (CPU, RAM, and Storage) utilization (%) at the cloud data center are

shown in Figure 5.5, Figure 5.6, and Figure 5.7 respectively. The % of resources

utilization in the case of our proposed HGAPSOSA algorithm is high when

compared to the other VM allocation techniques, since HGAPSOSA takes less

number of PMs for the allocation of VMs. Thus, the resources wastage is less

resulting in higher % of resources utilization in the case of HGAPSOSA.

Further, the power consumption at the data center for different VMs(PMs)

combinations is shown in Figure 5.8. The power consumption of the data center

in the case of our proposed HGAPSOSA algorithm is less, since our proposed

algorithm gives an optimal solution for the multi-objective VM allocation

problem. Hence, more number of idle PMs are switched-off, resulting in less

power consumption at the cloud data center.

139

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
0

2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0
1 2 0 0 0
1 4 0 0 0
1 6 0 0 0
1 8 0 0 0
2 0 0 0 0
2 2 0 0 0

To
tal

Te
mp

era
tur

e in
 Ce

lsiu
s

V M s (P M s)

 G A
 P S O
 H G A P S O
 H G A P S O S A

Figure 5.9: Temperature of the Data Center.

Table 5.2: Number of Switched-on PMs at the Constant Data Center

VM(PM) GA PSO HGAPSO HGAPSOSA

100(600) 51 49 44 40

200(600) 105 102 91 84

400(600) 197 192 168 154

600(600) 302 295 260 234

800(600) 391 383 335 309

1000(600) 488 479 417 385

Figure 5.9 shows the temperature of the data center for different VMs(PMs)

combinations. The temperature of the data center is low when compared to the

other VM allocation algorithms, due to the optimal utilization of PM resources,

and more number of PMs are in switched-off condition.

Case-2

Table 5.2 shows the number of switched-on PMs at the cloud data center

for the allocation of different number of VMs while keeping the number of PMs

constant. Further, we keep the number of PMs constant and vary the number

of VMs to check the performance of our proposed HGAPSOSA algorithm in

terms of CPU, RAM, and Storage utilization at the cloud data center. Figures

5.10, 5.11, and 5.12 show the % of CPU, RAM, Storage utilization respectively,

using different VM allocation techniques at the cloud data center. The % of

140

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
5 0

5 5

6 0

6 5

7 0

7 5

8 0

% o
f CP

U U
tiliz

atio
n

V M s (P M s)

 G A P S O
 H G A P S O H G A P S O S A

Figure 5.10: % of CPU Utilization at Constant Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

% o
f RA

M U
tiliz

atio
n

V M s (P M s)

 G A P S O
 H G A P S O H G A P S O S A

Figure 5.11: % of RAM Utilization at Constant Data Center.

CPU, RAM, and Storage utilization of the data center is high in the case of

HGAPSOSA when compared to GA, PSO, and HGAPSO. Further, performance

of CPU, RAM, and Storage utilization is varying while taking different number

of VMs and keeping number of PMs constant at cloud data center. Since, size

of the chromosome is large in proportion to the number of VMs, so there is a

high probability that HGAPSOSA selects idle PM in the chromosome for the

allocation of VMs at the cloud data center.

Figures 5.13 and 5.14 show the power consumption and thermal temperature

while taking variable number of VMs and constant number of PMs at the cloud

data center. The power consumption and overall temperature of the cloud data

center in case of proposed HGAPSOSA algorithm is low due less number of

switched-on PMs.

To check the performance of the proposed HGAPSOSA in terms of the power

consumption, resources utilization, and thermal temperature, we fix the size of

141

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
7 0
7 5
8 0
8 5
9 0
9 5

1 0 0
1 0 5

% o
f St

ora
ge

Util
izat

ion

V M s (P M s)

 G A P S O
 H G A P S O H G A P S O S A

Figure 5.12: % of Storage Utilization at Constant Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)

5

1 0

1 5

2 0

Po
we

r C
ons

um
ptio

n in
 KW

att

V M s (P M s)

 G A
 P S O
 H G A P S O
 H G A P S O S A

Figure 5.13: Power Consumption at the Constant Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
0

2 0 0 0
4 0 0 0
6 0 0 0
8 0 0 0

1 0 0 0 0
1 2 0 0 0
1 4 0 0 0
1 6 0 0 0
1 8 0 0 0
2 0 0 0 0
2 2 0 0 0

To
tal

Te
mp

era
tur

e in
 Ce

lsiu
s

V M s (P M s)

 G A
 P S O
 H G A P S O
 H G A P S O S A

Figure 5.14: Temperature of the Constant Data Center.

142

the data center by taking 1024 PMs at the data center. Further, we generated

a different number of VMs requests for different users in discrete time intervals.

The requests arrive from different users at the cloud services provider in the form

of small-VM, medium-VM, and large-VM. In the proposed work, we considered

users requested VMs between 1 and 100 at the data center. We set a time

duration or life time of all the users requested VMs from 30 minutes to 200

minutes.

The proposed HGAPSOSA algorithm is applied after arrival of each users

request at the data center. Further, for switching-off the underutilized PMs,

we removed the time expired VMs from the data center, and then the VMs

are migrated from underutilized PM to energy efficient PM using First-Fit

approximation policy. Hence, during the VM migration, the migration process

required extra overhead in terms of additional power consumption. Therefore, we

used constant migration cost in terms of power consumption during migration

time for each type of VMs, such as 10 watts (small), 20 watts (medium), 30 watts

(large), and 40 watts (x.large) in our experiment.

We considered total 100 users to conduct the experiment for VM allocation

and migration at the data center by assigning a user-id to each user. The details

of number of VMs requested by each user are shown in Figure 5.15. Further, the

time duration or life time of VMs requested by users is shown in Figure 5.16.

The life time of the VMs is calculated by subtracting the allocation time from

the destroy time.

The number of PMs (of different types) are used for the allocation of users

requested VMs at the data center as shown in Figure 5.17. Further, in our

proposed HGAPSOSA algorithm, number of PMs used on each time instances

at the data center is less as compared to the other VM allocation algorithms.

The reason behind in using less number of PMs for the allocation VMs is due to

optimal allocation by our proposed HGAPSOSA in terms of resources utilization.

Hence, this will result in low resources wastage and thus selects less number of

PMs for the allocation of VMs at the data center.

143

0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 5 0
4
8

1 2
1 6
2 0
2 4
2 8
3 2
3 6
4 0

 S m a l l V M s M e d i u m V M s L a r g e V M s

Nu
mb

er
 of

 V
Ms

 R
eq

ue
ste

d

U s e r I D

Figure 5.15: Users Requested VMs at the Data Center.

2 0 4 0
0

3 0
6 0
9 0

1 2 0
1 5 0
1 8 0
2 1 0
2 4 0
2 7 0
3 0 0

 A l l o c a t e d T i m e o f V M s

Tim
e in

 Mi
nut

es

U s e r I D

Figure 5.16: Time Duration of Users Requested VMs at the Data Center.

The energy consumption, and CPU utilization of the data center during

different periods of time instances are shown in Figure 5.18 and Figure 5.19,

respectively. The energy consumption of the data center is low in the case

of proposed HGAPSOSA algorithm when compared to that of the other VM

allocation techniques. This is due to the less number of energy efficient PMs

used by our proposed HGAPSOSA algorithm, and migration of VMs from the

underutilized PM to the energy efficient PM. In the beginning, the energy graph

is going upward because of the continuous arrival of users’ requests at the data

center as shown in Figure 5.18. Further, after 80 minutes, no users’ requests are

generated resulting in no new switched-on PMs at the data center.

Further, the underutilized (idle) PMs will be switched-off using the proposed

VM migration policy. This will result in the downward trend in the energy graph

144

0 5 0 1 0 0 1 5 0 2 0 00
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0

Nu
mb

er
of

PM
s

T i m e i n M i n u t e s

 G A P S O
 H G A P S O H G A P S O S A

Figure 5.17: Switched-on PMs at the Data Center.

0 5 0 1 0 0 1 5 0 2 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

En
er

gy
 in

 K
W

*S
es

c.

T i m e i n M i n u t e s

 G A P S O
 H G A P S O H G A P S O S A

Figure 5.18: Energy Consumption at the Data Center.

as shown in Figure 5.18. The % of CPU utilization at the data center over

different intervals of time is shown in Figure 5.19. The CPU utilization in the

case of proposed HGAPSOSA algorithm is high when compared to that of GA,

PSO, and HGAPSO, since Euclidean distance based multi-objective function

gives an optimal number of PMs for the allocation of VMs at the data center.

Thus, resulting in less wastage of resources at the cloud data center in the case

of HGAPSOSA.

Further, to check the scalability of the proposed HGAPSOSA algorithm for

a large data center, we conducted the experiment on the HP Compaq LE1902X

machine (i3 processor with 2 GB RAM). The running time of the proposed

HGAPSOSA algorithm is dependent on the crossover operation, PSO, and

simulated annealing based modified mutation operations. Hence, less number of

iterations are required to converge our proposed HGAPSOSA algorithm. The

145

5 0 1 0 0 1 5 0 2 0 02 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

% o
f C

PU
 Ut

iliza
tion

T i m e i n M i n u t e s s

 G A . P S O .
 H G A P S O . H G A P S O S A .

Figure 5.19: Resources Utilization at the Data Center.

2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0
0

2

4

6

8

1 0

1 2

1 4

Tim
e in

 Min
ute

s

N u m b e r o f V M s A l l o c a t e d

 C r o s s o v e r t i m e M u t a t i o n t i m e
 P S O H G A P S O
 H G A P S O S A

Figure 5.20: Execution Time of VM Allocation Algorithms.

execution time of the proposed HGAPSOSA algorithm in terms of GA, PSO,

and SA operations is shown in Figure 5.20. The execution time of the proposed

HGAPSOSA is calculated by taking different number of VMs in between [1000,

10000] at the cloud data center. The execution time of HGAPSOSA is slightly

higher when compared to that of HGAPSO, but due to the better performance in

terms of reducing energy consumption, resources wastage, and thermal temper-

ature, the execution time will be manageable for the large data center. Further,

the execution time of the proposed HGAPSOSA algorithm is approximately 17

minutes while taking 10000 VMs.

Time Complexity Analysis: The time complexity of proposed HGAP-

SOSA technique is based on GA, PSO, and SA. Let us consider k, m, n, s,

and p are the iteration size, individual size, number of VMs, generation size,

crossover point respectively. Hence, the time complexity of the proposed HGAP-

SOSA=O(O(Individual generation)+ Total iterations*(O(Fitness calculation*Size

146

of generation)+

O(Crossover*Generation Size)+O(Mutation*Generation Size))+

O(PSO)+O(SA). Thus, total time complexity of HGAPSOSA=O(O(n ∗

s)+O(k*(O(m∗s)+O(n∗m∗s−p∗m∗s)+O(s))) + O(k*(O(s∗m)+O(s∗m)+O(s)+

O(s)+ O(n ∗m ∗ s))+O(mlogm)) which is equal to O(n ∗m ∗ s ∗ k+mlogm).

5.3 Summary

This chapter discussed the proposed energy efficient thermal aware VM allocation

and migration policy using HGAPSOSA at the cloud data center. The proposed

HGAPSOSA algorithm is the hybrid combination of GA, PSO, and, SA. In the

proposed HGAPSOSA algorithm we improved the performance of HGAPSO al-

gorithm by modifying mutation operation using SA. The experimental results

demonstrated that proposed HGAPSOSA algorithm consumed (19%, 13%, and

5%) less energy over GA, PSO, and HGAPSO respectively.

Further, the resources utilization by proposed HGAPSOSA was (33%, 21%,

and 6%) more when compared to that of GA, PSO, and HGAPSO respectively

at the cloud data center. The average temperature of the data center in the case

of HGAPSOSA was reduced by (10 degree, 6 degree, 3 degree) when compared

to that of GA, PSO, and HGAPSO respectively. Hence, multi-objective based

VM allocation technique is more efficient when compared to the existing state-of-

the-art VM allocation algorithms. The proposed VM allocation algorithm takes

about 3.10 minutes to allocate 1000 number of VMs at the cloud data center.

Hence, these proposed techniques are useful for reducing the energy consumption,

thermal temperature, and resources wastage at the cloud data center.

But the key limitation of the proposed work is that we did not consider the net-

work elements power consumption at the cloud data center. Hence, to resolve this

issue, we propose a branch-and-bound based exact algorithm for VM allocation

in network-aware cloud data center environment. Further, we also propose a VM

migration policy in network-aware cloud data center. The detailed description of

proposed branch-and-bound based exact algorithm, and VM migration policy in

network-aware cloud data center are discussed in Chapter 6.

147

Chapter 6

Energy Efficient Network-Aware Resource

Management Using Exact Algorithm

Network-aware VM allocation and migration at the cloud data center are the

challenging and important problems of energy efficient cloud computing. In

Chapter 3, and Chapter 4, we discussed multi-objective (minimizing energy con-

sumption, and resources wastage) VM allocation problem using HGACSO, and

HGAPSO algorithms respectively. In Chapter 5, we discussed the minimization

of thermal temperature, energy consumption, and resources wastage of a cloud

data center using HGAPSOSA algorithm. Further, in Chapter 3, Chapter 4, and

Chapter 5, we allocate VMs to PMs in non-network aware cloud data center

environment using hybrid bio-inspired algorithms: HGACSO, HGAPSO, and

HGAPSOSA, respectively. Hence, there is a need to allocate the VMs to PMs in

network-aware cloud data center environment.

Thus, in this chapter we discuss an energy efficient network-aware resources

allocation in the form of virtual machines (VM) by finding the minimum number

of energy efficient physical machines (PMs) at the cloud data center. We formu-

late this VM allocation problem as Integer Linear Programming (ILP) problem,

then we allocate VMs to PMs using proposed branch-and-bound based exact

algorithm. Further, to reduce the execution time of proposed branch-and-bound

algorithm for VM allocation, we propose some dominance rules for reducing

the space of the search tree. In addition, we investigate lower bounds for VM

allocation problem in network-aware data center environment. Further, we

propose network and SLA-aware VM migration algorithm to save the energy

consumption by switching-off both idle PMs and switches at the cloud data center.

149

The research contributions towards developing an exact energy efficient

and network-aware VM allocation and migration algorithm are as follows:

1. Development of a mathematical model for calculating the lower bounds to

select the optimal number of PMs in network-aware data center.

2. Design and Develop energy efficient network-aware VM allocation using

branch-and-bound based exact algorithm.

3. Design and Develop energy efficient network and SLA-aware VM migration

policy using First-Fit approximation algorithm.

4. Evaluation the performance of proposed energy efficient network and SLA-

aware VM allocation with migration policy at the data center.

6.1 Proposed Work

The network-aware VM allocation using branch-and-bound based exact algorithm

and First-Fit approximation based VM migration policy are described below:

6.1.1 VM Allocation Using Branch-and-Bound Based Exact Algorithm

Before applying the proposed VM allocation and migration algorithms we need

to know the power consumption model of (PM, networking-switch), and the net-

work topology of a cloud data center.

A. Power Consumption and Network Topology of Data Center

The power consumption at the cloud data center is dependent on IT devices and

non-IT devices (Air Conditioners, Motor Pumps, UPS, etc.). The PMs and net-

working devices consume 45% and 15%, respectively of the total power consump-

tion at the data center (Xu et al. 2013). The reduction of power consumption by

PMs, and networking devices will also decrease the heat dissipation resulting in

reduction of power consumed by the cooling devices. In this chapter, we used the

same power consumption model of a PM as discussed in Section 4.1. Hence, the

power consumption of pmk at time instant t is described by Eq. 6.1.

P pm
k (t) = ([Pmax

k − Pmin
k])u+ P idle

k (6.1)

150

Where, Pmax
k is the maximum power consumption of pmk, and Pmin

k is the mini-

mum power consumption of a pmk; u is the utilization rate of a CPU (0 ≤ u ≤ 1).

Power consumption of a Network Switch: The power consumption of a

networking device (switch) is mainly dependent on the flow of traffic through the

device, and its hardware configuration (processor board, memory, cooling system

etc.) (Xiong & Xu 2014). The reduction of switch’s power consumption can be

achieved by (Fang et al. 2013) : (i) Switching-off a network device port saves 0.5%

of the total power consumption of a switch; (ii) Switching-off a line card saves

maximum 30% of the total power; iii) Switching-off the port to a lower bandwidth

(from 1Gbps to 100 Mbps) saves around 0.005% to 0.4% of the total power con-

sumption of a switch. Hence, to save the power consumption of the switch, we

need to switch-off line card or unused ports. Further, most of the switches are

based on Top of Rack (ToR) switches with a single line card. Therefore, we can

model the power consumption of a network switch at time instant t using the

following Eq. 6.2.

P switch
s (t) = P idle

s + P port
s ∗ n(p) (6.2)

Where, P idle
s is the power consumed by the switch s in an idle condition (all

ports disabled); P port
s is the power consumption of one port of switch s; n(p) is the

number of active ports of switch s. CISCO single line card switch consumes 1 kW

in full load condition, each of the ports consumes 5W (CISCO 2014).

Network Topology of a Data Center: Almost all the world-wide data

centers use the Fat-tree architecture as a network topology. Figure 6.1 shows

the Fat-tree network architecture of the data center. The Fat-tree architecture

consists of three level of switches such as core switches, aggregation switches,

access or ToR switches. Each of these switches and PMs are connected through

other switches by a link. The power consumption of switches at the data center is

dependent upon the number of switches which are in active mode (switched-on)

condition and the working duration of the switches. Two different VMs which are

allocated to different PMs in the same rack can communicate through ToR switch.

For example, VM1 allocated on pm1 and VM2 allocated on pm2 communicate

151

through s1 switch. On the other hand, if two different VMs are allocated to two

different racks then the communication among these VMs is dependent upon the

bandwidth of links. For example, VM1 allocated on pm1 and VM5 allocated on

pm5 are communicated through path s1-s9-s17-s11-s3.

The inter-connected racks of servers using a Fat-tree data center topology

consist k array three layer topology (edge, aggregation, core). Each pod (rack)

consists of ((k/2)2) number of servers and 2 layers having k/2 number of switches

and each switch consists of k number of ports. Each edge switch is connected to

k/2 servers and k/2 aggregation switches. Further, each of aggregation switches

are connected to k/2 edges and k/2 core switches. (k/2)2 core switches (each

of the core switches) are connected to k pods. Figure 6.1 shows the data center

network architecture of k = 4 port switches.

To save the energy consumption at the cloud data center, we consolidate the

VMs to minimum number of energy efficient PMs and switches. Further, the

migration of VMs from underutilized PM to energy efficient PM is carried out in

such a way that both idle PMs and idle switches will be switched-off. For example,

migration of VM7 from pm5 to pm1 is done by switching-off idle PM5 and idle

switch s3 in the data center.

Figure 6.1: Fat-tree Architecture of Data Center (Son et al. 2017).

B. ILP-based VM Allocation Problem Formulation

Before applying the branch-and-bound based exact algorithm for VM allocation

problem, we need to design a mathematical model of VM allocation problem.

152

Figure 6.2: Allocation of VMs to a PM.

Hence, the Integer Linear Programming (ILP) based mathematical model for the

VM allocation problem is described as follows:

ILP is a mathematical optimization technique consists of some or all variables

restricted to integer values (Pisinger & Sigurd 2005). Figure 6.2 shows the multi-

dimensional allocation of VMs to PMs, where two VMs are allocated to one PM.

There are multiple resources (CPU, RAM, Storage, etc.) which are requested by

the VMs to a PM. The remaining resources available on a PM after VMs allocation

is dependent on the VM allocation policy. Further, allocation of future requested

VMs to a PM, requires sufficient amount of resources at the PM. The blank area

as shown in Figure 6.2 represents the remaining total capacity of CPU, RAM, and

Storage. The two diagonals (RAM, Storage) have a lot of remaining capacity, but

with very less remaining capacity of CPU, hence the PM is unable to allocate new

requested VMs because of lack of CPU.

In our proposed work we consider multi-tenant cloud data center environment.

Thus, a PM in the data center can provide service to number of users by creating

a number of VMs at the cloud data center. Further, let us consider a data center

with m different types of PMs and n number of PMs of each type, hence the

total number of separate PMs in a data center is m′ = mn. Thus, the data

center has a set of PMs i.e. PM={pm1, pm2,pmm′} and n′ number of user’s

requested VMs, i.e. VM = {VM1, V M2, ..., V Mn′}. The resources capacity of a

pmk i.e. CPU, RAM, Storage, and number of processing elements are (pmMIPS
k ,

pmRAM
k , pmStorage

k) respectively. Further the resources i.e. cpu, ram, number

153

of processing elements, and storage requested by a VMi are (VMmips
i , VM ram

i ,

VMpe
i , VM storage

i) respectively.

To balance the allocation of resources among VMs for different PM dimensions,

we need to minimize the resource wastage of a PM. The different resources of a

PM are expressed by different units such as CPU in mips, RAM, and Storage in

Gbps, Bandwidth in Hertz etc. Hence, the normalized remaining capacity (the

ratio of remaining resources to total resources of a PM) is required to allocate

VMs in a balanced way. The utilization of a pmj at time instant t for d number

of resources is defined as:

ud
j (t) =

n′∑
i=1

fijVMd
i

pmd
j

d ∈ {MIPS,RAM,Storage},

i ∈ {1, 2, ...n′}, j ∈ {1, 2, ..m′} (6.3)

The utilization of a resource is in between 0 and 1. Further, we consider the

utilization of data center on discrete time interval. Hence, the average resources

utilization for a data center over time duration t1 to t2 is given by:

dcur =

t2∑
t=t1

∑m′

k=1(u
MIPS
k (t) + uRAM

k (t) + uStorage
k (t))

|d|
∑m′

k=1 zk
(6.4)

Where, fik is a binary variable with value of 1 when VMi allocated to pmk; zk

is a binary variable, the value of zk = 1 when pmk is used for the VM allocation

otherwise its value is 0. Further, let us consider a data center with a set of

networking switches S. Each PM in the data center is associated with a ToR

switch in the rack. The relation function of pmk and ToR switch s ∈ S is defined

by a function r : k ← s. Let us consider a Boolean variable yts that represents the

use of switch s at time slot t. The value of yts=1 if switch is in use, otherwise its

value is 0. Since, the switching-off core switches is not feasible for the data center

due to continues arrival of VMs request at the cloud data center, hence we need

to select the optimal number of PMs for the allocation of VMs. Thus, we keep the

core switches always be in switched-on condition, and we only switch-off idle ToR

switches at the cloud data center. The set of PMs within a given rack connected

to ToR switch s is PMs. Hence the number of active ports at switch s at time slot

154

t is expressed as
∑

k∈PMs
zk. The power consumption of switch s at time instant

t is described by Eq. 6.5.

P switch
s (t) = P idle

s + P port
s

∑
k∈PMs

zk (6.5)

Where, P idle
s is the power consumption of a switch in an idle condition (all

ports are disabled); P port
s is the power consumption of an enabled port.

Let us consider c be the customer and C be the set of customers in the data

center at time instant t. Further, a set of VMs requested by customer c is (VMc),

and VMi, V Mj ∈ VMc exist at the same time instance t in the data center. In

this thesis, we consider the network communication between VMs of the same

customer, then the allocation of bandwidth to VM is the maximum requirement

i.e. max{VM bw
i , V M bw

j }. The set of all the links is denoted by E and individual

link is represented by e. In the proposed work, we are not focusing on any kind

of interconnection network topology or routing protocol in the data center. We

defined a matrix Z as a communication matrix that related to end point PM to

links; for example, zekk′ represents the pmk and pmk′ and it is communicated by

networking link e. In the tree topology of the data center there exists only one

path from one server to another server.

Let us consider ce as the total capacity of link e. The bandwidth requirement

of a link e (Be) is described by Eq. 6.6.

Be =
∑
c∈C

∑
i,j∈VMc

∑
k,k′∈PM

fikfj,k′max{VM b
i , V M b

j }zekk′ ,

Where i ̸= j, and k ̸= k′ (6.6)

In our proposed VM allocation to PM problem, we assume all the VMs fit

into at least one PM, otherwise no solution exists for the VM allocation problem.

Hence, it is obvious that for the allocation of n′ number of VMs, we can not use

more than n′ number of PMs of any type where (n′ ≥ m′). Thus, we can trans-

form the VM allocation to the PM problem in a binary version where, we have

m′ = mn separate PMs at the data center. Each user requested VMs is related

with life time span VM t
i represented by start time (tsi) and destruction time (tdi),

155

VM t
i = {tsi , tdi }.

Further, the allocation of user requested VMs in network aware cloud data cen-

ter environment required different types of resources such as (mips, ram, storage,

and bandwidth). Hence, if we consider each requested resource as a dimension

then allocation of VMs to PMs looks like a multi-dimensional bin packing prob-

lem. Thus, To formulate the multidimensional VM allocation to PM problem at

the data center in binary form as an ILP model, we used the following decision

variables: if VMi is allocated left to VMj then the binary variable lij is 1; if VMj

is allocated left to VMi then the binary variable lji is 1; if VMi is below to VMj

then bij is 1; if VMj is below to VMi then bji is 1; If VMi is allocated to pmk

then the binary variable fik is 1; If pmk is used for VM allocation then the binary

variable zk is 1 otherwise its value is 0; At the end, (xi, yi) are the lower left coor-

dinates of VMi. To ensure that no two VMs overlap in terms of dimensions, then

the following inequality conditions must hold good:

lij + lji + bij + bji + (1− fik) + (1− fjk) ≥ 1, i < j,

i, j ∈ {1, 2, ..n′} k ∈ {1, 2,m′} (6.7)

If VMi is located left to VMj, then lij = 1; hence we have xi + VMmips
i ≤ xj.

In general, we defined the following constraints defined by Eq. 6.8.

lij = 1→ xi + VMmips
i ≤ xj, bij = 1→ yi + VM ram

i ≤ yj (6.8)

No dimension of the VM must exceed that of the PM dimensions, then

0 ≤ xi ≤ pmMIPS
k − VMmips

i and 0 ≤ yi ≤ pmRAM
k − VM ram

i . Further if VMi has

to be placed in some pmk then
∑m′

k=1 fik ≥ 1. pmk is used if at least one VM is

allocated in pmk, then
∑

i∈1,2,..,n′ fik > 0 → zk = 1.

Let us consider the following parameters of a PM: pmMIPS
max =

maxk∈{1,2,...m′}pm
MIPS
k , pmRAM

max = maxK∈{1,2,...m′}pm
RAM
k , and pmSTORAGE

max =

maxK∈{1,2,...m′}pm
Storage
max be the maximum PM MIPS, RAM, and Storage respec-

tively.

Since, the computational complexity of the ILP based VM allocation model

becomes high as we consider more number of dimensions of the VM. Hence, in the

156

proposed VM allocation model we consider two dimensions of VMs such as (mips,

and ram), and we did not take into account the storage requirement of VMs at

the cloud data center.

Further, if PM is in idle condition then we switched-off this PM and takes

the value of zk=0. Hence, in both the conditions of PM (idle, not utilized) the

value of zk=0. Thus, to minimize the power consumption of networking switches

and PM at the data center, using standard modeling techniques for ILP model,

the multi-dimensional VM allocation to PM problem in network-aware cloud data

center environment can be formulated as follows:

f = min{
∑

k∈PM

zkP
pm
k (t) +

∑
s∈S

ysP
switch
s (t)},

Wherek ∈ {1, 2, ...m′}, s ∈ S (6.9)

Subject to the following constraints:

lij + lji + bij + bji + (1− fik) + (1− fjk) ≥ 1, i, j ∈ {1, 2, .., n′}

k ∈ {1, 2, ..,m′}, i < j (6.10)

xi − xj + pmMIPS
max lij ≤ pmMIPS

max − VMmips
i ,

i, j ∈ {1, 2, .., n′}, k ∈ {1, 2, ..m′} (6.11)

yi − yj + pmRAM
max bij ≤ pmRAM

max − VM ram
i ,

i, j ∈ {1, 2, .., n′}, k ∈ {1, 2, ..m′} (6.12)

xi ≤ pmMIPS
k − VMmips

i + (1− fik)pm
MIPS
max ,

i, j ∈ {1, 2, .., n′}, k ∈ {1, 2, ..m′} (6.13)

yi ≤ pmRAM
k − VM ram

i + (1− fik)pm
RAM
max ,

i, j ∈ {1, 2, ..n′}k ∈ {1, 2, ..,m′} (6.14)

157

m′∑
k=1

fik ≥ 1, i ∈ {1, 2, .., n′}, k ∈ {1, 2, ..m′} (6.15)

fik ≤ zk, i ∈ {1, 2, .., n′}, k ∈ {1, 2, ..m′} (6.16)

Be ≤ ce (6.17)

Where, Eq. 6.9 describes the objective function for VM allocation problem

to save power consumption at the data center. Eqs. 6.10 to 6.17 describe the

constraints satisfaction in the form of different dimensions (mips, ram, and band-

width) of the PMs and switches. The binary variables lij, bij ∈ {1, 0}; fik ∈ {0, 1};

(xi, yi) ≥ 0; zk ∈ {0, 1}. Since, the proposed ILP based multi-objective VM allo-

cation model allocate the VMs in non-overlapping manner in the network-aware

cloud data center environment, hence we can allocate the exact amount of re-

sources as requested by the VMs. Further, our proposed ILP based VM allocation

model consists of number of binary and continues variables. Hence, the compu-

tational time complexity shows that the ILP model is very difficult to solve the

problem of VM allocation. Hence, lower bounds are required in different scenario

in order to reduce the time complexity of the problem.

C. Lower Bounds for VM Allocation

The lower bound RL for VM allocation to PM problem is given by the worst-case

performance ratio.

RL = infI∈p{
L(I)

OPT (I)
} (6.18)

Where, p is the set of all instances, L(I) is the objective value given by Eq.

6.10 for instance I, OPT (I) is the optimal objective value for instance I. Since,

we need the minimum number of power efficient PMs for the allocation of of VMs,

hence we used the power consumption model of PM as described by Eq. 6.1. Fur-

ther, to make the lower bound for the multi-dimensional VM allocation problem,

we consider the power dependent ceiling function ⌈.⌉P . The power dependent ceil-

ing function gives the minimum number of power efficient PMs for the allocation

of VMs, and the proposed lower bound is fully dependent on the power consump-

tion model of PM.

158

We can make the lower bounds from the one dimensional VM allocation prob-

lem by relaxing some of the constraints in the proposed multi-dimensional VM

allocation problem. In the one dimensional VM allocation problem, let us as-

sume n′ VM with mips dimension (VMmips
i) for i = {1, 2, ...n′}, and m types

of PM at the data center with sizes pmMIPS
k , and the power consumption Pk for

k = {1, 2, ..m}. The one dimensional VM allocation problem with arbitrary power

consumption of PM in the binary form can be formulated as follows:

min
m′∑
k=1

Pkzk (6.19)

Subject to the following constraints:

m′∑
k=1

fik = 1, i = {1, 2, ..n′} (6.20)

n′∑
i=1

VMmips
i fik ≤ pmMIPS

k zk, k = {1, 2, ..m′}

fik ∈ {0, 1}, i ∈ {1, 2, ..n′}, k ∈ {1, 2, ..m′} (6.21)

Where, m′ = mn is an upper bound on the total number of PMs used for

the VM allocation. In the one dimensional VM allocation to the PM problem,

since all the VMs have to be allocated to some PMs at the data center, hence our

proposed solution must contain a PM that can hold the largest VM by satisfying

the following valid lower bound:

Lmips = ⌈mink={1,2,..m}{Pk : pm
MIPS
k ≥ VMmips

i , i = 1, 2, ..n′}⌉P (6.22)

In the case of multi-dimensional VM allocation problem, we consider the sets

Bi for i ∈ {1, 2, ..n′} with a set of PMs types that can contain the allocated VMi

such as

Bi = {k ∈ {1, 2, ..,m} : pmMIPS
k ≥ VMmips

i ∧ pmRAM
k ≥

VM ram
i ∧ pmStorage

k ≥ VM storage
i } (6.23)

159

Any feasible solution for the allocation of VMs to PMs should satisfy at least

one PM from each of the sets of PMs types Bi. Let Pki = mink∈Bi
Pk be the

power consumption of the least power of a PM in Bi. Then the lower bound for

VM allocation problem is given by

LMIPS = ⌈maxPki⌉P where i ∈ {1, 2, ...n′} (6.24)

This lower bound value can be calculated in polynomial time O(n′m).

Lmips∧ram∧storage = ⌈maxi=1,2,..nPki⌉ is a lower bound on the solution value, and

this solution can be evaluated in polynomial time O(n′m). The continuous lower

bound in one dimensional case with PM power consumption is equal to size of

PM. Hence, Le
c =

∑n′

i=1 VMmips
i is a lower bound on the optimal value of VM

allocation problem. In the case of multi-dimensional VM allocation problem, we

consider different dimensions of VM space. Thus, if the power consumption of a

PM is dependant on the MIPS of a PM, then Le
c =

∑n
i=1 VMmips

i is a lower bound

on the optimal value of VM allocation in one-dimensional case. Hence, in the

case of multi-dimensional VM allocation problem, the lower bound on the optimal

value is described as Le
mc =

∑n′

i=1 VMmips
i VM ram

i VM storage
i . Thus, for the general

case with arbitrary power consumption of PM, the continuous lower bound for

multi-dimensional VM allocation problem is described as follows:

Lmc = ⌈
Pk0

pmMIPS
k0

pmRAM
k0

pmStorage
k0

n′∑
i=1

VMmips
i VM ram

i VM storage
i ⌉P (6.25)

The worst-case possibility of VM allocation problem is defined when all the

VMs are not fit into the cheapest PM. Hence, in this case, we can calculate a

better bound by modifying the continuous lower bound (Lmc) so that the power

consumption of allocating each of the VM is a fraction of the power consumption

of a PM in which the VMs fits. Let lj be the PM with cheapest power to VM

space ratio of Pli
/pmMIPS

lj
pmRAM

lj
pmStorage

lj
in which VMi fits. Thus, the modified

continuous lower bound (L′
mc) is as follows:

L′
mc =

n∑
i=1

VMmips
i VM ram

i VM storage
i Pli

pmMIPS
li

pmRAM
li

pmStorage
li

(6.26)

160

Hence, the maximum value of the lower bound, i.e. max{Lmc, L
′
mc} is also a

valid lower bound on the optimal solution for the muli-dimensional VM allocation

to PM problem in non network-aware data center environment.

Lmv = ⌈max{Lmc, L
′
mc}⌉

= ⌈max{
n∑

i=1

VMmips
i VM ram

i VM storage
i

pmlj
pmMIPS

lj
pmRAM

lj
pmStorage

lj

, Pk1
, .., Pkn}⌉P (6.27)

Thus, the non-network aware lower bounds are used to select the optimal

number of PMs for allocation of VMs at the data center using branch-and-bound

based exact algorithm. But in real network-aware environment, we need to select

the optimal number of both PMs and switches for the allocation of VMs at the data

center. Hence, the VMs requested bandwidth is also taken into account. Further,

the bandwidth of a link e is shared by VMs which are allocated to different PMs,

and these PMs are connected by switch s through link e. Hence, to calculate the

lower bound for network-aware one dimensional VM allocation problem, let Bs
i

and Bs
j be the sets of PMs types that can contain the VMi and VMj respectively.

Further, these sets of PMs are connected to switch s ∈ S by link e in the case of

one-dimensional VM allocation problem and contain the allocated VMi and VMj

such as:

Bs
i ∪Bs

j = {k, k′ ∈ {1, 2, ..m} : {pmMIPS
k ≥ VMmips

i

∧ {pmMIPS
k′ ≥ VMmips

i ∧max{VM bw
i , V M bw

j }} (6.28)

Hence, the valid lower bound for multi-dimensional network-aware VM alloca-

tion to PM problem (Ln
m)is given by

Ln
m = ⌈minPki ∪ minPk′j

⌉P where i, j ∈ {1, 2, ...n′} (6.29)

Bs
i ∪Bs

j = {k, k′ ∈ {1, 2, ..m} : {pmMIPS
k ≥ VMmips

i ∧

pmRAM
k ≥ VM ram

i ∧ pmStorage
k ≥ VM storage

i } ∧ {pmMIPS
k′ ≥

VMmips
i ∧ pmRAM

k′ ≥ VM ram
i ∧ pmStorage

k′ ≥ VM storage
i }∧

max{VM bw
i , V M bw

j }} (6.30)

161

Any feasible solution for network-aware VM allocation to PM should satisfy

at least one PM from the set of type Bs
i and another PM from the set of Bs

j

respectively. Let P s
k and P s

k′ be the power consumptions of the least power of

pmk and pmk′ in Bs
i and Bs

j respectively. Then, the valid lower bound for the

multi-dimensional network-aware VM allocation problem is given by:

Ln
m = ⌈maxPki ∪ maxPk′j

⌉P where i, j ∈ {1, 2, ...n′} (6.31)

Thus, these valid lower bounds are used to select both optimal number of PMs and

switches for allocation of VMs in network-aware cloud data center environment

using branch-and-bound based exact algorithm.

D. Branch-and-Bound Based Exact Algorithm

The branch-and-bound based exact algorithm for solving the VM allocation prob-

lem at the cloud data center is described as follows.

1. Notations: To calculate the optimal allocation of VMs to PMs, the fol-

lowing data is associated with each node N at the level l of the search tree such

as: a lower bound LB(N), an upper bound UB(N), and the partial solution.

Definition of symbols for an exact algorithm are as follows:

S ′(N) is a subset of unallocated user requested VMs such as (|S ′(N)| = n′ − l);

vk(N) is the number of PMs of type k that have been already used at the data

center for the allocation of VMs; v(N) is the total number of PMs of all types

that have been already used for the allocation of VMs at the data center such

as (v(N) =
∑m

k=1 vk(N)); p(N) is the sum of power consumption of all the PMs

already used for the VM allocation such as (p(N) =
∑m

k=1 vk(N)pk).

In the proposed exact algorithm for VM allocation, the branching strategy for

calculating the optimal solution in the search tree is implemented similar to that

of (Martello & Toth 1990), (Haouari & Serairi 2011). Further, the root node N0 in

the search tree contains no solution (empty solution) and other nodes at different

level l ≥ 1 consists of a partial solution (a subset of VM allocated to PM) at the

cloud data center. A child node in the search tree is created by allocating the

largest VM in the VM list to an already initialized PM (used PM) or to an empty

PM (unused PM) of type k. Therefore, a node N in the search tree may consist

162

of maximum number of child nodes equal to m + v(N). A child node N+ of a

given node N in the search tree space corresponding to allocating VMi into a PM

of type k is created if and only if the following conditions are satisfied:

(i) (C1) v(N) ≤ vu (vu is an upper bound for the total number of PMs that are

used in finding an optimal solution for the VM allocation at the data center);

(ii) (C2) vk(N) < vuk (vuk is an upper bound for the number of PMs of type k that

are used in finding an optimal solution for the VM allocation);

(iii) (C3) P (N) + PK < ub(N);

(vi) (C4) di ≤ Dk, ∀d ∈ {mips, ram, storage} (or di ≤ DK if k is initialized PM;

Hence, if the above defined conditions are met, then the lower bound value

lb(N+) is computed. Further, if lb(N+) ≥ ub(N) then the child node is pruned

from the search tree.

2. An Improved Heuristic: Let us consider a node N of the search tree

for which a lower bound value LB(N) can be calculated after satisfying one of

the previously described relaxation conditions. Let nk (k=1,2,...,m) be the total

number of PMs of type k (pmk) that have been used in the optimal solution for

VM allocation. Then, we use a heuristic approach for identifying the possibility

to pack all the VMs from S ′(N) into these PMs. The overall idea of the heuristic

approach is similar to that of the sub-set sum heuristic approach. The PMs at

the data center are first sorted in non-decreasing order on the basis of their power

consumption, then the PMs are filled one by one by allocating a subset of unal-

located VMs from the VM list in each PM. The allocation of a subset of VMs in

each of the PM should satisfy the resources constraints as defined in the proposed

ILP model for VM allocation discussed in Section 3. If no extra PM is required for

allocating the VM, then one of the feasible solution for the VM allocation problem

with a cost equal to LB(N) will be determined. Hence, a child node N is pruned

from the search tree and the present solution is accordingly updated.

3. Dominance Rules: To reduce the power consumption, and size of the

search tree, we defined the power aware dominance rules in order to reduce the

power consumption, and size of a search tree and thereby finding an optimal so-

163

lution for VM allocation problem. Further, the dominance rules fully dependent

on the power consumption a PM as described by Eq. 6.1.

Rule 1 Let us consider pmMIPS
i +pmMIPS

k ≤ pmMIPS
h and Pi+Pk ≥ Ph. Then

PM of type i, and k are mutually exclusive from each other. Thus, an optimal

solution for the VM allocation contains the value of xi = 0 or xk = 0. Further,

if the node N of a search tree uses a PM of type i (pmi), then we will create the

child node in the search tree corresponding to initializing a type k PM (pmk).

Rule 2 Let us consider 2pmMIPS
i ≤ pmMIPS

k and 2Pi ≥ Pk for i < k. Then,

an optimal solution for VM allocation should include at most one PM of type i.

Rule 3 Let us consider pmMIPS
i + pmMIPS

k ≥ pmMIPS
h and Pi + Pk ≤ Ph

for i < k < h. Then, for an optimal solution of VM allocation, a PM of type h

should not include an VMj such that pmMIPS
h − pmMIPS

k ≤ VMmips
j ≤ pmMIPS

i

or pmMIPS
h − pmMIPS

i ≤ VMmips
j ≤ pmMIPS

k . Further, if a PM of type h contains

a VM such that there is a possibility to get a better solution for VM allocation by

reallocating the VM of this PM into two different PM of type i and k respectively.

Rule 4 The rule 4 is the special case of a Rule 3. Let us consider

2pmMIPS
i ≥ pmMIPS

h and 2Pi ≤ Ph for i < h. Then, for an optimal so-

lution for VM allocation, a PM of type h should not contain VMj such that

pmMIPS
h − pmMIPS

i ≤ VMmips
j ≤ pmMIPS

i .

Except these aforementioned rules, three symmetric breaking rules are also

defined for reducing the space of search tree.

Rule 5 If VMmips
i = VMmips

j and i < j then an unallocated VMj is allocated

to a PM if an index value is not smaller than the index value of a PM, where VMi

is allocated previously. (The index value to each of the PM is assigned on the

basis of their order in which they are initialized).

Rule 6 If two already initialized PMs in the data center consist the same re-

maining resource capacity, then an unallocated VMj is allocated to the PM that

consists of the smallest index value.

Rule 7 If the remaining capacity of the resources for an used PM is equal to

the resource capacity of an empty PM, then in this case, an unallocated VMj is

164

Figure 6.3: VM Migration at the Cloud Data Center.

allocated to the previously used PM.

6.1.2 VM Migration Policy

The previously allocated VM in the data center will be destroyed from the PM

at the data center since their allotted time is over. The destruction of VMs from

the PMs thus creates the underutilized/idle PMs at the data center. Therefore, it

gives the opportunity to the data center manager to reallocate the VMs to PMs

by using the VM migration policy. Hence, with the help of VM migration policy,

we can migrate the VMs from the underutilized PM, and thus we can re-allocate

the VMs onto already initialized energy efficient PMs.

Further, switching-off the idle PM will result in saving unwanted energy con-

sumed by underutilized/idle PMs at the cloud data center. Hence, the objective

function for VM migration is defined in terms of migrating the VM from one

PM (source node) to the another PM (destination node) so that allocating the

maximum number of VMs at the destination node within their physical resources

capacity. Further, we can switch-off maximum number of idle PMs at the data

center. Figure 6.3 shows the migration of VM from underutilized PM to energy effi-

cient PM. Consider a data center consists of already used PM (PM ′), |PM ′| < m′.

Thus, the objective function for VM migration in a cloud data center is defined

as:

165

max y = (
∑
k

Pmin
k zk +

∑
s∈S

P switch
s zsk)

− (
∑
k

(
∑
k′

∑
i∈nk

P ′
izkk′i +

∑
s∈S

P switch
s zsk′)).

i ∈ {1, 2, ..n′}, k, k′ ∈ {1, 2, ..m′} (6.32)

Where, zk=1 if pmk is used for allocation of VM, otherwise zk = 0; The binary

variable zkk′i=1, if VMi migrates from pmk to pmk′ otherwise zkk′i=0; z
s
k is one

if pmk′ is connected to switch s otherwise it is 0; P ′
i is the power consumption of

VMi; nk is a set of VMs to be migrated from pmk to pmk′ .

Further, the pmk, pmk′ ∈ PM ′ and these PMs are connected to switch s by

link e, and the link capacity of link e is (ce). Hence the VM migration constraints

are defined as:

∑
k′

∑
i∈nk

VMd
i zkk′ ≤ pmd

k′(1− zk)∀d ∈ {mips, ram, storage},

i ∈ {1, 2, ..n′} k, k′ ∈ {1, 2, ..m′} (6.33)

VM bw
i ≤ ce, i ∈ {1, 2, ...n′}, e ∈ {E} (6.34)∑

k′

∑
i∈nk

zkk′i = nkzk ∀k, k′ ∈ {1, 2..m′}, i ∈ {1, 2, ..n′}, k ̸= k′ (6.35)

The constraints satisfaction for resources (MIPS, RAM, Storage) are defined

by Eq. 6.33. The bandwidth requirement constraints are defined by Eq. 6.34.

Eq. 6.35 defines the migration of a set of VMs (nk) from the source node pmk

to the destination node pmk′ . In the proposed VM migration policy, we need

to decide when to migrate the VMs and where to migrate the VMs at the data

center. Hence, to decide when to migrate the VMs from the PM, we set the lower

threshold value (ul) of all the PMs at the data center. The value of (ul) will play

the critical role not only in avoiding the Service Level Agreement (SLA) violation

but also in minimizing the energy consumption at the cloud data center. Hence,

the migration of all the VMs from the source node pmk will take place if the

166

following conditions are satisfied :

(i) The present CPU utilization of pmk should be less than the defined lower

threshold value ul of pmk be (ucpu
k < ul).

(ii) The migration cost for all the VMs allocated to pmk should be less than

the rent of VM as decided by the cloud service provider during the left over time

tl.

Hence the mathematical expression for a set of VMs (nk) for migration from

the source node pmk is defined by

nk =


If ucpu

k < ul and
∑

i∈nk
cmig
i <

∑
i∈nk

til ∗ r,

r ∈ {α, β, γ, δ}, V Mmigration

Otherwise no VM migration.

(6.36)

Where α, β, γ, δ are the rent of small, medium, large, and x.large VMs for the

unit time duration respectively.

The left over time (til) of a VMi is the difference between total life time (tit) of

VMi and current time (tic) of VMi such as til = tit − tic. The migration cost (ctmig)

for a VMi to be migrated is calculated by two factors: SLA penalty during shut

down time (sti), and migration overhead cost (mo
i). Hence, the total migration

cost is defined by Eq. 6.37.

cmig
i = sti ∗ r +mo

i (6.37)

Algorithm 6.1 describes steps of branch-and-bound based exact algorithm for

VM allocation. Where Opt is the optimal solution in the form of VM allocated to

PM. Step 1 describes the root node of the search tree which contains the empty

solution. Step 2 describes the creation of child node of the search tree. Steps 3

to 10 describe the allocation of VMs to PMs at the child node if constraints and

lower bound conditions are satisfied by the PM at the child node. Here, the child

node gives the partial solution in the form of a few VM allocated to the PM. Step

11 describes the updating of PM dimensions at the child node after allocating the

VMs to PMs. The deletion of VMs from the user requested list after allocation

to the PM is described in Step 12. Steps 13 to 15 describe the mutual exclusive

167

Algorithm 6.1 Branch-and-Bound Based Exact Algorithm

Input: VM list (VM), PM list (PM), Link set (E)

Output: Opt=Optimal solution

1: N0=empty (Root node)

2: Create child node N+

3: if (pm(N) < vu & pmk(N) < vuk & P (N) + Pk < ub(N)) then

4: for Each d do

5: if (VMd
i ≤ pmd

k & VM bw
i ≤ ce) then

6: Compute lb(N+)

7: if (lb(N
+) ≥ ub(N)) then

8: pruned N+

9: if (lb(N+) < ub(N)) then

10: Allocate VMi to pmk

11: Update pmd
k = pmd

k − VMd
i

12: Remove VMi from VM

13: if (pmi + pmk ≤ pmh & Pi + Pk ≥ Ph), i < k < h then , i, k, h ∈

{1, 2, ..m}

14: pmi and pmk are mutually exclusive

15: zi = 0||zk = 0, zi, zk ∈ {0, 1}

16: if In Node (N) pmi, and pmk are already initialized then

17: Not create child node

18: if (2pmi ≤ pmh & 2Pi ≥ Ph, i < h) then

19: At most one pmi ∈ Opt

20: if (pmi + pmk ≥ pmh & Pi + Pk ≤ Ph,i < k < h), i, h ∈ {1, 2, ..m}) then

21: pmh ∈ opt not allocated VMj

22: pmh − pmk ≤ VMj ≤ pmi

23: pmh − pmk ≤ VMj ≤ pmi or pmh − pmi ≤ VMj ≤ pmk

24: if (2pmk ≥ pmh & 2Pi ≤ Ph, i < h, i, h ∈ {1, 2, ..m}) then

25: pmh ∈ opt not included VMj

26: Allocate VMj to higher index pm where VMj is allocated.

27: if (pmi,pmj ∈ V (N) & pmd
i = pmd

j , i, j ∈ {1, 2, ..m′}) then

28: VMj is allocate to pmi

29: if (pmi ∈ V (N) & pmj /∈ V (N) & pmd
i = pmd

j) then

30: Allocate VMj to pmi

168

Algorithm 6.2 VM Migration Policy using First-Fit

Input: PM ′ ⊂ PM

Output: Migration of VM

1: VM’=empty

2: for k ← m′ do

3: if uCPU
k < ul & ctmig ∗ nk < nk ∗ r ∗ tl then

4: Put nk into VM’

5: Sort PM in non decreasing order using pj

6: for i← 1 to m′ do

7: if (k ̸= k′) and VMd
k zkk′i ≤ pmd

k(1− zk′) ∀d then

8: Allocate VM ∈ VM ′ topmj

9: Update pmd
k′ = pmd

k′ − VMd
i ∀d

10: Destroy VMi from the ni

11: Remove VMk from VM’

condition between PMs. Steps 16 to 17 describe the selection of a PM for creating

the child node. Steps 18 to 19 describe the maximum use of a single type of PM

for the creation of child node. Steps 20 to 23 describe the allocation of a VM to a

PM over power consumption criteria of different PM. Steps 24 to 26 describe the

allocation of a VM to a higher index PM. Steps 27 to 28 describe the allocation

of VM on already initialized PM at the data center.

Algorithm 6.2 describes the exact migration of VM from underutilized PM

to the energy efficient PM using the First-Fit approximation technique. Step 1

creates the empty list of VM. Steps 2 to 4 collect the VMs from the underutilized

PMs. Step 5 describes the sorting of PMs using power consumption (pk) function.

Steps 6 to 11 describe the reallocation of VMs from underutilized PM to another

energy efficient PM at the cloud data center.

6.2 PERFORMANCE EVALUATION

Experimental Setup: Since, proposed ILP model, branch-and-bound based

exact algorithm, and network aware VM migration policy consist of number of

169

Table 6.1: Configuration of PMs

PM Type PE MIPS RAM(GB) STORAGE(GB)

ProLiantM110G5XEON3075 2 2660 4 160

IBMX3250Xeonx3480 4 3067 8 250

IBM3550Xeonx5675 12 3067 16 500

variables, and methods. Thus, we did not use existing simulators for checking

the performance of the proposed work. Further, the experiment is conducted by

taking different VMs and set the size of the data center by taking constant num-

ber of PMs. Thus, we used Java 1.7 version to create network-aware cloud data

center environment, and implementation of proposed VM allocation and migra-

tion algorithms. To check the solution quality of our proposed exact algorithm,

we compared our proposed algorithm with the Best-Fit algorithm as a bench-

mark solution. For heterogeneous environment, we created three different kinds

of PMs; further we considered four different kinds of VMs in terms of resource

allocation at the data center. The configurations of the PMs and VMs are given

in Table 6.1 and Table 6.2 respectively. The different kinds of PMs configuration

are downloaded from the (IBM-Power-Model 2014) and (Dell-Power-Model 2014)

websites. The Amazon EC-2 based VMs instances are used for the creation of

VMs to PMs. The configuration of VMs instances is downloaded from Amazon

website (Amazon-Website 2014). Since, Amazon EC-2 based VMs configuration

has not specified any bandwidth requirement of VM; hence in this work, we ran-

domly selected the bandwidth requirement for each type of VMs (50 Mbps small,

60 Mbps medium, 70 Mbps large, and 80 Mbps x.large).

The power consumption of each of a 16 ports switch is 80W in full load condi-

tion (Fang et al. 2013). Each switch consists of 16 ports and each port of a switch

consumes 5W. In our experiment, we set the in-rack and out-rack link capacity of

1 Gbps respectively. For creating the Fat-tree architecture based data center, we

used 16 port switches, and the details of a Fat-tree architecture based data center

are given in Table 6.3.

170

Table 6.2: Configuration of VMs

VM Type PE MIPS RAM (GB) STORAGE (GB)

Small 1 500 0.5 40

Medium 2 1000 1 60

Large 3 1500 2 80

X.large 4 2000 3 100

Table 6.3: Data Center Configuration

Type of switches Edge Aggregation Core Total Switches Total PM Total Pods

16 ports 128 128 64 320 1024(341,341,342) 16

Results and Analysis: To handle the condition of a steady stream of new

VMs creation, we applied our proposed branch-and-bound based exact algorithm

on the arrival of each user requests at the cloud data center. Further, to remove

the time expired VMs from the PMs, we applied our proposed algorithm on a reg-

ular time interval and migrate the VMs from underutilized PM to energy efficient

PM at the cloud data center. The performance of the proposed branch-and-bound

based exact algorithm in terms of energy consumption and resources utilization

is compared with the Best-Fit algorithm as it is the benchmark for both Homo-

geneous and Heterogeneous data center environments. Further, the experiment is

conducted by taking different number of VMs and keeping size of the data center

constant by taking 1024 number of PMs in the data center. For each user request,

we set the same number of VMs of all types. For example, 400 VMs consist of

(100 small, 100 medium, 100 large, 100 x.large type of VM). Further, we divided

the total PMs of the data center into number of clusters, and each cluster consist

of the same number of PMs all the types. For example 90 PMs in a cluster consist

of (30 Type1, 30 Type2, and 30 Type3).

Table 6.4 shows the number of PMs of different types used for the VM alloca-

tion in two different data center environments (homogeneous and heterogeneous).

In the case of an exact algorithm, we need less number of PMs when compared

171

Table 6.4: Number of PMs Used at the Cloud Data Center

VM
Best Fit Exact Algorithm

Heterogeneous Homogeneous Heterogeneous Homogeneous

200 (16,42,12) 74 (14,34,10) 64

400 (32,84,24) 148 (26,67,19) 128

600 (48,126,36) 222 (38,98,27) 192

800 (64,168,48) 296 50,130,35 256

1000 (80,210,60) 370 (61,160,42) 320

Table 6.5: Number of Switches Used for VM Allocation

VM

Best Fit Exact Algorithm

Heterogeneous Homogeneous Heterogeneous Homogeneous

Pod Edge Agg. Core Pod Edge Agg. Core Pod Edge Agg. Core Pod Edge Agg. Core

200 2 9 9 1 2 10 10 1 1 8 8 1 1 1 8 1

400 3 18 18 1 3 19 12 1 2 14 14 1 2 24 24 1

600 4 26 26 1 4 28 28 1 3 21 21 1 3 24 24 1

800 5 35 35 1 5 37 37 1 4 27 27 1 4 32 32 1

1000 6 44 44 1 6 47 47 1 5 33 33 1 5 40 40 1

to the Best-Fit algorithm for the allocation of different number of VMs. The

reason behind taking less number of PMs by the branch-and-bound based exact

algorithm is due to an optimal selection of PM for the allocation of VMs using

search tree in the exact algorithm. Hence, more number of VMs are allocated to

less number of PMs in the case of an exact algorithm as compared to that of the

Best-Fit algorithm. Thus, resulting in less number of PMs used by the data center

for the allocation of VMs using the branch-and-bound based exact algorithm.

Table 6.5 shows the number of switches (core, aggregation, edge) used for the

allocation of VMs in the cloud data center network. The number of switches used

at the data center in the case of proposed exact algorithm is less when compared to

the Best-Fit algorithm for both data center environments. The proposed network-

aware lower bounds are used to select the optimal number of switches from the

data center in the case of exact algorithm. Thus, more number of VM allocated

in the same rack will result in switching-off more number of network switches.

172

Figure 6.4: % of CPU Utilization

Figure 6.4 shows the % of CPU utilization, Figure6.5 shows the % of RAM uti-

lization, and Figure 6.6 shows the % of Storage utilization at the data center. The

CPU, RAM, and Storage utilization are calculated for both homogeneous and het-

erogeneous data center environments by applying different number of VMs while

keeping number of PMs constant at the data center. The % of (CPU, RAM, and

Storage) utilization of the proposed branch-and-bound based exact algorithm is

high when compared to that of the Best-Fit algorithm in all the cases. And this

is due to less number of PMs used for the VM allocation in the case of exact

algorithm. Since, large number of PMs are switched-off, hence this will result in

less resource wastage in the data center. The gap of resources utilization between

exact algorithm and Best-Fit algorithm is increasing when taking more number

of VMs at the cloud data center. This is because of the increased gap between

number of PMs used for the allocation of VMs to PMs as shown in Table 6.4. Fur-

ther, the resources utilization graph is almost a straight line in the case of Best-Fit

algorithm. This is due to increasing number of used PMs for VM allocation on

the similar lines of increasing the number of VMs at the data center. Hence, it is

observed that there is a very less variation in the % of resources utilization.

Further, higher resource utilization will lead to excess heat generation result-

ing in hardware failure or need of more cooling devices at the cloud data center.

Hence, to avoid these issues of the data center, we need to maintain an unused

buffer area for each type of resource in the PM. Therefore, in our experiment, we

173

Figure 6.5: % of RAM Utilization

Figure 6.6: % of Storage Utilization

set the maximum resource utilization limit of CPU, RAM, and Storage to 70%,

90%, and 95% respectively. Hence, the maximum value of CPU, RAM, and, Stor-

age utilization are not going beyond the maximum set limit value as shown in

Figures 6.4, 6.5, and 6.6 respectively.

Figures 6.7 and 6.8 show the power consumption of PM and switches for differ-

ent number of VMs in heterogeneous and homogeneous data center environments,

respectively. The power consumption of the data center in the case of proposed

exact algorithm is low when compared to the Best-Fit algorithm for both het-

erogeneous and homogeneous environments. The power consumption of the data

center in the proposed exact algorithm is low (since less number of type1, type2,

and type3 PMs are used for VM allocation) when compared to that of the Best-Fit

algorithm. Hence, the power consumption of the data center is low in the case

of exact algorithm for different number of VMs. Further, the amount of power

174

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2
2 4

Pow
er i

n K
Wa

tt
N u m b e r o f V M s

 E x a c t + H e t r o g e n e o u s
 B e s t F i t + H e t r o g e n e o u s
 E x a c t + H o m o g e n e o u s
 B e s t F i t + H o m o g e n e o u s

Figure 6.7: Server Power Consumption

consumed by the switches at the cloud data center is also less in the case of ex-

act algorithm as compared to that of the Best-Fit algorithm. This is due to less

number of switches used by the data center for the allocation of the VMs to PMs.

The optimal placement of VMs to PMs will reduce the wastage of bandwidth and

also switching-off more number of idle ports, and non-active switches (access &

edge) will result in lower power consumption at the cloud data center in the case

of exact algorithm.

The total power consumption of the cloud data center is dependent on the

power consumption of the PM and network switches. Hence, reducing the number

of switched-on idle PMs and switched-on idle switches will thus reduce the total

power consumption of the cloud data center. Figure 6.9 shows the total power con-

sumption of both homogeneous and heterogeneous data center environments. The

power consumption of the data center is less in the case of exact algorithm when

compared to that of the Best-Fit algorithm. The exact algorithm gives an optimal

solution in terms of VM allocation by maintaining the switch bandwidth and PM

resource constraints. Hence, an optimal solution will be obtained by switching-off

more number of idle PMs and thereby achieving lower power consumption at the

cloud data center.

Further, to evaluate the performance of proposed VM migration technique, we

created different VMs instances as requested by the users in the discrete time in-

terval at the data center. In our experiment, we considered 1024 PMs at the data

175

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
1
2
3
4
5
6

Pow
ere

 in K
W

N u m b e r o f V M s

 E x a c t + H e t e r o g e n e o u s
 B e s t + H e t e r o g e n e o u s
 E x a c t + H o m o g e n e o u s
 B e s t + H o m o g e n e o u s

Figure 6.8: Switch Power Consumption

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
5

1 0
1 5
2 0
2 5
3 0
3 5
4 0

Po
we

r in
 KW

N u m b e r o f V M s

 E x a c t + H e t r o g e n e o u s
 B e s t F i t + H e t r o g e n e o u s
 E x a c t + H o m o g e n e o u s
 B e s t F i t + H o m o g e n e o u s

Figure 6.9: Total Power Consumption

176

1 0 2 0 3 0 4 0 5 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

Nu
mb

er
 of

 V
Ms

U s e r I D

 L a r g e
 M e i u m
 S m a l l V M s

Figure 6.10: Number of VMs Requested by Users.

center (341 type1, 341 type2, and 342 type3). Further, to derive the data center

system model, all the users’ requests will be sent to the cloud service provider

for the creation of VMs at the data center. Hence, by this way, the cloud service

provider will collect the user’s requests in the form of different VMs instances

(small, medium, large). In our experiment, we defined the user’s requested VMs

in the range of [1, 100].

The lifetime of all the VMs is set uniformly in between the set range of [30

minutes and 200 minutes]. We used constant migration overhead cost (cmig
o) in

terms of power consumption during VM migration, such as 10 watt (small), 20

watt (medium), 30 watt (large), and 40 watt (x.large). The VM allocation algo-

rithm is applied to the data center when a new user’s requests arrives at the data

center. By applying the proposed migration technique, we destroy the VMs from

the PMs at the data center after completion of time instance of VMs as requested

by the user. The proposed migration technique will migrate the VMs from the

underutilized PM to the energy efficient PM by setting the lower threshold utiliza-

tion of each PM as (ul=30%). Thus, if the current CPU utilization of a PM is less

than the set value of lower utilization threshold then PM will be in underutilized

condition. Since, our main focus is to reduce the power consumption of the PM

by the optimal allocation of VMs to PMs at the cloud data center, hence we did

not check the performance of our proposed VM migration techniques with other

existing VM migration techniques at the cloud data center.

177

1 0 2 0 3 0 4 0 5 00
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0

 T i m e S p a n o f V M s A l l o c a t i o n

Tim
e i

n M
inu

tes

U s e r I D

Figure 6.11: Time Span of VMs allocated to Data Center.

Figure 6.10 shows the total number of VMs as requested by 50 users for a pre-

defined period of time at the cloud data center. Figure 6.11 shows the duration of

VM as requested by different users during different time intervals. The total time

duration of a user requested VM allocated to the cloud data center is calculated

by the subtraction of allocation time from the destruction time i.e. (destruction

time-allocation time) using Figure 6.11.

Figure 6.12 shows the total number of PMs that are switched-on by different

techniques in heterogeneous and homogeneous data center environments during

different time instances. The proposed exact algorithm in both cloud data center

environments takes less number of PMs when compared to that of the Best-Fit

algorithm. The exact algorithm gives an optimal solution in terms of VM allo-

cation to PM. Hence, this will result in less number of PMs used for the VM

allocation by our proposed exact algorithm. Initially, in Figure 6.12, the graph

is going upward due to continuous arrival of user’s requests at the data center.

After 50 time instances, the graph is going down due to the destruction of those

VMs which have completed their specified time slots. Further, our proposed VM

migration technique will not only switch-off idle PMs but also migrate VMs from

the underutilized PMs to the energy efficient PM. The maximum number of PMs

used by the data center for the VM allocation during peak load is more than 900

as shown in Figure 6.12.

178

0 5 0 1 0 0 1 5 0 2 0 00
2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0

Nu
mb

er
of

PM
s

T i m e i n M i n u t e s

 B e s t F i t + H e t e r o g e n e o u s E x a c t + H e t e r o g e n e o u s
 B e s t F i t + H o m o g e n e o u s E x a c t + H o m o g e n e o u s

Figure 6.12: Number of PMs used for VM allocation.

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0
4
6
8

1 0
1 2
1 4
1 6
1 8
2 0
2 2

 N u m b e r o f V M s

Nu
mb

er o
f VM

s

T i m e i n M i n u t e s

Figure 6.13: Number of VMs Migrated on ul = 30%.

Figure 6.13 shows the number of VMs migrated during different time intervals

on the lower utilization threshold value (ul = 30%) at the data center. The pro-

posed First-Fit based VM migration policy will not only migrate the VMs from the

underutilized PM to the energy efficient PM at the data center, but also switches-

off underutilized (idle) PMs at the data center. The energy consumption and CPU

utilization of the data center during different periods of time instances are shown

in Figure 6.14 and Figure 6.15, respectively. The energy consumption of the data

center is low in the case of the proposed exact algorithm approach when compared

to that of the other VM allocation techniques for both data center environments.

This is due to less number of energy efficient PMs used by exact algorithm and

further migration of VMs from the underutilized PM to the energy efficient PM.

Further, switching-off the underutilized PM will result in more energy saving at

the cloud data center.

179

0 5 0 1 0 0 1 5 0 2 0 00
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

En
er

gy
 in

 K
W

*S
es

c.

T i m e i n M i n u t e s

 B e s t F i t + H e t r o g e n e o u s E x a c t + H e t r o g e n e o u s
 B e s t F i t + H o m o g e n e o u s E x a c t + H o m o g e n e o u s

Figure 6.14: Energy Consumption at the Data Center.

Initially, the energy consumption graph, as shown in Figure 6.14, is going up-

ward due to the continuous increment of number of PMs used by the data center

for the allocation of user’s requested VMs. After 50 seconds, this graph is going

down since there are no further user’s requests arriving at the cloud data center

and those VMs completed their time slots will be destroyed from the data center

resulting in switching-off more number of idle PMs. Further, the migration of

VMs from underutilized PM to the energy efficient PM will result in continuous

drop in energy consumption of the data center.

Figure 6.15 shows the % of CPU utilization of the cloud data center for dif-

ferent time instances. The CPU utilization of the proposed exact algorithm is

more than that of the Best-Fit VM allocation technique. This is due to the near

optimal placement of VMs to the PMs at the cloud data center which will result in

less number of PMs used for the VM allocation by the proposed exact algorithm.

Hence, the resource wastage in exact algorithm is less than that of the Best-Fit

VM allocation technique.

Figure 6.16 shows the total energy consumption of the data center for a

specified period of time. The energy consumption of the PM at the data center

by the proposed exact algorithm is (15%, and 12%) less for heterogeneous and ho-

mogeneous data center environments, respectively when compared to that of the

Best-Fit algorithm. Further, the energy consumption of the switches using the

exact algorithm for heterogeneous and homogeneous data center environments is

180

5 0 1 0 0 1 5 0 2 0 02 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

1 0 0

% o
f C

PU
 Ut

iliza
tion

T i m e i n M i n u t e s s

 B e s t F i t + H e t r o . E x a c t + H e t r o .
 B e s t F i t + H o m o . E x a c t + H o m o .

Figure 6.15: % of CPU Utilization.

H e t e r o g e n e o u s H o m o g e n e o u s0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

Ene
rgy

 in
KW

Sec

D a t a C e n t e r E n v i r o n m e n t

 B e s t F i t S e r v e r s E x a c t S e r v e r s
 B e s t F i t S w i t c h e s E x a c t S w i t c h e s

Figure 6.16: Total Energy Consumption.

(10%, and 8%) less than that of the Best-Fit Algorithm. Figure 6.17 shows the

average % of CPU utilization. The CPU utilization is (15%, and 10%) more in the

case of exact algorithm when compared to Best-Fit algorithm for heterogeneous

and homogeneous data center environments, respectively.

To calculate the optimal value of lower utilization threshold (ul) for VM mi-

gration, we set this threshold value in the range of [10%, 90%]. Figure 6.18 shows

the energy consumption of the data center for different lower utilization threshold

values. The energy consumption of data center is high and SLA violation is low

while decreasing the lower utilization threshold value due to less number of VMs

migrated from the underutilized PM to the energy efficient PM. On the other

hand, the energy consumption of data center is low and SLA violation is high

while increasing the lower utilization threshold value because of more number of

VMs migrated from the underutilized PM to the energy efficient PM. Hence, in

181

H e t e r o g e n e o u s H o m o g e n e o u s0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

% o
f R

eso
urc

es
Util

iza
tion

D a t a C e n t e r E n v i r o n m e n t

 B e s t F i t S e r v e r s
 E x a c t S e r v e r s

Figure 6.17: Average Resource Utilization.

0 2 0 4 0 6 0 8 01 7
1 8
1 9
2 0
2 1
2 2
2 3
2 4
2 5

Ene
rgy

 in
K*W

Sec

L o w e r U t i l i z a t i o n T h r e s h o l d

 H e t e r o g e n e o u s
 H o m o g e n e o u s

Figure 6.18: Lower Utilization Threshold.

our experiment, we set 30% as the optimal lower utilization threshold value.

For checking the scalability and performance of our proposed exact algorithm

in terms of computation time, we execute the proposed algorithm for VM allo-

cation and migration with different lower utilization threshold values. The Java

program is conducted on HP Compaq LE1902X machine (i3 processor with 2 GB

RAM). Figure 6.19 shows the running time of our proposed VM allocation and

migration by taking VMs in between [100 and 1000]. The computation time for

VM allocation and migration algorithms is approximately 4 minutes in the case

of 800 PMs. The computation time of proposed VM allocation algorithm is low

due to the modified heuristic approach used for selecting the optimal PMs for

generating the child nodes in the reduced search tree. Hence the proposed exact

algorithm based on branch-and-bound technique is suitable for large data centers

(homogeneous and heterogeneous).

182

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00
1
2
3
4
5
6
7

Tim
e in

 Mi
nut

es
N u m b e r o f V M s

 B e s t F i t E x a c t + T (3 0 %)
 E x a c t + T h r e s h o l d 4 0 %
 E x a c t + T h r e s h o l d 5 0 %
 E x a c t + T h r e s h o l d 6 0
 E x a c t + T h r e s h o l d 7 0 %
 E x a c t + T h r e s h o l d 8 0

Figure 6.19: Execution Time on Different Threshold Values.

6.3 Summary

This Chapter discussed the energy saving of PMs and switches at the network-

aware cloud data center environments (homogeneous and heterogeneous). The

proposed exact algorithm for VM allocation not only saved the energy of PMs and

network switches, but also reduced the resources wastage at the data center for

both cloud environments. Further, energy efficient VM migration using optimal

lower utilization threshold value will switch-off underutilized PMs resulting in

more energy saving with less SLA violation at the data center for both cloud

environments. Further, the performance evaluation of proposed algorithms in the

terms of energy efficiency, resources wastage, and, execution time for the VM

allocation problem in both cloud data center environments (homogeneous and

heterogeneous) are described in Chapter 7.

183

Chapter 7

Performance Evaluation of HGACSO, HGAPSO,

HGAPSOSA and Exact Algorithms

In the previous Chapters of this thesis, we proposed two types of VM allocation

algorithms such as non-network aware (HGACSO, HGAPSO, HGAPSOSA), and

network-aware (branch-and-bound based Exact algorithm). In Chapter 3, we dis-

cussed the HGACSO based VM allocation algorithm which is the hybrid combina-

tion of GA and CSO. In Chapter 4, we discussed the proposed HGAPSO algorithm

for VM allocation which is the hybrid combination of GA, and PSO. In Chapter 5,

we discussed the HGAPSOSA algorithm which is the hybrid combination of GA,

PSO, and SA. Further, In Chapter 6, we discussed the network-aware branch-and-

bound based Exact algorithm. Hence, we need to check the performance of all

the proposed VM allocation algorithms in terms of energy consumption, resources

utilization, and execution time. Thus, the key contributions of this Chapter are:

• To evaluate the performance of proposed HGACSO, HGAPSO, and HGAP-

SOSA in non-network aware data center environment, and branch-and-

bound based exact algorithm in network-aware data center environment.

• To evaluate the execution time of proposed HGACSO, HGAPSO, HGAP-

SOSA, and Exact algorithms.

7.1 Performance Evaluation

To check the performance of proposed VM allocation algorithms we need to setup

two different data center environments such as (non-network aware, and network

aware). Hence, experimental setup of data center environment is described as

follows.

185

A. Experimental Setup

To check the performance of proposed algorithms, we consider three different types

of PMs, and four different types of VMs at the cloud data center. Further, to cre-

ate the network aware data center environment, we consider 16 port networking

switch. The detailed description of PMs, and VMs are described in Section 4.2,

and the detailed description of networking switch is described in Section 6.2. Fur-

ther, all the proposed VM allocation algorithms such as HGACSO, HGAPSO,

HGAPSOSA, and branch-and-bound based Exact algorithm are implemented in

Java 1.7 version.

B. Non-Network Aware Data Center

To check the superiority of the proposed algorithms, we compared their perfor-

mance in terms of energy consumption, resources utilization, and execution time

in both homogeneous and heterogeneous data center environments. Further, the

experiment is conducted in two different cases, in Case-1 we consider different com-

binations of VMs(PMs) at the cloud data center. In Case-2 we consider variable

number of VMs and constant number of PMs at the cloud data center. For each

VMs(PMs) combination in Case-1, we set the same number of VMs and PMs of

all types. For example, 400 VM consist of (100 small, 100 medium, 100 large, 100

x.large type of VM) and 90 PM consist of (30 Type1, 30 Type2, and 30 Type3).

Case-1

The number of PMs of different types used for the allocation of VMs in two

different data center environments (homogeneous and heterogeneous) is shown in

Table 7.1. In the case of HGAPSOSA, we need less number of PMs when com-

pared to both HGACSO, and HGAPSO for the allocation of VMs for each of the

VMs(PMs) combinations. The reason behind taking less number of PMs by the

HGAPSOSA is due to an optimal selection of PMs for the allocation of VMs by

improving the performance of mutation operation using SA. Hence, more number

of VMs are allocated to less number of PMs in the case of HGAPSOSA as com-

pared to that of both HGACSO, and HGAPSO. Thus, resulting in less number

of PMs used by the data center for the allocation of VMs using the HGAPSOSA.

186

Table 7.1: Number of PMs Used at the Cloud Data Center

VM(PM)
Homgeneous Heterogeneous

HGACSO HGAPSO HGAPSOSA HGACSO HGAPSO HGAPSOSA

100(60) 37 38 33 (10,12,6) (10,13,6) (8,10,5)

200(120) 74 75 65 (20,23,12) (20,25,12) (16,20,10)

400(240) 148 150 130 (40,48,23) (40,50,24) (33,40,20)

600(360) 222 224 196 (60,71,36) (60,74,36) (49,60,30)

800(480) 296 298 260 (80,96,47) (80,98,48) (65,80,40)

1000(600) 370 372 325 (100,120,59) (100,122,60) (80,100,50)

Further, the number of PM used by both HGAPSO and HGACSO is almost same

since both seeking mode operation of HGACSO and the mutation operation of GA

achieve similar performance. Hence, both operations such as seeking mode and

mutation operations generate the same type of chromosomes, resulting in same

number of PMs for the VM allocation in the case of HGACSO and HGAPSO.

Figure 7.1 shows the % of CPU utilization, Figure7.2 shows the % of RAM uti-

lization, and Figure 7.3 shows the % of Storage utilization at both heterogeneous

and homogeneous data center environments. The % of CPU, RAM, and Storage

utilization are calculated for both homogeneous and heterogeneous data center

environments by applying different VMs(PMs) combinations. Further, solid and

dotted lines in Figures 7.1, 7.2, and 7.3 show the % of resources utilization in

heterogeneous, and homogeneous data center environments respectively.

The % of (CPU, RAM, and Storage) utilization in the case of HGAPSOSA is

high when compared to that of both HGACSO, and HGAPSO for all VMs(PMs)

combinations. And this is due to less number of PMs used for VM allocation

in the case of HGAPSOSA, when compared to that of HGACSO, and HGAPSO.

Since, large number of PMs are switched-off in the case of HGAPSOSA, hence this

will result in less resource wastage at the cloud data center. Further, in the case

of homogeneous cloud data center environment, the resources utilization graph

is almost straight line for all VMs(PMs) combinations because of the number of

PMs are switched-on at the cloud data center in the same proportion as number

of VM are increasing.

187

Further, in heterogeneous data center environment, the resources utilization is

improving when allocating more number of VMs among less number of switched-on

PMs at the cloud data center. Further, in heterogeneous cloud data center environ-

ment, the gap between the resources utilization of HGAPSOSA and that of other

proposed algorithms (HGACSO, HGAPSO) is increasing when more number of

VMs(PMs) combinations are taken into account. This is because of the increased

gap between number of PMs used for the allocation of VMs to PMs as shown in

Table 7.1. Further, the resources utilization in the case of HGACSO, is nearly

equal to HGAPSO, since the same number of PM are used by both HGACSO,

and HGAPSO algorithms.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)

4 0

4 5

5 0

5 5

%
of

CP
U U

tiliz
ati

on

V M s (P M s)

 H G A C S O + H e t r o H G A P S O S A + H e t r o H G A P S O + H o m o
 H G A P S O + H e t r o H G A C S O + H o m o H G A P S O S A + H o m o

Figure 7.1: % of CPU Utilization at the Data Center

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
7 6
7 8
8 0
8 2
8 4
8 6
8 8
9 0
9 2

%
of

RA
M

Uti
liza

tio
n

V M s (P M s)

 H G A C S O + H e t r o H G A C S O + H o m o
 H G A P S O + H e t r o H G A P S O + H o m o
 H G A P S O S A + H e t r o H G A P S O S A + H o m o

Figure 7.2: % of RAM Utilization at the Data Center

188

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)
8 6
8 8
9 0
9 2
9 4
9 6
9 8

1 0 0
1 0 2

% o
f S

tora
ge

Uti
liza

tion

V M s (P M s)

 H G A C S O + H e t r o H G A P S O + H e t r o
 H G A P S O S A + H e t r o H G A C S O + H o m o
 H G A P S O + H o m o H G A P S O S A + H o m o

Figure 7.3: % of Storage Utilization at the Data Center

Table 7.2: Number of PMs Used at the Constant Data Center

VM(PM)
Homgeneous Heterogeneous

HGACSO HGAPSO HGAPSOSA HGACSO HGAPSO HGAPSOSA

100(60) 38 40 34 (10,13,6) (11,13,6) (9,10,5)

200(120) 77 78 69 (22,26,12) (23,27,12) (18,21,10)

400(240) 149 150 132 (41,48,24) (42,49,24) (35,41,20)

600(360) 223 224 197 (61,72,36) (62,73,37) (50,61,30)

800(480) 299 300 264 (84,97,49) (85,99,50) (68,81,41)

1000(600) 371 373 325 (101,120,60) (102,121,61) (80,100,50)

Case-2

Table 7.2 shows the number of PMs used for VMs allocation in the case of tak-

ing varible number of VMs and keeping constant number of PMs at the cloud

data center. Figures 7.4, 7.5, and 7.6 show the % of CPU, RAM, and Storage

utilization respectively in both cloud data center environments (homogeneous,

heterogeneous). Further, performance of CPU, RAM, and Storage utilization is

varying while taking different number of VMs and keeping number of PMs con-

stant in both homogeneous and heterogeneous cloud data center environments.

Since, size of the chromosome is large in proportion of number of VMs requested

by the user, so there is a high probability that all hybrid bio-inspired algorithms

such as HGAPSO, HGACSO, and HGAPSOSA select idle PM in the chromosome

for the allocation of VM.

189

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)3 5

4 0

4 5

5 0

5 5

6 0

%
of

CP
U U

tiliz
atio

n

V M s (P M s)

 H G A C S O + H e t r o H G A P S O S A + H e t r o H G A P S O + H o m o
 H G A P S O + H e t r o H G A C S O + H o m o H G A P S O S A + H o m o

Figure 7.4: % of CPU Utilization at Constant Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
7 4
7 6
7 8
8 0
8 2
8 4
8 6
8 8
9 0
9 2
9 4

%
of

RA
M

Uti
liza

tion

V M s (P M s)

 H G A C S O + H e t r o H G A C S O + H o m o
 H G A P S O + H e t r o H G A P S O + H o m o
 H G A P S O S A + H e t r o H G A P S O S A + H o m o

Figure 7.5: % of RAM Utilization at Constant Data Center.

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)
8 0
8 2
8 4
8 6
8 8
9 0
9 2
9 4
9 6
9 8

1 0 0
1 0 2

%
of S

tor
age

 Ut
iliz

atio
n

V M s (P M s)

 H G A C S O + H e t r o H G A P S O + H e t r o
 H G A P S O S A + H e t r o H G A C S O + H o m o
 H G A P S O + H o m o H G A P S O S A + H o m o

Figure 7.6: % of Storage Utilization at Constant Data Center.

190

Power Consumption Analysis (Case-1 and Case-2)

Figure 7.7 shows the power consumption of data center in both homoge-

neous and heterogeneous environments for different VMs(PMs) combinations. The

power consumption of the data center in the case of HGAPSOSA is low when

compared to the HGACSO, and HGAPSO algorithms for both heterogeneous and

homogeneous environments. The power consumption of the data center in the

case of HGAPSOSA is low (since less number of type1, type2, and type3 PMs are

used for VM allocation) when compared to that of the HGAPSO, and HGACSO

algorithms. Hence, more number of PMs are switched-off at the data center, re-

sulting in low power consumption at the data center.

1 0 0 (6 0) 2 0 0 (1 2 0) 4 0 0 (2 4 0) 6 0 0 (3 6 0) 8 0 0 (4 8 0) 1 0 0 0 (6 0 0)

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

Po
we

r in
 W

att

V M s (P M s)

 H G A C S O + H e t r o
 H G A P S O + H e t r o
 H G A P S O S A + H e t r o
 H G A C S O + H o m o
 H G A P S O + H o m o
 H G A P S O S A + H o m o

Figure 7.7: Power Consumption at the Data Center

Figure 7.8 shows the power consumption of the cloud data center while taking

different number of VMs and keeping number of PMs constant at the cloud data

center. The power consumption in the case of HGAPSOSA is low when compared

to that of other two hybrid approaches (HGAPSO, HGACSO). Further, in case

of constant number of PMs the power consumption of the data center is varying

in different proportion over different number of VMs, due to the number of PMs

used for the allocation of different number of VMs at the cloud data center.

Further, to check the performance of proposed algorithms in terms of energy

consumption for non-network aware data center environment, we created different

VM instances as requested by the users in the discrete time interval at the data

center. In our experiment, we considered 1024 PMs at the data center (341 type1,

191

1 0 0 (6 0 0) 2 0 0 (6 0 0) 4 0 0 (6 0 0) 6 0 0 (6 0 0) 8 0 0 (6 0 0) 1 0 0 0 (6 0 0)

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

Po
we

r in
 W

att

V M s (P M s)

 H G A C S O + H e t r o
 H G A P S O + H e t r o
 H G A P S O S A + H e t r o
 H G A C S O + H o m o
 H G A P S O + H o m o
 H G A P S O S A + H o m o

Figure 7.8: Power Consumption at the Constant Data Center

341 type2, and 342 type3). Further, to derive the data center system model, all

the users’ requests will be sent to the cloud service provider for the creation of

VMs at the data center. Hence, by this way, the cloud service provider will collect

the user’s requests in the form of different VMs instances (small, medium, large).

In our experiment, we defined the user’s requested VMs in the range of [1, 100].

The lifetime of all the VMs is set uniformly in between the set range of [30

minutes and 200 minutes]. We used constant migration overhead cost (cmig
o) in

terms of power consumption during VM migration, such as 10 watt (small), 20

watt (medium), 30 watt (large), and 40 watt (x.large) as defined in Chapter 3.

The VM allocation algorithm is applied to the data center when a new user’s re-

quests arrive at the data center. By applying the proposed migration technique,

we destroy the VMs from the PMs at the data center after completion of time

instance of VMs as requested by the user. The proposed migration technique will

migrate the VMs from the underutilized PM to the energy efficient PM by setting

the lower threshold utilization of each PM as (ul=30%). Thus, if current CPU

utilization of a PM is less than the set value of lower utilization threshold then

PM will be in underutilized condition. Hence, we use the same VM migration

policy as discussed in Section 3.3. Further, to evaluate the performance of pro-

posed algorithms we used the same number of users requested VMs and the time

duration of VMs as discussed in Section 3.3.

192

0 5 0 1 0 0 1 5 0 2 0 0
0

1 0 0 0 0
2 0 0 0 0
3 0 0 0 0
4 0 0 0 0
5 0 0 0 0
6 0 0 0 0
7 0 0 0 0
8 0 0 0 0

En
erg

y in
 W

*Se
c.

T i m e i n M i n u t e s

 H G A C S O + H e t r o
 H G A P S O + H e t r o
 H G A P S O S A + H e t r o
 H G A C S O + H o m o
 H G A P S O + H o m o
 H G A P S O S A + H o m o

Figure 7.9: Energy Consumption at the Data Center.

Energy Consumption, Average Resource Utilization and Execution

Time Analysis of Proposed Algorithms

The energy consumption of the data center in both heterogeneous and homo-

geneous environments during different periods of time instances is shown in Figure

7.9. Further, solid and dotted lines in Figure 7.9 show the energy consumption in

heterogeneous and homogeneous data center environments, respectively. The en-

ergy consumption of the data center is low in case of HGAPSOSA when compared

to that of HGAPSO, and HGACSO for both cloud data center environments. This

is due to less number of energy efficient PMs used by HGAPSOSA and further

migration of VMs from the underutilized PM to the energy efficient PM. Further,

switching-off the underutilized PMs will result in more energy saving at the cloud

data center. Further, the energy consumption of both HGAPSO, and HGACSO

is almost similar because of same number of PMs used by the cloud data center

for the allocation of VMs.

Initially, the energy consumption graph, as shown in Figure 7.9 is going up-

ward due to the continuous rise in the number of PMs used by the cloud data

center for the allocation of user’s requested VMs. After 50 seconds, this graph is

going downward since, there is no further arrival of user’s requests at the cloud

data center, and those VMs completed their time slots will be destroyed result-

ing in switching-off more number of idle PMs at the cloud data center. Further,

migration of VMs from underutilized PM to the energy efficient PM will lead to

193

H e t e r g e n e o u s H o m o g e n e o u s
0

2 0 0
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0

En
erg

y in
 kW

Se
c.

D a t a C e n t e r E n v i r o n m e n t s

 H G A C S O
 H G A P S O
 H G A P S O S A

Figure 7.10: Total Energy Consumption.

continuous drop in the energy consumption of both (heterogeneous and homoge-

neous) cloud data center environments.

The total energy consumption, and average resources utilization at the cloud

data center is shown in Figure 7.10 and Figure 7.11 respectively. The total energy

consumption of the heterogeneous data center by using the proposed HGAPSOSA

algorithm is (8.9%, and 7.0%) less when compared to HGAPSO, and HGACSO

respectively. Further, the energy consumption of the homogeneous data center is

(7.5%, and 7.0%) less when compared to HGAPSO, and HGACSO respectively.

The % of average resources utilization of the data center in the case of HGAPSOSA

is (3.9%, and 3%) more when compared to HGAPSO, and HGACSO respectively.

Further, the % of average resources utilization of the data center in the case of

HGAPSOSA is (4.3%, and 3.7) more when compared to HGAPSO, and HGACSO

respectively. Moreover the variation in energy consumption and resources utiliza-

tion between HGACSO, and HGAPSO is very less.

To check the execution time of the proposed algorithms in non-network aware

data center environment, we conducted our experiment on the same machine as

discussed in Section 4.2. Figure 7.12 shows the execution time of the proposed

HGACSO, HGAPSO, and HGAPSOSA algorithms by taking VMs in between

[1000 and 10000]. The computation time for VM allocation in the case of HGAP-

SOSA algorithm is high as compared to the HGAPSO and this is due to modifi-

194

H e t e r g e n e o u s H o m o g e n e o u s
0

2 0

4 0

6 0

8 0

Av
era

ge
 %

 of
 Re

sou
rce

s U
tiliz

atio
n

D a t a C e n t e r E n v i r o n m e n t s

 H G A C S O H G A P S O H G A P S O S A

Figure 7.11: Average Resource Utilization.

2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0

Tim
e in

 Min
ute

s

N u m b e r o f V M s

 H G A C S O
 H G A P S O
 H G A P S O S A

Figure 7.12: Execution time of VM Allocation Algorithms.

cation of mutation operation of HGAPSOSA by using SA. And the computation

time of HGAPSOSA is low as compared to HGACSO since, PSO overcomes the

limitations of seeking mode operation of CSO, and resulting in less convergence

time. Further, computation time of HGACSO is high when compared to that of

HGAPSO. This is due to requirement of large amount of time for the convergence

in the case of seeking mode of HGACSO. Further, seeking mode operation works

in the same manner as mutation operation of the HGAPSO. Hence, HGACSO

generates similar types of solution as generated by HGAPSO.

C. Network Aware Data Center

To check the performance of proposed branch-and-bound based Exact algorithm

in network aware data center environment, we compared our proposed algorithm

with Best-Fit algorithm. The energy consumption, and resources utilization of

the data center in network aware (homogeneous and heterogeneous) data cen-

195

ter environments are discussed in Section 6.2. Further, experimental results show

that our proposed branch-and-bound based Exact algorithm outperforms Best-Fit

algorithm in terms of energy consumption, and resources utilization. Thus, en-

ergy consumption of the PMs at the data center by the proposed exact algorithm

is (15%, and 12%) less for heterogeneous and homogeneous data center environ-

ments, respectively when compared to that of the Best-Fit algorithm.

Further, the energy consumption of the network switches using the exact algo-

rithm for heterogeneous and homogeneous data center environments is (10%, and

8%) less than that of the Best-Fit Algorithm. The average resources utilization is

(15%, and 10%) more in the case of exact algorithm when compared to Best-Fit

algorithm for heterogeneous and homogeneous data center environments, respec-

tively. Further, the execution time of branch-and-bound based Exact algorithm is

4.5 minutes by taking 1000 VMs at the cloud data center.

7.2 Summary

This chapter discussed the performance evaluation of the proposed VM allocation

algorithms in two different (non-network, and network) data center environments.

Further, experimental results are carried out in homogeneous and heterogeneous

data center environments. The performance of HGAPSOSA in terms of energy

consumption, resources utilization is superior when compared to that of HGACSO,

and HGAPSO. The energy consumption and resources utilization is slightly better

in the case of HGACSO, when compared to HGAPSO. Further, the execution

time of HGAPSOSA is slightly high when compared to HGAPSO, and it is low

as compared to HGACSO. Hence, HGAPSOSA, and HGAPSO are the optimal

choices for the allocation of VMs to PMs at the non-network aware large scale

cloud data center.

In the case of network aware data center environment, the performance of

branch-and-bound based Exact algorithm in terms of energy consumption, and

resources utilization is better when compared to the Best-Fit algorithm. But, the

execution time of Exact algorithm is high when we consider more number of VMs

for the allocation at the network-aware cloud data center. Hence, Exact algorithm

196

is the optimal choice for the allocation of VMs to PMs at the network-aware cloud

data centers (small, and medium scale). Further, the conclusion and future work

directions of this thesis are described in Chapter 8.

197

Chapter 8

Conclusion and Future Directions

The energy efficient resources allocation in the form of VMs at the cloud data

center is an important and challenging problem in the cloud computing. Further,

allocation of VMs to PMs is referred to as a multi-dimensional bin packing prob-

lem. The time complexity of the problem is NP-hard/NP-complete in nature.

Hence, multi-objective (minimizing energy consumption, resources wastage, and

thermal temperature) and multi-constraints VM allocation algorithm is required

to solve the VM allocation problem in polynomial time at the cloud data center.

Further, allocation and destruction of VMs from the PMs at the cloud data center

is the continuous process of a real time cloud data center environment.

Hence, energy efficient SLA aware VM migration policy is required at the

cloud data center to migrate the VMs from underutilized PM to energy efficient

PM. Further, there is a need of energy efficient task scheduling algorithm which

not only reduces the energy consumption, but also avoids the SLA violation at

the cloud data center. The energy efficient VM allocation, and migration in the

network-aware data center environment is also a challenging and important prob-

lem at the data center. Hence, there is a need of energy efficient network-aware

VM allocation, and migration policy at the cloud data center.

Hence, the research work in this thesis is directed towards the design and devel-

opment of multi-objective, multi-constraints VM allocation, and migration policies

in both non-network, and network aware cloud data center. Further, this thesis is

directed towards the design and development of energy efficient SLA aware VM

migration, and task scheduling policies in both non-network, and network aware

cloud data center environments.

The first set of contributions of this thesis attempt to address the multi-

objective (minimizing energy consumption, and resources wastage) VM allocation

199

problem at the non-network aware cloud data center environment. The multi-

objective VM allocation to PM at the cloud data center not only saves the energy

consumption, but also reduces the resources wastage at the data center. The

multi-objective VM allocation using a hybrid combination of GA and CSO known

as HGACSO is proposed to reduce both the energy consumption and the resources

wastage at the cloud data center.

The proposed HGACSO VM allocation algorithm is effective in terms of reduc-

ing energy consumption and resources wastage by giving a near optimal solution

of VM allocation problem at the data center. Further, proposed First-Fit approx-

imation based VM migration policy migrates the VMs from underutilized PM to

energy efficient PM and thus not only saves the energy consumption, but also re-

duces SLA violation at the cloud data center. The experimental results show that

the energy consumption of the data center by the proposed HGACSO algorithm

is (20%, 16%, 14%, and 8%) less than First Fit, FFD, GA, and CSO respectively.

Further, the CPU utilization is (37%, 30%, 27%, and 15%) more in the case of

HGACSO as compared to the First-Fit, FFD, GA, and CSO respectively. But the

limitation of HGACSO is that it takes more execution time for the convergence.

The second set of contributions of this thesis attempt to address the multi-

objective (minimizing energy consumption, and resources wastage) VM allocation

problem at the non-network aware cloud data center environment. The proposed

VM allocation using a hybrid combination of GA and PSO known as HGAPSO is

proposed to reduce both the energy consumption and the resources wastage at the

cloud data center. Further, proposed task scheduling, and VM migration policies

based on First-Fit approximation not only save the energy consumption, but also

minimize the SLA violation at the cloud data center.

The proposed task scheduling constraints not only ensure the resource require-

ment of the task but also reduce the CPU wastage of the PM at the cloud data

center. Hence, resulting in less energy consumption and less SLA violation at

the cloud data center. Further, proposed VM migration policy migrates the VMs

from underutilized PM to energy efficient PM at the cloud data center. The ex-

200

perimental results show that the proposed HGAPSO saves 15% and 10% energy

at the cloud data center when compared to GA and PSO respectively. Further,

HGAPSO takes less convergence time when compared to HGACSO. But the lim-

itation of this work is that it did not consider the thermal temperature of the PM

at the cloud data center.

The third set of contributions of this thesis is to allocate multi-objective (min-

imizing energy consumption, resources wastage, and thermal tempature) VM al-

location problem at non-network aware cloud data center environment. The pro-

posed VM allocation algorithm is the hybrid combination of GA, PSO, and SA,

designed for not only reducing the energy consumption, but also for reducing the

resources wastage, and thermal temperature at the cloud data center.

Further, we reduced the limitation of the mutation operation by using SA,

and thus, we improved the solution quality of HGAPSO by using HGAPSOSA.

The experimental results demonstrated that the proposed HGAPSOSA algorithm

consumed (19%, 13%, and 5%) less energy over GA, PSO, and HGAPSO respec-

tively. The resources utilization by proposed HGAPSOSA was (33%, 21%, and

6%) more when compared to that of GA, PSO, and HGAPSO respectively at the

cloud data center. Further, the average temperature of the data center in the case

of HGAPSOSA is reduced by (10 degree, 6 degree, 3 degree) when compared to

that of GA, PSO, and HGAPSOSA respectively.

The fourth set of contributions of this thesis is to allocate the mutli-dimensional

VMs to PMs in the network-aware cloud data center environment. We considered

the fat tree architecture for the cloud based data center. Further, we proposed

branch-and-bound based exact algorithm for the allocation of VMs to PMs at the

cloud data center. Before applying our proposed branch-and-bound based exact

algorithm, we proposed ILP based mathematical model for the allocation of VMs

to PMs at the cloud data center.

Further, for the selection of optimal number of PMs and switches for the VM

allocation at the cloud data center, we proposed lower bounds. The proposed

lower bounds are used to select the optimal PMs and switches in the search tree of

201

branch-and-bound based exact algorithm. The proposed branch-and-bound based

exact algorithm will switch-off both idle PMs and idle switches and thus, resulting

in less energy consumption at the cloud data center. Further, to reduce the size

of the search tree space of branch-and-bound based exact algorithm we proposed

some dominance rules. Thus, resulting in less computation time required for the

deployment of our proposed branch-and-bound based exact algorithm.

Further, we propose an energy efficient VM migration using First-Fit approxi-

mation technique in network aware cloud data center environment. The proposed

VM migration technique migrates the VMs from underutilized PM to energy ef-

ficient PM at the network aware cloud data center environment. Further, the

experimental results show that the energy consumption of the PMs at the cloud

data center by the proposed exact algorithm is (15%, and 12%) less for hetero-

geneous and homogeneous data center environments, respectively when compared

to that of the Best-Fit algorithm.

Further, the energy consumption of the switches using the exact algorithm for

heterogeneous and homogeneous cloud data center environments is (10%, and 8%)

less than that of the Best-Fit Algorithm. While the CPU utilization is (15%, and

10%) more in the case of exact algorithm when compared to Best-Fit algorithm

for heterogeneous and homogeneous cloud data center environments, respectively.

Finally, this thesis highlighted the performance evaluation of proposed VM

allocation algorithms in both non-network, and network aware cloud data center

environments. The experimental results show that the total energy consumption

of the data center by the proposed HGAPSOSA algorithm is (8.9%, and 7.0%)

less when compared to HGAPSO, and HGACSO in heterogeneous non-network

aware cloud data center environment respectively.

Further, the energy consumption of the cloud data center by the proposed

HGAPSOSA algorithm is (7.5%, and 7.0%) less when compared to HGAPSO,

and HGACSO in homogeneous non-network aware cloud data center environ-

ments, respectively. The % of average resources utilization of the data center

in the case of HGAPSOSA is (3.9%, and 3%) more when compared to HGAPSO,

202

and HGACSO, respectively. Further, the % of average resources utilization of the

data center in the case of HGAPSOSA is (4.3%, and 3.7%) more when compared

to HGAPSO, and HGACSO respectively. The execution time of proposed HGAP-

SOSA is slightly more as compared to HGAPSO, and it is less when compare to

to that of HGACSO.

In summary, we designed and developed ILP based mathematical model of

multi-objective multi-constraints VM allocation problem in non-network, and net-

work aware cloud data center environments. Further, we designed and devel-

oped bioinspired algorithms using the hybrid combinations of GA, CSO, PSO, SA

known as (HGACSO, HGAPSO, HGAPSOSA) for non-network aware cloud data

center environment, and branch-and-bound based exact algorithm in network-

aware cloud data center environment. Further, we designed and developed First-

Fit approximation based energy efficient, SLA aware VM migration, and task

scheduling policies in both non-network, and network aware cloud data center en-

vironments.

The future directions of this research are towards the design and development

of VM allocation, and migration algorithms for geographically distributed feder-

ated cloud data center. Further, there is a need to design and develop an energy

efficient SLA aware task scheduling policy by taking work flow based dependent

task at the cloud data center.

203

References

Abdelaal, M. A., Ebrahim, G. A., & Anis, W. R. (2016). Network-aware re-

source management strategy in cloud computing environments. In Proceeding

of the 11th IEEE International Conference on Computer Engineering Systems

(ICCES-2016), 26–31.

Ajiro, Y. & Tanaka, A. (2007). Improving packing algorithms for server consolida-

tion. In Proceeding of the International Conference on Computer Management

Group (CMG-2007), 253–272.

Alsubaihi, S. & Gaudiot, J. L. (2016). Pets: Performance, energy and thermal

aware scheduler for job mapping with resource allocation in heterogeneous sys-

tems. In Proceeding of the 35th IEEE International Performance Computing

and Communications Conference (IPCCC-2016), 1–2.

Amazon-Website (2014). Specification of ec2 virtual machines instances. Available

at https://aws.amazon.com/ec2/instance-types/.

Andersen, D. G., Franklin, J., Kaminsky, M., Phanishayee, A., Tan, L., & Va-

sudevan, V. (2009). Fawn: A fast array of wimpy nodes. In Proceedings of the

ACM SIGOPS 22nd Symposium on Operating Systems Principles, SOSP, 1–14.

Aransay, I., Zapater, M., Arroba, P., & Moya, J. M. (2015). A trust and reputation

system for energy optimization in cloud data centers. In Proceeding of the 8th

IEEE International Conference on Cloud Computing, 138–145.

Asemi, R., Doostsadigh, E., Ahmadi, M., & Malazi, H. T. (2015). Energy efficieny

in virtual machines allocation for cloud data centers using the imperialist com-

petitive algorithm. In Proceedings of the 5th IEEE International Conference on

Big Data and Cloud Computing 2015, 62–67.

205

Beaumont, O., Eyraud-Dubois, L., Caro, C. T., & Rejeb, H. (2013). Heterogeneous

resource allocation under degree constraints. IEEE Transactions on Parallel and

Distributed Systems, 24 (5), 926–937.

Beloglazov, A. & Buyya, R. (2013). Managing overloaded hosts for dynamic con-

solidation of virtual machines in cloud data centers under quality of service

constraints. IEEE Transactions on Parallel and Distributed Systems, 24 (7),

1366–1379.

Benini, L., Bogliolo, A., & Micheli, G. D. (2000). A survey of design techniques for

system-level dynamic power management. IEEE Transactions on VLSI System,

8 (3), 299–316.

Bermejo, B., Guerrero, C., Lera, I., & Juiz, C. (2016). Cloud resource manage-

ment to improve energy efficiency based on local nodes optimizations. Procedia

Computer Science, 83, 878 – 885.

Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., & Buyya, R.

(2011). Cloudsim: A toolkit for modeling and simulation of cloud computing

environments and evaluation of resource provisioning algorithms. Softw. Pract.

Exper., 41 (1), 23–50.

Cardosa, M., Korupolu, M. R., & Singh, A. (2009). Shares and utilities based

power consolidation in virtualized server environments. In Proceeding of the

FIP/IEEE International Symposium on Integrated Network Management (INM-

2009), 327–334.

Caulfield, A. M., Grupp, L. M., & Swanson, S. (2009). Gordon: Using flash

memory to build fast, power-efficient clusters for data-intensive applications.

SIGARCH Comput. Archit. News, 37 (1), 217–228.

Chaudhry, M. T., Ling, T., & Manzoor, A. (2012). Considering thermal-aware

proactive and reactive scheduling and cooling for green data-centers. In Proceed-

ing of the International Conference on Advanced Computer Science Applications

and Technologies (ACSAT-2012), 87–91.

206

Chen, J., Tan, R., Wang, Y., Xing, G., Wang, X., Wang, X., Punch, B., & Colbry,

D. (2014). A sensor system for high-fidelity temperature distribution forecasting

in data centers. ACM Trans. Sen. Netw., 11 (2), 30:1–30:25.

Chen, X., Wang, L., Zomaya, A. Y., Liu, L., & Hu, S. (2015). Cloud computing for

vlsi floorplanning considering peak temperature reduction. IEEE Transactions

on Emerging Topics in Computing, 3 (4), 534–543.

Cheng, D., Rao, J., Jiang, C., & Zhou, X. (2016). Elastic power-aware resource

provisioning of heterogeneous workloads in self-sustainable datacenters. IEEE

Transactions on Computers, 65 (2), 508–521.

Chowdhury, M. R., Mahmud, M. R., & Rahman, R. M. (2015). Implementa-

tion and performance analysis of various vm placement strategies in cloudsim.

Journal of Cloud Computing, 4 (1), 20.

CISCO (2014). The green data center. Available at http://www.cisco.com/c/

en/us/products/collateral/switches/catalyst-2960-serise-switches/

product_data_sheet0900aecd80522c0c.html.

Coffman, Jr., E. G., Garey, M. R., & Johnson, D. S. (1997). : chapter A Sur-

vey: Approximation Algorithms for Bin Packing, 46–93. Boston, MA, USA:

Publishing Co. PWC.

Dabbagh, M., Hamdaoui, B., Guizani, M., & Rayes, A. (2015). Energy-efficient

resource allocation and provisioning framework for cloud data centers. IEEE

Transactions on Network and Service Management, 12 (3), 377–391.

Dai, X., Wang, J. M., & Bensaou, B. (2016). Energy-efficient virtual machines

scheduling in multi-tenant data centers. IEEE Transactions on Cloud Comput-

ing, 4 (2), 210–221.

Dalvandi, A., Gurusamy, M., & Chua, K. C. (2017). Application scheduling, place-

ment, and routing for power efficiency in cloud data centers. IEEE Transactions

on Parallel and Distributed Systems, 28 (4), 947–960.

207

http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-2960-serise-switches/product_data_sheet0900aecd80522c0c.html
http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-2960-serise-switches/product_data_sheet0900aecd80522c0c.html
http://www.cisco.com/c/en/us/products/collateral/switches/catalyst-2960-serise-switches/product_data_sheet0900aecd80522c0c.html

Dell-Power-Model (2014). Power consumption specification of servers. Available

at http://www.dell.com/.

Duggan, M., Duggan, J., Howley, E., & Barrett, E. (2016). An autonomous

network aware vm migration strategy in cloud data centres. In Proceeding of the

International Conference on Cloud and Autonomic Computing (ICCAC-2016),

24–32.

Fang, W., Liang, X., Li, S., Chiaraviglio, L., & Xiong, N. (2013). Vmplanner:

Optimizing virtual machine placement and traffic flow routing to reduce network

power costs in cloud data centers. Elsevier Journal on Computer Networks,

57 (1), 179–196.

Fioccola, G. B., Donadio, P., Canonico, R., & Ventre, G. (2016). Dynamic rout-

ing and virtual machine consolidation in green clouds. In Proceeding of the

IEEE International Conference on Cloud Computing Technology and Science

(CloudCom-2016), 590–595.

Gao, Y., Guan, H., Qi, Z., Hou, Y., & Liu, L. (2013). A multi-objective ant colony

system algorithm for virtual machine placement in cloud computing. Journal

of Computer and System Sciences, 79 (8), 1230–1242.

Gartner (2013). Gartner estimates ict industry accounts for 2 percent of global

co2 emissions. Available at https://www.gartner.com/newsroom/id/503867.

Gattulli, M., Tornatore, M., Fiandra, R., & Pattavina, A. (2014). Low-emissions

routing for cloud computing in ip-over-wdm networks with data centers. IEEE

Journal on Selected Areas in Communications, 32 (1), 28–38.

Ge, R., Feng, X., & Cameron, K. W. (2005). Performance-constrained distributed

dvs scheduling for scientific applications on power-aware clusters. In Proceedings

of the ACM/IEEE Conference on Supercomputing, 34–34.

Gmach, D., Rolia, J., Cherkasova, L., & Kemper, A. (2009). Resource pool man-

agement: Reactive versus proactive or let’s be friends. ACM Journal on Com-

puter Networks, 53 (17), 2905–2922.

208

 https://www.gartner.com/newsroom/id/503867

Gulati, A., Holler, A., Ji, M., Shanmuganathan, G., Waldspurger, C., & Zhu,

X. (2012). Vmware distributed resource management: Design, implementation,

and lessons learned. VMware Technical Journal, 1 (1), 45–64.

Gunaratne, C., Christensen, K., Nordman, B., & Suen, S. (2008). Reducing the

energy consumption of ethernet with adaptive link rate (alr). IEEE Transactions

on Computers, 57 (4), 448–461.

Guyon, D., Orgerie, A. C., Morin, C., & Agarwal, D. (2017). How much energy can

green hpc cloud users save? In 2017 25th Euromicro International Conference

on Parallel, Distributed and Network-based Processing (PDP), 416–420.

Haouari, M. & Serairi, M. (2011). Relaxations and exact solution of the variable

sized bin packing problem. Springier Journal on Computational Optimization

and Applications, 48 (2), 345–368.

He, H., Xu, G., Pang, S., & Zhao, Z. (2016). Amts: Adaptive multi-objective task

scheduling strategy in cloud computing. IEEE Journal on China Communica-

tions, 13 (4), 162–171.

He, Y., Chen, G., Wei, W., Liu, Q., Zhang, J., Zhou, T., Zhu, P., Zhu, Y., Liu, C.,

& Ahuja, N. (2015). Hta corrosion resistant technology for free cooling. In Pro-

ceeding of the 31st Thermal Measurement, Modeling Management Symposium

(SEMI-THERM), 120–126.

Heller, B., Seetharaman, S., Mahadevan, P., Yiakoumis, Y., Sharma, P., Banerjee,

S., & McKeown, N. (2010). Elastictree: Saving energy in data center networks.

In Proceedings of the 7th USENIX Conference on Networked Systems Design

and Implementation (NSDI’10), 17–17., Berkeley, CA, USA.

Hsu, C. h. & Feng, W. c. (2005). A power-aware run-time system for high-

performance computing. In Proceedings of the ACM/IEEE Conference on Su-

percomputing, IEEE Computer Society, 1–1.

IBM (2014). A report on green data center. Available at https://www-935.ibm.

com/services/us/cio/pdf/the_green_data_center_oiw03010usen.pdf.

209

https://www-935.ibm.com/services/us/cio/pdf/the_green_data_center_oiw03010usen.pdf
https://www-935.ibm.com/services/us/cio/pdf/the_green_data_center_oiw03010usen.pdf

IBM-Power-Model (2014).

IBM-Switch-Model (2014).

Jung, G., Joshi, K. R., Hiltunen, M. A., Schlichting, R. D., & Pu, C. (2009).

A cost-sensitive adaptation engine for server consolidation of multitier applica-

tions. In Proceeding of ACM/IFIP/USENIX International Conference on Dis-

tributed Systems Platforms and Open Distributed Processing, Springer, 163–183.

Karn, R. R. & Elfadel, I. A. M. (2016). Autoscaling of cores in multicore processors

using power and thermal workload signatures. In Proceeding of the 59th IEEE

International Midwest Symposium on Circuits and Systems (MWSCAS), 1–4.

Kim, N., Cho, J., & Seo, E. (2014). Energy-credit scheduler: an energy-aware

virtual machine scheduler for cloud systems. Future Generation Computer Sys-

tems, 32, 128–137.

Kinger, S. & Goyal, K. (2013). Energy-efficient cpu utilization based virtual ma-

chine scheduling in green clouds. In Proceeding of the 5th International Con-

ference on Advances in Recent Technologies in Communication and Computing

(ARTCom 2013), 28–34.

Kreith, F. (1999). The CRC handbook of thermal engineering. CRC Press, Boca

Raton, FL (US).

Kumar, S., Talwar, V., Kumar, V., Ranganathan, P., & Schwan, K. (2009). vman-

age: Loosely coupled platform and virtualization management in data centers.

In Proceedings of the 6th International Conference on Autonomic Computing

(ICAC 2009), ACM, 127–136., New York, NY, USA.

Kuo, C.-F. & Lu, Y.-F. (2014). Energy-efficient assignment for tasks on non-

dvs heterogeneous multiprocessor system. In Proceedings of the International

Conference on Research in Adaptive and Convergent Systems (RACS 2014),

314–319., New York, NY, USA.

210

Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., & Jiang, G. (2008).

Power and performance management of virtualized computing environments via

lookahead control. In Proceeding of the International Conference on Autonomic

Computing (ICAC 2008), Chicago, IL, USA, 3–12.

Kveton, B., Gandhi, P., Theocharous, G., Mannor, S., Rosario, B., & Shah, N.

(2007). Adaptive timeout policies for fast fine-grained power management. In

Proceedings of the National Conference on Artificial Intelligence, Menlo Park,

CA; Cambridge, MA; London; AAAI Press; MIT Press, volume 22, 1795.

Lawey, A. Q., El-Gorashi, T. E. H., & Elmirghani, J. M. H. (2014). Distributed

energy efficient clouds over core networks. IEEE Journal on Lightwave Tech-

nology, 32 (7), 1261–1281.

Lee, E. K., Viswanathan, H., & Pompili, D. (2012). Vmap: Proactive thermal-

aware virtual machine allocation in hpc cloud datacenters. In Proceeding of the

19th IEEE International Conference on High Performance Computing (HIPC-

2012), 1–10.

Lefevre, L. & Orgerie, A.-C. (2010). Designing and evaluating an energy efficient

cloud. The Journal of Supercomputing, 51 (3), 352–373.

Li, D., Yu, Y., He, W., Zheng, K., & He, B. (2015). Willow: Saving data cen-

ter network energy for network-limited flows. IEEE Transactions on Parallel

Distributed Systems, 26 (9), 2610–2620.

Li, H., Li, J., Yao, W., Nazarian, S., Lin, X., & Wang, Y. (2017). Fast and energy-

aware resource provisioning and task scheduling for cloud systems. In Proceeding

of the 18th IEEE Iternational Symposium on Quality Electronic Design (ISQED-

2017), 174–179.

Li, H., Zhu, H., Ren, G., Wang, H., Zhang, H., & Chen, L. (2016). Energy-aware

scheduling of workflow in cloud center with deadline constraint. In Proceeding

of the 12th IEEE International Conference on Computational Intelligence and

Security (CIS-2016), 415–418.

211

Li, X., Garraghan, P., JIANG, X., Wu, Z., & Xu, J. (2017). Holistic virtual

machine scheduling in cloud datacenters towards minimizing total energy. IEEE

Transactions on Parallel and Distributed Systems, PP(99), 1–1.

Li, X., Jiang, X., & He, Y. (2014). Virtual machine scheduling considering both

computing and cooling energy. In Proceeding of the 6th IEEE International

Symposium on Cyberspace Safety and Security (CSS-2014), 244–247.

Liu, J., Zhang, N., Kang, C., Kirschen, D. S., & Xia, Q. (2017). Decision-making

models for the participants in cloud energy storage. IEEE Transactions on

Smart Grid, PP(99), 1–1.

Liu, N., Dong, Z., & Rojas-Cessa, R. (2013). Task scheduling and server provision-

ing for energy-efficient cloud-computing data centers. In Proceeding of the 33rd

IEEE International Conference on Distributed Computing Systems Workshops

(ICDCSW-2013), 226–231.

Mahadevan, P., Sharma, P., Banerjee, S., & Ranganathan, P. (2009). Energy

aware network operations. In IEEE INFOCOM Workshops 2009, 1–6.

Martello, S. & Toth, P. (1990). Knapsack Problems: Algorithms and Computer

Implementations. New York, NY, USA: John Wiley & Sons, Inc.

Minas, L. & Ellison, B. (2009). Energy efficiency for information technology: How

to reduce power consumption in servers and data centers. Intel Press.

Nathuji, R., Isci, C., & Gorbatov, E. (2007). Exploiting platform heterogeneity

for power efficient data centers. In Proceeding of the 4th IEEE International

Conference on Autonomic Computing, 5–5., Los Alamitos, CA, USA.

Nathuji, R. & Schwan, K. (2007). Virtualpower: coordinated power management

in virtualized enterprise systems. In SIGOPS Operating Systems Review, vol-

ume 41, 265–278.

Nedevschi, S., Popa, L., Iannaccone, G., Ratnasamy, S., & Wetherall, D. (2008).

Reducing network energy consumption via sleeping and rate-adaptation. In

212

Proceedings of the 5th USENIX Symposium on Networked Systems Design and

Implementation, USENIX Association, NSDI’08, 323–336., Berkeley, CA, USA.

Nguyen, H., Shen, Z., Gu, X., Subbiah, S., & Wilkes, J. (2013). Agile: Elastic

distributed resource scaling for infrastructure-as-a-service. In Proceeding of the

USENIX International Conference on Automated Computing (ICAC13). San

Jose, CA.

Oxley, M. A., Jonardi, E., Pasricha, S., Maciejewski, A. A., Koenig, G. A., &

Siegel, H. J. (2014). Thermal, power, and co-location aware resource allocation

in heterogeneous high performance computing systems. In Proceeding of the

IEEE International Green Computing Conference (IGCC-2014), IEEE Com-

puter Society, 1–10., Los Alamitos, CA, USA.

Pantazoglou, M., Tzortzakis, G., & Delis, A. (2016). Decentralized and energy-

efficient workload management in enterprise clouds. IEEE Transactions on

Cloud Computing, 4 (2), 196–209.

Pisinger, D. & Sigurd, M. (2005). The two-dimensional bin packing problem with

variable bin sizes and costs. Discrete Optimization, 2 (2), 154–167.

Polverini, M., Cianfrani, A., Ren, S., & Vasilakos, A. V. (2014). Thermal-aware

scheduling of batch jobs in geographically distributed data centers. IEEE Trans-

actions on Cloud Computing, 2 (1), 71–84.

Prevost, J. J., Nagothu, K., Kelley, B., & Jamshidi, M. (2011). Prediction of cloud

data center networks loads using stochastic and neural models. In Proceeding

of 6th IEEE International Conference on System of Systems Engineering (SSE-

2011), 276–281.

Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., & Zhu, X. (2008).

No power struggles: Coordinated multi-level power management for the data

center. SIGARCH Comput. Archit. News, 36 (1), 48–59.

213

Shu, W., Wang, W., & Wang, Y. (2014). A novel energy-efficient resource alloca-

tion algorithm based on immune clonal optimization for green cloud computing.

EURASIP Journal on Wireless Communications and Networking, 64 (1), 64.

Snowdon, D. C., Ruocco, S., & Heiser, G. (2005). Power management and dynamic

voltage scaling: Myths and facts. In Proceedings of the workshop on power aware

real-time computing, volume 12.

Son, J., Dastjerdi, A. V., Calheiros, R., & Buyya, R. (2017). Sla-aware and

energy-efficient dynamic overbooking in sdn-based cloud data centers. IEEE

Transactions on Sustainable Computing, PP(99), 1–1.

Song, C., Wang, C., Ahuja, N., Zhou, X., & Daniel, A. (2015). Optimize data

center management with multi-tier thermal-intelligent workload placement. In

Proceeding of the 31st Thermal Measurement, Modeling Management Sympo-

sium (SEMI-THERM-2015), 25–30.

Song, Y., Wang, H., Li, Y., Feng, B., & Sun, Y. (2009). Multi-tiered on-

demand resource scheduling for vm-based data center. In Proceedings of the

2009 9th IEEE/ACM International Symposium on Cluster Computing and the

Grid, IEEE Computer Society, 148–155.

Stillwell, M., Schanzenbach, D., Vivien, F., & Casanova, H. (2009). Resource allo-

cation using virtual clusters. In Proceedings of the 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid (CCGrid-2009), 260–267.

Su, C. L., Tsui, C. Y., & Despain, A. M. (1994). Saving power in the control path

of embedded processors. IEEE Design Test of Computers, 11 (4), 24–31.

Tighe, M. & Bauer, M. (2014). Integrating cloud application autoscaling with

dynamic vm allocation. In Proceeding of the IEEE International Conference on

Network Operations and Management Symposium (NOMS-2014), 1–9.

Tiwari, V., Ashar, P., & Malik, S. (1993). Technology mapping for lower power.

In Proceedings of the 30th ACM International Design Automation Conference,

DAC ’93, 74–79., New York, NY, USA.

214

Valentini, G., Lassonde, W., Khan, S. U., Min-Allah, N., Madani, S. A., Li, J.,

Zhang, L., Wang, L., Ghani, N., Kolodziej, J., Li, H., Zomaya, A. Y., Xu, C.-

Z., Balaji, P., Vishnu, A., Pinel, F., Pecero, J. E., Kliazovich, D., & Bouvry,

P. (2013). An overview of energy efficiency techniques in cluster computing

systems. Cluster Computing, 16 (1), 3–15.

Vasudevan, V., Andersen, D., Kaminsky, M., Tan, L., Franklin, J., & Moraru, I.

(2010). Energy-efficient cluster computing with fawn: Workloads and implica-

tions. In Proceedings of the 1st International Conference on Energy-Efficient

Computing and Networking, ACM, 195–204., New York, NY, USA.

Verma, A., Ahuja, P., & Neogi, A. (2008). pmapper: power and migration cost

aware application placement in virtualized systems. In ACM/IFIP/USENIX In-

ternational Conference on Distributed Systems Platforms and Open Distributed

Processing, Springer, 243–264.

Wang, J. V., Cheng, C.-T., & Chi, K. T. (2015). A power and thermal-aware

virtual machine allocation mechanism for cloud data centers. In Communication

Workshop (ICCW), 2015 IEEE International Conference on, IEEE, 2850–2855.

Wang, S., Liu, Z., Zheng, Z., Sun, Q., & Yang, F. (2013). Particle swarm opti-

mization for energy-aware virtual machine placement optimization in virtualized

data centers. In Parallel and Distributed Systems (ICPADS), 2013 International

Conference on, IEEE, 102–109.

Wang, S., Zhou, A., Hsu, C. H., Xiao, X., & Yang, F. (2016). Provision of data-

intensive services through energy- and qos-aware virtual machine placement in

national cloud data centers. IEEE Transactions on Emerging Topics in Com-

puting, 4 (2), 290–300.

Wang, T., Xia, Y., Muppala, J., & Hamdi, M. (2017). Achieving energy effi-

ciency in data centers using an artificial intelligence abstraction model. IEEE

Transactions on Cloud Computing, PP(99), 1–1.

215

Wang, Z. & Zhang, Y.-Q. (2011). Energy-efficient task scheduling algorithms with

human intelligence based task shuffling and task relocation. In Proceedings of

the IEEE/ACM International Conference on Green Computing and Communi-

cations, IEEE Computer Society, 38–43.

Whitley, D., Gordon, V. S., & Mathias, K. (1994). Lamarckian evolution, the

baldwin effect and function optimization. 3, 5–15.

Wu, C.-M., Chang, R.-S., & Chan, H.-Y. (2014). A green energy-efficient schedul-

ing algorithm using the dvfs technique for cloud datacenters. Future Generation

Computer Systems, 37, 141–147.

Wu, Z., Li, X., Garraghan, P., Jiang, X., Ye, K., & Zomaya, A. Y. (2016). Vir-

tual machine level temperature profiling and prediction in cloud datacenters.

In Proceeding of the 36th International Conference on Distributed Computing

Systems (ICDCS-2016), 735–736.

Xie, R., Jia, X., Yang, K., & Zhang, B. (2013). Energy saving virtual machine

allocation in cloud computing. In Proceeding of the 33rd IEEE International

Conference on Distributed Computing Systems Workshops, 132–137.

Xiong, A.-p. & Xu, C.-x. (2014). Energy efficient multiresource allocation of

virtual machine based on pso in cloud data center. Mathematical Problems in

Engineering, 2014.

Xu, J. & Fortes, J. A. (2010). Multi-objective virtual machine placement in vir-

tualized data center environments. In Green Computing and Communications

(GreenCom), 2010 IEEE/ACM Int’l Conference on & Int’l Conference on Cy-

ber, Physical and Social Computing (CPSCom), IEEE, 179–188.

Xu, M., Shang, Y., Li, D., & Wang, X. (2013). Greening data center networks

with throughput-guaranteed power-aware routing. Computer Network, 57 (15),

2880–2899.

Yan, F., Lee, T. T., Hu, W., undefined, undefined, undefined, & undefined (2017).

Congestion-aware embedding of heterogeneous bandwidth virtual data centers

216

with hose model abstraction. IEEE/ACM Transactions on Networking, 25 (2),

806–819.

Yao, J., Guan, H., Luo, J., Rao, L., & Liu, X. (2015). Adaptive power manage-

ment through thermal aware workload balancing in internet data centers. IEEE

Transactions on Parallel and Distributed Systems, 26 (9), 2400–2409.

217

List of Publications

International Journals

1. N. K. Sharma, and G. R.M. Reddy, ”Multi Objective Energy Efficient Vir-

tual Machine Allocation at the Cloud Data Center ”in IEEE Transactions

on Services Computing, vol. PP, no. 99, pp. 1-1., July 2016.

2. N. K. Sharma and G. R.M. Reddy, ”A Novel Energy Efficient Network-

Aware Virtual Machines Allocation and Migration at Cloud Data Center”,

in IEEE Transactions on Services Computing (Under Review).

3. N. K. Sharma and G. Ram Mohana Reddy, A Hybrid Bio-inspired Energy

Efficient Thermal-Aware Virtual Machines Allocation and Migration at the

Cloud Data Center, Journal of Grid Computing (Under Review).

International Conferences

1. N. K. Sharma, and G. R.M. Reddy, A Novel Approach for Multi-Dimensional

Variable Sized Virtual Machine Allocation and Migration at Cloud Data

Center, 9th IEEE International Conferences on Communication Systems,

and Networks (COMSNETS-2017) 8-9 January 2017, IISC Bangalore, India.

2. N. K. Sharma, and G. R.M. Reddy, On Demand Virtual Machine Alloca-

tion and Migration at Cloud Data Center using Hybrid of Cat Swarm Op-

timization and Genetic Algorithm, 5th IEEE International Conference on

Eco-Friendly Computing and Communication Systems (ICECCS-2016), 8-9

December 2016, Maulana Azad National Institute of Technology MANIT,

Bhopal, India.

3. N. K. Sharma, and G. R.M. Reddy, Multi-Objective Resources Allocation

Using Improved Genetic Algorithm at Cloud Data Center, 5th IEEE Interna-

tional Conference of Cloud Computing for Emerging Markets (CCEM-2016),

19-21 October 2016 Conduced by IBM Bangalore, India.

219

4. N. K. Sharma, and G. R.M. Reddy, A Novel Energy Efficient Resources Allo-

cation using Hybrid Approach of Genetic DVFSWith Bin Packing, 6th IEEE

International Conference on Communication System and Network Technol-

ogy (CSNT-2015), 4-6 April, 2015, MIR Lab Gwalior, India.

5. N. K. Sharma, and G. R.M. Reddy, Novel Energy Efficient Virtual Machine

Allocation at Data Center Using Genetic Algorithm, 3rd IEEE International

Conference on Signal Processing, Communication and Networking (ICSCN-

2015), 26-28 March 2015, Anna University, Chennai, India.

6. N. K. Sharma and G. R. M. Reddy, Energy Efficient Virtual Machine Allo-

cation and Migration at Cloud Data Center, 13th IEEE International Con-

ference on Services Computing (IEEE SCC 2016), 25-30 June 2016, San

Francisco, USA (Accepted).

7. N. K. Sharma and G. R. M. Reddy, ”Energy Efficient Quality of Service

Aware Virtual Machine Migration in Cloud Computing”, 4th IEEE Inter-

national Conference on Recent Advances in Information Technology (RAIT

2018), March 15-17, 2018, IIT(ISM) Dhanbad, India.

220

Brief Bio-Data

Neeraj Kumar Sharma

Research Scholar

Department of Information and Technology

National Institute of Technology Karnataka, Surathkal

P.O. Srinivasnagar

Manglore, 575025

Phone: 07353092246

Email: neeraj16ks@gmail.com

Permanent Address

Neeraj Kumar Sharma

26, Srvodya Colony, Bhandariya Road

khnadwa, 450001

Madhya Pradesh

Qualification

M.E. Software IET, Devi Ahilya Vishwavidyalaya, Indore, Madhya Pradesh,

2010.

B.E. Computer Science and Engineering, Rajiv Gandhi Proudyogiki Vish-

wavidyalaya, Bhopal, Madhya Pradesh, 2005.

221

	1 Introduction
	1.1 Cloud Computing
	1.2 Cloud Computing Characteristics
	1.3 Types of Cloud Computing Models
	1.3.1 Service Models
	1.3.2 Deployment Models

	1.4 Cloud Computing Technologies
	1.4.1 Virtualization
	1.4.2 Load Balancing
	1.4.3 Scalability and Elasticity
	1.4.4 Monitoring
	1.4.5 Service Level Agreement
	1.4.6 Billing Models

	1.5 Energy Efficient Green Cloud Computing
	1.5.1 Green Data Center
	1.5.2 Power Consumption at Cloud Data Center

	1.6 Challenges
	1.7 Motivation
	1.8 Organization of Thesis
	1.9 Summary

	2 Literature Review
	2.1 Data Center Power Management Techniques
	2.1.1 Static Power Management Techniques
	2.1.2 Dynamic Power Management Techniques
	2.1.2.1 Hardware Level Solution
	2.1.2.2 Software Level Solution

	2.2 Outcome of Literature Review
	2.3 Problem Statement
	2.4 Research Objectives
	2.5 Summary

	3 Energy Efficient VM Allocation, Migration Using HGACSO
	3.1 Proposed Work
	3.1.1 VM Allocation Using Proposed HGACSO
	3.1.2 VM Migration Using First-Fit

	3.2 Experimental Setup, Results and Analysis
	3.3 Summary

	4 Energy Efficient VM Allocation, Migration, and Task Scheduling Using HGAPSO
	4.1 VM Allocation Using Proposed HGAPSO Algorithm
	4.1.1 Energy Efficient SLA Aware Task Scheduling
	4.1.2 Energy Efficient SLA Aware VM Migration

	4.2 Experimental Setup, Results and Analysis
	4.3 Summary

	5 Energy Efficient Thermal Aware VM Allocation and Migration Using HGAPSOSA
	5.1 Proposed Work
	5.1.1 VM Allocation Using Proposed HGAPSOSA
	5.1.2 Energy Efficient Thermal Aware VM Migration

	5.2 Experimental Setup, Results and Analysis
	5.3 Summary

	6 Energy Efficient Network-Aware Resource Management Using Exact Algorithm
	6.1 Proposed Work
	6.1.1 VM Allocation Using Branch-and-Bound Based Exact Algorithm
	6.1.2 VM Migration Policy

	6.2 PERFORMANCE EVALUATION
	6.3 Summary

	7 Performance Evaluation of HGACSO, HGAPSO, HGAPSOSA and Exact Algorithms
	7.1 Performance Evaluation
	7.2 Summary

	8 Conclusion and Future Directions
	References
	List of Publications

