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ABSTRACT

In this thesis, we consider steepest descent method and minimal error method for

approximating a solution of the nonlinear ill-posed operator equation F (x) = y,

where F : D(F ) ⊆ X → Y is nonlinear Fréchet differentiable operator between the

Hilbert spaces X and Y. In practical application, we have only noisy data yδ with

∥y − yδ∥ ≤ δ. To our knowledge, convergence rate result for the steepest descent

method and minimal error method with noisy data are not known. We provide

error estimate for these methods with noisy data. We modified these methods with

less computational cost. Error estimate for steepest descent method and minimal

error method is not known under Hölder-type source condition. We provide an

error estimate for these methods under Hölder-type source condition and also with

noisy data. We also studied the regularized version of steepest descent method

and regularization parameter in this regularized version is selected through the

adaptive scheme of Pereverzev and Schock (2005).

Keywords: Ill-posed nonlinear equations, Steepest descent method, Mini-

mal error method, Regularization method, Tikhonov regularization, Discrep-

ancy principle, Balancing principle.

Mathematics Subject Classification: 65J15, 65J20, 47H17, 47A52.
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Chapter 1

INTRODUCTION

American mathematician Keller (1976) introduced the general definition of inverse

problem and his frequently quoted statement is “We call two problems inverses of

one another if the formulation of each involves all or part of the solution of the

other. Direct problems have been studied widely for some time, while the other

is newer and not so well understood and it is called the inverse problem.” In-

verse problems are some of the most important mathematical problems in science

and mathematics because they tell us about parameters that we cannot directly

observe. They have wide application in optics, radar, acoustics, communication

theory, signal processing, medical imaging, oceanography, geophysics, computer

vision, astronomy, remote sensing, machine learning, natural language process-

ing, and many other fields. Inverse problem is a very active field of research in

applied sciences. Many inverse problems in science and engineering have their

mathematical formulation as an operator equation

F (x) = y, (1.0.1)

where F : X → Y is a linear or nonlinear operator between suitable normed

spaces, y is the observation and x is sought for the solution. Inverse problems

most often do not fulfill Hadamard’s postulates of well-posedness (see Section 1.1

below) i.e., the equation (1.0.1) might not have a solution in the strict sense,

solution might not be unique and/or might not depend continuously on the data.

Hence their mathematical analysis is subtle. Problems that are not well-posed in

the sense of Hadamard [Hadamard (1953)] are termed ill-posed. Inverse problems

are often ill-posed.
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Throughout the thesis we will be using the following notations.

• Let ⟨., .⟩ and ∥.∥, respectively stand for inner product and norm.

• D(F ) denotes the domain of F.

• R(F ) denotes the range of F .

• Fréchet derivative of F is denoted by F ′(.) (see definition 1.1.2) and its

adjoint by F ′(.)∗.

• B(x, r), B(x, r) stand, respectively for the open and closed balls in X, with

center x ∈ X and of radius r > 0.

1.1 Ill-posed problem

French mathematician Hadamard (1953) formulated the following conditions of

well-posedness of mathematical problems. The problem of solving the operator

equation (1.0.1) is said to be well-posed (according to Hadamard) if the following

three conditions are fulfilled:

(a) for each y ∈ Y, there is a solution x ∈ X of (1.0.1) (existence);

(b) the solution x is unique (uniqueness);

(c) the dependence of x upon F is continuous (stability).

It is evident from the definition that the well-posedness of (1.0.1) is intimately

connected not only with the operator F, but also with the spaces X and Y and

the topologies they carry, i.e., well-posedness is a property of the triple (F,X, Y ).

Clearly for (a) to hold, we must have Y = F (X) that is the mapping F : X → Y

must be surjective. Condition (b) is of course equivalent to injectivity of F and

the condition (c) is merely another way of saying that, the inverse mapping of

F is continuous. That means the operator F in (1.0.1) is bijective and F−1 is

2



continuous. The operator equation (1.0.1) which is not well-posed is called ill-

posed. Since the theory of linear ill-posed problems are well developed [Groetsch

(1984); Engl et al. (1996); Nashed (1976)], we are interested in studying nonlinear

ill-posed problems.

1.1.1 Nonlinear ill-posed problem

Let X and Y be linear spaces and F is a nonlinear operator from D(F ) ⊆ X into

Y. As for linear case the theory is not so well developed in nonlinear case. If F

is not surjective, then the operator equation (1.0.1) is not solvable. We use the

concept of an x∗ -minimum-norm solution x̂. We need the following definitions in

the sequel.

DEFINITION 1.1.1 (Engl et al. (1996)). Let X and Y be Hilbert spaces and

F : D(F ) ⊆ X → Y is a nonlinear operator. We say that x̂ is an x∗ -minimum-

norm solution of (1.0.1) if

F (x̂) = y

and

∥x̂− x∗∥ = min{∥x− x∗∥ : F (x) = y}.

An x∗ -minimum-norm solution x̂ need not exist. If at all it exists, it need not

be unique.

DEFINITION 1.1.2. Let F be an operator mapping from a Hilbert space X into

Hilbert space Y . If there exists a bounded linear operator L : X → Y such that for

x0 ∈ X

lim
h→0

∥F (x0 + h)− F (x0)− L(h)∥
∥h∥

= 0,

then F is said to be a Fréchet-differentiable at x0 and the bounded linear operator

F ′(x0) := L is called the first Fréchet-derivative of F at x0.

If F is a nonlinear and Fréchet differentiable, then there are several possibilities:

3



(a) If F ′(x0) is boundedly invertible at some x0, then F (x0) is a local homeo-

morphism at this point by Inverse function theorem, but it may not be a

global homeomorphism.

(b) If F ′(x0) is not boundedly invertible does not imply that F is not a homeo-

morphism. For example, a homeomorphism F (x0) may have compact deriva-

tive, so its linearization yields an ill-posed problem. Otherwise F (x0) may

be compact, so (1.0.1) is ill-posed, but F ′(x0) may be a finite rank operator.

Hence for a nonlinear operator F, there are several possibilities of ill-posedness

[Ramm (2005)] as seen above (see (a) and (b) above). Thus, for nonlinear case

ill-posedness always means that the solution does not depend continuously on the

data, i.e, F ′(.) is not boundedly invertible. We assume throughout the thesis that

• Equation (1.0.1) is ill-posed in the sense that the solution is not depending

continuously on the given data y.

• Equation (1.0.1) has a solution x̂.

• The available data yδ ∈ Y such that ∥y − yδ∥ ≤ δ.

Next we give two examples of nonlinear ill-posed problems.

EXAMPLE 1.1.3 (Scherzer et al. (1993)). Consider the problem of estimating

c in

−∆u+ cu = f in Ω, (1.1.2)

u = g in ∂Ω,

where Ω is a bounded domain in R2 or R3 with smooth boundary or with Ω being

a parallelepiped, f ∈ L2(Ω) and g ∈ H
3
2 (∂Ω). Let c0 ∈ U, where

U = {c ∈ L2 : c(x) ≥ 0 a.e. on Ω}.

4



The nonlinear mapping F : D(F ) ⊆ L2(Ω) → L2(Ω) is defined as the parameter

to solution mapping

F (c) = u(c)

with u(c) the solution of (1.1.2) and, with some ϵ > 0,

D(F ) := {c ∈ L2 : ∥c− c̃∥ ≤ ϵ for some c̃ ∈ U}.

EXAMPLE 1.1.4. (cf. Hoang and Ramm (2010)) Consider a nonlinear operator

equation F : H = L2[0, 1] → H defined by

F (u) :=

∫ 1

0

e−|x−y|u(y)dy + (arctan(u))3.

The Fréchet derivative of F is

F ′(u)w =
3(arctan(u))2

1 + u2
w +

∫ 1

0

e−|x−y|w(y)dy.

If u(x) vanishes on a set of positive Lebesgue measure, then F ′(u) is not boundedly

invertible. If u ∈ C[0, 1] vanishes even at one point x0, then F
′(u) is not boundedly

invertible in H.

1.1.2 Regularization Method

Procedures that lead to stable approximations to an ill-posed problems are called

regularization methods. Since (1.0.1) is ill-posed in general, the strong conver-

gence and stability of approximate solutions can be proved only by applying some

regularization procedure. The most widely used regularization methods for (1.0.1)

with nonlinear F and approximate data yδ are:

1. Tikhonov regularization method in which the solution xδα of the equation

F ′(x)∗(F (x)− yδ) + α(x− x0) = 0

is taken as the approximate solution of (1.0.1) [Tautenhahn and Jin (2003)].

5



2. If F is monotone operator and X = Y , in this case one consider Lavrentiev

regularization method, in which the solution xδα of the equation

F (x) + α(x− x0) = yδ

is taken as an approximate for x̂ [Tautenhahn (2002)].

In our study we will be using Tikhonov regularization method for obtaining stable

approximation for x̂.

1.1.3 Source Conditions

To obtain error bounds on the distance ∥xδα−x̂∥ one needs some additional smooth-

ness assumptions on x̂−x0 with respect to the operator F ′(x̂) or F ′(x0) are called

the source condition. Various source conditions are used in the literature. For

example Hölder-type source condition [Tautenhahn (2002),Tautenhahn (2004)],

of the form x̂ − x0 ∈ R((F ′(x̂)∗F ′(x̂)ν), 0 < ν ≤ 1, general source condition

x̂ − x0 ∈ R(ϕ((F ′(x̂)∗F ′(x̂))), with index functions ϕ [Semenova (2010); Argyros

et al. (2013); Nair and Mahale (2013); Argyros et al. (2014)] and the new varia-

tional source conditions [Hofmann et al. (2016)]. In our study, we will be using

Hölder-type and the general source conditions with respect to the operator F ′(x0).

1.1.4 Discrepency principle

An a priori choices should be based on some a priori knowledge of the exact so-

lution, namely its smoothness, but unfortunately in practice this information is

often not available. This motivates the necessity of looking for a-posteriori param-

eter choice rules. The most famous a-posteriori choice, the discrepancy principle

(introduced for the first time by Morozov (1966)) and some other important im-

proved choices depending both on the noise level and on the noisy data [Vainikko

(1982); George (2010a)]. In the context of iterative methods, the discrepancy prin-

ciple will be the stopping rule.
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Stopping Rule: [Hanke (1995)] Assume ∥y− yδ∥ < δ. Fix τ > 0, and terminate

the iteration when, for the first time, ∥yδ − F (xδk)∥ ≤ τδ. Denote by k(δ, yδ) the

resulting stopping index.

1.2 Steepest Descent Method

Steepest descent method is one of the Gradient methods. It was proposed by

Cauchy in 1847. To find a local minimum of a function using gradient descent,

one takes each step proportional to the negative of the gradient (or of the approx-

imate gradient) of the function at the current point. If instead one takes steps

proportional to the positive of the gradient, we approaches a local maximum of

that function; the procedure is then known as gradient ascent. This method is

based on the observation that if the multi-variable function f(x) is defined and

differentiable in a neighborhood of a point a, then f decreases fastest if one goes

from a in the direction of the negative gradient of f at a i.e.,−∇f(a). It follows

that, if b = a−γ∇f(a), for γ small enough, then f(a) ≥ f(b). In other words, the

term γ∇f(a) is subtracted from ‘a’ because we want to move against the gradi-

ent, namely down toward the minimum. So, one starts with a guess x0 for a local

minimum of f , and consider the sequence x0, x1, x2, · · · such that

xn+1 = xn − γn∇f(xn), ∀n ≥ 0.

We have f(x0) ≥ f(x1) ≥ f(x2) ≥ · · · , so hopefully the sequence (xn) converges

to the desired local minimum. Note that the value of the step size γ is allowed

to change at every iteration. With certain assumptions on the function f (for

example, f convex and ∇f Lipschitz) and particular choices of γ (e.g., chosen via

a line search that satisfies the Wolfe conditions), convergence to a local minimum

can be guaranteed. When the function f is convex, all local minima are also global

minima, so in this case gradient descent can converge to the global solution.

7



1.2.1 Steepest descent method for ill-posed equations

Our study focuses on modified steepest descent method and a modified minimal

error method for approximately solving the operator equation (1.0.1), where F :

D(F ) ⊆ X → Y is a nonlinear Fréchet differentiable operator between the Hilbert

spaces X and Y. Steepest descent method for (1.0.1) is given by

xk+1 = xk + αksk, k = 0, 1, 2, . . . . . . . . . (1.2.3)

where sk is the search direction taken as the negative gradient of the minimiza-

tion functional involved and αk is the descent.

1.2.2 Previous studies

• Neubauer and Scherzer (1995) considered the steepest descent method (SDM)

and the minimal error method (MEM) in the noise free case as:

steepest descent method

xk+1 = xk + αksk (k = 0, 1, 2, . . .)

sk = −F ′(xk)
∗(F (xk)− y) (1.2.4)

αk =
∥sk∥2

∥F ′(xk)sk∥2

minimal error method

xk+1 = xk + αksk (k = 0, 1, 2, . . .)

sk = −F ′(xk)
∗(F (xk)− y) (1.2.5)

αk =
∥F (xk)− y∥2

∥sk∥2

• Method (1.2.3) was studied by Scherzer (1996) when sk = −F ′(xk)
∗(F (xk)−

yδ) and αk =
∥sk∥2

∥F ′(xk)∗sk∥2
.

• For linear operator F, Gilyazov (1997) studied (α− process) method (1.2.3)

when sk = −F ′(xk)
∗(F (xk)− yδ) and αk =

⟨(F ∗F )αsk,sk⟩
⟨(F ∗F )αsk,F ∗Fsk⟩

.
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• The TIGRA-method of Ramlau (2003) is of the form (1.2.3) with sk =

−[F ′(xk)
∗(F (xk)− yδ) + αk(x0 − xk)] and αk = βk.

• Vasin (2013) considered a regularized version of the steepest descent method

in which sk = −F ′(xk)
∗(F (xk)−yδ)+α(xk−x0) and αk =

∥sk∥2
∥F ′(xk)sk∥2+α∥sk∥2

,

x0 is the initial guess.

Note that, in all these methods, one has to compute Fréchet derivative of F at

each iterate xk in each iteration step which is in general very expensive. To reduce

the computational cost, we considered the above iterative methods which involve

Fréchet derivative of F at only the initial guess x0.

1.3 Outline of the thesis

The rest of the thesis is structured as follows.

Chapter 2 deals with the frozen regularized steepest descent method (FRSDM).

The regularization parameter is selected through the adaptive parameter choice

strategy given in (Pereverzev and Schock, 2005). Finite dimensional realization of

this method is also considered in this Chapter. Numerical example shows that the

efficiency of our method FRSDM compared to the method considered in (Argyros

et al., 2014).

In Chapter 3, we consider modified steepest descent method (MSDM) and

modified minimal error method (MMEM) which involves Fréchet derivative of F

at only the initial guess x0. According to our knowledge, no convergence rate

results are known for steepest descent method and minimal error method with

noisy data. We obtained convergence rate result for both modified methods and

existing methods.

Chapter 4 deals with error estimate for steepest descent method and minimal

error method under general Hölder-type source condition

x0 − x̂ ∈ R((F ′(x0)
∗F ′(x0))

ν), for 0 < ν < 1. (1.3.6)
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Using the above source condition we obtain the convergence rate result for

MSDM and MMEM for ν = 1
2
in Chapter 3. But we could not obtain convergence

rate result for MSDM and MMEM with ν ̸= 1
2
even for SDM and MEM. So we

further modified the MSDM and MMEM with exact data y and noisy data yδ.

We obtained convergence rate result for modified form of minimal error method

(MFMEM) under the source condition (1.3.6) with 0 < ν < 1
2
and for modified

form of steepest descent method (MFSDM) under the source condition (1.3.6)

with 0 < ν < 1
4
.

In Chapter 5, we consider nonlinear Hammerstein type operator equation which

is the composition of bounded linear operator and nonlinear operator. The solution

of linear operator equation is approximated through Tikhonov regularization and

the solution of nonlinear operator equation is approximated using the method

considered in Chapter 2.

Chapter 6 gives the conclusion of the thesis and future work.
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Chapter 2

NUMERICAL APPROXIMATION

OF A TIKHONOV TYPE REGU-

LARIZER

In this Chapter, we present a frozen regularized steepest descent method and

its finite dimensional realization for obtaining an approximate solution for the

nonlinear ill-posed operator equation F (x) = y. The balancing principle considered

by Pereverzev and Schock (2005) is used for choosing the regularization parameter.

The error estimate is derived under a general source condition and is of ‘optimal

order’. Numerical example provided proves the efficiency of the proposed method.

2.1 Introduction

Steepest descent method was considered by Scherzer (1996), Neubauer and Scherzer

(1995) for approximately solving the operator equation

F (x) = y. (2.1.1)

In the present study, we consider a modified form of (1.2.3), namely frozen regu-

larized steepest descent method (FRSDM) defined for each k = 0, 1, 2, · · · by

xk+1 = xk − β[F ′(x0)
∗(F (xk)− yδ) + α(xk − x0)], (2.1.2)

where x0 is the initial point, β > 0 is a fixed parameter and α > 0 is the reg-

ularization parameter. Further, note that in method (2.1.2), we have frozen the
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Fréchet derivative at x0 throughout the iteration. That is why, we call this method

(2.1.2) as frozen regularized steepest descent method. This is one of the advan-

tage of the proposed method. Observe that (2.1.2) is of the form (1.2.3) with

sk = −[F ′(x0)
∗(F (xk)− yδ)+α(xk −x0)] and αk = β, for each k = 1, 2, · · · . Since

αk = β, one need not have to compute αk in each step as in the earlier studies such

as Scherzer (1996); Neubauer and Scherzer (1995); Vasin (2013). In other-words,

the computational work is reduced considerably in the proposed method (2.1.2).

Note that method FRSDM coincide with the method considered in Argyros

et al. (2014) when β = 1, but our convergence analysis is different from that of

Argyros et al. (2014) and is based on the property of the norm of a self adjoint

operator in Hilbert space (see Section 2.2). Moreover, the condition on the radius

of the convergence ball in Argyros et al. (2014) is too restrictive than the condition

in this Chapter. The numerical experiments (see comparison Table 2.1) also show

that, the method considered in this Chapter provides better error estimate than

that of the method considered in Argyros et al. (2014). We also consider the finite

dimensional realization of the method FRSDM in Section 2.3. The error analysis

and the algorithm for implementing the method FRSDM are given in Section 2.4.

Finally the numerical results are given in Section 2.5.

2.2 Convergence analysis of FRSDM

Throughout this Chapter, we assume that the operator F satisfies the following

assumptions.

ASSUMPTION 2.2.1.

(a) There exists a constant k0 > 0 such that for every x ∈ D(F ) and v ∈ X, there

exists an element Φ(x, x0, v) ∈ X satisfying

[F ′(x)− F ′(x0)]v = F ′(x0)Φ(x, x0, v), ∥Φ(x, x0, v)∥ ≤ k0∥v∥∥x− x0∥.
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(b)

∥F ′(x0)∥ ≤M.

Notice that in the literature the stronger than (a) condition

(a)′

[F ′(x)− F ′(z)]v = F ′(z)ξ(x, z, v), ∥ξ(x, z, v)∥ ≤ K∥v∥∥x− z∥

is used for some ξ(x, z, v) ∈ X. However,

k0 ≤ K

holds in general and K
k0

can be arbitrarily large Argyros (2008). It is also worth

noticing that (a)′ implies (a) but not necessarily vice versa and element ξ is less

accurate and more difficult to find than Φ (see the numerical example in Argyros

et al. (2014)).

ASSUMPTION 2.2.2. There exists a continuous, strictly monotonically in-

creasing function φ : (0, a] → (0,∞) with a ≥ ∥F ′(x0)∥2 satisfying;

• lim
λ→0

φ(λ) = 0

• sup
λ≥0

αφ(λ)
λ+α

≤ φ(α), ∀α ∈ (0, a].

• there exists v ∈ X with ∥v∥ ≤ 1 such that

x0 − x̂ = φ(F ′(x0)
∗F ′(x0))v.

It is known that for α > 0,

F ′(x0)
∗(F (x)− yδ) + α(x− x0) = 0 (2.2.1)

has a unique solution xδα in B(x0, r) provided 0 < r < 1
k0

(Argyros et al., 2014,

Theorem 2.) (see also Jin (2010), Section 4.3). Also it is known (cf. (Argyros

et al., 2014, Theorem 4)) that if assumptions 2.2.1 and 2.2.2 are satisfied, then

∥xδα − x̂∥ ≤ 1

1− k0r

(
δ√
α
+ φ(α)

)
. (2.2.2)
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Let δ0 > 0, a0 > 0 be some constants with δ20 < a0 and ∥x0 − x̂∥ ≤ r. Let

δ ∈ (0, δ0] and α ∈ [δ2, a0]. Further, let β, qα,β be the parameters such that

β ≤ 1

M2 + a0
(2.2.3)

and

qα,β = 1− αβ +
3βM2k0

2
r. (2.2.4)

REMARK 2.2.3.

1. Suppose 0 < r < 2α
3M2k0

. Then, we have

qα,β = 1− αβ +
3βM2k0

2
r

< 1− αβ +
3βM2k0

2

2α

3M2k0
= 1,

i.e., qα,β < 1 for all 0 < r < 2α
3M2k0

.

2. Notice that, if α −→ 0, then r −→ 0 and in this case x0 = x̂. Further, in

practice, we choose α from a set {0 < α0 < α1, · · · , αN < 1} (see Section

2.4.2) and hence r > 0.

Hereafter, we assume that 0 < r < min{ 1
2k0
, 2α
3M2k0

}.

THEOREM 2.2.4. Let (xn) be as in (2.1.2) and let 0 < r < min
{

1
2k0
, 2α
3M2k0

}
.

Then for each δ ∈ (0, δ0], α ∈ [δ2, a0], the sequence (xn) is in B(x0, 2r) and

converges to xδα as n→ ∞. Further,

∥xn+1 − xδα∥ ≤ qn+1
α,β ∥x0 − xδα∥, (2.2.5)

where qα,β is as in (2.2.4).

Proof: Clearly, x0 ∈ B(x0, 2r). Let An :=
∫ 1

0
F ′(xδα + t(xn − xδα))dt. Since

xδα ∈ B(x0, r), A0 is well defined. Assume that for some n > 0, xn ∈ B(x0, 2r) and
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An is well defined. Then, since xδα satisfies the equation (2.2.1), we have,

xn+1 − xδα = xn − xδα − β
[
F ′(x0)

∗(F (xn)− F (xδα)) + α(xn − xδα)
]

= xn − xδα − β [F ′(x0)
∗An + αI] (xn − xδα)

= xn − xδα − β [F ′(x0)
∗(An − F ′(x0))] (xn − xδα)

−β [F ′(x0)
∗F ′(x0) + αI] (xn − xδα)

= [I − β(F ′(x0)
∗F ′(x0) + αI)] (xn − xδα)

−β [F ′(x0)
∗(An − F ′(x0))] (xn − xδα). (2.2.6)

Using assumptions 2.2.1, we have

xn+1 − xδα = [I − β(F ′(x0)
∗F ′(x0) + αI)] (xn − xδα)

−βF ′(x0)
∗F ′(x0)

∫ 1

0

Φ(xδα + t(xn − xδα), x0, xn − xδα)dt.

Now since I − β (F ′(x0)
∗F ′(x0) + αI) is a positive self-adjoint operator,

∥I − β(F ′(x0)
∗F ′(x0) + αI)∥

= sup
∥x∥=1

|⟨(I − β(F ′(x0)
∗F ′(x0) + αI))x, x⟩|

= | sup
∥x∥=1

(1− βα)⟨x, x⟩ − β⟨F ′(x0)
∗F ′(x0)x, x⟩|

≤ 1− αβ. (2.2.7)

The last step follows from relation

β|⟨F ′(x0)
∗F ′(x0)x, x⟩| ≤ β∥F ′(x0)∥2 ≤ βM2 ≤ 1

M2 + α
M2 = 1− α

M2 + α
≤ 1−βα.

Hence, by assumption 2.2.1, we have

∥xn+1 − xδα∥ ≤ (1− αβ)∥xn − xδα∥

+βM2k0

∫ 1

0

((1− t)∥xδα − x0∥+ t∥xn − x0∥)dt∥xn − xδα∥

≤
(
1− αβ +

3βM2k0
2

r

)
∥xn − xδα∥

≤ qα,β∥xn − xδα∥. (2.2.8)
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Since qα,β < 1 (see Remark 2.2.3), we have

∥xn+1 − xδα∥ < ∥x0 − xδα∥ ≤ r

and

∥xn+1 − x0∥ ≤ ∥xn+1 − xδα∥+ ∥x0 − xδα∥ ≤ 2r

i.e., xn+1 ∈ B(x0, 2r). Also, for 0 ≤ t ≤ 1,

∥xδα + t(xn+1 − xδα)− x0∥ = ∥(1− t)(xδα − x0) + t(xn+1 − xδα)∥ < 2r.

Hence, xδα+ t(xn+1−xδα) ∈ B(x0, 2r) and An+1 is well defined. Thus, by induction

xn is well defined and remains in B(x0, 2r) for each n = 0, 1, 2, · · · . By letting

n → ∞ in (2.1.2), we obtain the convergence of xn to xδα. The estimate (2.2.5)

now follows from (2.2.8).

2

REMARK 2.2.5.

1. If assumption 2.2.1 is fulfilled only for all x ∈ B(x0, r) ∩ Q ̸= ∅ , where Q

is a convex closed a priori set, for which x̂ ∈ Q, then we can modify method

(2.1.2) by the following way

xδn+1,α = PQ(T (x
δ
n,α))

to obtain the same estimate in Theorem 2.2.4; here PQ is the metric projec-

tion onto the set Q and T is the step operator in (2.1.2).

2. Instead of assumption 2.2.1, if we use the following Lipschitz condition:

∥F ′(x1)− F ′(x2)∥ ≤ L0∥x1 − x2∥ (2.2.9)

then from (2.2.9) and (2.2.7), one can prove that (2.2.5) holds with q̄α,β :=

1− αβ + βML0r instead of qα,β, provided 0 < r < α
ML0

.

3. Also by using (2.2.9) instead of assumption 2.2.1, one can prove that (2.2.1)

has a unique solution, if 0 < r <
√
α

L0
and

∥xδα − x̂∥ ≤ 1

1− L0r√
α

(
δ√
α
+ φ(α)

)
.
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2.3 Finite dimensional realization of FRSDM

For implementing method FRSDM one needs numerical calculations in finite di-

mensional spaces. One of the approaches in this regard is through discretization

(see Engl et al. (1996), page 63). Here the regularization is achieved by a finite

dimensional approximation alone. Regularization of ill-posed problems by pro-

jection methods can be found in literature, for e.g in George and Nair (2016);

Kaltenbacher et al. (2008); Kirsch (1996); Pereverzev and Prössdorf (2000). This

Section is concerned with the finite dimensional realization of the method FRSDM.

Precisely, our aim in this Section is to obtain an approximation for xδα, in the finite

dimensional space R(Ph) of X. Here {Ph}h>0 is a family of orthogonal projections

of X onto R(Ph), the range of Ph. For the results that follow, we impose the

following conditions. Let

ϵh := ∥F ′(x0)(I − Ph)∥

and

bh := ∥(I − Ph)x̂∥.

We assume that limh−→0 ϵh = 0 and limh→0 bh = 0. The above assumption is

satisfied if Ph → I point-wise and if F ′(.) is compact operator. Further, we

assume that there exist ε0 > 0, b0 > 0 and δ0 > 0 such that ϵh < ϵ0 and bh < b0.

We have taken the discretized version of (2.1.2) as

xh,δn+1,α = xh,δn,α − βPh

[
F ′(x0)

∗(F (xh,δn,α)− yδ) + α(xh,δn,α − xh,δ0 )
]

(2.3.1)

where xh,δ0 =: Phx0. Let

(δ0 + ε0)
2 < ā0.

Next we prove that, for α > 0

PhF
′(x0)

∗ (FPh(x)− yδ
)
+ αPh(x− x0) = 0 (2.3.2)

has a unique solution xh,δα in B(x0, r) ∩R(Ph).
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THEOREM 2.3.1. Let x̂ be a solution of (2.1.1), assumption 2.2.1 satisfied and

let F : D(F ) ⊆ X → Y be Fréchet differentiable in a ball B(x0, r)∩R(Ph) ⊆ D(F )

with 0 < r < 1
2k0
. Then (2.3.2) possesses a unique solution xh,δα in B(x0, r)∩R(Ph).

Proof: For x ∈ B(x0, r) ∩R(Ph), let

Mh =

∫ 1

0

F ′(x̂+ t(x− x̂))dt.

If PhF
′(x0)

∗MhPh + αI is invertible, then

(PhF
′(x0)

∗MhPh + αI) (x− Phx̂) = αPh(x0 − x̂) + PhF
′(x0)

∗(yδ − y)

+PhF
′(x0)

∗Mh(I − Ph)x̂ (2.3.3)

has a unique solution xh,δα ∈ R(Ph). Observe that

F (Phx)− yδ = F (Phx)− F (x̂) + y − yδ =Mh(Phx− x̂) + y − yδ

and hence

PhF
′(x0)

∗(FPh(x)− yδ) + αPh(x− x0)

= PhF
′(x0)

∗ (Mh(Phx− x̂) + y − yδ
)
+ αPh(x− x0)

= (PhF
′(x0)

∗MhPh + αI)Ph(x− x̂)− αPh(x0 − x̂)

−PhF
′(x0)

∗Mh(I − Ph)x̂− PhF
′(x0)

∗(yδ − y).

Therefore by (2.3.3) PhF
′(x0)

∗(FPh(x)−yδ)+αPh(x−x0) = 0 has a unique solution

xh,δα . Clearly, xh,δα ∈ B(x0, r)∩R(Ph). So, it remains to show that PhF
′(x0)

∗MhPh+

αI is invertible for x ∈ B(x0, r) ∩R(Ph). Note that by assumption 2.2.1, we have

∥(PhF
′(x0)

∗F ′(x0)Ph + αI)−1PhF
′(x0)

∗(Mh − F ′(x0))Ph∥

= sup
∥v∥≤1

∥ (PhF
′(x0)

∗F ′(x0)Ph + αI)
−1
PhF

′(x0)
∗(Mh − F ′(x0))Phv∥
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≤ sup
∥v∥≤1

∥ (PhF
′(x0)

∗F ′(x0)Ph + αPh)
−1
PhF

′(x0)
∗

∫ 1

0

(F ′(x̂+ t(x− x̂))− F ′(x0))dtPhv∥

≤ sup
∥v∥≤1

∥ (PhF
′(x0)

∗F ′(x0)Ph + αI)
−1
PhF

′(x0)
∗F ′(x0)∫ 1

0

Φ (x̂+ t(x− x̂), x0, Phv) dt∥

≤ sup
∥v∥≤1

∥ (PhF
′(x0)

∗F ′(x0)Ph + αI)
−1
PhF

′(x0)
∗

F ′(x0)[Ph + I − Ph]

∫ 1

0

Φ(x̂+ t(x− x̂), x0, Phv)dt∥

≤
[
k0 + k0

εh√
α

] ∫ 1

0

∥x̂+ t(x− x̂)− x0∥dt

≤
[
k0 + k0

εh√
α

] ∫ 1

0

[(1− t)∥x̂− x0∥+ t∥x− x0∥]dt

≤ k0

(
1 +

εh√
α

)
r + r

2
< 2k0r < 1.

Therefore, I+(PhF
′(x0)

∗F ′(x0)Ph + αI)−1 PhF
′(x0)

∗(Mh−F ′(x0))Ph is invertible.

Now from the relation

PhF
′(x0)

∗MhPh + αI

= (PhF
′(x0)

∗F ′(x0)Ph + αI)[
I + (PhF

′(x0)
∗F ′(x0)Ph + αI)−1PhF

′(x0)
∗(Mh − F ′(x0))Ph

]
it follows that PhF

′(x0)
∗MhPh + αI is invertible.

2

THEOREM 2.3.2. Let (xh,δn,α) be as in (2.3.1) and let 0 < r < min
{

1
2k0
, 2α
3M2k0

}
.

Then for each δ ∈ (0, δ0], α ∈ ((δ+εh)
2, ā0], εh ≤ ε0, (x

h,δ
n,α) is in B(x0, 2r)∩R(Ph)

and converges to xh,δα as n→ ∞. Further,

∥xh,δn+1,α − xh,δα ∥ ≤ qn+1
α,β ∥Phx0 − xh,δα ∥, (2.3.4)

where qα,β is as in (2.2.4).
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Proof: Since xh,δα satisfies the equation (2.3.2), we have

xh,δn+1,α − xh,δα

= xh,δn,α − xh,δα − β
[
PhF

′(x0)
∗(F (xh,δn,α)− F (xh,δα )) + αPh(x

h,δ
n,α − xh,δα )

]
= xh,δn,α − xh,δα − β

[
PhF

′(x0)
∗Ah

n + αPh

]
(xh,δn,α − xh,δα )

= xh,δn,α − xh,δα − β
[
PhF

′(x0)
∗(Ah

n − F ′(x0))
]
(xh,δn,α − xh,δα )

−β [PhF
′(x0)

∗F ′(x0)Ph + αPh] (x
h,δ
n,α − xh,δα )

= [I − β(PhF
′(x0)

∗F ′(x0)Ph + αI)] (xh,δn,α − xh,δα )

−β
[
PhF

′(x0)
∗(Ah

n − F ′(x0))
]
(xh,δn,α − xh,δα ),

where Ah
n =:

∫ 1

0
F ′(xh,δα + t(xh,δn,α − xh,δα ))dt. Using assumptions 2.2.1, we have

xh,δn+1,α − xh,δα

= [I − β(PhF
′(x0)

∗F ′(x0)Ph + αI)] (xh,δn,α − xh,δα )

−β[PhF
′(x0)

∗F ′(x0)

∫ 1

0

Φ(xh,δα + t(xh,δn,α − xh,δα ), x0, (x
h,δ
n,α − xh,δα ))dt.

Now since I−β (PhF
′(x0)

∗F ′(x0)Ph + αI) is a positive self-adjoint operator, as in

(2.2.7)

∥I − β (PhF
′(x0)

∗F ′(x0)Ph + αI) ∥ ≤ 1− βα.

Hence,

∥xh,δn+1 − xh,δα ∥ ≤ (1− αβ)∥xh,δn,α − xh,δα ∥

+βM2k0

∫ 1

0

(
(1− t)∥xh,δα − x0∥+ t∥xh,δn,α − x0∥dt

)
∥xh,δn,α − xh,δα ∥

≤
(
1− αβ +

3βM2k0
2

r

)
∥xhn,α − xh,δα ∥

≤
(
1− αβ +

3βM2k0
2

r

)
∥xh,δn,α − xh,δα ∥.

The rest of the proof is analogous to the proof of Theorem 2.2.4.

2

REMARK 2.3.3.
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Instead of assumption 2.2.1, if we use (2.2.9) then Theorem 2.3.1 holds with 0 <

r <
√
α

L0
and Theorem 2.3.2 holds with q̄α,β := 1 − αβ + βML0r instead of qα,β,

provided 0 < r < α
ML0

.

2.4 Error bounds under source conditions

Note that by (2.2.1), we have

PhF
′(x0)

∗(F (xδα)− yδ) + αPh(x
δ
α − x0) = 0. (2.4.1)

So, by (2.3.2) and (2.4.1), we obtain

PhF
′(x0)

∗ (F (xh,δα )− F (xδα)
)
+ αPh(x

h,δ
α − xδα) = 0.

That is,

(PhF
′(x0)

∗F ′(x0)Ph + αI) (xh,δα − Phx
δ
α) = PhF

′(x0)
∗(F ′(x0)− T )(xh,δα − xδα)

+PhF
′(x0)

∗F ′(x0)(I − Ph)x
δ
α,

where T =
∫ 1

0
F ′(xδα + t(xh,δα − xδα))dt. So,

∥xh,δα − Phx
δ
α∥

= ∥(PhF
′(x0)

∗F ′(x0)Ph + αPh)
−1
[
PhF

′(x0)
∗(F ′(x0)− T )(xh,δα − xδα)

+PhF
′(x0)

∗F ′(x0)(I − Ph)x
δ
α

]
∥

≤ ∥(PhF
′(x0)

∗F ′(x0)Ph + αPh)
−1PhF

′(x0)
∗

×
∫ 1

0

[F ′(xδα + t(xh,δα − xδα))− F ′(x0)]dt(x
h,δ
α − xδα)∥+

εh√
α
∥xδα∥

≤ ∥(PhF
′(x0)

∗F ′(x0)Ph + αPh)
−1PhF

′(x0)
∗F ′(x0)[Ph + I − Ph]

×
∫ 1

0

φ(xδα + t(xh,δα − xδα)), x0, x
h,δ
α − xδα)dt∥+

εh√
α
∥xδα∥

≤ k0

(
1 +

εh√
α

)∫ 1

0

[(1− t)∥xδα − x0∥+ t∥xh,δα − x0∥]dt∥xh,δα − xδα∥
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+
εh√
α
(∥xδα − x0∥+ ∥x0∥)

≤ 2k0r∥xh,δα − xδα∥+
εh√
α
(r + ∥x0∥)

≤ 2k0r
[
∥xh,δα − Phx

δ
α∥+ ∥(I − Ph)x

δ
α∥
]
+

εh√
α
(r + ∥x0∥),

hence

∥xh,δα − Phx
δ
α∥ ≤ 1

1− 2k0r

[
2k0r∥(I − Ph)x

δ
α∥+

εh√
α
(r + ∥x0∥)

]
. (2.4.2)

Further, we observe that

∥Phx0 − xh,δα ∥ ≤ ∥Ph(x0 − xh,δα )∥ ≤ r. (2.4.3)

Combining the estimates in (2.2.2), (2.4.2), (2.4.3) and Theorem 2.3.2, we obtain

the following:

THEOREM 2.4.1. Let the assumptions in Theorem 2.3.2 hold and let xh,δn,α be

as in (2.3.2). Then

∥xh,δn,α − x̂∥ ≤ qnα,βr +
1

1− 2k0r

[
bh +

εh√
α
(∥x0∥+ r)

]
+

1

1− 2k0r
2

(
δ√
α
+ φ(α)

)
. (2.4.4)

Further if nδ := min
{
n : qnα,β <

δ+εh√
α

}
and bh ≤ δ+εh√

α
then

∥xhnδ,α
− x̂∥ ≤ C

(
δ + εh√

α
+ φ(α)

)
(2.4.5)

where C := r + 1
1−2k0r

[1 + max{r + ∥x0∥, 2}] .

Proof: By triangle inequality, we have ∥xh,δn,α − x̂∥ ≤ ∥xh,δn,α − xh,δα ∥ + ∥xh,δα −

xδα∥ + ∥xδα − x̂∥. Therefore, from (2.2.2),(2.4.2), (2.4.3) and Theorem 2.3.2, we
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obtain that

∥xh,δn,α − x̂∥ ≤ qnα,βr + ∥xh,δα − Phx
δ
α∥+ ∥(I − Ph)x

δ
α∥+ ∥xδα − x̂∥

≤ qnα,βr +
1

1− 2k0r

[
2k0r∥(I − Ph)x

δ
α∥+

εh√
α
(∥x0∥+ r)

]
+∥(I − Ph)x

δ
α∥+

1

1− k0r

(
δ√
α
+ φ(α)

)
≤ qnα,βr +

1

1− 2k0r

[
∥(I − Ph)x

δ
α∥+

εh√
α
(∥x0∥+ r)

]
+

1

1− k0r

(
δ√
α
+ φ(α)

)
≤ qnα,βr +

1

1− 2k0r

[
∥(I − Ph)(x

δ
α − x̂+ x̂)∥+ εh√

α
(∥x0∥+ r)

]
+

1

1− k0r

(
δ√
α
+ φ(α)

)
≤ qnα,βr +

1

1− 2k0r

[
∥xδα − x̂∥+ ∥(I − Ph)x̂∥+

εh√
α
(∥x0∥+ r)

]
+

1

1− k0r

(
δ√
α
+ φ(α)

)
≤ qnα,βr +

1

1− 2k0r

[
bh +

εh√
α
(∥x0∥+ r)

]
+

(
1 +

1

1− 2k0r

)
1

1− k0r

(
δ√
α
+ φ(α)

)
≤ qnα,βr +

1

1− 2k0r

[
bh +

εh√
α
(∥x0∥+ r)

]
+

1

1− 2k0r
2

(
δ√
α
+ φ(α)

)
.

This proves (2.4.4), and (2.4.5) follows from (2.4.4). 2

2.4.1 An a priori choice of the parameter

Note that the estimate δ+εh√
α

+ φ(α) in Theorem 2.4.1 is of optimal order for the

choice α := αδ,h, which satisfies δ+εh√
α

= φ(α). Let ψ(λ) := λ
√
φ−1(λ), 0 < λ ≤ a.

Then αδ,h = φ−1[ψ−1(δ + εh)] satisfies
δ+εh√

α
= φ(α).

In view of the above observation, Theorem 2.4.1 leads to the following:
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THEOREM 2.4.2. Let ψ(λ) = λ
√
φ−1(λ), 0 < λ ≤ a and assumptions in Theo-

rem 2.4.1 hold. For δ > 0, let αδ = φ−1[ψ−1(δ + εh)] and let nδ be as in Theorem

2.4.1. Then

∥xh,δnδ,αδ
− x̂∥ = O(ψ−1(δ + εh)).

2.4.2 Balancing principle

Note that the best function φ measuring the rate of convergence in Theorem 2.4.1

is usually unknown. Therefore, in practical applications, different parameters

α = αi are often selected from some finite set

D := {αi : 0 < α0 < α1 < · · · < αN < 1},

and corresponding elements xh,δn,αi
, i = 1, 2, · · · , N are studied on line. Let

ni := min

{
n : qnα,β ≤ δ + εh√

αi

}
and let xhαi

:= xh,δni,αi
. Then from Theorem 2.4.1, we have

∥xhαi
− x̂∥ ≤ C

(
δ + εh√
αi

+ φ(αi)

)
, i = 1, 2, · · ·N.

We choose the regularization parameter α from the set DN defined by

DN := {αi = µ2iα0 < 1, i = 1, 2, · · ·N},

where α0 = (δ + εh)
2 (see Pereverzev and Schock (2005), Semenova (2010)) and

µ > 1. Using the ideas in Pereverzev and Schock (2005), we consider all possible

functions φ, satisfying assumption 2.2.1 and φ(αi) ≤ δ+εh√
αi
. Any of such functions

is called admissible for x̂ and it can be used as a measure for the convergence of

xhαi
→ x̂ (see Lu et al. (2008)).

The main result of this Section is the following theorem, proof of which is

analogous to the proof of Theorem 4.4 in George (2010b).
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THEOREM 2.4.3. Assume that there exists i ∈ {0, 1, · · · , N} such that φ(αi) ≤
δ+εh√

αi
. Let assumptions of Theorem 2.4.1 be satisfied and let

l := max

{
i : φ(αi) ≤

δ + εh√
αi

}
< N,

k = max

{
i : ∀j = 1, 2, · · · , i; ∥xhαi

− xhαj
∥ ≤ 4C

δ + εh√
αj

}
,

where C is as in Theorem 2.4.1. Then l ≤ k and

∥xhαk
− x̂∥ ≤ 6Cµψ−1(δ + εh).

REMARK 2.4.4. The balancing algorithm associated with the choice of the pa-

rameter specified in Theorem 2.4.1 involves the following steps:

• Choose α0 = (δ + εh)
2 and µ > 1.

• Choose αi := µ2iα0, i = 0, 1, 2, · · · , N.

1. Set i = 0.

2. Choose ni := min
{
n : qnαi,β

≤ δ+εh√
αi

}
.

3. Solve xi := xh,δni,αi
by using the iteration (2.3.1).

4. If ∥xi − xj∥ > 4C 1
µj , j < i, then take k = i− 1 and return xk.

5. Else, set i = i+ 1 and go to 2.

2.5 Numerical example

Let V1 ⊆ V2 ⊆ V3 ⊆ ..... be a sequence of finite-dimensional subspaces of X with∪
m∈N Vm = X and Ph, (h = 1

m
) is the orthogonal projector of X onto R(Ph) :=

Vm ⊂ D(F ). Precisely, we choose orthonormal system of box function Φi(t, τ) =

Ψk(t)Ψl(τ), i = (k−1)m+ l, k = 1, 2, 3, ..,m1, l = 1, 2, 3, ..,m1, i = 1, 2, ...,m(=

m2
1), where Ψk(t),Ψl(τ) are L2-orthonormalized characteristic functions of the
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intervals [k− 1, k], [l− 1, l] (Lu et al. (2008)), respectively, as a basis of Vm in Ω =

[0,m1] × [0,m1]. We consider the following integral equation (Inverse gravimetry

problem (see V. Vasin and Timerkhanova (1996) and references in it) for the

implementation of the method (2.3.1). Let F : H1(Ω) ⊂ L2(Ω) −→ L2(Ω) defined

by

F (u) ≡ −
∫ ∫

Ω

1

[(x− x′)2 + (y − y′)2 + u2(x′, y′)]1/2
dx′dy′ = f(x, y), (2.5.1)

where Ω = [0,m1]× [0,m1]. The Fréchet-derivative of the operator F at the point

u0(x, y) is expressed by the formula

F ′(u0)h =

∫ ∫
Ω

u0(x
′, y′)h(x′, y′)

[(x− x′)2 + (y − y′)2 + (u0(x′, y′))2]3/2
dx′dy′. (2.5.2)

Applying to the integral equations (2.5.1) the two-dimensional analogy of rectan-

gle’s formula with uniform grid for every variable, we obtain the following system

of nonlinear equations:

m1∑
i=1

m1∑
j=1

1

[(xk − x′j)
2 + (yl − y′i)

2 + u2(x′j, y
′
i)]

1/2
∆x∆y = f(xk, yl);

(k = 1, 2, ...,m1, l = 1, 2, ...,m1). The discrete variant of the derivative F ′(u0) has

the form

{F 0
nhn}k,l =

m1∑
i=1

m1∑
j=1

∆x∆y u0(x
′
j, y

′
i)h(x

′
j, y

′
i)

[(xk − x′j)
2 + (yl − y′i)

2 + u20(x
′
j, y

′
i)]

3/2
, (2.5.3)

where u0(x, y) ≡ H is constant.

We take the exact solution as

û(x, y) = 5− 2e−[(x/10−3.5)2(y/10−2.5)2] − 3e−[(x/10−5.5)2(y/10−4.5)2],

and f δ = F (û) + δ. Let ∆x = ∆y = 1, m1 = 35, H ≡ 5.

Note that on the set

Q = {1.0 ≤ u(x, y) ≤ 10.0}

∥F ′(u) − F ′(u0)∥ ≤ L0∥u − u0∥ (see V. Vasin and Timerkhanova (1996); Vasin

(2014)). The results of numerical experiments are presented in Table 2.1. Here
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ũn is the numerical solution obtained by our method; the relative error of solution

and residual are

∆1 =
∥û− ũn∥
∥ûn∥

, ∆2 =
∥Fn(ũn)− fn∥

∥fn∥

respectively, for a noisy right-hand side.

Table 2.1: Comparison table for relative and residual error for method FRSDM
and method in Argyros et al. (2014)

Relative error and residual error Relative error and residual error

for the method FRSDM for the method in

Argyros et al. (2014)

δ αk ∆1 ∆2 αk ∆1 ∆2

0.01 8.3521E-5 1.8576E-4 3.8057E-5 5.0625E-4 8.1214E-4 7.9872E-4

0.001 8.3521E-7 1.8577E-4 3.8123E-5 5.0625E-6 8.1214E-4 7.9871E-4

0.0002 7.3324E-8 1.8578E-4 3.8129E-5 2.0250E-7 8.1214E-4 7.9871E-4

0.0001 8.3521E-9 1.8579E-4 3.8130E-5 5.0625E-8 8.1214E-4 7.9871E-4

Comparison in Table 2.1 shows that the relative and residual error for method

FRSDM is smaller than that of the method in Argyros et al. (2014) for a given

data error.

Figure 2.1, shows the exact solution, Figure 2.2 shows approximate solution

for δ = 0.01 and Figure 2.3 shows the approximate solution for δ = 0.0001.
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Figure 2.1: Exact solution.
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Figure 2.2: Approximate solution for δ = 0.01
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Figure 2.3: Approximate solution for δ = 0.0001.
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Chapter 3

MODIFIED STEEPEST DESCENT

AND MODIFIED MINIMAL ER-

ROR METHODS

A modified steepest descent method (MSDM) and modified minimal error method

(MMEM) for nonlinear ill-posed operator equation have been considered in this

Chapter. To our knowledge, convergence rate result for the steepest descent

method (SDM) and minimal error method (MEM) with noisy data are not known.

We provide convergence rate results for these methods with noisy data. The re-

sults in this Chapter are obtained under less computational cost, when compared

to the steepest descent method and minimal error method. We provide a numerical

example.

3.1 Introduction

Steepest descent method is studied extensively (see Brakhage (1987); Argyros

et al. (2016a); Golub and O’Leary (1989); Kammerer and Nashed (1971, 1972);

King (1989); Lardy (1990); Louis (1987); Neubauer and Scherzer (1995); Scherzer

(1996)). As already stated in Section 1.2.1, the steepest descent method for non-

linear ill-posed operator equation can be written as

xk+1 = xk + αksk, (3.1.1)
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where sk is the search direction taken as the negative gradient of the minimization

functional involved and αk is the descent. In this Chapter, we provide conver-

gence rate result(with and without noisy data) for the modified steepest descent

and modified minimal error method. The same idea can be extended to steepest

descent method and minimal error method with noisy data to obtain convergence

rate result. The rest of the Chapter is structured as follows. Preliminaries are

given in Section 3.2. Convergence analysis of MSDM and MMEM are given in

Section 3.3. Convergence analysis of MSDM and MMEM with noisy data are

given in Section 3.4 and a numerical example is given in Section 3.5.

3.2 Preliminaries

Neubauer and Scherzer (1995), considered the steepest descent method:

xk+1 = xk + αksk (k = 0, 1, 2, . . .)

sk = −F ′(xk)
∗(F (xk)− y) (3.2.1)

αk =
∥sk∥2

∥F ′(xk)sk∥2

and the minimal error method:

xk+1 = xk + αksk (k = 0, 1, 2, . . .)

sk = −F ′(xk)
∗(F (xk)− y) (3.2.2)

αk =
∥F (xk)− y∥2

∥sk∥2

in the noise free case and obtained the rate

∥xk − x̂∥ = O(k−
1
2 ) (3.2.3)

under the assumptions (A):

(A1) F has a Lipschitz continuous Fréchet derivative F ′(.) in a neighborhood of

x0.
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(A2) F
′(x) = RxF

′(x̂), x ∈ B(x0, ρ) where {Rx : x ∈ B(x0, ρ)} is a family of

bounded linear operators Rx : Y −→ Y with

∥Rx − I∥ ≤ C∥x− x̂∥

where C is a positive constant and

(A3)

x0 − x̂ = (F ′(x̂)∗F ′(x̂))
1
2 z

for some z ∈ X.

In this Chapter, we consider a modified steepest descent method and a modified

minimal error method, in the case of noisy free data, defined by

xk+1 = xk + αksk (k = 0, 1, 2, . . .)

sk = −F ′(x0)
∗(F (xk)− y) (3.2.4)

αk =
∥sk∥2

∥F ′(x0)sk∥2

and

xk+1 = xk + αksk (k = 0, 1, 2, . . .)

sk = −F ′(x0)
∗(F (xk)− y) (3.2.5)

αk =
∥F (xk)− y∥2

∥sk∥2
,

respectively. Let x0 be the initial guess with ∥x0− x̂∥ ≤ ρ. Instead of assumptions

(A), we use the following assumptions (C):

(C0) ∥F ′(x)∥ ≤ m, for some m > 0 and for all x ∈ D(F ).

(C1) F ′(x̂) = F ′(x0)G(x̂, x0) where G(x̂, x0) is a bounded linear operator from

X −→ X with

∥G(x̂, x0)− I∥ ≤ C0ρ

where C0 is a positive constant.
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(C2) F ′(x) = R(x, y)F ′(y) (x, y ∈ B(x0, ρ)) where {R(x, y) : x, y ∈ B(x0, ρ)} is a

family of bounded linear operators R(x, y) : Y −→ Y with

∥R(x, y)− I∥ ≤ C1∥x− y∥

for some positive constant C1.

(C3)

x0 − x̂ = (F ′(x0)
∗F ′(x0))

1
2v

for some v ∈ X.

Observe that x0 − x̂ in (C3) is depending on the known initial guess x0, where

as in (A3), x0 − x̂ is depending on the unknown x̂. Not only this advantage but

also in our method one need to compute the Fréchet derivative only at one point

x0 throughout the iteration process. As already mentioned in the introduction,

no convergence rate results are known for steepest descent method and minimal

error method with noisy data. In other words, it remains an open question whether

convergence rate results can be proven for the methods SDM and MEM with noisy

data. To answer this question, we considered the methods MSDM and MMEM

with noisy data and obtained a convergence rate result. Using the same idea we

obtained a convergence rate result for methods SDM and MEM.

3.3 Convergence analysis of MSDM andMMEM

The main purpose of this Section is to obtain an error estimate for ∥xk − x̂∥,

under the assumptions (C). For this purpose we make use of the following result

in Gilyazov (1997)[see (Gilyazov, 1997, Lemma 2)]. Let (vk) be a sequence in

X, ν > 0, be some parameter such that

∥Aνvk∥2 − ∥Aνvk+1∥2 ≥ εk⟨Aν+1vk, A
νvk⟩

33



for k = 0, 1, 2, . . . , where A is a positive self adjoint operator and εk > 0. Then

∥Aνvk∥ ≤ [2(ν + 1)]ν∥vk∥
1

ν+1

[
k−1∑
i=0

εi∥vi∥−
1

ν+1

]−ν

. (3.3.1)

We shall apply the above result (i.e., (3.3.1)) to vk = A− 1
2 (xk − x̂) with A =

F ′(x0)
∗F ′(x0) and ν = 1

2
. Therefore, in order to apply (3.3.1), we need to prove;

∥xk − x̂∥2 − ∥xk+1 − x̂∥2 ≥ εk⟨A(xk − x̂), xk − x̂⟩ (3.3.2)

for some εk > 0 and ∥A− 1
2 (xk − x̂)∥ is bounded. Let C̄ = max{C0, C1}.

LEMMA 3.3.1. Let (C) conditions hold and let C̄ρ ≤
√
5− 2. Let (xk) be as in

(3.2.4) or (3.2.5) and x̂ ∈ B(x0, ρ). Then, xk ∈ B(x0, 2ρ) and

∥xk+1 − x̂∥2 + αk

[
1− C̄2ρ2 − 4C̄ρ

]
∥A

1
2 (xk − x̂)∥2 ≤ ∥xk − x̂∥2 (3.3.3)

for all k = 0, 1, 2, . . . . Moreover,

∞∑
k=0

αk∥A
1
2 (xk − x̂)∥2 <∞.

Proof: We shall prove the result using induction. Note that x0 ∈ B(x0, ρ) and

suppose xk ∈ B(x0, ρ). Then using (3.2.4) or (3.2.5), we have

∥xk+1 − x̂∥2 − ∥xk − x̂∥2

= −2αk⟨xk − x̂, F ′(x0)
∗(F (xk)− y)⟩+ α2

k∥F ′(x0)
∗(F (xk)− y)∥2

= −2αk⟨xk − x̂, F ′(x0)
∗ [F (xk)− F (x̂)− F ′(x0)(xk − x̂)]⟩

+αk

[
αk∥F ′(x0)

∗(F (xk)− y)∥2 − 2⟨xk − x̂, F ′(x0)
∗F ′(x0)(xk − x̂)⟩

]
= −2αk⟨F ′(x0)(xk − x̂),

∫ 1

0

(F ′(x̂+ θ(xk − x̂))− F ′(x0))dθ(xk − x̂)⟩

+αk

[
αk∥F ′(x0)

∗(F (xk)− y)∥2 − 2∥A
1
2 (xk − x̂)∥2

]
. (3.3.4)
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So by (C2), we have

∥xk+1 − x̂∥2 − ∥xk − x̂∥2

= −2αk⟨F ′(x0)(xk − x̂),

∫ 1

0

[R(x̂+ θ(xk − x̂), x0)− I] dθF ′(x0)(xk − x̂)⟩

+αk

[
αk∥F ′(x0)

∗(F (xk)− y)∥2 − 2∥A
1
2 (xk − x̂)∥2

]
≤ 2αk

∫ 1

0

∥R(x̂+ θ(xk − x̂), x0)− I∥∥F ′(x0)(xk − x̂)∥2dθ

+αk

[
αk∥F ′(x0)

∗(F (xk)− y)∥2 − 2∥A
1
2 (xk − x̂)∥2

]
≤ 2αkC̄∥x̂+ θ(xk − x̂)− x0∥∥A

1
2 (xk − x̂)∥2

+αk

[
αk∥F ′(x0)

∗(F (xk)− y)∥2 − 2∥A
1
2 (xk − x̂)∥2

]
. (3.3.5)

Observe that αk∥F ′(x0)
∗(F (xk)− y)∥2 = ∥F (xk)− y∥2 in the case of MMEM and

in the case of MSDM, we have

αk∥F ′(x0)
∗(F (xk)− y)∥2 = ⟨F ′(x0)sk, F (xk)− y⟩2

∥F ′(x0)sk∥2
≤ ∥F (xk)− y∥2.

So for both methods MSDM and MMEM, we have

αk∥F ′(x0)
∗(F (xk)− y)∥2

≤ ∥F (xk)− y∥2

= ∥
∫ 1

0

F ′(x̂+ θ(xk − x̂))dθ(xk − x̂)∥2

= ∥
∫ 1

0

[R(x̂+ θ(xk − x̂), x0)− I + I] dθF ′(x0)(xk − x̂)∥2

≤
(
C̄∥x̂+ θ(xk − x̂)− x0∥+ 1

)2 ∥F ′(x0)(xk − x̂)∥2

≤
(
C̄ρ+ 1

)2 ∥A 1
2 (xk − x̂)∥2. (3.3.6)

Therefore, by (3.3.5) and (3.3.6) we have

∥xk+1 − x̂∥2 − ∥xk − x̂∥2 ≤
[
(C̄ρ+ 1)2 + 2C̄ρ− 2

]
αk∥A

1
2 (xk − x̂)∥2.

This completes the proof.

2
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Let

p(t) = −2t3 − 26

5
t2 +

56

5
t− 4

5
.

Note that p(0) = −4
5
< 0 and p(1) = 16

5
> 0. So p(t) has a zero in (0, 1). Let

r0 be the smallest zero of p in (0, 1). Next, we shall prove the boundedness of

∥A− 1
2 (xk − x̂)∥.

LEMMA 3.3.2. Let (C) conditions hold and C̄ρ < min
{√

5− 2, r0
}
= 0.0740.

Let (xk) be as in (3.2.4) or (3.2.5) and x̂ ∈ B(x0, ρ). Then ∥A− 1
2 (xk − x̂)∥ is

bounded.

Proof: Using (C3), one can prove that xk − x̂ ∈ R(A
1
2 ) for all k = 0, 1, 2, . . . .

Therefore, we can apply the operator A− 1
2 to xk+1 − x̂ and xk − x̂ to obtain

∥A− 1
2 (xk+1 − x̂)∥2 − ∥A− 1

2 (xk − x̂)∥2

= −2αk⟨A− 1
2 (xk − x̂), A− 1

2F ′(x0)
∗(F (xk)− y)⟩+ α2

k∥A− 1
2F ′(x0)

∗(F (xk)− y)∥2

= −2αk⟨A− 1
2 (xk − x̂), A− 1

2F ′(x0)
∗ (F (xk)− F (x̂)− F ′(x̂)(xk − x̂))⟩

+αk

[
αk∥A− 1

2F ′(x0)
∗(F (xk)− y)∥2

−2⟨A− 1
2 (xk − x̂), A− 1

2F ′(x0)
∗F ′(x̂)(xk − x̂)⟩

]
= −2αk⟨A− 1

2 (xk − x̂),

∫ 1

0

(F ′(x̂+ θ(xk − x̂))− F ′(x̂)) dθ(xk − x̂)⟩

+αk

[
αk∥F (xk)− y∥2 − 2⟨A− 1

2 (xk − x̂), F ′(x̂)(xk − x̂)⟩
]
. (3.3.7)

So by (C2) and (3.3.7), we have

∥A− 1
2 (xk+1 − x̂)∥2 − ∥A− 1

2 (xk − x̂)∥2

= −2αk⟨A− 1
2 (xk − x̂),

∫ 1

0

(R(x̂+ θ(xk − x̂), x̂)− I) dθF ′(x̂)(xk − x̂)⟩

+αk

[
αk∥F (xk)− y∥2 − 2⟨A− 1

2 (xk − x̂), F ′(x̂)(xk − x̂)⟩
]
.
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= −2αk⟨A− 1
2 (xk − x̂),

∫ 1

0

[R(x̂+ θ(xk − x̂), x̂)− I] dθF ′(x̂)(xk − x̂)⟩

+αk

[
αk∥F (xk)− y∥2 − 2⟨A− 1

2 (xk − x̂), F ′(x0)(xk − x̂)⟩

−2⟨A− 1
2 (xk − x̂), [F ′(x̂)− F ′(x0)](xk − x̂)⟩

]
= −2αk⟨A− 1

2 (xk − x̂),

∫ 1

0

[R(x̂+ θ(xk − x̂), x̂)− I] dθF ′(x̂)(xk − x̂)⟩

+αk

[
αk∥F (xk)− y∥2 − 2⟨A− 1

2 (xk − x̂), F ′(x0)(xk − x̂)⟩

−2⟨A− 1
2 (xk − x̂), F ′(x0)[G(x̂, x0)− I](xk − x̂)⟩

]
.

The last step follows from (C1). So, we have

∥A− 1
2 (xk+1 − x̂)∥2 − ∥A− 1

2 (xk − x̂)∥2

≤ 2αk∥A− 1
2 (xk − x̂)∥C̄

∫ 1

0

θ∥xk − x̂∥dθ∥R(x̂, x0)− I + I∥∥F ′(x0)(xk − x̂)∥

+αk

[
αk∥

∫ 1

0

F ′(x̂+ θ(xk − x̂))dθ(xk − x̂)∥2 − 2∥xk − x̂∥2 + 2C̄ρ∥xk − x̂∥2
]

≤ 2αk∥A− 1
2 (xk − x̂)∥C̄

∫ 1

0

θ∥xk − x̂∥dθ∥R(x̂, x0)− I + I∥∥F ′(x0)(xk − x̂)∥

+αk

[
αk∥

∫ 1

0

[R(x̂+ θ(xk − x̂), x0)− I + I] dθF ′(x0)(xk − x̂)∥2 − 2∥xk − x̂∥2

+2C̄ρ∥xk − x̂∥2
]

≤ αk∥A− 1
2 (xk − x̂)∥C̄

2
∥xk − x̂∥(1 + C̄ρ)∥F ′(x0)(xk − x̂)∥

+αk

[
αk(1 + C̄ρ)2∥A

1
2 (xk − x̂)∥2 − 2∥xk − x̂∥2 + 2C̄ρ∥xk − x̂∥2

]
.

Therefore by Lemma 3.3.1, we have

∥A− 1
2 (xk+1 − x̂)∥2 − ∥A− 1

2 (xk − x̂)∥2

≤ αk∥A− 1
2 (xk − x̂)∥C̄∥xk − x̂∥(1 + C̄ρ)∥F ′(x0)(xk − x̂)∥ − αk

5
∥xk − x̂∥2

+αk

[
(1 + C̄ρ)2

1− 4C̄ρ− C̄2ρ2
+ 2C̄ρ− 9

5

]
∥xk − x̂∥2

≤ αk∥A− 1
2 (xk − x̂)∥C̄

(
1 + C̄ρ

)
∥xk − x̂∥∥F ′(x0)(xk − x̂)∥

−αk

5
∥xk − x̂∥2. (3.3.8)
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The last step follows from the fact that for C̄ρ ≤ r0, we have

(1 + C̄ρ)2

1− 4C̄ρ− C̄2ρ2
+ 2C̄ρ ≤ 9

5
.

Now using the relation 2ab ≤ a2 + b2 with

a =

√
1

5
αk∥xk − x̂∥ and b =

√
5αk

2
C̄(1 + C̄ρ)∥A− 1

2 (xk − x̂)∥∥F ′(x0)(xk − x̂)∥

in (3.3.8), we have

∥A− 1
2 (xk+1 − x̂)∥2 − ∥A− 1

2 (xk − x̂)∥2

≤ 5

4
C̄2(1 + C̄ρ)2αk∥A− 1

2 (xk − x̂)∥2∥F ′(x0)(xk − x̂)∥2. (3.3.9)

Now, since C̄ρ ≤ min{
√
5− 2, r0} ≤ 0.0740, we have by (3.3.9)

∥A− 1
2 (xk+1 − x̂)∥2 − ∥A− 1

2 (xk − x̂)∥2

≤ 1.4418C̄2αk∥A
1
2 (xk − x̂)∥2∥A− 1

2 (xk − x̂)∥2.

Set zk = ∥A− 1
2 (xk − x̂)∥. Then

z2k+1 ≤
(
1 + 1.4418C̄2αk∥A

1
2 (xk − x̂)∥2

)
z2k.

By induction

z2k ≤
k−1∏
i=0

(
1 + 1.4418C̄2αi∥A

1
2 (xi − x̂)∥2

)
z20 . (3.3.10)

The convergence of
∏∞

i=0

(
1 + 1.4418C̄2αi∥A

1
2 (xi − x̂)∥2

)
follows from the con-

vergence of
∑∞

i=0 αi∥A
1
2 (xi − x̂)∥2. By Lemma 3.3.1,

∑∞
i=0 αi∥A

1
2 (xi − x̂)∥2 < ∞.

Therefore, there exists M > 0 such that
∑k−1

i=0 C̄
2αi∥A

1
2 (xi − x̂)∥2 < M, which

implies that

k−1∏
i=0

(1 + 1.4418C̄2αi∥A
1
2 (xi − x̂)∥2) = e

∑k−1
i=0 ln

(
1+1.4418C̄2αi∥A

1
2 (xi−x̂)∥2

)

≤ e1.4418M . (3.3.11)
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From (3.3.10) and (3.3.11), we have z2k ≤ e1.4418Mz20 . Since by (C3), z0 = ∥A 1
2 (x0 −

x̂)∥ = ∥v∥. So we have

z2k ≤ e1.4418M∥v∥2. (3.3.12)

This completes the proof.

2

REMARK 3.3.3. Note that, in (3.3.8), one can split −2∥xk−x̂∥2 into two parts,

say −c∥xk − x̂∥2 and (c− 2)∥xk − x̂∥2 such that (1+C̄ρ)2

1−4C̄ρ−C̄2ρ2
+2C̄ρ ≤ 2− c. In this

way one can choose a larger ρ. We choose c = 1
5
for our convenience.

THEOREM 3.3.4. Let (C) conditions hold and C̄ρ < min
{√

5− 2, r0
}
= 0.0740.

Let (xk) be as in (3.2.4) or (3.2.5). Then

∥xk − x̂∥ ≤ C̃k−1/2

where C̃ =
√
3e1.4418Mϵ−1/2∥v∥.

Proof: Observe that αk ≥ ∥F ′(x0)∥−2. So for ϵk := ϵ = 0.6985∥F ′(x0)∥−2, we

have, from Lemma 3.3.1, the conditions (C) and C̄ρ ≤ 0.0740;

∥xk − x̂∥2 − ∥xk+1 − x̂∥2 ≥
(
1− 4C̄ρ− C̄2ρ2

)
αk∥A

1
2 (xk − x̂)∥2

≥ 0.6985∥F ′(x0)∥−2∥A
1
2 (xk − x̂)∥2

= ϵ∥A
1
2 (xk − x̂)∥2

= ϵ∥F ′(x0)(xk − x̂)∥2

= ϵ⟨A(xk − x̂), xk − x̂⟩.

An application of (3.3.1), yields

∥xk − x̂∥ ≤
√
3∥A− 1

2 (xk − x̂)∥2/3ϵ−1/2

[
k−1∑
i=0

∥A− 1
2 (xi − x̂)∥−2/3

]−1/2

=
√
3z

2/3
k ϵ−1/2

[
k−1∑
i=0

z
−2/3
i

]−1/2

. (3.3.13)
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So by (3.3.12) and (3.3.13), we have

∥xk − x̂∥ ≤
√
3e1.4418Mϵ−1/2k−1/2∥v∥

≤ C̃k−1/2. (3.3.14)

This completes the proof.

2

3.4 Convergence analysis of MSDM andMMEM

with noisy data

In this Section, we consider methods MSDM and MMEM with noisy data yδ

instead of y. As already mentioned in the Chapter 1, we assume that

∥y − yδ∥ ≤ δ.

Precisely, we define:

xδk+1 = xδk + αδ
ks

δ
k (k = 0, 1, 2, . . .)

sδk = −F ′(x0)
∗(F (xδk)− yδ) (3.4.1)

αδ
k =

∥sδk∥2

∥F ′(x0)sδk∥2

and

xδk+1 = xδk + αδ
ks

δ
k (k = 0, 1, 2, . . .)

sδk = −F ′(x0)
∗(F (xδk)− yδ) (3.4.2)

αδ
k =

∥F (xδk)− yδ∥2

∥sδk∥2
,

instead of xk in (3.2.4) and (3.2.5), respectively. We will use the following assump-

tion together with the assumptions (C):

(C4) F satisfies the local property

∥F (u)− F (v)− F ′(x0)(u− v)∥ ≤ η∥F (u)− F (v)∥ (3.4.3)
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for all u, v ∈ B(x0, ρ) with max{1
2
− ∥F ′(x0)∥2

2m2 , 0} < η < 1
2
. It was shown in Kam-

merer and Nashed (1971, 1972); King (1989); Lardy (1990); Louis (1987) (for linear

ill-posed problems) that the steepest descent method converges in the case of ex-

act data, but due to the instability of the steepest method it is impossible to use

a-priori parameter choice strategies as stopping criteria. Therefore, a-posteriori

strategy is used in the literature (Scherzer (1996)) for stopping (3.4.1) and (3.4.2),

but no error estimate for ∥xδk − x̂∥ was given (as far as the authors are known). In

this Section, we propose a discrepancy principle for method (3.4.1) and (3.4.2).

3.4.1 Discrepancy Principle

PROPOSITION 3.4.1. Let (C) conditions hold. Let (xδk) be as in (3.4.1) or

(3.4.2). Then, xδk ∈ B(x0, 2ρ) ⊂ D(F ) for all k = 0, 1, 2, . . . and if

∥F (xδk)− yδ∥ > τδ (3.4.4)

where

τ > 2
(1 + η)

1− 2η
> 2, (3.4.5)

then, for all 0 ≤ k < k∗ with τ as in (3.4.5), we have

k∗(τδ)
2 ≤

k∗−1∑
k=0

∥F (xδk)− yδ∥2 ≤ τ∥F ′(x0)∥2

(1− 2η)τ − 2(1 + η)
∥x0 − x̂∥2. (3.4.6)

Proof: Note that x0 ∈ B(x0, 2ρ). Suppose xδk ∈ B(x0, 2ρ). Using (3.4.1) or

(3.4.2), we have

∥xδk+1 − x̂∥2 − ∥xδk − x̂∥2

= −2αδ
k⟨xδk − x̂, F ′(x0)

∗(F (xδk)− yδ)⟩+ αδ
k

2∥F ′(x0)
∗(F (xδk)− yδ)∥2

= 2αδ
k⟨F (xδk)− yδ − F ′(x0)(x

δ
k − x̂), F (xδk)− yδ⟩

+αδ
k

[
αδ
k∥F ′(x0)

∗(F (xδk)− yδ)∥2 − 2∥F (xδk)− yδ∥2
]

≤ 2αδ
k∥F (xδk)− F (x̂) + y − yδ − F ′(x0)(x

δ
k − x̂)∥∥F (xδk)− yδ∥

+αδ
k

[
αδ
k∥F ′(x0)

∗(F (xδk)− yδ)∥2 − 2∥F (xδk)− yδ∥2
]
. (3.4.7)
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So by (C4), we have by (3.4.7)

∥xδk+1 − x̂∥2 − ∥xδk − x̂∥2

≤ 2αδ
k

(
η∥F (xδk)− F (x̂)∥+ δ

)
∥F (xδk)− yδ∥

+αδ
k

[
αδ
k∥F ′(x0)

∗(F (xδk)− yδ)∥2 − 2∥F (xδk)− yδ∥2
]

≤ 2αδ
k

[
η∥F (xδk)− yδ∥+ (1 + η)δ

]
∥F (xδk)− yδ∥

+αδ
k

[
αδ
k∥F ′(x0)

∗(F (xδk)− yδ)∥2 − 2∥F (xδk)− yδ∥2
]

= αδ
k(2η − 1)∥F (xδk)− yδ∥2 + αδ

k2(1 + η)δ∥F (xδk)− yδ∥

+αδ
k

[
αδ
k∥F ′(x0)

∗(F (xδk)− yδ)∥2 − ∥F (xδk)− yδ∥2
]
.

In both methods, i.e., (3.4.1) and (3.4.2),

αδ
k∥F ′(x0)

∗(F (xδk)− yδ)∥2 ≤ ∥F (xδk)− yδ∥2.

Therefore, we have

∥xδk+1 − x̂∥2 − ∥xδk − x̂∥2

≤ αδ
k

[
(2η − 1)∥F (xδk)− yδ∥2 + 2(1 + η)δ∥F (xδk)− yδ∥

]
, (3.4.8)

so, by (3.4.4), we have

∥xδk+1 − x̂∥2 − ∥xδk − x̂∥2

≤ αδ
k

(
(2η − 1) + 2

(1 + η)

τ

)
∥F (xδk)− yδ∥2 < 0. (3.4.9)

This implies ∥xδk+1 − x̂∥ < ∥xδk − x̂∥ < ∥x0 − x̂∥ < ρ. Thus ∥xδk+1 − x0∥ ≤

∥xδk+1 − x̂∥+ ∥x0 − x̂∥ < 2ρ i.e., xδk+1 ∈ B(x0, 2ρ) ⊂ D(F ) for all k = 0, 1, 2, . . . .

Now since αδ
k ≥ ∥F ′(x0)∥−2, we have by (3.4.9)

∥F ′(x0)∥−2

(
(1− 2η)− 2

(1 + η)

τ

)
∥F (xδk)− yδ∥2

≤ ∥xδk − x̂∥2 − ∥xδk+1 − x̂∥2. (3.4.10)

Adding the inequality (3.4.10) for k from 0 through k∗ − 1, we obtain

∥F ′(x0)∥−2

(
(1− 2η)− 2

(1 + η)

τ

) k∗−1∑
k=0

∥F (xδk)− yδ∥2 ≤ ∥x0 − x̂∥2 − ∥xδk∗ − x̂∥2.

(3.4.11)
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This completes the proof.

2

REMARK 3.4.2. Note that (3.4.11) implies, for yδ ̸= y, there must be a unique

index k∗ such that (3.4.4) holds for all k < k∗ but is violated at k = k∗ [see also

(Engl et al., 1996, page 282)].

Let Ω := ∥F ′(x0)∥−2
(
(1− 2η)− 2 (1+η)

τ

)
Let Ω := ∥F ′(x0)∥−2

(
(1− 2η)− 2 (1+η)

τ

)
and

q = 1− Ω

(
m

τ − 1

)2

. (3.4.12)

Now, we shall prove that q < 1 for τ > 2. Note that, to prove q < 1, it is enough

to prove that

Ω

(
m

τ − 1

)2

= ∥F ′(x0)∥−2

(
(1− 2η)− 2

(1 + η)

τ

)(
m

τ − 1

)2

< 1,

for τ > 2. That is to prove that

p(τ) := τ 3 − 2τ 2 + (1− ∥F ′(x0)∥−2(1− 2η)m2)τ + 2(1 + η)m2∥F ′(x0)∥−2 > 0,

for τ > 2. This follows from the condition η > 1
2
− ∥F ′(x0)∥2

2m2 .

THEOREM 3.4.3. Let (C) conditions hold and ρ < min
{

(τ−1)2δ
m

, 2
m
√
Ω

}
. Let

xδk+1 be as in (3.4.1) or in (3.4.2). Then for 0 ≤ k < k∗,

∥xδk+1 − x̂∥ =

 O(q
k+1
2 ) if δ < qk+1

O(δ
1
2 ) if qk+1 ≤ δ

(3.4.13)

where q := 1− Ωm2

(τ−1)2
.

Proof: By the definition of k∗, we have for k ≤ k∗;

τδ < ∥F (xδk)− yδ∥

≤ ∥F (xδk)− F (x̂)∥+ ∥y − yδ∥. (3.4.14)

So, we have

∥F (xδk)− F (x̂)∥ > (τ − 1)δ. (3.4.15)
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Again by (3.4.14), we have

τδ < ∥F (xδk)− yδ∥

< ∥
∫ 1

0

F ′(x̂+ θ(xδk − x̂))dθ(xδk − x̂)∥+ δ

≤ m∥xδk − x̂∥+ δ,

i.e.,

δ <
m∥xδk − x̂∥
τ − 1

. (3.4.16)

Thus, by (3.4.15) and (3.4.16), we have

∥F (xδk)− yδ∥ ≥ ∥F (xδk)− F (x̂)∥ − δ

≥ (τ − 1)δ − m∥xδk − x̂∥
τ − 1

(3.4.17)

≥ (τ − 1)δ − mρ

τ − 1
> 0.

Thus by (3.4.17), we have

∥F (xδk)− yδ∥2 ≥ (τ − 1)2δ2 +

(
m∥xδk − x̂∥
τ − 1

)2

−2δm∥xδk − x̂∥. (3.4.18)

So by (3.4.18) and (3.4.10), we have

∥xδk+1 − x̂∥2 ≤

(
1− Ω

(
m

τ − 1

)2
)
∥xδk − x̂∥2

−Ω(τ − 1)2δ2 + 2Ωδm∥xδk − x̂

≤

(
1− Ω

(
m

τ − 1

)2
)
∥xδk − x̂∥2

−Ω(τ − 1)2δ2 + 2Ωδmρ (3.4.19)

≤

(
1− Ω

(
m

τ − 1

)2
)
∥xδk − x̂∥2

+2Ωδmρ.

Therefore we have,

∥xδk+1 − x̂∥2 ≤ q∥xδk − x̂∥2 + Lδ
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where L = 2Ωmρ. Then,

∥xδk+1 − x̂∥2 ≤ qk+1∥xδ0 − x̂∥2 + qkLδ + ...+ qLδ + Lδ

≤ qk+1ρ2 +
Lδ

1− q
. (3.4.20)

This completes the proof.

2

3.4.2 Convergence rate result for steepest descent method

and minimal error method with noisy data

In this Section, we considered the steepest descent method and minimal error

method with noisy data and obtained a convergence rate result which is not avail-

able in the literature. The steepest descent method and minimal error method

with noisy data are defined by

xδk+1 = xδk + αδ
ks

δ
k (k = 0, 1, 2, . . .)

sδk = −F ′(xδk)
∗(F (xδk)− yδ) (3.4.21)

αδ
k =

∥sδk∥2

∥F ′(xδk)s
δ
k∥2

and

xδk+1 = xδk + αδ
ks

δ
k (k = 0, 1, 2, . . .)

sδk = −F ′(xδk)
∗(F (xδk)− yδ) (3.4.22)

αδ
k =

∥F (xδk)− yδ∥2

∥sδk∥2
,

respectively. We have the following convergence rate result.

THEOREM 3.4.4. Let (C) conditions hold and ρ < min
{

(τ−1)2δ
m

, 2
m
√
Ω

}
. Let

xδk+1 be as in (3.4.21) or (3.4.22). Then for 0 ≤ k < k∗,

∥xδk+1 − x̂∥ =

 O(q
k+1
2 ) if δ < qk+1

O(δ
1
2 ) if qk+1 ≤ δ

(3.4.23)
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where

q := 1− ωm2

(τ − 1)2
.

with

ω := ∥F ′(xδk)∥−2

(
(1− 2η)− 2

(1 + η)

τ

)
.

Proof: Simply follow the proof of Theorem 3.4.3.

2

3.5 Example

In this Section, we implement MSDM and MMEM for both noisy data and noisy

free data through below example.

EXAMPLE 3.5.1. (cf. Hoang and Ramm (2010)) Consider a nonlinear operator

equation F : L2[0, 1] → L2[0, 1] defined by

F (x) := (arctan(x))2. (3.5.24)

The Fréchet derivative of F is

F ′(x)w =
2arctan(x)

1 + x2
w.

If x(t) vanishes on a set of positive Lebesgue measure, then F ′(x) is not bound-

edly invertible. If x ∈ C[0, 1] vanishes even at one point t0, then F ′(x) is not

boundedly invertible in L2[0, 1].

Note that

F ′(x̂)w = F ′(x0)G(x̂, x0)w,

and

F ′(x)w = R(x, x0)F
′(x0)w
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with

G(x̂, x0) =
1 + x20
1 + x̂2

arctan(x̂)

arctan(x0)

and

R(x, x0) =
1 + x20
1 + x2

arctan(x)

arctan(x0)
,

respectively. Further, for x0 ̸= 0,

∥G(x̂, x0)− I∥ ≤
[

1

∥arctan(x0)∥
+ 2max{∥x̂∥, ∥x0∥}

]
∥x̂− x0∥

and

∥R(x, x0)− I∥ ≤
[

1

∥arctan(x0)∥
+ 2max{∥x∥, ∥x0∥}

]
∥x− x0∥.

That is, assumptions (C1) and (C2) are satisfied. Let x̂(t) = t, t ∈ [0, 1] and

y(t) = arctan(t)2. Initial guess x0(t) = t/2 and τ = 2.1. For nosiy free data error

estimates are given in Table 3.1 and approximate of solutions are given in Figure

3.1 and Figure 3.6. For noisy data, error estimates are given in 3.2 with different

values of δ. Approximate solutions are given in Figures 3.2-3.5 for MSDM and in

Figure 3.7-3.10 for MMEM.
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Figure 3.1: Approximate solutions of MSDM with exact data
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Figure 3.2: Approximate solution of MSDM with δ = 0.1
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Figure 3.3: Approximate solution of MSDM with δ = 0.01
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Figure 3.4: Approximate solution of MSDM with δ = 0.001
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Figure 3.5: Approximate solution of MSDM with δ = 0.0001
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Figure 3.6: Approximate solutions of MMEM for exact data
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Figure 3.7: Approximate solution of MMEM with δ = 0.1
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Figure 3.8: Approximate solution of MMEM with δ = 0.01
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Figure 3.9: Approximate solution of MMEM with δ = 0.001
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Figure 3.10: Approximate solution of MMEM with δ = 0.0001
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Table 3.1: Error estimate for MSDM and MMEM with exact data

MSDM MMEM

k ∥xδk − x̂∥ ∥xδ
k−x̂∥√
k

∥xδk − x̂∥ ∥xδ
k−x̂∥√
k

10 1.3031E-02 4.1208E-03 1.3044E-02 4.1248E-03

20 6.9204E-03 1.5474E-03 6.8454E-03 1.5307E-03

30 3.6819E-03 6.7222E-04 3.6393E-03 6.6445E-04

40 1.9186E-03 3.0336E-04 1.8962E-03 2.9981E-04

50 9.8853E-04 1.3980E-04 9.7693E-04 1.3816E-04

60 5.0629E-04 6.5362E-05 5.0036E-04 6.4596E-05

70 2.5850E-04 3.0897E-05 2.5548E-04 3.0535E-05

80 1.3177E-04 1.4733E-05 1.3023E-04 1.4561E-05

90 6.7118E-05 7.0748E-06 6.6334E-05 6.9923E-06

100 3.4172E-05 3.4172E-06 3.3773E-05 3.3773E-06

Table 3.2: Error estimate for MSDM and MMEM with noisy data

MSDM MMEM

δ k ∥xδk − x̂∥ ∥xδ
k−x̂∥√
δ

k ∥xδk − x̂∥ ∥xδ
k−x̂∥√
δ

0.1 2 1.5130E-01 4.7845E-01 2 2.0772E-01 1.4688E-01

0.01 4 2.7174E-02 2.7174E-01 4 3.4426E-02 1.7213E-02

0.001 14 8.9047E-03 2.8159E-01 19 5.9390E-03 1.3625E-03

0.0001 49 8.7804E-04 8.7804E-02 54 5.9459E-04 8.0914E-05
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Chapter 4

ERROR ESTIMATES FORMSDM

AND MMEM UNDER A GEN-

ERAL HÖLDER-TYPE SOURCE

CONDITION

An error estimate for steepest descent and minimal error method for nonlinear

ill-posed problems, under a general Hölder-type source condition is not known.

We consider modified form of a steepest descent method (MFSDM) and modified

form of minimal error method (MFMEM) for nonlinear ill-posed problems. Using

a general Hölder-type source condition, we obtained an error estimate. We also

consider the methods MFSDM and MFMEM with noisy data and provide an error

estimate. A numerical example is also provided.

4.1 Introduction

In Chapter 3, we have studied modified steepest descent method:

xk+1 = xk + αksk (k = 0, 1, 2, . . .)

sk = −F ′(x0)
∗(F (xk)− y) (4.1.1)

αk =
∥sk∥2

∥F ′(x0)sk∥2
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and modified minimal error method:

xk+1 = xk + αksk (k = 0, 1, 2, . . .)

sk = −F ′(x0)
∗(F (xk)− y) (4.1.2)

αk =
∥F (xk)− y∥2

∥sk∥2
.

As far as the authors are known, for a steepest descent method and a minimal error

method, no error estimate is known under a general Hölder-type source condition

x0 − x̂ = (F ′(x̂)∗F ′(x̂))νv (4.1.3)

or

x0 − x̂ = (F ′(x0)
∗F ′(x0))

νv (4.1.4)

for ν ̸= 1
2
. Let x0 is the initial guess such that ∥x0 − x̂∥ < ρ. In order to obtain

error estimate under the general source condition (4.1.4), we consider the following

modified form of steepest descent method:

xk+1 = xk + αksk

sk = −F ′(x0)
∗(F (xk)− y) (4.1.5)

αk =
∥sk∥2

∥Aqsk∥2

and the following modified form of minimal error method:

xk+1 = xk + αksk (k = 0, 1, 2, . . .)

sk = −F ′(x0)
∗(F (xk)− y) (4.1.6)

αk =
∥F (xk)− y∥2

∥Aq(F (xk)− y)∥2

where A = F ′(x0)
∗F ′(x0) and 0 < q < 1

2
.

REMARK 4.1.1.

(a) For q = 1
2
, the methods (4.1.5) and (4.1.6) are reduced to modified steepest

descent method and modified minimal error method considered in Chapter 3, but

proof in this paper cannot be applied for the method considered in Chapter 3.
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(b) Note that, for q close to zero, in MFMEM, ν is close to 1
2
, i.e., we obtained the

error estimate O(k−ν), for 0 < ν < 1
2
(see Theorem 4.2.4) and in MFSDM, ν is

close to 1
4
, i.e., we obtained the error estimate O(k−ν) for 0 < ν < 1

4
(see Theorem

4.2.6).

The rest of the Chapter is organized as follows. Convergence analysis of meth-

ods MFSDM and MFMEM is given in Section 4.2 and convergence rate result of

methods MFSDM and MFMEM with noisy data is given in Section 4.3. Numerical

example is given in Section 4.4.

4.2 Convergence analysis of MFSDM and

MFMEM

To obtain an error estimate for ∥xk − x̂∥ under the assumption (4.1.4), we use

(3.3.1). To apply (3.3.1) with vk = A−ν(xk − x̂), one has to prove that

∥xk − x̂∥2 − ∥xk+1 − x̂∥2 ≥ εk⟨A(xk − x̂), xk − x̂⟩ (4.2.1)

for some εk > 0 and ∥A−ν(xk − x̂)∥ is bounded.

Let B = ∥A 1
2
−q∥ <

√
2 and D =

√
1+4B2−(B2+1)

B2 .

LEMMA 4.2.1. Let (xk) be as in (4.1.5) or in (4.1.6). If assumption (C2) holds

and 0 < C1ρ < D, then xk ∈ B(x0, 2ρ) and

∥xk+1 − x̂∥2 + αkΓ∥A
1
2 (xk − x̂)∥2 ≤ ∥xk − x̂∥2 (4.2.2)

with

Γ = 2− (B2C2
1ρ

2 + 2(B2 + 1)C1ρ+B2), (4.2.3)

for all k = 0, 1, 2, . . . . Moreover,

∞∑
k=0

αk∥A
1
2 (xk − x̂)∥2 <∞.
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Proof: We shall prove the result using induction. Note that x0 ∈ B(x0, 2ρ)

and suppose xk ∈ B(x0, 2ρ). Then using (4.1.5) or (4.1.6), we have

∥xk+1 − x̂∥2 − ∥xk − x̂∥2

= −2αk⟨xk − x̂, F ′(x0)
∗(F (xk)− y)⟩+ α2

k∥F ′(x0)
∗(F (xk)− y)∥2

= −2αk⟨xk − x̂, F ′(x0)
∗[F (xk)− F (x̂)− F ′(x0)(xk − x̂)]⟩

+αk[αk∥F ′(x0)
∗(F (xk)− y)∥2 − 2⟨xk − x̂, F ′(x0)

∗F ′(x0)(xk − x̂)⟩]

= −2αk⟨F ′(x0)(xk − x̂),

∫ 1

0

(F ′(x̂+ t(xk − x̂))− F ′(x0))dt(xk − x̂)⟩

+αk[αk∥F ′(x0)
∗(F (xk)− y)∥2 − 2∥A

1
2 (xk − x̂)∥2]. (4.2.4)

So by (C2), we have

∥xk+1 − x̂∥2 − ∥xk − x̂∥2

= −2αk⟨F ′(x0)(xk − x̂),

∫ 1

0

[R(x̂+ t(xk − x̂), x0)− I]dtF ′(x0)(xk − x̂)⟩

+αk[αk∥F ′(x0)
∗(F (xk)− y)∥2 − 2∥A

1
2 (xk − x̂)∥2]

≤ 2αk

∫ 1

0

∥R(x̂+ t(xk − x̂), x0)− I∥∥F ′(x0)(xk − x̂)∥2dt

+αk[αk∥F ′(x0)
∗(F (xk)− y)∥2 − 2∥A

1
2 (xk − x̂)∥2]

≤ 2αkC1∥x̂+ t(xk − x̂)− x0∥∥A
1
2 (xk − x̂)∥2

+αk[αk∥F ′(x0)
∗(F (xk)− y)∥2 − 2∥A

1
2 (xk − x̂)∥2]. (4.2.5)

By the definition of αk, we have by MFSDM

αk∥F ′(x0)
∗(F (xk)− y)∥2 =

⟨Aqsk, A
−qsk⟩2

∥Aqsk∥2

≤ ∥Aqsk∥2∥A−qsk∥2

∥Aqsk∥2

≤ ∥A
1
2
−q∥2∥F (xk)− y∥2

and by MFMEM

αk∥F ′(x0)
∗(F (xk)− y)∥2 = αk∥A

1
2
−qAq(F (xk)− y)∥2

≤ ∥A
1
2
−q∥2∥F (xk)− y∥2.
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So in both methods MFSDM and MFMEM

αk∥F ′(x0)
∗(F (xk)− y)∥2 ≤ ∥A

1
2
−q∥2∥F (xk)− y∥2.

Therefore,

αk∥F ′(x0)
∗(F (xk)− y)∥2

= B2∥
∫ 1

0

F ′(x̂+ t(xk − x̂))dt(xk − x̂)∥2

= B2∥
∫ 1

0

[R(x̂+ t(xk − x̂), x0)− I + I]dtF ′(x0)(xk − x̂)∥2

≤ B2

∫ 1

0

(C1∥x̂+ t(xk − x̂)− x0∥+ 1)2dt∥F ′(x0)(xk − x̂)∥2

≤ B2(C1ρ+ 1)2∥A
1
2 (xk − x̂)∥2. (4.2.6)

Hence by (4.2.5) and (4.2.6) we have

∥xk+1 − x̂∥2 − ∥xk − x̂∥2 ≤ −Γαk∥A
1
2 (xk − x̂)∥2.

This completes the proof.

2

Next, we will prove the boundedness of ∥A−ν(xk − x̂)∥. Let B1 = ∥A 1
2
−ν−q∥

with 0 < ν < 1
2
− q and 0 < q < 1

2
. We have the following Lemma for MFMEM.

LEMMA 4.2.2. Let (xk) be as in (4.1.6). Assume that the assumptions (C0) and

(C2) hold and 0 < C1ρ < D. If the source condition (4.1.4) holds with 0 < ν <

1
2
− q, 0 < q < 1

2
, then ∥A−ν(xk − x̂)∥ is bounded.

Proof: By using (4.1.4), one can prove that, xk − x̂ ∈ R(Aν) for all k =

0, 1, 2, . . . . So, we can apply A−ν to xk+1− x̂ and xk− x̂, as in Lemma 3.3.2. Then,

we have

∥A−ν(xk+1 − x̂)∥2 − ∥A−ν(xk − x̂)∥2

= −2αk⟨A−ν(xk − x̂), A−νF ′(x0)
∗(F (xk)− y)⟩

+α2
k∥A−νF ′(x0)

∗(F (xk)− y)∥2

≤ 2αk∥A−ν(xk − x̂)∥∥A−νF ′(x0)
∗(F (xk)− y)∥

+α2
k∥A−νF ′(x0)

∗(F (xk)− y)∥2.
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i.e.,

∥A−ν(xk+1 − x̂)∥ ≤ ∥A−ν(xk − x̂)∥+ αk∥A−νF ′(x0)
∗(F (xk)− y)∥. (4.2.7)

By the definition of αk, we have

αk∥A−νF ′(x0)
∗(F (xk)− y)∥2

= αk∥A
1
2
−ν−qAq(F (xk)− y)∥2

≤ ∥A
1
2
−ν−q∥2∥F (xk)− y∥2

= ∥A
1
2
−ν−q∥2∥

∫ 1

0

F ′(x̂+ t(xk − x̂))dt(xk − x̂)∥2. (4.2.8)

Using assumption (C2) in (4.2.8), we get

αk∥A−νF ′(x0)
∗(F (xk)− y)∥2

= ∥A
1
2
−ν−q∥2∥

∫ 1

0

[R(x̂+ t(xk − x̂), x0)− I + I]dtF ′(x0)(xk − x̂)∥2

≤ ∥A
1
2
−ν−q∥2

∫ 1

0

(C1∥x̂+ t(xk − x̂)− x0∥+ 1)2dt∥F ′(x0)(xk − x̂)∥2

≤ B2
1(C1ρ+ 1)2∥A

1
2 (xk − x̂)∥2 (4.2.9)

so,

√
αk∥A−νF ′(x0)

∗(F (xk)− y)∥ ≤ B1(C1ρ+ 1)∥A
1
2 (xk − x̂)∥. (4.2.10)

Therefore by (4.2.10) and (4.2.7), we have

∥A−ν(xk+1 − x̂)∥ ≤ ∥A−ν(xk − x̂)∥+
√
αkB1(C1ρ+ 1)∥A

1
2 (xk − x̂)∥. (4.2.11)

Let zk = ∥A−ν(xk − x̂)∥. Then by (4.2.11), we have

zk+1 ≤ zk +B1(C1ρ+ 1)
√
αk∥A

1
2 (xk − x̂)∥,

i.e., we have

zk ≤ z0 +B1(C1ρ+ 1)
k−1∑
i=0

√
αi∥A

1
2 (xi − x̂)∥. (4.2.12)
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By Lemma 4.2.1, we have

zk ≤ z0 +B1(C1ρ+ 1)M,

where M is such that
∞∑
k=0

αk∥A
1
2 (xk − x̂)∥2 ≤M2.

Now since z0 = ∥A−ν(x0 − x̂)∥ = ∥A−νAνv∥ = ∥v∥, we have

zk ≤ ∥v∥+B1(C1ρ+ 1)M. (4.2.13)

This completes the proof.

2

Let B0 = ∥Aν∥∥A 1
2
−2ν−q∥ with 0 < 2ν < 1

2
− q and 0 < q < 1

2
. Then we have

the following Lemma for MFSDM .

LEMMA 4.2.3. Let (xk) be as in (4.1.5). Assume that the assumptions (C0) and

(C2) hold and 0 < C1ρ < D. If the source condition (4.1.4) holds with 0 < 2ν <

1
2
− q, 0 < q < 1

2
, then ∥A−ν(xk − x̂)∥ is bounded.

Proof: Analogous to the proof of (4.2.7), one can prove

∥A−ν(xk+1 − x̂)∥ ≤ ∥A−ν(xk − x̂)∥+ αk∥A−νF ′(x0)
∗(F (xk)− y)∥. (4.2.14)

By definition of αk,

αk∥A−νF ′(x0)
∗(F (xk)− y)∥2 ≤ ∥Aν∥2∥A−νsk∥2

∥Aqsk∥2
∥A−νsk∥2

=
∥Aν∥2

∥Aqsk∥2
⟨Aqsk, A

−2ν−qsk⟩2

≤ ∥Aν∥2∥A
1
2
−2ν−q∥2∥F (xk)− y∥2

≤ B2
0∥F (xk)− y∥2. (4.2.15)
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Using assumption (C2) in (4.2.15), we get

αk∥A−νF ′(x0)
∗(F (xk)− y)∥2

= B2
0∥
∫ 1

0

[R(x̂+ t(xk − x̂), x0)− I + I] dtF ′(x0)(xk − x̂)∥2

≤ B2
0

∫ 1

0

(C1∥x̂+ t(xk − x̂)− x0∥+ 1)2 dt∥F ′(x0)(xk − x̂)∥2

≤ B2
0(C1ρ+ 1)2∥A

1
2 (xk − x̂)∥2

so,

√
αk∥A−νF ′(x0)

∗(F (xk)− y)∥ ≤ B0(C1ρ+ 1)∥A
1
2 (xk − x̂)∥. (4.2.16)

Therefore by (4.2.16) and (4.2.14), we have

∥A−ν(xk+1 − x̂)∥ ≤ ∥A−ν(xk − x̂)∥+
√
αkB0(C1ρ+ 1)∥A

1
2 (xk − x̂)∥. (4.2.17)

Let zk = ∥A−ν(xk − x̂)∥. Then as in (4.2.13), one can prove that

zk ≤ ∥v∥+B0(C1ρ+ 1)M. (4.2.18)

This completes the proof.

2

By Lemma 4.2.2 and Lemma 4.2.3, ∥A−ν(xk − x̂)∥ is bounded if xk is in

MFMEM or MFSDM.

THEOREM 4.2.4. Let (xk) be as in (4.1.6). Assume that the assumptions

(C0) and (C2) hold and 0 < C1ρ < D. If the source condition (4.1.4) holds with

0 < ν < 1
2
− q, 0 < q < 1

2
, then

∥xk − x̂∥ ≤ C̃k−ν

where C̃ = [2(ν + 1)]νϵ−ν (∥v∥+B1(C1ρ+ 1)M) .

Proof: Note that αk ≥ ∥Aq∥−2. Since (C2) and (4.1.4) for 0 < ν < 1
2
− q hold

and C1ρ < D, set ϵk := ϵ = Γ∥Aq∥−2 where Γ is as in (4.2.3). Now Lemma 4.2.2
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implies that,

∥xk − x̂∥2 − ∥xk+1 − x̂∥2 ≥ Γαk∥A
1
2 (xk − x̂)∥2

≥ Γ∥Aq∥−2∥A
1
2 (xk − x̂)∥2

= ϵ∥A
1
2 (xk − x̂)∥2

= ϵ⟨F ′(x0)
∗F ′(x0)(xk − x̂), xk − x̂⟩

= ϵ⟨A(xk − x̂), xk − x̂⟩.

Therefore by (3.3.1), we have

∥xk − x̂∥ ≤ [2(ν + 1)]ν∥A−ν(xk − x̂)∥
1

ν+1

[
k−1∑
i=0

ϵi∥A−ν(xi − x̂)∥
−1
ν+1

]−ν

≤ [2(ν + 1)]νz
1

ν+1

k ϵ−ν

[
k−1∑
i=0

z
− 1

ν+1

i

]−ν

. (4.2.19)

So by (4.2.13) and (4.2.19), we have

∥xk − x̂∥ ≤ [2(ν + 1)]νϵ−ν (∥v∥+B1(C1ρ+ 1)M) k−ν

≤ C̃k−ν .

2

REMARK 4.2.5. Note that as q → 0, ν → 1
2
. So, we obtain the error estimate

∥xk − x̂∥ = O(k−ν), for 0 < ν < 1
2
under a Hölder-type source condition (4.1.4)

for the method MFMEM.

THEOREM 4.2.6. Let (xk) be as in (4.1.5). Assume that the assumptions

(C0) and (C2) hold and 0 < C1ρ < D. If the source condition (4.1.4) holds with

0 < 2ν < 1
2
− q, 0 < q < 1

2
then

∥xk − x̂∥ ≤ C̃k−ν

where C̃ = [2(ν + 1)]νϵ−ν(∥v∥+B1(C1ρ+ 1)M).

Proof: Proof is analogous to the proof of Theorem 4.2.4.

2
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REMARK 4.2.7. Note that, as q → 0, ν → 1
4
. So we obtain the error estimate

∥xk − x̂∥ = O(k−ν), for 0 < ν < 1
4
under a Hölder-type source condition (4.1.4)

for the method MFSDM.

4.3 MFSDM and MFMEM with noisy data

In this Section, we study MFSDM and MFMEM with noisy data yδ, instead of

exact data y. We assume that ∥y − yδ∥ ≤ δ, as stated in the Chapter 1. MFSDM

and MFMEM with noisy data are defined by

xδk+1 = xδk + αδ
ks

δ
k (k = 0, 1, 2, . . .)

sδk = −F ′(xδk)
∗(F (xδk)− yδ) (4.3.1)

αδ
k =

∥sδk∥2

∥Aqsδk∥2

and

xδk+1 = xδk + αδ
ks

δ
k (k = 0, 1, 2, . . .)

sδk = −F ′(x0)
∗(F (xδk)− yδ) (4.3.2)

αδ
k =

∥F (xδk)− yδ∥2

∥Aq(F (xδk)− yδ)∥2
.

respectively. As in Chapter 3, we assume:

(C5) F satisfies the local property

∥F (u)− F (v)− F ′(x0)(u− v)∥ ≤ η∥F (u)− F (v)∥, (4.3.3)

for all u, v ∈ B(x0, ρ) with max{1−B2

3
, 1− B2

2
− ∥Aq∥2

2m2 , 0} < η < 1− B2

2
.

4.3.1 Discrepancy Principle

PROPOSITION 4.3.1. Let the assumption (C5) holds. Let xδk be as in (4.3.1)

or in (4.3.2). Then, xδk ∈ B(x0, 2ρ) ⊂ D(F ), for all k = 0, 1, 2, . . . and if

∥F (xδk)− yδ∥ > τδ (4.3.4)
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where

τ > 2
(1 + η)

2− 2η −B2
> 2, (4.3.5)

then, for all 0 ≤ k < k∗ with τ as in (4.3.5), we have

k∗(τδ)
2 ≤

k∗−1∑
k=0

∥F (xδk)− yδ∥2 ≤ τ∥F ′(x0)∥2

(2− 2η −B2)τ − 2(1 + η)
∥x0 − x̂∥2. (4.3.6)

Proof: Note that x0 ∈ B(x0, 2ρ). Suppose xδk ∈ B(x0, 2ρ). Using (4.3.1) or

(4.3.2), we have

∥xδk+1 − x̂∥2 − ∥xδk − x̂∥2

= −2αδ
k⟨xδk − x̂, F ′(x0)

∗(F (xδk)− yδ)⟩+ αδ
k

2∥F ′(x0)
∗(F (xδk)− yδ)∥2

= 2αδ
k⟨F (xδk)− yδ − F ′(x0)(x

δ
k − x̂), F (xδk)− yδ⟩

+αδ
k

[
αδ
k∥F ′(x0)

∗(F (xδk)− yδ)∥2 − 2∥F (xδk)− yδ∥2
]

≤ 2αδ
k∥F (xδk)− F (x̂) + y − yδ − F ′(x0)(x

δ
k − x̂)∥∥F (xδk)− yδ∥

+αδ
k

[
αδ
k∥F ′(x0)

∗(F (xδk)− yδ)∥2 − 2∥F (xδk)− yδ∥2
]
. (4.3.7)

So by (C5) and (4.3.7), we have

∥xδk+1 − x̂∥2 − ∥xδk − x̂∥2

≤ 2αδ
k

(
η∥F (xδk)− F (x̂)∥+ δ

)
∥F (xδk)− yδ∥

+αδ
k

[
αδ
k∥F ′(x0)

∗(F (xδk)− yδ)∥2 − 2∥F (xδk)− yδ∥2
]

≤ 2αδ
k

[
η∥F (xδk)− yδ∥+ (1 + η)δ

]
∥F (xδk)− yδ∥

+αδ
k

[
αδ
k∥F ′(x0)

∗(F (xδk)− yδ)∥2 − 2∥F (xδk)− yδ∥2
]

= αδ
k(2η − 2)∥F (xδk)− yδ∥2 + αδ

k2(1 + η)δ∥F (xδk)− yδ∥

+(αδ
k)

2∥F ′(x0)
∗(F (xδk)− yδ)∥2.

Note that

αδ
k∥F ′(x0)

∗(F (xδk)− yδ)∥2 = αδ
k∥A

1
2 (F (xδk)− yδ)∥2

≤ αδ
k∥A

1
2
−q∥2∥Aq(F (xδk)− yδ)∥2

≤ B2∥F (xδk)− yδ∥2.
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Therefore we have

∥xδk+1 − x̂∥2 − ∥xδk − x̂∥2

≤ αδ
k

[
(2η +B2 − 2)∥F (xδk)− yδ∥2 + 2(1 + η)δ∥F (xδk)− yδ∥

]
, (4.3.8)

so by (4.3.8),

∥xδk+1 − x̂∥2 − ∥xδk − x̂∥2

≤ αδ
k

(
(2η +B2 − 2) + 2

(1 + η)

τ

)
∥F (xδk)− yδ∥2 < 0. (4.3.9)

This implies ∥xδk+1 − x̂∥ < ∥xδk − x̂∥ < ∥x0 − x̂∥ < ρ. Thus, ∥xδk+1 − x0∥ ≤

∥xδk+1 − x̂∥ + ∥x0 − x̂∥ < 2ρ i.e., xδk+1 ∈ B(x0, 2ρ) ⊂ D(F ) for all k = 0, 1, 2, . . . .

Now since αδ
k ≥ ∥Aq∥−2, we have by (4.3.9)

∥Aq∥−2

(
(2− 2η −B2)− 2

(1 + η)

τ

)
∥F (xδk)− yδ∥2

≤ ∥xδk − x̂∥2 − ∥xδk+1 − x̂∥2. (4.3.10)

Adding the inequality (4.3.10) for k from 0 through k∗ − 1, we obtain

∥Aq∥−2

(
(2− 2η −B2)− 2

(1 + η)

τ

) k∗−1∑
k=0

∥F (xδk)− yδ∥2 ≤ ∥x0 − x̂∥2 − ∥xδk∗ − x̂∥2.

(4.3.11)

This completes the proof.

2

REMARK 4.3.2. Note that (4.3.11) implies that, for yδ ̸= y, there must be a

unique index k∗ such that, (4.3.4) holds for all k < k∗ but is violated at k = k∗

(see also (Engl et al., 1996, page 282)).

Let Ω := ∥Aq∥−2
(
(2− 2η −B2)− 2 (1+η)

τ

)
.

THEOREM 4.3.3. Let the assumptions (C2) and (C5) hold and ρ < min
{

(τ−1)2δ
m

, 2
m
√
Ω

}
.

Let xδk+1 be as in (4.3.1) or in (4.3.2). Then for 0 ≤ k < k∗,

∥xδk+1 − x̂∥ =

 O(q
k+1
2

0 ) if δ < qk+1
0

O(δ
1
2 ) if qk+1

0 ≤ δ
(4.3.12)

where q0 := 1− Ωm2

(τ−1)2
.
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Proof: Analogous to the proof of Theorem 3.4.4 in Chapter 3. 2

4.4 Example

In this Section, we consider the Example 3.5.1 to implement the method (4.1.5)

and (4.1.6).

EXAMPLE 4.4.1. Returning back to the example 3.5.1, We take x̂(t) = t, t ∈

[0, 1] and y(t) = arctan(t)2. We have taken initial guess x0(t) = t/2 and q = 1
4
.

Then ν < 1
8
for MFSDM and ν < 1

4
for MFMEM. Error estimates for exact

data are given in Table 4.1 and for noisy data, we have taken τ = 2.1 and the

error estimates are given in Table 4.2 with different values of δ. For MFSDM

approximate solutions are given in Figures 4.1-4.5 and for MFMEM approximate

solutions are given in Figures 4.6-4.10.

Table 4.1: Error estimate for MFSDM and MFMEM with exact data

MFSDM MFMEM

k ∥xk − x̂∥ ∥xk−x̂∥
k
1
8

∥xk − x̂∥ ∥xk−x̂∥
k
1
4

10 1.2173E-02 9.1287E-03 1.3044E-02 7.3350E-03

20 6.3958E-03 4.3981E-03 6.8454E-03 3.2370E-03

30 3.3920E-03 2.2172E-03 3.6393E-03 1.5550E-03

40 1.7654E-03 1.1132E-03 1.8962E-03 7.5398E-04

50 9.0892E-04 5.5739E-04 9.7693E-04 3.6738E-04

60 4.6533E-04 2.7893E-04 5.0036E-04 1.7978E-04

70 2.3753E-04 1.3966E-04 2.5548E-04 8.8323E-05

80 1.2107E-04 7.0008E-05 1.3023E-04 4.3546E-05

90 6.1662E-05 3.5135E-05 6.6334E-05 2.1537E-05

100 3.1393E-05 1.7654E-05 3.3773E-05 1.0680E-05
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Figure 4.1: Approximate solutions of MFSDM for exact data
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Figure 4.2: Approximate solution of MFSDM with δ = 0.1
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Figure 4.3: Approximate solution of MFSDM with δ = 0.01
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Figure 4.4: Approximate solution of MFSDM with δ = 0.001
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Figure 4.5: Approximate solution of MFSDM with δ = 0.0001
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Figure 4.6: Approximate solutions of MFMEM with exact data
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Figure 4.7: Approximate solution of MFMEM with δ = 0.1
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Figure 4.8: Approximate solution of MFMEM with δ = 0.01
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Figure 4.9: Approximate solution of MFMEM with δ = 0.001
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Figure 4.10: Approximate solution of MFMEM with δ = 0.0001
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Table 4.2: Error estimate for MFSDM and MFMEM with noisy data

MFSDM MFMEM

δ k ∥xδk − x̂∥ ∥xδ
k−x̂∥√
δ

k ∥xδk − x̂∥ ∥xδ
k−x̂∥√
δ

0.1 2 5.3985E-02 1.7072E-01 2 2.0772E-01 1.4688E-01

0.01 4 3.0498E-02 3.0498E-01 4 3.4426E-02 1.7213E-02

0.001 13 8.7840E-03 2.7778E-01 19 5.9390E-03 1.3625E-03

0.0001 48 8.6070E-04 8.6070E-02 54 5.9459E-04 8.0914E-05
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Chapter 5

FROZEN STEEPEST DESCENT

METHOD FORNONLINEAR ILL-

POSED HAMMERSTEIN TYPE

OPERATOR EQUATIONS

In this study, we consider an inverse free iterative method for approximating a

solution of the nonlinear ill-posed Hammerstein type equation KF (x) = y. Our

approach is to solve Kz = y and then F (x) = z. We use Tikhonov regularization

method for approximating the solution of Kz = y and Frozen steepest descent

method for approximating the solution of F (x) = z. The adaptive parameter

choice strategy of Pereverzev and Schock (2005) is used for choosing the regular-

ization parameter.

5.1 Introduction

In this Chapter, we considered the problem of approximating the solution x̂ of the

nonlinear ill-posed Hammerstein type equation

KF (x) = y (5.1.1)

where F : D(F ) ⊆ X → Z is a Fréchet differentiable nonlinear operator, K : Z →

Y is a bounded linear operator and X,Y, Z are Hilbert spaces. A typical example
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of the Hammerstein type equation (5.1.1) is

KF (x)(t) :=

∫ 1

o

k(s, t)x3(s)ds

where K : L2[0, 1] → L2[0, 1] is a bounded linear operator defined by

Kz(t) =

∫ 1

0

k(s, t)z(s)ds,

with kernel k(s, t) ∈ L2([0, 1] × [0, 1]) and F : D(F ) ⊆ L2[0, 1] → L2[0, 1] is the

nonlinear operator defined by

Fx(s) = x3(s).

In general (5.1.1) is ill-posed in the sense that the solution need not depend contin-

uously on the right-hand side data y. George (2006) studied an iterative Newton-

Tikhonov regularization (NTR) method for approximating a x0 -minimum norm

solution x̂ of (5.1.1). Further in practice, only an approximation of y, say yδ with

∥y − yδ∥ ≤ δ are available. So one has to consider

KF (x) = yδ (5.1.2)

instead of (5.1.1). As in Argyros et al. (2016b); George (2006); George and

Nair (2008); George and Kunhanandan (2009); George and Shobha (2012, 2014);

Shobha et al. (2014), we approach the problem (5.1.2) by solving the equation

Kz = yδ (5.1.3)

first and then

F (x) = z. (5.1.4)

For approximating x̂, iterative regularization methods are studied by Argyros et al.

(2016b,c), George (2006), George and Nair (2008), George and Kunhanandan

(2009), George and Shobha (2014) and Shobha et al. (2014). Note that, in all

these methods, one has to compute the inverse involving Fréchet derivative of F

at each iterate xk or at initial guess x0.

74



In the present study, we apply Tikhonov regularization to solve the linear

operator equation (5.1.3) and then we consider the inverse free iterative method

to solve the non-linear operator equation (5.1.4). The method involves, Fréchet

derivative of F only at x0 (see (5.3.2)).

The rest of the Chapter is organized as follows: Section 5.2 contains prelimi-

naries, Section 5.3 contains convergence analysis of inverse free iterative method,

Section 5.4 contains error bounds and source conditions and Section 5.5 contains

finite dimensional realization of inverse free iterative method. Finally the Chapter

ends with an academic example in Section 5.6.

5.2 Preliminaries

The following assumption is used for obtaining the error estimate.

ASSUMPTION 5.2.1. There exists a continuous, strictly monotonically in-

creasing function φ : (0, a] → (0,∞) with a ≥ ∥K∥2 satisfying;

• lim
λ→0

φ(λ) = 0

• sup
λ≥0

αφ(λ)
λ+α

≤ φ(α), ∀α ∈ (0, a].

• there exists v ∈ X with ∥v∥ ≤ 1 such that

F (x̂)− F (x0) = φ(K∗K)v.

Let

zδα = (K∗K + αI)−1K∗(yδ −KF (x0)) + F (x0). (5.2.1)

It is known that (see (4.3) in George and Kunhanandan (2009)) under the as-

sumption 5.2.1

∥F (x̂)− zδα∥ ≤ φ(α) +
δ√
α
. (5.2.2)
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5.3 Convergence analysis

Let δ0 > 0, a0 > 0 be some constants with δ20 < a0 and ∥x0− x̂∥ ≤ r. Let δ ∈ (0, δ0]

and α ∈ [δ20, a0]. Then as in Argyros et al. (2014), for α > 0, one can prove that

F ′(x0)
∗(F (x)− zδα) +

α

c
(x− x0) = 0 (5.3.1)

has a unique solution xδα in Br(x0) provided 0 < r < 1
2k0
. To obtain an approxi-

mation for xδα, we consider the iteration defined for n = 0, 1, 2, . . . by

xn+1 = xn − β[F ′(x0)
∗(F (xn)− zδα) +

α

c
(xn − x0)]. (5.3.2)

We need the following assumption for the convergence analysis of (5.3.2).

ASSUMPTION 5.3.1.

(a) There exists a constant k0 > 0 such that for every x ∈ D(F ) and v ∈ X, there

exists an element Φ(x, x0, v) ∈ X satisfying

[F ′(x)− F ′(x0)]v = F ′(x0)Φ(x, x0, v), ∥Φ(x, x0, v)∥ ≤ k0∥v∥∥x− x0∥.

(b)

∀x ∈ B(x̂, r), ∥F ′(x)∥ ≤ m.

Further, let β, qα,β be parameters such that

β ≤ 1

m2 + a0
c

(5.3.3)

and

qα,β = 1− αβ

c
+

3βm2k0
2

r. (5.3.4)

The main result of this Chapter is the following theorem.

THEOREM 5.3.2. Let assumption 5.3.1 holds and let (xn) be as in (5.3.2) and

0 < r < min{ 1
2k0
, 2α
3m2k0

}. Then for each δ ∈ (0, δ0] and c ≤ α. Then (xn) is in

B(x0, 2r) and converges to xδα as n→ ∞. Further,

∥xn+1 − xδα∥ ≤ qn+1
α,β ∥x0 − xδα∥, (5.3.5)

where qα,β is as in (5.3.4).
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Proof: Clearly, x0 ∈ B(x0, 2r). Let Mn :=
∫ 1

0
F ′(xδα + t(xn − xδα))dt. Since

xδα ∈ Br(x0), M0 is well defined. Assume that for some n > 0, xn ∈ B(x0, 2r) and

Mn is well defined. Then, since xδα satisfies the equation (5.3.1), we have

xn+1 − xδα = xn − xδα − β
[
F ′(x0)

∗(F (xn)− F (xδα)) +
α

c
(xn − xδα)

]
= xn − xδα − β

[
F ′(x0)

∗Mn +
α

c
I
]
(xn − xδα)

= xn − xδα − β [F ′(x0)
∗(Mn − F ′(x0))] (xn − xδα)

−β
[
F ′(x0)

∗F ′(x0) +
α

c
I
]
(xn − xδα)

=
[
I − β

(
F ′(x0)

∗F ′(x0) +
α

c
I
)]

(xn − xδα)

−β[F ′(x0)
∗(Mn − F ′(x0))](xn − xδα). (5.3.6)

Using assumptions 5.3.1, we have

xn+1 − xδα =
[
I − β

(
F ′(x0)

∗F ′(x0) +
α

c
I
)]

(xn − xδα)

−βF ′(x0)
∗F ′(x0)

∫ 1

0

Φ(xδα + t(xn − xδα), x0, xn − xδα)dt.

Now since I − β
(
F ′(x0)

∗F ′(x0) +
α
c
I
)
is a positive self-adjoint operator,

∥I − β
(
F ′(x0)

∗F ′(x0) +
α

c
I
)
∥

= sup
∥x∥=1

|⟨
(
I − β

(
F ′(x0)

∗F ′(x0) +
α

c
I
))

x, x⟩|

= | sup
∥x∥=1

(
1− β

α

c

)
⟨x, x⟩ − β⟨F ′(x0)

∗F ′(x0)x, x⟩|

≤ 1− αβ

c
. (5.3.7)

The last step follows from the relation

β|⟨F ′(x0)
∗F ′(x0)x, x⟩| ≤ β∥F ′(x0)∥2

≤ βm2

≤ 1

m2 + a0
c

m2

≤ 1

m2 + α
c

m2 = 1− α/c

m2 + α/c
≤ 1− αβ

c
.

77



Hence, by assumption 5.3.1, we have

∥xn+1 − xδα∥ ≤
(
1− αβ

c

)
∥xn − xδα∥

+βm2k0

∫ 1

0

((1− t)∥xδα − x0∥+ t∥xn − x0∥)dt∥xn − xδα∥

≤
(
1− αβ

c
+ β

3k0m
2r

2

)
∥xn − xδα∥

≤ qα,β∥xn − xδα∥. (5.3.8)

Since qα,β < 1, we have

∥xn+1 − xδα∥ < ∥x0 − xδα∥ ≤ r

and

∥xn+1 − x0∥ ≤ ∥xn+1 − xδα∥+ ∥x0 − xδα∥ ≤ 2r

i.e., xn+1 ∈ B(x0, 2r). Also, for 0 ≤ t ≤ 1,

∥xδα + t(xn+1 − xδα)− x0∥ = ∥(1− t)(xδα − x0) + t(xn+1 − xδα)∥ < 2r.

Hence, xδα+ t(xn+1−xδα) ∈ B(x0, 2r) andMn+1 is well defined. Thus, by induction

xn is well defined and remains in B(x0, 2r) for each n = 0, 1, 2, . . . . By letting

n → ∞ in (5.3.2), we obtain the convergence of xn to xδα. The estimate (5.3.5)

now follows from (5.3.8).

2

5.4 Error bounds under source conditions

In this Section, we need the following assumptions in addition to the earlier as-

sumptions to obtain the error bound.

ASSUMPTION 5.4.1. There exists a continuous, strictly monotonically in-

creasing function φ1 : (0, b] → (0,∞) with b ≥ ∥F ′(x0)∥2 satisfying;

• lim
λ→0

φ1(λ) = 0
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• sup
λ≥0

αφ1(λ)
λ+α

≤ φ1(α), ∀α ∈ (0, b].

• there exists v ∈ X with ∥v∥ ≤ 1 such that

x0 − x̂ = φ1(F
′(x0)

∗F ′(x0))v.

ASSUMPTION 5.4.2. For each x ∈ B(x0, r), there exists a bounded linear

operator G(x, x0) such that

F ′(x) = F ′(x0)G(x, x0)

with ∥G(x, x0)∥ ≤ k1

Let k1 <
1−k0r
1−c

and assume that φ1(α) ≤ φ(α). Proof of the following Theorems

5.4.3, 5.4.4 and 5.4.5 are analogous to the proof of Theorems 3.14, 3.15 and 3.16

in Argyros et al. (2016b).

THEOREM 5.4.3. (cf. Argyros et al. (2016b), Theorem 3.14) Let xδα be the

solution of (5.3.1) and assumption 5.4.1 and assumption 5.4.2 hold. Let 0 < r <

min
{

1
2k0
, 2α
3cm2k0

}
and k1 <

1−k0r
1−c

. Then

∥xδα − x̂∥ ≤ φ1(α) + ∥F (x̂)− zδα∥
1− k0r − (1− c)k1

.

THEOREM 5.4.4. (cf. Argyros et al. (2016b), Theorem 3.15) Let (xn) be as in

(5.3.2).If assumption 2.1 and assumptions in Theorem 5.4.3 and Theorem 5.3.2

hold and φ1(α) ≤ φ(α), then

∥xn − x̂∥ ≤ qnα,βr +K

(
2φ(α) +

δ√
α

)
where K = 1

1−K0r−(1−c)k1
.

THEOREM 5.4.5. (cf. Argyros et al. (2016b), Theorem 3.16) Let (xn) be as in

(5.3.2) and assumptions in Theorem 5.4.4 hold. Let

nk = min

{
n : qnα,β ≤ δ√

α

}
.

Then

∥xnk
− x̂∥ = K̄

(
φ(α) +

δ√
α

)
.

where K̄ = max{2K, r +K}.
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5.5 Finite dimensional realization of FRSDM

Let V1 ⊆ V2 ⊆ V3 ⊆ ..... be a sequence of finite-dimensional subspaces of X with

Un∈NVn = X and Ph is the orthogonal projection of X onto Vn. Let

εh := ∥K(I − Ph)∥,

τh := ∥F ′(x)(I − Ph)∥, ∀x ∈ D(F ).

Let {bh : h > 0} is such that lim
h→0

∥(I−Ph)x0∥
bh

= 0, lim
h→0

∥(I−Ph)F (x0)∥
bh

= 0 and lim
h→0

bh =

0. We assume that εh → 0 and τh → 0 as h → 0. The above assumption is

satisfied if, Ph → I point wise and if K and F ′(x) are compact operators. Further

we assume that εh < ε0, τh ≤ τ0, bh ≤ b0.

In the discretized Tikhonov regularization method for solving equation (5.2.1),

the solution of zh,δα of the equation(
PhK

∗KPh +
α

c
Ph

)
(zh,δα − PhF (x0)) = PhK

∗[yδ −KF (x0)] (5.5.1)

is taken as an approximation for F (x̂).

THEOREM 5.5.1. (See George and Shobha (2012), Theorem 2.4) Let zh,δα be as

in (5.5.1). Further, if bh ≤ δ+εh√
α

and assumption 5.2.1 holds, then

∥F (x̂)− zδα,h∥ ≤ C

(
φ(α) +

δ + εh√
α

)
. (5.5.2)

where C = max{mr, 1}+ 1.

5.5.1 An a priori choice of the parameter

Note that the estimate φ(α
c
) + δ+εh√

α
in (5.5.2) is of optimal order for the choice

α := α(δ, h) which satisfies φ(α(δ, h)) = δ+εh√
α(δ,h)

. Let ψ(λ) := λ
√
φ−1(λ), 0 < λ ≤

a. Then we have δ + εh =
√
α(δ, h)φ(α(δ, h)) = ψ(φ(α(δ, h))) and

α(δ, h) = φ−1(ψ−1(δ + εh)).

So from (5.5.2) we have ∥F (x̂)− zh,δα ∥ ≤ 2Cψ−1(δ + εh).
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5.5.2 An adaptive choice of the parameter

Let

DN = {αi = µiα0 : i = 1, 2, . . . N, µ > 1, α0 > 0}

be the set of possible values of the parameter α.

Let

l := max

{
i : φ(αi) ≤

δ + εh√
αi

}
< N, (5.5.3)

k = max
{
i : αi ∈ D+

N

}
(5.5.4)

where D+
N =

{
αi ∈ DN : ∥zδαi

− zδαj
∥ ≤ 4C(δ+εh)√

αj
, j = 0, 1, 2, ...., i− 1

}
.

THEOREM 5.5.2. (cf. George and Shobha (2012), Theorem 2.5) Let l be as in

(5.5.3), k be as in (5.5.4) and zh,δαk
be as in (5.5.1) with α = αk. Then l ≤ k and

∥F (x̂)− zh,δαk
∥ ≤ C

(
2 +

4µ

µ− 1

)
µψ−1(δ + εh).

Proof: Analogous to the proof of Theorem 2.5 in George and Shobha (2012).

2

The discretized version of (5.3.2) is defined as:

xh,δn+1,αk
= xh,δn,αk

− βPh

[
F ′(x0)

∗(F (xh,δn,αk
)− zh,δα ) +

αk

c
(xh,δn,αk

− xh,δ0 )
]

(5.5.5)

where xh,δ0 =: Phx0 and c ≤ αk. Let

(δ0 + ε0)
2 < ā0.

It is known that (George and Shobha, 2012, Theorem 3.7.) under the assump-

tion 5.2.1

PhF
′(x0)

∗(FPh(x)− zh,δα ) +
αk

c
Ph(x− x0) = 0 (5.5.6)

has a unique solution xh,δαk
in B(x0, r) ∩R(Ph) and the following Theorems hold.

THEOREM 5.5.3. (cf. George and Shobha (2012), Theorem 3.8) Suppose xh,δαk

is the solution of 5.5.6 and assumption 5.2.1 and Theorem 5.4.3 hold. In addition

if τ0 < 1, then

∥xh,δαk
− xδαk

∥ ≤ 1

1− τ0

(
δ + εh√
αk

)
.
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Proof: Proof is analogous to the proof of Theorem 3.8 in George and Shobha

(2012).

2

The proof of the following Theorem 5.5.4 is analogous to the proof of Theorem

5.3.2 in Section 5.3.

THEOREM 5.5.4. Let xh,δn,αk
be as in (5.5.5) and let 0 < r < min

{
2α

3M2ck0
, 1
2k0

}
.

Then for each δ ∈ (0, δ0], αk ∈ ((δ + εh)
2, ā0], εh ≤ ε0 the sequence {xh,δn,αk

} is in

B(x0, 2r) ∩R(Ph) and converges to xh,δαk
as n→ ∞. Further,

∥xh,δn+1,αk
− xh,δαk

∥ ≤ qn+1
αk,β

∥Phx0 − xh,δαk
∥, (5.5.7)

where qαk,β is as in (5.3.4) with α = αk.

THEOREM 5.5.5. Let xh,δαk
be the solution of (5.5.6) and assumptions in Theo-

rem 5.4.3, Theorem 5.5.3 and Theorem 5.5.4 hold. If φ1(α) ≤ φ(α), then

∥xh,δn,αk
− x̂∥ ≤ qnαk,β

r +

((
K +

1

1− τ0

)
+KC

(
2 +

4µ

µ− 1

))
µψ−1(δ + εh).

where qαk,β is as in (5.3.4) with α = αk.

By combing the results in Theorem 5.5.4 and Theorem 5.5.5, we obtain the

following Theorem.

THEOREM 5.5.6. Let xh,δn,αk
be as in (5.5.5) and assumptions in Theorem 5.5.5

holds. Let

nk = min

{
n : qnαk,β

≤ δ + εh√
αk

}
.

Then

∥xh,δnk,αk
− x̂∥ = O(ψ−1(δ + εh)).

5.5.3 Algorithm

The balancing algorithm associated with the choice of the parameter specified in

this Section involves the following steps:
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• For i, j ∈ {0, 1, 2, . . . , N}

zδαi
− zδαj

= (αj − αi)(K
∗K + αiI)

−1[K∗(yδ −KF (x0))];

• Choose α0 = (δ + εh)
2 and µ > 1;

• Choose αi := µ2iα0, i = 0, 1, 2, · · · , N ;

• Solve for wi : (K
∗K + αiI)wi = K ∗ (yδ −KF (x0);

• Solve for j < i, zij : (K
∗K + αiI)zij = (αj − αi)wi;

• ∥zij∥ > 4C (δ+εh)√
αj

, then take k=i-1;

• Otherwise repeat with i+1 in place of i;

• Choose nk := min
{
n : qnαk,β

≤ δ+εh√
αk

}
;

• Solve xk := xh,δnk,αk
by using the iteration (5.5.5).

5.6 Numerical Example

We consider the space X = Y = L2(0, 1) and the operator KF : X → Y, where

F : D(F ) ⊆ X → Y is a nonlinear operator defined by

F (u) =

∫ 1

0

k(t, s)u3(s)ds

and K : X → Y is a bounded linear operator defined by

K(x)(t) =

∫ 1

0

k(t, s)x(s)ds.

Here

k(t, s) =

(1− t)s, 0 ≤ s ≤ t ≤ 1

(1− s)t 0 ≤ s ≤ t ≤ 1.
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The Fréchet derivative of F is given by

F ′(u)w = 3

∫ 1

0

k(t, s)u2(s)w(s)ds.

We have taken the exact solution x̂(t) = 0.5 + t3 and initial guess x0(t) = 0.5 +

t3 − 3
56
(t − t8). Let β = 1/1000. Then the error estimates are given in Table 5.1

and approximate and exact solutions for various values of δ are given in Figures

5.1-5.6 .

Table 5.1: Error estimate

N k αk ∥xh,δnk,αk
− x̂∥ ∥xh,δ

nk,αk
−x̂∥

√
δ+εh

32 4 1.06E-01 2E-02 7.47E-02

62 4 1.06E-01 1.67E-02 5.28E-02

124 4 1.06E-01 1.18E-02 3.74E-02

256 4 1.06E-01 8.35E-03 2.64E-02

512 4 1.06E-01 5.91E-03 1.87E-02

1024 4 1.06E-01 4.18E-03 1.32E-02
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Figure 5.1: N=32
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Figure 5.2: N=64
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Figure 5.3: N=128
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Figure 5.5: N=512
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Chapter 6

CONCLUSION

Several iterative methods have been studied for solving nonlinear ill-posed operator

equations. Our Study in this thesis is focused on steepest descent method and

minimal error method.

In Chapter 2, we have studied the frozen regularized steepest descent method.

Our convergence analysis in this method is based on the property of norm of self

adjoint operator. The balancing principle considered by Pereverzev and Schock

(2005) was used for choosing the regularization parameter. Finite dimensional

realization of this method is also studied. We applied the method considered

in this Chapter to nonlinear ill-posed Hammerstein type operator equation in

Chapter 5.

In Chapter 3 and Chapter 4, we have studied modified steepest descent method

and modified minimal error method.

Some of the problems that were thought about and where further research may

be possible, are discussed below.

In order to improve the order of convergence, many authors [George and Nair

(1997); Egger and Neubauer (2005); George et al. (2013); Goldenshluger and

Pereverzev (2000); Krĕı n and Petunin (1966); Lu et al. (2010); Natterer (1984);

Tautenhahn (1996); Neubauer (2000); George and Nair (2003)] studied ill-posed

problems in the setting of Hilbert scales. Even though other iterative method are

studied in the Hilbert scale setting, steepest descent method and minimal error

method are not studied in the setting of Hilbert scale.

It is proposed to study, steepest descent-type method in the setting of Hilbert

scale.
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