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ABSTRACT

This thesis investigates the structural, thermo-mechanical and finite size elas-

tic properties of hexagonal boron nitride (h-BN) using classical molecular dynam-

ics simulations. At high temperatures, specific heat shows considerable increase be-

yond the Dulong-Petit limit which is interpreted as a signature of strong anharmonicity

present in h-BN. Analysis of the height fluctuations shows that the bending rigidity and

variance of height fluctuations are strongly temperature dependent and this is explained

using the continuum theory of membranes. The observed Young’s modulus and Pois-

son ratio of h-BN is increase with system size in accordance with a power law, and are

found to be anisotropic for finite sheets whereas they are isotropic for infinite sheets

and they also satisfy Born’s criterion for mechanical stability. Using the formula de-

rived from Foppl-von Karman plate theory, variation of bending rigidity with system

size is determined from the measured value of thin shell thickness. As the system size

increases, the zero Kelvin Young’s modulus also increases, which leads to an increase

in the longitudinal and shear wave velocities. The strain fluctuation method is employed

to investigate the temperature dependent elastic constants of h-BN. It has been noticed

that the size of the h-BN sheet increases the thermal rippling, which not only decreases

the thermal expansion coefficient and the elastic moduli, but also leads to a large de-

viation from the isotropic elasticity. The effect of changing the cut-off distance in the

empirical potential on the stress-strain relation and the temperature dependent Young’s

modulus of pristine and defective hexagonal boron nitride is also studied. The observed

mechanical strength of h-BN is significantly affected by the vacancy and Stone-Wales

type defects. The defect analysis shows that presence of vacancy type defects leads to

a higher Young’s modulus, in the studied range with different percentage of defect con-

centration, in comparison with Stone-Wales defect. The estimation of various thermo-

mechanical and elastic properties of h-BN has underlined their importance in many

applications.

Keywords: Hexagonal boron nitride; Molecular dynamics; Ripples; Defects; Bending

rigidity; Finite size effect; Elastic constants; Strain-fluctuations; Anisotropy; Sound

velocities.
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Chapter 1

Introduction

This chapter provides a brief introduction to the computational materials science

and the two dimensional (2D) material hexagonal boron nitride. The advantages

and applications of hexagonal boron nitride along with the detailed literature sur-

vey are also presented. In addition to that, scope and objectives of the present

research work and the structure of the thesis are detailed in this section.

The man-made world we see today is a brilliant example of how mankind

has progressed from cave-dwelling existence to a completely modern, socially oriented

lifestyle. In this process of advancing, mankind has used all kinds of materials avail-

able to bring into life his creativity and imagination. Humans have been using materials

for at least 10,000 years of the recorded history. From earlier tools which were found

in the pre-historic era to the modern high-tech gadgets, the role of materials has been

inevitable in the journey. Some materials have even defined the culture which humans

have today and some are so tied with our progression towards advancement. Many of

the significant developments in the human history including the growth of architecture,

the transition to a machine dominated industry from an agrarian economy can be at-

tributed to the use of and advancement in the materials. Materials even named the ages

of human civilization: the Stone Age, the Bronze Age, and the Iron Age. The study of

materials, their characteristics and properties is called Material Science. The progress
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in this field has enabled humans to employ materials as a crucial element in almost

all walks of life. Innovations in materials is an expanding process and involves either

the discovery of a completely new material or, more commonly, the modification and

replacement of a material by increasing functionality or reducing cost. Many research

areas immensely benefit when basic science and engineering join hands. A notable ad-

vantage is the ability to control material structures at molecular, nano, meso and macro

scales. Another headway in the field is the synthesis and production of new materials.

The human brain, although extremely gifted, has certain limitations. This has paved

way for the invention of computers with which simulation models were made so as to

handle things which are too complex for human brains (Landau and Binder 2005). Basi-

cally, simulation and modelling involves creating a digital prototype or physical perfor-

mance so as to understand its working in the real world. Thus simulation provides a the-

oretical basis for understanding experimental measurements. Scientific problems which

are complex can be studied in a detailed and comprehensive manner using experiments

and simulations which in turn generate deeper insights on the phenomenon. Computer

simulation methods are extremely powerful and greatly helpful when it comes to solv-

ing problems in different but related fields of statistical mechanics, material science,

physical chemistry, biophysics, etc. For many fields, these methods could be the only

logical way to dive into the problems. Let us consider Statistical Physics. The well de-

veloped theoretical description of complex systems in the field and sophisticated exper-

imental techniques for microscopic information naturally calls for deploying simulation

methods to study the specific aspects of these systems in great detail.

Simulations require particular information parameters, which come either from hy-

pothetical contemplations or from exploratory information. Simulations are frequently

utilized both to illuminate hypothetical models, past specific approximations and to give

an insight to experimentalists for further examinations. In the case of big experimental

facilities, it is frequently required to demonstrate the potential result of an experiment

by computer simulations. Simulation can bridge the gap between hypothesis and exam-

ination and it helps theorists and experimentalists go past their intrinsic confinements.

The power of computers has now achieved its most extreme level at which we can com-
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prehend the complex numerical conditions and quantum mechanical computations for

vast frameworks. Progress in the synthesis of materials has empowered ever more ex-

tensive research exercises in science and engineering devoted totally to two dimensional

(2D) materials and their applications. This is due to the combination of their expected

structural perfection, small size, low density, high stiffness, high strength and excellent

electronic properties (Tang and Zhou 2013).

Materials science turned out to be more mainstream in the late nineteenth century

and the contributions of the acclaimed American theoretical researcher Josiah Willard

Gibbs is also noticable. Gibb’s contributions in thermodynamics is helped to identify

the various physical and chemical properties of materials. This includes relating ther-

modynamic laws to the atomic structure, electronic properties, phase transitions, and

so forth., of materials through experiments and additionally theoretical methodologies.

So as to simulate the macroscopic engineering designs, results from simulations at the

intermediate length scale naturally feed the program and help to predict the properties

of materials (Frenkel and Smit 2001). The main aims of the computational materials

science are extensively the following (Lee 2011):

• To determine the stable and metastable structures of materials.

• To obtain insight into the physical basis of observed materials behavior (electric,

magnetic, optic, thermal, rheological, tribological and mechanical properties).

• To be able to incorporate micro structural details of practical materials with de-

fects and inhomogeneities.

• To predict a materials response under extreme conditions (like high pressure, tem-

perature, magnetic field, nuclear radiation, shock, etc.).

• To provide guidelines for the design of a material with desired properties.

• To provide guidelines for optimization of materials processes.
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1.1 Hexagonal Boron Nitride

A two dimensional (2D) material is the one in which the atomic organization and

bond length along two dimensions are similar and much stronger than along a third di-

mension. Study of two-dimensional materials has become a vibrant field in condensed

matter physics. Two dimensional molecular sheets have received a lot of attention in

recent years because of their excellent properties and applications. Two dimensional

atomic layers derived from bulk layered materials are very interesting from both sci-

entific and engineering point of view. The interest in two dimensional materials has

been intensified by the discovery of graphene, the honeycomb lattice having hexago-

nal atomic arrangement of carbon atoms (Novoselov et al. 2005, Geim and Novoselov

2007).

A recent field of research activity in materials science has been on graphene-analogous

low dimensional materials (including 2D nano sheets, nanotubes and 1D nano ribbons)

and their features and potential applications extracted using both experimental and com-

putational methods. Examples of low dimensional materials analogous to graphene

include hexagonal boron nitride (h-BN) (Jin et al. 2009), silicene (Takeda and Shi-

raishi 1994, Vogt et al. 2012, Kara et al. 2012), borene (Lau and Pandey 2008, Liu

et al. 2013a), phosphorene (Liu et al. 2014), BC3 (Kouvetakis et al. 1986, Popov and

Boldyrev 2012), BC5, BC7, MoS2(Radisavljevic et al. 2011) and h-MoSe2. This the-

sis focuses on the analysis of various structural and thermo-mechanical properties of a

promising two dimensional material, hexagonal boron nitride.

Monolayer hexagonal boron nitride (h-BN) (Zeng et al. 2010) is the lightest of group

III-V compounds of alternate boron and nitrogen atoms and has high optical phonon

modes and large electrical band gap of 5-6 eV (Golberg et al. 2010). Hexagonal boron

nitride is tightly packed into a two dimensional honeycomb crystal lattice with sp2 hy-

bridization and is a versatile material having a number of potential applications (Eich-

ler and Lesniak 2008). The novel properties of hexagonal boron nitride sheet include

high dielectric breakdown strength, high volume resistivity and good chemical inertness

(Lipp et al. 1989). These properties make it a good choice for many industrial appli-

cations. Hexagonal boron nitride is a promising dielectric material (Song et al. 2010)
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similar to graphite, but it is an insulator exhibiting ionic character with a wide band

gap and can be used in hybrid graphene devices (Kinaci et al. 2012). It is stable up to

1500◦C in air and does not react with most chemicals. It can be used as a part of high

temperature oxidation resistant coatings and also the next generation electronic devices.

Graphene layers coated with a few h-BN layers are used in high temperature graphene

devices (Liu et al. 2013b). Since hexagonal boron nitride coatings can withstand ultra

high temperature, it is used as a protective material against high temperature oxidation

damage in aerospace applications. Boron nitride sheet is a planar isomorph of graphite

(Jain et al. 2013) and lattice constant of h-BN is 2.504 Å and that of graphene is 2.456

Å. It has high optical phonon energy (∼ 2 times that of SiO2), high chemical inertness,

high thermal conductivity, thus it is an excellent substrate for graphene (Xue et al. 2011,

Dean et al. 2010).

Monolayer hexagonal boron nitride is also known as ‘white graphene’, because it

is iso-electronic with carbon. Hexagonal boron nitride consists of alternate boron and

nitrogen hexagonal structure having (BN)3 rings. Hexagonal boron nitride can be used

as a substrate for high quality graphene electronics, because it provides more superior

characteristics than that of the usual SiO2 substrate. Earlier studies have reported that

h-BN does not react with steel and iron, making it a promising material for the coat-

ing of heavy-duty tools. It can also be used for manufacture of protecting cages and

molds (Rubio et al. 1994). It has been reported that boron nitride nano sheets and its

derivatives are expected to have better mechanical and electronic properties over lay-

ered carbon counter parts (Verma et al. 2007). The excellent mechanical stability and

thermal conductivity of boron nitride derivatives make this a promising material for the

construction of nano devices (Dean et al. 2010).

Hexagonal boron nitride is one of the ultimate thin membranes having high Young’s

modulus and tensile strength, but, less than that of graphene. The combination of

these mechanical properties makes it a suitable candidate for biological membranes

and stretchable electronic applications (Wu et al. 2013). Because of the high chemi-

cal and thermal stability of hexagonal boron nitride and its derivatives such as boron

nitride nanotubes (BNNTs) and BN-heterostructures are extensively used as a part of
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high temperature devices and also in gas seals of oxygen sensors, crucibles for molten

glasses and melts, parts of high temperature furnaces, etc. The first isolation and exper-

imental study of thin sheets of h-BN has been reported by Pacilé et al. in which their

crystallinity and continuity over several microns are established (Pacile et al. 2008).

Figure 1.1: The lattice structure of h-BN with lattice constants a=b=2.505 Å, c=15
Å and γ=120◦. The honey-comb lattice of h-BN consists of boron atoms (blue) and
nitrogen atoms (red) and are located at the vertices of the hexagon. The unit cell of the
configuration is represented using the black rhombus.

1.1.1 Structural Characteristics

Albe et al., has presented the ab initio density functional theory (DFT)- local-

density approximation (LDA) and empirical simulation methods to calculate the prop-

erties of different BN structures (Albe et al. 1997). An empirical interatomic potential

is also introduced and is parameterised by means of ab initio method. The classical

molecular dynamics (MD) simulation for h-BN is also then studied using this empirical

potential. Matsunaga et al., have developed Tersoff potential parameters to investigate

the properties of cubic boron nitride systems by MD simulation (Matsunaga et al. 2000).

Even though boron nitride normally has a hexagonal structure, cubic BN (c-BN) with

zinc blende structure is also produced at high pressure and high temperature. It has been

mentioned that the accuracy and validity of MD studies strongly depend on the inter-

atomic potential used to describe the energy surface between particles. Experimentally
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observed lattice parameter of h-BN at room temperature is a=2.504 Å with an average

B-N interatomic distance of 1.44 Å (Paszkowicz et al. 2002).

Molecular Statics simulations using a modified Albe, Moller and Heining inter-

atomic potential gives the equilibrium lattice parameter as a=2.532 Å (Albe et al. 1997)

with an average B-N interatomic distance as 1.46 Å. Slotman et al., have investigated

the structural properties of single layer h-BN in comparison to graphene using classical

MD simulations and reported that the non-monotonic behaviour of the lattice parame-

ter with temperature (Slotman and Fasolino 2012). Figure 1.1 shows the honey-comb

lattice of h-BN used in the present work with boron and nitrogen atoms situated in the

two sub-lattices.

1.1.2 Thermal Characteristics

By using the first principles quantum mechanical approach, Hamdi et al., have in-

vestigated the thermodynamic properties such as thermal equation of state (free energy,

P-V equation of state), in-plane and out-of-plane thermal expansion coefficient, the

bulk modulus and the heat capacity, etc (Hamdi and Meskini 2010). Kaloni et al., have

studied the ground state properties of h-BN by employing the pseudo potential plane

wave method in DFT. They have performed LDA calculation using a (6×6×4) K-point

mesh and concluded that h-BN is a large bandgap (3.4 - 4.5 eV) insulator (Kaloni and

Mukherjee 2011). The thermal conductivity of BNC nanostructures has been calculated

using the equilibrium MD by Kinaci et al (Kinaci et al. 2012). They have developed

a new interatomic empirical potential to study the many-body interactions in the 2D

layered materials mainly in graphene/hBN hybrid nano structures. They have parame-

terised a Tersoff type interaction potential for B-C-N systems with the help of ab initio

energetics of the B-C and N-C bonds . The thermal transport properties of these BN

nanostructures are systematically studied using equilibrium molecular dynamics with a

Tersoff-type empirical interatomic potential which is re-parameterised to represent ex-

perimental structure and phonon dispersion of two-dimensional hexagonal BN (Sevik

et al. 2011).

Using classical molecular dynamics simulations, Slotman et al., have investigated

the various thermal properties of h-BN (Slotman and Fasolino 2012). By following the
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work by Fasolino et al (Fasolino et al. 2007), Singh et al., have investigated the thermo-

mechanical properties of single layer of h-BN using atomistic simulation method and

by analysing the mean square height fluctuations and bending rigidity they have found

that the h-BN sheet is a less stiff material as compared to graphene (Singh et al. 2013).

The bending rigidity is very small at room temperature as compared with graphene and

it increases with increase in temperature. Using a parameterised Tersoff bond order

potential, Singh et al., have estimated the room temperature linear thermal expansion

coefficient (LTEC), heat capacity, etc., of h-BN.

Using first principle based quasi harmonic approximation (QHA), Sevik (2014)

studied the LTEC of 2D-honey comb structures and found that the LTEC of graphene

and h-BN are more negative than that of their multilayerd counter parts graphite and

white graphite (Sevik 2014). The obtained room temperature LTECs of graphene is

-3.0×10−6K−1 and that of h-BN is -6.5×10−6K−1. Using classical molecular dynam-

ics simulation, Anees et al., have reported the room temperature LTEC of h-BN is -

5.32 ×10−6K−1 and using a combination of lattice dynamics and molecular dynamics,

the phonon-phonon coupling in graphene and h-BN have also been analysed (Anees

et al. 2015, 2016) and reported that they exhibit strong anharmonicities. In h-BN, the

strong anharmonic coupling between the stretching and bending modes suppress the

long wavelength fluctuations present in it, which stabilizes its flat geometry.

1.1.3 Mechanical and Elastic Characteristics

In general, the mechanical robustness of materials plays a prominent role for the

manufacturing of nano-devices and also in nano-electronics. The effect of temperature

and strain rate on the mechanical properties of h-BN have been investigated by Han

et al., and they have observed that the Young’s modulus considerably decreases with

increase of temperature (Han et al. 2013). Using the framework of molecular dynamics

and finite element analysis the uniaxial tensile properties of pristine and defective h-BN

have been investigated and it is found that the uniaxial tensile stress-strain curves of

defective and pristine h-BN sheets are almost identical up to fracture points (Le and

Nguyen 2014). Using classical molecular dynamics simulation, the tensile response of

boron nitride nanosheets have been investigated by Mortazavi et al., and concluded that

8



the tensile properties are greatly influenced by the armchair and zigzag direction of the

nanosheet (Mortazavi and Rémond 2012). Recently, Kumar et al., have investigated

the need for an optimized cut-off function of the empirical interatomic potential for a

reliable tensile calculation of boron nitride nanosheets (Kumar et al. 2016).

1.1.4 Defect-Associated Characteristics

The detailed computational study of materials incorporating defects provides a

realistic picture prior to experimental analysis. The study of different types of defects

including Stone-Wales defects, single vacancy and divacancy defects, grain boundaries

and tetrahedron defects using nudged-elastic-band (NEB) method would help to pre-

dict the properties realistically. The usual defects observed in the h-BN layer are point

vacancy and Stone-Wales (Stone and Wales 1986). Various research groups have inves-

tigated the impact of defects on the properties of BN nanosheet. By means of molecular

dynamics simulations, Slotman et al., have investigated the energetics of defects in h-

BN (Slotman and Fasolino 2012). Activation energies and reaction paths for diffusion

and nucleation of mono and divacancy defects in hexagonal boron nitride layers are

theoretically investigated using the nudged elastic band method combined with density-

functional-based techniques (Zobelli et al. 2007). Qi-lin et al., have investigated the

defect induced fracture behavior of h-BN sheet using molecular dynamics simulation

(Qi-lin et al. 2015) and Ding et al., were studied the mechanical properties and fail-

ure behaviors of the interface of hybrid graphene/h-BN sheet using density functional

theory (Ding et al. 2016).

1.2 Scope and Objectives of the Present Research Work

1.2.1 Scope

The review of the literature on h-BN reveals that the atomistic simulations using

classical molecular dynamics is a powerful tool to investigate the various properties of

layered structures. In MD, the accuracy of the predicted properties strongly depends

on the accuracy of the potential used in the simulation. In the present study we try to

explore the various physical properties of monolayer h-BN that have not been studied in
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detail so far using a newly developed tuned Tersoff potential especially for the studies of

hybrid graphene/h-BN nano structures in which the interactions between boron, carbon

and nitrogen atoms are considered (Kinaci et al. 2012).

The present work focuses on the study of temperature dependent structural, thermo-

mechanical and finite size elastic properties of free standing monolayer hexagonal boron

nitride. According to the well-known Mermin-Wagner theorem (Mermin and Wagner

1966), the stability of any two dimensional crystal is explained on the basis of the the

presence of out-of-plane fluctuations present in the surface of the material called ‘rip-

ples’. The remarkable finding by Fasolino et al., that even at very low temperatures, the

2D graphene crystal remains intact and exhibits the thermally excited out-of-plane ex-

cursions called as ‘ripples’has motivated us. This has been explained on the basis of the

anharmonic coupling between the bending and stretching modes present in graphene

(Fasolino et al. 2007). Understanding the behavior of ripples is important because they

affect most of the physical properties of 2D materials like h-BN. In h-BN and most of

the other 2D materials and membranes, the out-of-plane fluctuations with ripples have

been reported and which arise naturally from the coupling between in-plane stretch-

ing and out-of-plane bending modes (Xu and Buehler 2010). In our work, we have

attempted to investigate this phenomenon (ripples) in the case of h-BN.

In the present work, we have investigated the temperature dependence of lattice pa-

rameter, radial distribution function, specific heat at constant volume, linear thermal

expansion coefficient, correlation function of the thermally excited ripples and forma-

tion of defects. The influence of defects on the bending rigidity is also analyzed. The

finite size effect on the anisotropic elastic properties of a finite and infinite 2D sheet

of h-BN at zero Kelvin have been analyzed using the energy method. The variation

of bending rigidity with system size is also validated using the equation derived from

the Foppl-von Karman approach. The effect of ripples on the temperature dependent

elastic constants are investigated for the first time using strain fluctuation method. We

also extracted the sound velocities using the derived elastic constants. We have also at-

tempted to investigate the effect of temperature and defects on mechanical properties of

pristine and defective h-BN by varying the cut-off function of the empirical interatomic
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potential.

1.2.2 Objectives

The major objective of this thesis is the “Molecular dynamics studies of the structural,

thermo-mechanical and finite size elastic properties of hexagonal boron nitride”. This

work specifically focuses on:

• Study of temperature dependent structural integrity analysis, thermal properties

and the bending rigidity of pristine and defective hexagonal boron nitride nanosheets.

• Study of the directional anisotropy, finite size effect and elastic properties of

hexagonal boron nitride at zero Kelvin using energy method.

• Investigation of the effect of ripples on the temperature dependent elastic constant

of 2D h-BN using the strain-fluctuation method.

• Analysis of the effect of temperature and defects on mechanical properties of

pristine and defective h-BN by varying the cut-off function of the empirical inter-

atomic potential.

1.3 Organization of the Thesis
The rest of thesis is organized as follows:

Chapter 2 presents a brief introduction of the computational methodology relevant

for the analysis of various properties explained in this thesis. In particular classical

molecular dynamics simulation is discussed.

In Chapter 3, we present our results on the temperature dependence of lattice pa-

rameter, radial distribution function, specific heat at constant volume, linear thermal ex-

pansion coefficient, height-height correlation function of the thermally excited ripples

on pristine as well as defective h-BN sheet, etc. The Specific heat shows considerable

increase beyond the Dulong-Petit limit at high temperatures, which is interpreted as a

signature of strong anharmonicity present in h-BN. Analysis of the height fluctuations,

〈h2〉, shows that the bending rigidity and variance of height fluctuations are strongly

temperature dependent and this is explained using the continuum theory of membranes.
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In chapter 4, we present a systematic study of the finite size effect on the anisotropic

elastic properties of h-BN for various system sizes. The Young’s modulus and Poisson

ratio are found to be anisotropic for finite sheets whereas they are isotropic for the

infinite sheet. Both of them increase with system size in accordance with a power

law. From the computed values of elastic constants, it is noticed that both finite and

infinite sheets satisfy Born’s criteria for mechanical stability. We have also presented

that, due to the the strong in-plane sp2 bonds and the small mass of boron and nitrogen

atoms, h-BN possesses high longitudinal and shear velocities. The variation of bending

rigidity with system size is also validated using the equation derived from the Foppl-von

Karman approach.

Chapter 5 explains the effect of ripples on the calculation of temperature dependent

elastic constants of monolayer h-BN for the first time using strain fluctuation method.

We observed that the out-of-plane intrinsic ripples responsible for strong anharmonic

behavior of h-BN leads to large deviation from the isotropic elasticity. Because of the

strong thermal rippling in large systems, the h-BN sheet may have a negative ther-

mal expansion coefficient at relatively low temperatures, with a transition to positive

thermal expansion at high temperatures and this also soften the elastic constants. The

calculations show that h-BN sheet satisfy Born’s criterion for mechanical stability. As

the temperature increases, the Young’s modulus of h-BN decreases, which leads to the

decrease of longitudinal and shear wave velocities.

In chapter 6, the effect of changing the cut-off distance in the empirical poten-

tial on the stress-strain relation and also the temperature dependent Young’s modulus

of pristine and defective hexagonal boron nitride has been reported. As the tempera-

ture increases, the computed Young’s modulus shows a significant decrease along both

the armchair and zigzag directions. The computed Young’s modulus shows a trend in

keeping with the structural anisotropy of h-BN. The variation of Young’s modulus with

system size is elucidated. The observed mechanical strength of h-BN is significantly

affected by the vacancy and Stone-Wales type defects. The defect analysis shows that

presence of vacancy type defects leads to a higher Young’s modulus, in the studied range

with different percentage of defect concentration, in comparison with Stone-Wales de-
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fect.

Chapter 7 summarizes the findings of the present research work by highlighting

the important results of the thesis along with conclusions. This chapter also comprises

scope for further research work in the area of 2D materials such as graphene and MoS2.
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Chapter 2

Details of Atomistic Simulation

This chapter presents a brief introduction of the computational methodology which

are relevant for the calculations in this thesis. In particular, classical molecular

dynamics simulations and its most important features are detailed in this section.

The best existing approaches to describing atomic interactions in condensed

phases are based on quantum-mechanical descriptions of bonding. Unfortunately, first-

principles quantum-mechanical descriptions are computationally expensive and, hence,

their application is usually limited to situations where the number of unique atoms is a

few hundred or (much) less (Mendelev et al. 2003). One of the ways of performing ef-

fective computational simulation with millions of atoms, is by considering the trajectory

of the constituent atoms of the systems as classical point particles which interact and

evolve under an effective interatomic potential. In general, the empirical interatomic

potentials (e.g. Lennard-Jones, Morse, etc.) and the semi-empirical potentials (e.g.

bond order potentials by Tersoff, reactive empirical bond order (REBO), embedded

atom model (EAM) and Brenner) do not treat the quantum nature of electrons explicitly

and hence allowing enormously faster calculations than quantum mechanical methods.

These empirical interatomic potentials are derived by coupling the experimental data

and quantum-mechanical analysis.

In the present thesis, we have employed the classical molecular-dynamics (MD)
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simulations for the study of h-BN using the Tersoff potential. A brief explanation of

the molecular dynamics method is also presented, which will be useful to understand

and interpret the results of the following chapters. The more detailed theory of MD

simulation can be found in the standard text books (Allen and Tildesley 1989, Frenkel

and Smit 2001, Tuckerman 2010, Rapoport 1995).

2.1 Classical Molecular Dynamics
The basic idea of molecular dynamics (MD) simulations is to calculate how a

system of particles evolves in time. MD is a computational approach capable both of

sampling an equilibrium distribution and producing true dynamical observables, which

also employs the method of classical mechanics for the movements of atoms. As the

name indicates, though MD has initially simulated a handful of molecules, later it has

been extended to liquids, solids, and materials in parallel with the growth in computer

power (Tuckerman 2010). The first Molecular Dynamics simulation which was applied

to atoms interacting via a continuous potential was performed by A. Rahman in 1964

(Rahman 1964). Molecular Dynamics is a deterministic way to simulate the movement

of atoms i.e., state of the system at any future time can be predicted from its current

state. The simulation is divided into a number of time steps, usually in the order of

Femto seconds (10−15 Seconds). Newton’s equation of motion is successively solved in

each time step, where the forces between all the atoms are calculated and then integrated

to obtain new positions and velocities. This is iterated till the end of the simulation.

During the time steps material properties can be calculated from the positions, velocities

and forces. Molecular Dynamics can solve two-body, three-body and N-body problem

numerically.

Before moving into the details of force calculation, it should be mentioned that two

approximations underly the use of the classical equation of motion. The first of the

two main approximations in MD is the Born-Oppenheimer (Born and Huang 1966) ap-

proximation in which the electrons follow the motion of the nucleus instantaneously.

Moreover, the ground state is the only allowed electronic state. Consequently, for each

atom of a certain element, the same potential function applies. The second approxima-

tion includes the description of atoms as point particles that follow classical Newtonian
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dynamics. Practically, MD is the only option for big systems of more than thousands

of atoms for calculating the processes such as melting, deforming, sintering, crack-

propagation, etc., in materials (Lee 2011).

In Molecular Dynamics we use Newton’s law to move atoms. It is already a well

known fact that the quantum effects become significant only when the particle wave-

length, λ , is comparable with the interatomic distance (1 - 3 Å). Otherwise, the use of

Newton’s equations of motion is well justified. The validity of the classical approxi-

mation in atomistic simulation is based on the de Broglie thermal wavelength (λ ) and

is defined as λ = h√
2πmkBT , where m is the atomic mass and T the temperature, kB

and h represent the Boltzmann constant and the Planck’s constant, respectively. The

classical approximation is justified if λ << a, where a is the mean nearest neighbour

separation. For example, if we consider the case of diamond at 1000 ◦C, the thermal de

Broglie wavelength λ of carbon atoms equal 1.41×10−11m (Ercolessi 1997), such that
a
λ
= 11.0. The classical treatment of carbon structures at temperatures as high as 1000

◦ C is thus justified. For most elements and at higher temperatures, therefore, atomic

dynamics can be predicted using Newton’s equations of motion. The most important

features of molecular dynamics simulations are explained in detail in coming sections:

i Initialization

It is an essential practice to assign the initial positions and velocities of all the parti-

cles in the system at the beginning of the molecular dynamics simulation. To attain

a faster convergence as well as reliable results a good initial guess of positions and

velocities is required. The initial positions of atoms could be anywhere but are nor-

mally specified according to the known lattice positions. Indeed, setting up an initial

condition depending on the complexity of the system can be a nontrivial problem.

This preparation is important to minimize meaningless data and to have reliable re-

sults. Alternatively, one can begin with random initial coordinates, restricting only

the distance between particles so as to avoid strong repulsive forces initially. Once

initial coordinates are specified, remaining is to set the initial velocities. This is

generally done by sampling the velocities of atoms. The initial velocities of all the

atoms could be zero, but are normally chosen randomly from a Maxwell-Boltzmann
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or Gaussian distribution at a given temperature.

From the theorem of equipartition of energy we can use the following relation to

obtain the average kinetic energy per degree of freedom as,

〈1
2

mv2
α〉=

1
2

kBT (2.1)

Then the instantaneous temperature at time t can be given as,

T (t) =
N

∑
i=1

miv2
i (t)

kBN f
, (2.2)

where N f is the number of degrees of freedom.

ii Force Calculation

Molecular Dynamics integrates Newton’s equations of motion for collections

of atoms, molecules, or macroscopic particles that interact via short or long-range

forces with a variety of initial and/or boundary conditions. In molecular dynamics

simulations, the most time consuming part is the computation of forces generated

by the potentials acting on atoms as −dU
dr (Cai et al. 2012). Normally, a potential tail

off at long distances and becomes negligible. This allows us to disregard the force

calculation where the interatomic distances are beyond a certain cutoff distance, rcut

and at this point, the force is made to go smoothly to zero. The rcut must be smaller

than half of the primary box size as shown in the smaller circle in figure 2.1 (Lee

2011). To find the atomic trajectories, one needs to solve the following equations,

the equations governing the particle coordinates. For an N-particle system with

potential energy U , the equations are:

mi
d2ri
dt2 =

N

∑
j=1(6=i)

Fi j =−
∂U(ri j)

∂ri j
, f or i = 1,2,3, ....,N, (2.3)

where mi and ri is the mass and position vector for each particle i, and t is the time.

Even though this equation may look deceptively simple, it is as complicated as the

famous N-body problem that one generally cannot solve exactly when N is > 2.

18



This equation is a system of coupled second-order, nonlinear ordinary differential

equations and can be solved numerically, and this is carried out in MD simulation.

The Conjugate gradient minimization algorithm is an iterative method used

for the structural relaxation and also to find the local minimum of the potential

energy function, that can be of many variables. In the present case, the potential

energy of the sample has to be minimized, with a number 3N of variables, where N

is the number of atoms in the system.

Figure 2.1: Schematic of potential cutoff under periodic boundary conditions in two
dimensions

iii Numerical Integrator

The atomic trajectories of a set of N interacting atoms can be generated by the

numerical integration of Newton’s equation of motion (equation 2.3) with certain

initial and boundary conditions. In molecular dynamics, the most commonly used

time integration algorithm is probably the so-called Verlet algorithm (Verlet 1967).

In general, an integrator should be accurate (approximate the true trajectory), stable

(conserve energy) and robust (should not be sensitive to the time step scale). In

the present thesis the simple and most used velocity Verlet integrator is discussed.
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For a small time step ∆t, one forward step and one backward step in time can be

expressed as two third-order Taylor expansions of the coordinate of a particle :

r(t +∆t) = r(t)+v(t)∆t +
1
2

a(t)∆t2 +
1
6

b(t)∆t3 +O(∆t4) (2.4)

r(t−∆t) = r(t)−v(t)∆t +
1
2

a(t)∆t2− 1
6

b(t)∆t3 +O(∆t4) (2.5)

where, r(t) is the position vector of the particle at time t, v(t) is the velocity, a(t) is

the acceleration, b(t) is the third derivative of r with respect to t and O(∆t4) repre-

sents the higher order terms. After adding the above two expressions (equations 2.4

and 2.5),

r(t +∆t) = 2r(t)− r(t−∆t)+a(t)∆t2 +O(∆t4) (2.6)

This is the basic form of the Verlet algorithm. Since we are integrating Newton’s

equations, a(t) is just the force divided by the mass, and the force is in turn a

function of the positions r(t) and

a(t) =− 1
m

∇V (r(t)) (2.7)

In this way, the new positions are calculated with an error of order ∆t4. We can

derive the velocity also from above Eqs. (2.4) and (2.5) using the central difference

scheme:

r(t +∆t)− r(t−∆t) = 2v(t)∆t +O(∆t3) (2.8)

or

v(t) =
r(t +∆t)− r(t−∆t)

2∆t
+O(∆t3). (2.9)

These velocities are used to calculate the kinetic energy and therefore, instantaneous
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temperature. In each time step, the current temperature and potential energy are

calculated. One can easily notice that the truncation error of the algorithm while

evolving the system by ∆t is of the order of ∆t4, even if third derivatives do not

appear explicitly. At the same time, this Velocity Verlet algorithm is simple to

implement, accurate and stable, explaining its large popularity among molecular

dynamics simulators. The efficiency of an MD simulation, therefore depends on

performing the force calculation as simplified as possible without compromising

the physical description (simulation fidelity). Since the force is calculated by taking

the gradient of the potential U , the specification of U essentially determines the

compromise between physical fidelity and computational efficiency (Frenkel and

Smit 2001). A typical flowchart for an MD code is shown in figure 2.2.

iv Ensembles

According to statistical physics, physical quantities are represented by an

average over configurations, which refers to a collection of systems that share com-

mon macroscopic properties. An ensemble is a collection of systems described by

the same set of microscopic interactions and sharing a common set of macroscopic

properties (e.g. the same total energy, volume, and number of moles, etc). Aver-

ages performed over an ensemble yield the thermodynamic quantities of a system

as well as other equilibrium and dynamic properties. Using the framework of statis-

tical physics, various physical quantities are calculated by an average over configu-

rations distributed according to a certain statistical ensemble. In a simulation box of

an MD run, each atom moves and behaves differently, and a new microstate of the

system is generated in every timestep. After a proper simulation and equilibration,

however, it becomes an ensemble that is a collection of all possible configurations

and yet has the same macroscopic or thermodynamic properties.

The ensemble in which the number of particles N, volume V and the total

energy E are constant is known as the microcanonical (NVE) ensemble, equiva-

lent to the conventional MD simulation over ensemble averages. This ensemble is

most often used in equilibrium MD since it represents normal real systems at its

best. However, most of the experiments are carried out at a specific temperature.
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Figure 2.2: The Flow chart of an MD trajectory simulation

Therefore, to have canonical ensemble (NVT-isochoric-isothermal) by MD simu-

lation and obtain the corresponding thermodynamic properties, one needs to add a

thermostat interacting with the system by coupling the system to a heat bath (ther-

mostat methods), which gives a more realistic picture prior to experimental analysis

(Hoover 1985). It is also often desirable to sample from an isothermal-isobaric

ensemble to be relevant with experimental studies under constant pressures. To

maintain constant pressure, the use of barostat is often adopted, and the volume of

the system is allowed to change. Typically, the simulation box length is coupled to

the pressure piston that has its own degree of freedom.
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Molecular Statics simulations are performed at zero Kelvin temperature and

the finite temperature Molecular Dynamics Simulations were carried out using the

NVT and NPT ensemble. For the temperature and pressure control in the simula-

tions, the Nosé-Hoover thermostat and barostat were employed, which ensure the

average temperature and pressure of the system to be a desired constant.

2.2 LAMMPS

For the present thesis work, classical Molecular Dynamics simulations have

been performed using a free and open-source software package LAMMPS (Large

scale Atomic/Molecular Massively Parallel Simulator) developed by Sandia Na-

tional Laboratories (Plimpton et al. 2007). We have also used the in-house codes

written in MATLAB and FORTRAN for the modelling of pristine and defective

h-BN sheet as well as post processing the data. LAMMPS can model atomic, poly-

meric, biological, metallic, granular and coarse-grained systems using a variety of

force fields and boundary conditions from a few particles to million or billions.

Different statistical ensembles are incorporated in LAMMPS and has been

used to derive the required physical quantities. One need to perform canonical

(NVT) and isobaric-isothermal (NPT) calculations using the Nosé-Hoover chain

equations and need to set the ’fix nvt’ or ’fix npt’ command and able to set values

for the initial (Ti) and final (Tf ) temperature, as well as the temperature and pres-

sure damping factor τt and τp respectively. The temperature (Tdamp) and pressure

damping (Pdamp) parameter is specified in time units and determines how rapidly

the temperature/pressure is relaxed. If the damping factor is too small, the tempera-

ture, pressure and volume can fluctuate wildly; if it is too large, these quantities will

take a very long time to equilibrate. So the proper damping factor has to be chosen

carefully. In most situations, the microscopic equations of motion obeyed by the

system are no longer Hamiltonian. In fact, it is often possible to model the effect

of the surroundings simply positing a set of non-Hamiltonian equations of motion

which are designed to generate positions and velocities sampled from the canonical

(NVT) and isothermal-isobaric (NPT) ensembles (Tuckerman 2010). This updates
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the position and velocity for atoms in the group at each time step (Plimpton 1995).

2.3 The Empirical Interatomic Potential

The physical fidelity of the MD simulation ultimately depends on the accu-

racy of the potential used for the simulation. The empirical inter-atomic potential

is the most critical quantity in MD modelling and simulation; it essentially controls

the numerical and algorithmic simplicity (or complexity) of MD simulation. Pair

potentials are the simplest form of potentials in which the potential energy of in-

teraction between two non-bonding atoms or molecules are based on their distance

of separation. A typical example of pair potential is the Lennard-Jones potential

(Jones 1924) that considers only two-atom interactions and neglects all others. The

Lennard-Jones potential, ULJ(r), expressed in terms of interatomic distance, r, with

two parameters as:

ULJ(r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]
, (2.10)

where ε is the lowest energy of the potential curve and parameter σ is the inter-

atomic distance at which the potential is zero. The advanced bond-order potential

consists of a new set of potential parameters associated with the existing empiri-

cal interatomic potentials and that depend on the local chemical environment in the

reactive simulations.

A good potential energy model should be able to balance both the radial forces

and angular forces in the system which resist a change in the bond length from the

equilibrium value and resist the shape of the bond angle at the unstrained equilib-

rium state respectively. Then, a classical potential takes the form :

Epot = ∑
i

V1(ri)+∑
i, j

V2(ri,r j)+ ∑
i, j,k

V3(ri,r j,rk)+ ..... (2.11)

where, V is the total potential energy of the system, V1 represents a single particle

potential which corresponds to an external potential, V2 is a pair-potential (or two
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body potential) and only depends upon the distance between the atoms i and j.

V3 is the three-body interaction in the system and may contain the torsional and

angular dependent terms. Three-body and higher order potentials are grouped into

a category called many-body potentials. It is also a common practice to put a cut-

off function for a potential energy to avoid massive computation due to long-range

forces beyond the first nearest neighbor atoms. Hence V (ri j)→ 0 for ri j > rc where

rc is the cut-off radius. To prevent the discontinuity and unphysical behaviour in

the second derivatives of this cut-off function at ri j = rc, a trigonometric smoothing

function is usually introduced in the interval rc < ri j < (rc +∆r), which makes the

potential and the force continuous.

2.3.1 Tersoff Potential

A proper interatomic potential function which is capable of describing ac-

curately the interactions in the material system is of crucial importance. Classical

empirical force fields can be used in large-scale atomistic simulations with low com-

putational cost. Recently, a new approach named as bond-order potentials emerged

that depend on the local chemical environment in reactive simulations. In contrast

to classical empirical potential, bond-order potentials capture bond formation and

breaking, saturated and unsaturated bonds, dangling and radical bonds, as well as

single, double or triple bonds (Grotendorst et al. 2009).

The interatomic potentials can be divided into two formats: a separated for-

mat and an integrated format. The first format consists of two-body and three-body

(and higher) energy terms separately such as the Finnis-Sinclair, embedded-atom

method (EAM), modified EAM (MEAM), and Stillinger-Weber (SW) potentials.

In the integrated format, the potential energy has integrated many-body effect and

two-body interaction via a bond order term such as Tersoff and reactive empirical

bond order (REBO) potentials.

A considerable improvement has taken place in the development and evo-

lution of empirical interatomic potentials for the large scale atomistic simulations

of covalent materials, in particular silicon, carbon, semiconductors and hydrocar-
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bons. Stillinger-Weber (SW) type potentials (Stillinger and Weber 1985, Bazant

et al. 1997, Justo et al. 1998), Tersoff type bond order potentials (BOPs) (Tersoff

1986, 1988b,a,a, 1986, Brenner 1990, Brenner et al. 2002), embedded atom models

(EAMs) for metals and metal alloys (Finnis and Sinclair 1984, Baskes 1987, Baskes

et al. 1989, Cai and Wang 2001) and higher bond order potentials derived from tight

binding models (TBBOPs) (Pettifor 1989, Pettifor and Oleinik 1999, Oleinik and

Pettifor 1999), etc. are meant to give a good description of the energy landscape for

any possible realistic configuration characterized by the set of atomic positions ri.

Among all these potentials, Tersoff (Tersoff 1988b,a, 1989) and Tersoff-type

(Brenner 1990, Brenner et al. 2002) empirical potentials are considered as the most

successful ones for the study of carbon and boron-nitride nano systems. Tersoff-

Brenner pair potentials are structurally similar to that of Tersoff potentials, but the

functional forms of the attractive and repulsive parts of these potentials are different.

In 1986, J. Tersoff has introduced an empirical interatomic potential energy

function (Tersoff 1986) for silicon systems. The main idea of this kind of potential

was to incorporate the bond order term (i.e., the strength of each bond) in it, which

depends upon the local environment (Abell 1985). Usually an atom with many

neighbors forms weaker bonds than an atom with few neighbors. Due to the crucial

role of bond order and its dependence upon local geometry, it seems attractive to

include an environment dependent bond order explicitly into the potential. In gen-

eral, in a Tersoff type potential, the total energy E of a collection of atoms can be

written as,

E =
1
2 ∑

i
∑
j 6=i

Vi j (2.12)

where,

Vi j = fc(ri j)
[

fR(ri j)+bi j fA(ri j)
]

(2.13)

Here, Vi j is the potential energy of the pair of atoms situated at ~ri and ~r j. Their

interaction energy Vi j depends on the environment of both the atoms through the
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bond-order term bi j. fR and fA are the repulsive and attractive pair potentials re-

spectively. fc(r) is the cut off function which depends on distance r in such a man-

ner that the potential energy and the force experienced by the atoms taper of to zero

at the cutoff distance without any discontinuity. The summations in the formula are

over all neighbors j and k of atom i within a cut off radius. ri j is the bond distance

between atoms i and j and bi j is the many body order parameter that describes how

the bond formation energy is affected by the local atomic arrangement due to the

presence of other neighboring atoms. The repulsive and attractive pair potentials fR

and fA are represented respectively as,

fR(r) = A(r)e−λ1r and fA(r) =−B(r)e−λ2r (2.14)

fc(r) =


1, if ri j < Ri j,

1
2 +

1
2cos

[
π(rij−Rij)

Sij−Rij

]
, if Ri j < ri j < Si j,

0, if ri j > Si j

(2.15)

which is a continuous function with a continuous derivative for all r, and goes

smoothly from 1 to 0 in a small range around R. The value of R has to be cho-

sen in such a manner to include only the nearest-neighbors. The function bi j is a

measure of the bond order. The terms which act to limit the range of interaction to

the first neighbors are included in bi j.

bi j =
(
1+β

n
ζ

n
i j
)−1

2n (2.16)

ζi j = ∑
k 6=i, j

fc(rik)g
(
θi jk
)

e−λ m
i j (ri j−rik)

m
(2.17)

g
(
θi jk
)
= 1+

c2

d2 −
c2[

d2 +
(
h− cosθi jk

)2
] , (2.18)

where θi jk is the bond angle between bonds i j and ik.

In the present work, a Tersoff interatomic potential developed by Kinaci et al., has
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Table 2.1: Tersoff-type inter atomic potential parameters optimized for hexagonal boron
nitride.

A (eV) 1380.0 c 25000
B (eV) 340.0 β (10−7) 1.25724
λ1( Å−1) 3.568 d 4.3484
λ2( Å−1) 2.199 cosθ or (h) -0.89000
λ3( Å−1) 0.000 R ( Å) 1.950
n 0.72751 S ( Å) 0.050

been used to investigate the various structural, thermodynamic, mechanical and

elastic properties of monolayer pristine and defective h-BN (Kinaci et al. 2012) and

the values of the parameters used are shown in table 2.1. Further details about the

parameterisation are available in references (Kinaci et al. 2012, Sevik et al. 2012).
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Chapter 3

Temperature Dependent Structural

and Thermal Properties

This chapter explains the temperature dependent structural and thermal prop-

erties of h-BN. Temperature dependence of lattice parameter, radial distribution

function, specific heat at constant volume, linear thermal expansion coefficient

and height correlation function of the thermally excited ripples on pristine as

well as defective h-BN sheet have been investigated. Specific heat shows con-

siderable increase beyond the Dulong-Petit limit at high temperatures, which is

interpreted as a signature of strong anharmonicity present in h-BN. Analysis of

the height fluctuations shows that the bending rigidity and variance of height

fluctuations are strongly temperature dependent and this is explained using the

continuum theory of membranes. It is also seen that the variance of the height

fluctuations increases with defect concentration.

3.1 Introduction

This chapter investigates the structural and thermodynamical properties of mono-

layer pristine and defective 2D h-BN in a wide temperature range by carrying

29



out atomistic simulations using a tuned Tersoff-type inter-atomic empirical po-

tential. We have used the potential parametrization of Kinaci et al., that is re-

ported in Sevik et al (Sevik et al. 2011) and available with LAMMPS (Large scale

Atomic/Molecular Massively Parallel Simulator) (Plimpton et al. 2007) package

without any modification. Simulation with this potential gives a value of lattice

parameter comparable to the experimental result, which prompted us to use this

potential for calculations of the structural and thermal properties of h-BN. To the

best of our knowledge, the structural integrity analysis of h-BN, the vacancy defect,

Stone-Wales (SW) defect and height fluctuations with respect to temperature have

not been studied so far with the well established parameterized Tersoff potential

(Kinaci et al. 2012). In this thesis work, high temperature studies have been per-

formed for the computation of temperature dependence of lattice parameter, radial

distribution function, specific heat at constant volume, linear thermal expansion

coefficient, correlation function of the thermally excited ripples and formation of

defects. The influence of defects on the bending rigidity is also analyzed. Even

though h-BN sheet is stable only up to ∼ 1500 ◦C in air, studies using Tersoff type

empirical potentials show an increase in its melting point to ∼ 2700 -3000 ◦C with

pressure. This enhanced thermal stability makes h-BN a material with potential for

applications under high temperature-high pressure conditions.

3.2 Methodology

The simulations are carried out using LAMMPS (Large Scale Atomic/Molecular

Massively Parallel Simulator) (Plimpton et al. 2007) package. Periodic boundary

conditions were employed for the simulation to avoid the spurious surface effects

in h-BN. The standard Velocity-Verlet time stepping algorithm is used to solve the

equations of motion with an integration time step of 0.1 fs. A Nose-Hoover type

chain thermostat is used in order to control the system temperature. Simulations

are carried out in the canonical ensemble to compute the pair correlation function

of h-BN. The number of atoms used in a simulation depends on the objective of

the simulation. We have used cells with up to 125000 atoms in our study of vari-
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ous properties of hexagonal BN. We have optimized the system size before every

calculation so that the computed structural and thermal properties are system size

independent. Simulation box with 12800 atoms was found to be good enough for

study of lattice constant and nearest neighbour distance of h-BN. We found a cell

with about 20000 atoms to be large enough for study of specific heat and defects.

Properties of thermally excited ripples were studied with larger number of atoms.

Micro canonical (NVE), canonical (NVT) and isobaric-isothermal (NPT) ensem-

bles are used to derive the required physical quantities. The inter atomic potential

is the main ingredient of any successful MD simulation. More details about the

Tersoff type empirical potential used for the present study can be found in section

2.3.1.

3.3 Results and discussions

3.3.1 Structural Properties

In h-BN, the distance between nearest neighbour boron and nitrogen atoms

Rxy is 1.46 Å, which is the average of the B-N covalent σ bonds. h-BN has a unit

cell consisting of two atoms, referred to as Boron (B) and Nitrogen (N) atoms.

After repeating the unit cell, these atoms form two triangular lattices called the

B- and N-lattice, located such that each B- atom is directly neighboured by three

N-atoms, as is shown in figure 3.1 and a1 and a2 are the primitive unit cell with

primitive translation vectors. Then the angle between corresponding σ orbital (in

plane) derived from s, px, py is 120◦. By using the law of cosines, we can derive

a =
√

3Rxy from the triangle ABC as:

a2 = R2 +R2−2×R×R×Cos(120)

a2 = R2 +R2−2×R×R×Cos(90+30)

a2 = R2 +R2 +R2

a =
√

3R
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Figure 3.1: The two triangular sublattices (the B- and N-lattice) creating the honeycomb
structure, and the defining vectors in h-BN.

We have observed that the lattice parameter of h-BN is not equal to
√

3Rxy

(Rxy = a/
√

(3) is the in-plane nearest neighbor separation and) at any other tem-

peratures other than zero, due to the thermally excited ripples in the out-of-plane

direction, which determines the stability of 2D crystals. Ideally, the perfect lattice

matching of graphene and h-BN with almost similar structural properties is used

to explore the possibility of multilayers (Graphene on h-BN) for various potential

applications. The equilibrium lattice parameter of h-BN sheet obtained from the

previous theoretical investigations based on various formalisms, and experimental

studies are shown in table 3.1. The value tabulated from reference (Paszkowicz

et al. 2002) is at room temperature and all the other results shown in table 3.1 cor-

respond to zero Kelvin. The equilibrium lattice parameter of h-BN obtained from
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the present study at zero Kelvin is in good agreement with the previous ab initio

results. In fact, the potential chosen for the present study gives a value of lattice

parameter closer to the experimentally observed value. Experimentally observed

lattice parameter of h-BN at room temperature is a=2.504 Å with an average B-N

interatomic distance of 1.44 Å (Paszkowicz et al. 2002). Molecular Dynamics sim-

ulations using a modified Albe, Moller and Heining interatomic potential gives the

equilibrium lattice parameter as a=2.532 Å at zero Kelvin (Slotman and Fasolino

2012, Albe et al. 1997) with an average B-N interatomic distance as 1.46 Å. In the

present study, at zero Kelvin, the lattice parameter is observed as a=
√

3R0=2.505 Å

with an interatomic B-N distance Rxy=1.44 Å.

Table 3.1: Comparison of lattice parameter of Monolayer h-BN Sheet reported during
various calculations.

Reference Year Method a ( Å) Rxy ( Å) ECoh (eV/atom)
Present Study 2015 Molecular Dynamics 2.505 1.445 7.49
Greenwood 1997 Experiment - - 7.41
Paszkowicz et al 2002 Experiment 2.504 1.440 -
Sevik 2014 ab initio QHA-GGA 2.519 - -
Sevik 2014 ab initio QHA-LDA 2.495 - -
Slotman et al 2013 Molecular Dynamics 2.532 1.462 -
Kaloni et al 2011 DFT-LDA 2.480 - 7.91
Hamdi et al 2010 ab initio DFT-LDA 2.486 - -
Furthmüller et al 1994 Ab-initio 2.486 - 8.81
Xu et al 1991 ab initio DFT-LDA 2.494 - -

An attempt has also been made to calculate the variation of the in-plane

lattice constant (a) and the B-N nearest neighbour distance (Rxy) with temperature

using equilibrium MD simulations. The variation of a and Rxy with temperature is

shown in figure 3.2. The pressure of the system is maintained at a constant level at

P=0. In the current simulation we have considered a sample of N= 12800 atoms.

The lattice parameter a (marked in the left y-axis) and B-N interatomic distance in

the xy-plane Rxy (marked in the right y-axis), which differ by a factor of
√

3, are

tabulated. It is found that a and Rxy first decrease with increase in temperature upto

1700 K. Beyond this temperature, considerable change in the lattice parameter is
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observed as a is no longer equal to
√

3Rxy due to the thermal fluctuations in the

out of plane direction. Thereafter they increase with temperature upto 3000 K, the

highest temperature considered in this study. However, their values never exceed

the corresponding values at T=0 K. The h-BN shows negative thermal expansion at

low temperatures due to presence of low frequency bending modes in its phonon

spectrum. Until the temperature becomes sufficiently large to excite the in-plane

modes, the amplitude of the bending modes would go on increasing which leads

to a reduction in the in-plane interatomic distances. As the temperatures further

increases, the in-plane phonon modes also get excited. These modes would cause

an increase in the in-plane distance. Thus a non-monotonic variation in the lattice

constant as shown in figure 3.2 can be anticipated (Zakharchenko et al. 2009, Pozzo

et al. 2011, Mounet and Marzari 2005). Both the mechanisms are operative in the

temperature range 1700-3000 K. However, anharmonic effects are more important

in this temperature regime.

Figure 3.2: Temperature dependence of lattice parameter a (marked in the left y-axis)
and B-N interatomic distance in the xy-plane Rxy (marked in the right y-axis) of h-BN
sheet with 12800 atoms calculated at different temperatures with zero external pressure.
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3.3.2 Radial distribution function

Radial distribution function (RDF) or pair correlation function is a powerful

tool to analyze the structural information of a material. It is estimated by consider-

ing distance between all pairs of atoms. In general, if gAB(r) is the radial distribution

function, then gAB(r)∆r is proportional to the probability of finding an atom of type

B at a distance between r and r+∆r from an atom of type A. For a two dimensional

system, it is given by

gAB(r) =
∆nAB

2πr∆rρB
, (3.1)

where, ρB is the average density of species B in the entire material and ∆nAB is the

average number of particles of type B present in the annular region between r and

r+∆r with an A atom at the center. The averaging is over all the A atoms present in

the simulation volume. The radial distribution functions must be delta functions at 0

K, as there are unique values for the radii of the various neighbour shells. However,

due to thermal vibrations, these distances become blurred as the temperature of

the system increases and the delta functions broaden into smooth peaks. The peak

width increases with temperature. The width is in fact proportional to the root mean

squared displacement of the atoms from their equilibrium position. The position of

the nth peak in gAB(r) would correspond to the mean distance of the B atom from

the A atom in nth neighbour positions. Thus the value of RDF at any r decreases as

the temperature increases due to thermal broadening.

The peak positions of first, second and third neighbor of h-BN sheets corre-

spond to 1.45 Å, 2.511 Å and 2.85 Å respectively as shown in figure 3.3. In order

to obtain the RDF of h-BN sheet at various temperatures, the material is heated by

using a Nose-Hoover thermostat with 20000 atoms and 1 fs time step. The peak

positions of the RDF correctly give the various distances between the atoms which

can also be obtained by analysis of geometry and structure using other techniques

such as full width at half maximum (FWHM) of an RDF (Yuan and Liew 2014,

Barnard et al. 2007). When the temperature increases, the atoms start moving from

their equilibrium position. As the positional spread increases with increase in tem-
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perature, the probability of finding a particular atom in the vicinity of the reference

atom decreases with increase in temperature. The different contributions (B-B, B-N

and N-N) to RDF in BN sheet at various temperatures are shown in figure 3.3 (a),

(b) and (c) as a function of distance r.

Figure 3.3: Figure (a), (b) and (c) shows the Radial distribution function of B-N, B-
B and N-N pairs in h-BN sheet at various temperatures. The value of RDF at any r
decreases as the temperature increases due to thermal broadening.

3.3.3 Specific heat at constant volume

This section explains how to calculate the specific heat at constant volume

CV (T ) of hexagonal BN. It is well known that the heat capacity is a temperature

dependent quantity and it will decrease considerably when the temperature is de-

creased below Debye temperature due to quantum mechanical effects. However,

while the classical molecular dynamics simulations give the correct high tempera-

ture limit, they fail in the lower temperature region. Quantum corrections are sig-
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nificant in any material when the temperature become very low. Moreover, the

classical approximation is rather poor for light elements. Quantum corrections are

often superimposed on the classical description of motion given by MD to get the

correct results. In the present thesis work, we calculate CV in the temperature range

200-3000 K, which is sufficiently high for quantum effects to be not significant, in

two ways.

First, we consider the formula

CV =

(
∂U
∂T

)
V
, (3.2)

to calculate CV (T ) from the internal energy U . The total energy U(T ) of the h-BN

sheet is shown in figure 3.4 (a) as a function of temperature. Here, the black solid

squares in the figure correspond to the MD study of hexagonal BN taken from refer-

ence (Singh et al. 2013) and the red circles represent the results of the present study.

The total energy appears to vary linearly with temperature. Detailed analysis using

NVT ensemble shows that it actually has a nonlinear dependence on temperature. It

is seen that the U(T ) vs T data can be fit to a quartic polynomial with the fractional

residual less than 10−6 as shown in figure 3.5. The solid line in figure 3.4 (b) rep-

resents the specific heat calculated in this manner. The specific heat obtained using

the formula CV =
(
〈E2〉−〈E〉2

)
/(kBT 2) relating energy fluctuations in the canoni-

cal ensemble to the specific heat is also shown in figure 3.4 (b). Energy fluctuations

over 100 ps after attaining equilibrium was used for the calculation. The percent-

age of error associated with the CV estimated in this manner is large. Temperature

fluctuations over longer time duration, of the order of ns, may be needed to reduce

the error in the calculation.

Density functional studies of Xiao et al., showed that the specific heat at con-

stant volume (Cv) of boron nitride nanotube is larger than that of Carbon nanotube

(Xiao et al. 2004). In the present work, the estimated value of CV /atom is 25.18

Jmol−1K−1 at room temperature and within a range of temperature from 200-3000

K, Cv/atom varies in the range 24.8-28.2 Jmol−1K−1. Thus there is a considerable
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increase in the specific heat beyond the Dulong-Petit value of 24.942 Jmol−1K−1,

which is due to strong anharmonicity present in hexagonal BN. In fact anharmonic

effects on thermodynamic properties are seen in hexagonal BN not only at very

high temperatures but also at room temperature. Since the increase in CV continues

even at high temperatures, we conclude that the quartic term in the potential also

gives a positive contribution to specific heat, even though it can be negative in some

materials (da Silva et al. 2014, Katsnelson 2005, Keller and Wallace 1962).

Figure 3.4: (a) Variation of the total energy (per atom) of the monolayer h-BN sheet as a
function of temperature. (b) The variation on specific heat capacity at constant volume
with temperature of h-BN sheet at a time step of 0.1 fs using NVT simulation. We have
chosen 20000 atoms for the simulation.

3.3.4 Linear thermal expansion coefficient

Materials possessing both positive and negative thermal expansion coeffi-

cients are of practical importance due to the fact that they can be used to make

composites with very little thermal expansion/contraction. In general, if a(T ) is

the equilibrium lattice parameter and T is the temperature, then the linear thermal

expansion coefficient (α(T )l) can be calculated using the equation,

αl(T ) =
1

a(T )

(
∂a(T )

∂T

)
P

(3.3)
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h-BN shows negative thermal expansion (αl) at low temperatures due to presence

of low frequency bending modes in its phonon spectrum. Until the temperature be-

comes sufficiently large to excite the in-plane modes, the amplitude of the bending

modes would go on increasing which leads to a reduction in the in-plane interatomic

distances. As the temperatures further increases, the in-plane phonon modes also

get excited. These modes would cause an increase in the in-plane distance. Thus a

non-monotonic variation of the lattice constant with temperature can be expected.

Figure 3.5: The nonlinear dependence of total energy with temperature. The U(T ) vs
T data is fitted to a quartic polynomial with the fractional residual less than 10−6.

By using quasi harmonic approximation, Sevik (Sevik 2014) has reported that

the linear thermal expansion coefficient of h-BN is considerably negative below 300

K and it gradually increases in the temperature range 300-1500 K. Yates et al (Yates

et al. 1975) have reported a value of -3.75×10−6K−1 at room temperature. Belenkii

et al (Belenkii et al. 1985) have experimentally observed that αl decreases con-

siderably as the temperature increases from 0 K to 400 K. In the present study, the

negative values of αl is observed upto 1000 K and this is comparable with the results
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of ab initio calculations using quasi harmonic approximation-generalized gradient

approximation (QHA-GGA) and QHA-local density approximation (QHA-LDA)

methods (Sevik 2014). Results of studies using X-ray diffraction and interferom-

etry techniques (Paszkowicz et al. 2002) show that h-BN possesses an anisotropic

thermal expansion due to its anisotropic bond strength. Our studies show a posi-

tive value of linear thermal expansion coefficient at higher temperatures which is

comparable to earlier studies (Sevik 2014) in the range 1000-1500 K. The present

work shows a steady increase in αl beyond this temperature upto 3000 K as shown

in figure 3.6. The results of the present study are compared with those obtained

from QHA-GGA and QHA-LDA studies (Sevik 2014) and experimental studies on

hexagonal BN (Paszkowicz et al. 2002, Yates et al. 1975, Belenkii et al. 1985).

Figure 3.6: Variation of linear thermal expansion coefficient of h-BN sheet. h-BN
shows negative thermal expansion at low temperatures due to presence of low frequency
bending modes in its phonon spectrum. The results obtained from the present study are
in qualitative agreement with the overall trend suggested by the results obtained from
experimental and QHA based investigations.

We are of the opinion that the results obtained from the present study are

in qualitative agreement with the overall trend suggested by the results obtained
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from experimental and QHA based investigations. The experimental data available

up to temperatures ∼ 400 K shows the thermal expansion coefficient to be nega-

tive in this regime of temperatures, and the magnitude of the contraction decreases

with increase in temperature. Had this tendency continued, the contraction would

have paved way for an expansion at a sufficiently high temperature. The ab ini-

tio calculations based on QHA are expected to be good for low and intermediate

temperatures. Since QHA does not explicitly incorporate anharmonicity, it cannot

properly describe the shift in phonon frequencies, and coupling between the phonon

modes leading to sharing of thermal energy between the various vibrational modes.

Thus QHA based results cannot be used to obtain quantitatively correct results at

high temperatures. One of the ways of overcoming this limitation of QHA is to

carry out ab initio molecular dynamics simulations. However this is computation-

ally intensive. A simpler solution is to use classical Molecular Dynamics with a

good empirical potential, which incorporates the anharmonicity of the interatomic

interaction in its entirety. That is the rationale behind the present work.

3.3.5 Defects in h-BN

The usual defects observed in the h-BN sheet are vacancies and Stone-Wales

(SW) defects. Vacancies and SW defects are randomly created in the h-BN sheet

and the variation of total energy/atom with concentration is an indicator of the struc-

tural changes. The number of atoms remains the same for the case of SW defects

whereas the number of atoms decreases when vacancies are created. Stone-Wales

defect or 5-7-7-5 defect (Stone and Wales 1986) is a kind of topological defect that

can be observed in h-BN sheet when a 90 degree rotation of a pair of atoms al-

ters the group of four hexagons into two pentagons and two heptagons as shown in

figure 3.7.

It has been observed that the total energy/atom increases with increase in de-

fect concentration when SW and vacancy type defects are incorporated in the h-BN

sheet as shown in figure 3.8. By analyzing the results in table 3.2, it is observed that

the formation energy of a SW defect is twice that of a single atom vacancy. Theoret-
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ical studies have been done to incorporate SW defects in graphene like 2D layered

structures and also in nanotubes and monolayer h-BN. Slotman et al (Slotman and

Fasolino 2012) studied the structural properties, vacancy defects and Stone-Wales

defects of h-BN sheet using classical molecular dynamics simulation. Different

experimental studies had been done to investigate the impact of defects in the BN

sheet (Lehtinen et al. 2011, Alem et al. 2009, Zobelli et al. 2007).

Table 3.2: Formation energy of various defects in h-BN calculated for 0 K. NV is the
number of vacancies required for creating the defect.

Defect Nv E f orm (eV)
VB 1 5.04344
VN 1 5.04344
SW 0 6.20935
VB+N 2 10.09006
V2B+2N 4 17.94495

Figure 3.7: Formation of the vacancy and Stone-Wales defect in the h-BN sheet. A SW
defect is formed when a pair of atoms is rotated by 90 degrees to form two pentagons
and two heptagons.
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Figure 3.8: Variation of cohesive energy with defect concentration in h-BN sheet. As
the percentage of defect concentration increases, energy per atom also increases (equiv-
alently, cohesive energy decreases).

The interatomic potential that is being used in the present molecular dynamics sim-

ulations has no one-body term. Hence the total energy that is being calculated

represents the change in energy of a collection of atoms when they are brought to-

gether. If Eper f ect is the total energy of a perfect crystal with N atoms, the cohesive

energy per particle is

ECoh =−
Eper f ect

N
(3.4)

Since there is no change in the number of atoms when a Stone-Wales defect is

created, its formation energy can be calculated as the difference in energy of the

system with the defect ESW and the energy of the perfect system Eper f ect

EForm
SW = ESW −Eper f ect . (3.5)
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On the other hand, there is a change in the number of atoms when vacancy type

defects are created. If E(N,Nv) is the total energy of a crystal with N lattice sites

in which NV vacancies are created, then the formation energy of this collection of

defects is given by

EForm
vacancies = E(N,Nv)− (N−Nv)∗Eper f ect/N. (3.6)

We have considered a sample of 20000 atoms and the observed cohesive

energy ECoh = 7.50648 eV. Ab initio studies on the formation of vacancies in boron

nitride have been reported and concluded that the diatomic vacancy (VBN) is more

favorable than single vacancy (Okada 2009). The formation energy of all the defects

studied in this chapter are given in table 3.2. Nv in table 3.2 is the number of atoms

removed to create the defect. The formation energies are calculated for zero Kelvin

temperature.

3.3.6 Thermally excited ripples

In two-dimensional (2D) layers and membranes, the dynamical corrugation

of the surface due to thermal vibrations has been observed. In many earlier atom-

istic simulations of 2D hexagonal hybrid structures, the thermally excited ripples,

the out of plane motion of atoms, have been observed (Fasolino et al. 2007). Mer-

min (Mermin 1968) has reported that, long-wavelength fluctuations in 2D crystals

will destroy its long-range order. 2D membranes embedded in a 3D space have a

tendency to form wrinkles. These height fluctuations can be suppressed by the an-

harmonic coupling between bending and stretching modes. That is, a 2D membrane

can exist, but it will exhibit strong height fluctuations (Fasolino et al. 2007, Nelson

and Peliti 1987, Le Doussal and Radzihovsky 1992, Nelson et al. 2004). In our stud-

ies also, the presence of thermally excited ripples are observed in the h-BN sheet

and the height of the formed ripples are proportional to the applied temperature on

the system as shown in figure 3.9.
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Figure 3.9: Monolayer h-BN sheet at 0 K (top) and the flat surface becomes corrugated
due to thermally excited ripples at 300 K (bottom) under periodic boundary condition.

To explain the formation of thermally excited ripples in h-BN, the mean

square displacement (MSD) of the out-of-plane fluctuations (〈h2〉) in the sheet has

been calculated. The height-height correlation function can be used to extract the

bending rigidity of the material. In this thesis, an attempt has been made to ex-

tract the bending rigidity of the pristine and defective h-BN sheet in the harmonic

regime. The height-height correlation function (〈h2〉) of pristine and defect incor-

porated h-BN sheet is also studied using the continuum theory of membranes. We

noticed that the formation of ripples strongly depends on the atomic corrugations.

As compared to the sp2 covalent C-C bonds in graphene, B-N bonds in h-BN are not

pure covalent in nature. Because of the electronegativity difference in two atoms,

they show partial ionic character. We also observed that the larger corrugations in

the out-of-plane direction occur due to the weaker B-N atomic bonds. The ionic

character in the h-BN layer increases the inter layer interactions and it leads to a

higher value of hardness of 3D bulk h-BN relative to that of graphite. In the case of

monolayer h-BN, its stiffness is less than that of graphene (Alem et al. 2009).

The mean square out-of-plane displacement of atoms, in pristine h-BN sheet

and also in BN sheet with vacancy and SW defects, has been analyzed. In the case of
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pristine h-BN sheet, MSD gradually increases with increase in temperature. When

the material is connected to a thermostat, the atoms start vibrating from their mean

position. When the simulation is carried out for a longer time, the material reaches

equilibrium state and the out-of-plane height fluctuations decrease monotonically

with time and the value of 〈h2〉 subsides to a constant level. In figure 3.10, the black

line corresponds to a temperature of 100 K and the cyan line is for 2400 K. The rest

of the lines correspond to temperatures in between 100 K and 2400 K.

The defective h-BN is sheet created from the pristine sheet by the removal

of atoms, thus creating an irregularity in the atomic arrangement. After performing

the relaxation at zero temperature, the material is subjected to heating and by com-

parison with the MSD of the pristine h-BN sheet, it is clear that the MSD gradually

increases with increase in defect concentration. The MSD shows non-monotonic

variation with time when the defect concentration is comparatively high. Pres-

ence of high concentration of defects can lead to modification of the effective inter-

atomic interactions in the material and this may lead to nontrivial changes in various

physical properties. Variation in mean square displacement (〈h2〉) as a function of

concentration of SW and vacancy defects at room temperature is shown in figure

3.11.

3.3.7 Bending rigidity and scaling property

According to the Mermin - Wagner theorem (Mermin and Wagner 1966), par-

ticles having a short range interaction cannot exist in crystalline form in dimen-

sions less than or equal to 2. A way out of this restriction in two dimensions is

to have a planar structure with ripples which allows the atoms in the crystal to

move in-plane and out of plane directions. Formation of thermally excited ripples

in two-dimension can be described on the basis of elasticity theory of continuum

membranes. Here suppression of long wavelength fluctuations takes place due to

the anharmonic coupling between the out-of-plane bending and in-plane stretching

modes. This leads to a characteristic power-law behavior for the height fluctuations.

It was believed that graphene, the first experimentally observed two-dimensional
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Figure 3.10: Variation in 〈h2〉 with time step for different temperatures in h-BN sheet.
When the simulation is carried out for long time, the value of 〈h2〉 stabilizes to a con-
stant level. The black line corresponds to a temperature of 100 K and the cyan line is
for 2400 K. The rest of the lines correspond to temperature in between 100 and 2400 K.

crystal, is thermodynamically unstable (Xu and Buehler 2010). In the harmonic ap-

proximation, the inter-atomic interactions in a two-dimensional crystal are related

to the Fourier components of the height-height correlation function of the out-of-

plane vibrations. The correlation function 〈|h(q)2|〉 for wave vector q ∼ T/q4.

This diverges for small wave vectors implying that strictly two-dimensional crys-

talline order cannot exist. But, the anharmonic coupling between the bending and

stretching modes suppresses these long wavelength fluctuations. The resultant out-

of-plane ripples become the root cause for the existence of two-dimensional crystals

which buckles instead of being flat. The height fluctuations in h-BN sheet are ana-

lyzed using the continuum theory of membranes and the key object of study in this

theory is the height-height correlation function of the height fluctuation. The corre-

lation function in the harmonic approximation is expressed as (Nelson et al. 2004,

Fasolino et al. 2007),

H(q) = 〈|h(q)2|〉= NkBT
κS0qβ

(3.7)
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Figure 3.11: The variation in mean square displacement as a function of concentration
of SW and vacancy defects at 300 K for h-BN sheet with 20000 atoms.

where, κ is the bending rigidity of the membrane, N is the number of atoms of

the sample, S0 is the surface area per atom and kB is the Boltzmann constant. The

exponent β is universal in this formalism with harmonic approximation, and it takes

the value 4. In the large wavelength limit, i.e., for q → 0, the height fluctuations

are suppressed by anharmonic couplings between the bending and stretching modes

which gives rise to a re-normalized q dependent bending rigidity. More details about

the theory of two dimensional crystalline membrane is detailed in appendix C of the

thesis. We have tried to extract the value of bending rigidity by considering the data

between q=0.5 Å−1 and q=1.0 Å−1 to be the harmonic part of H(q) and fitting the

data to the function αqβ . Such an analysis showed that the scaling exponent β

varies from 3.6 to 2.9 as the temperature increases from 200 K to 3000 K.

The results of our study of the exponents of the correlation function shown in

figure 3.12 (a) correspond to a simulation cell with 20000 atoms. In figure 3.12 (b)

system size dependence of the correlation function is shown with cells containing up

to 80000 atoms. Trial runs were done at room temperature with larger cells as well
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and we found 20000 atoms to be quite large to study the long-wavelength regime.

Both in figure 3.12 (a) and 3.12 (b), the x-axis is the wave vector q in units of Å−1.

Our work on the correlation function follows the methodology of Zakharchenko et

al (Zakharchenko et al. 2010a). In their work on bilayer graphene, Zakharchenko et

al., reported that the the correlation function and bending rigidity of smaller sample

coincide with that of larger sample. Our studies corroborate this point.

We have determined the value of the critical exponent β , by fitting 〈|h(q)|2〉

to a power law αqβ . Here q is the norm of the wave vector and h(q) is the Fourier

transform of the out of plane excursion of the atoms. The angular bracket represents

averaging over several frames. 〈|h(q)|2〉 corresponds to the Fourier transform of the

height-height auto-correlation function. The fit that is actually carried out is the

equivalent linear least square fit log
(
〈|h(q)|2〉

)
= log(α)+β log(q) to extract the

values of α and β .

The height-height correlation function H(q) and H(q)/N at different temper-

ature and its power law fit are shown in figure 3.12 (a). The fitted solid lines give

the harmonic approximation αqβ and at the long wavelength limit, the correlation

functions have a power-law dependence and is strongly dependent on the value of

the exponent. The continuum theory breaks down and deviations from power-law

behavior occur if the value of q≥ 1.0 Å−1, which is close to the Bragg peak position

at q = 4π/
√

(3)a = 2.8948 Å−1. Earlier studies have reported that the continuum

theory breaks down and deviations from power-law behavior occur if the value of

q≥ 1.0 Å−1 (Costamagna et al. 2012) and the same feature is also observed in the

present study as shown in figure 3.12 (b). The deviation from power-law behavior is

observed at q≥ 1.0 Å−1. As the number of atoms increases, the harmonic fit is not

showing much variation, but it changes considerably in the case of scaling factor

for system dimension.

From the theory of membranes, in the harmonic limit, it has been observed

that 〈h2〉 is directly proportional to CL2, where C is a temperature dependent con-

stant. Earlier studies (Costamagna et al. 2012, Lajevardipour et al. 2012) evaluated

the spectral modes of graphene by fitting |h(q)2| to the function αqβ . The value of β
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Figure 3.12: (a) Height-height correlation function H(q)/N of pristine and defective
h-BN sheet with 20000 atoms at different temperatures. Both Stone-Wales and vacancy
type defects are considered. The solid line corresponds to power law fit qβ for small
values of q, namely 0.1 to 1 Å−1. The exponent is found to be dependent on tempera-
ture. Its value differs from the value of 4 that is expected from the harmonic theory of
membranes. (b) System size dependence of the correlation function is shown with cells
containing up to 80000 atoms. The continuum theory breaks down and deviations from
power-law behaviour occur if the value of q ≥ 1.0 Å−1, which is close to the Bragg
peak position at q = 4π/

√
(3)a = 2.8948 Å−1.

obtained is different from 4 and hence the height fluctuations do not strictly follow

the predictions of harmonic theory of membranes. The discrepancy increases with

increase in temperature as observed by Zakharchenko et al (Zakharchenko et al.

2010b). A study of the height fluctuations in graphene by Los et al (Los et al. 2009)

at 300 K showed a similar departure from the harmonic theory of membranes. The

exponent β that was obtained in their study was 3.15, which is distinctly different

from 4 given by the harmonic theory. We have studied the variation of the exponent

for a range of temperatures.

One of the properties of h-BN that we have studied is the bending rigidity.

In the present work, we aimed at a comparison of the bending rigidity of hexagonal

BN with and without defects. The study of defects is particularly important in
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material like h-BN. Following the works on graphene, we carried out preliminary

investigations in this regard by considering the commonly occurring defects like

vacancy and Stone-Wales. In the light of the work of Slotman and Fasolino (2012),

it is now clear that unlike in the case of graphene, SW defects are not the defects

with the lowest formation energy in hexagonal BN. The bending rigidity (κ) of

pristine and defective h-BN is calculated by a least squares fit of the slope of the

calculated H(q) to equation (3.7) in the range of q vectors, where the harmonic

approximation applies.

Figure 3.13: (a) Bending rigidity (κ) of pristine and defective h-BN sheet as a func-
tion of temperature, (b) variation of scaling exponent with temperature for pristine and
defective h-BN sheets and (c) the variation of height-height correlation function with
temperature for pristine and defective h-BN sheets. The bending rigidity calculated us-
ing the continuum formula increases monotonically with temperature in pristine h-BN
sheet and the bending rigidity starts decreasing above 2000 K in defective h-BN sheet.
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The temperature dependence of the bending rigidity thus obtained is shown

in figure 3.13 (a). The bending rigidity is calculated using the continuum formula

given as equation (3.7) increases monotonically with temperature in pristine h-BN

sheet and it decreases above 2000 K in defective h-BN sheet. The exponent β de-

creases from 3.7 to 2.7 as the temperature increases from 200 K to 3000 K in the

cases of both pristine and defective sheets. It is observed that the 〈h2〉 increases with

increase in temperature in both pristine and defective h-BN sheet. The obtained

value of bending rigidity is relatively less compared to the results of the previous

studies. The value of bending rigidity strongly depends on the scaling factor (the-

oretically ' 4) (Fasolino et al. 2007). As compared to graphene’s bending rigidity,

(0.82 eV) (Fasolino et al. 2007), h-BN has lower value of bending rigidity of 0.56

eV at 0 K, which implies that h-BN is more vulnerable to fluctuations and bending.

The variations in the scaling factor (β ) and the height fluctuations are shown as a

function of temperature in figure 3.13 (b) and (c) for both pristine and defective

h-BN sheets.

Since β changes considerably from continuum limit 4, the expected power-

law scaling behavior of 〈h2〉 with system size L also vary accordingly to 〈h2〉=

C′L−2+β , where C′ is a temperature dependent constant. The variation in 〈h2〉

against L=
√

LxLy of pristine and defective sheets are shown in figure 3.14 (a). Sys-

tem size dependence of bending rigidity is shown in figure 3.14 (b) for various

system sizes. In the case of the sheet with SW defects the number of atoms remains

the same. For the cases with SW and vacancy defects the bending rigidity decreases

with increase in system size. It has been noticed that, bending rigidity and height

fluctuations vary with increase in the system size and temperature. The system size

dependence of scaling exponent is shown in figure 3.14 (c). A correlation between

the scaling factor and bending rigidity is observed in both the pristine and defective

h-BN sheets. Both of them vary with temperature from 200 K to 3000 K and system

size and the results are shown in table 3.3.
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Figure 3.14: Room temperature (a) variation in 〈h2〉 against L=
√

LxLy of pristine and
defective sheets, (b) system size dependence of bending rigidity and (c) variation of the
scaling exponent β with system size.

Table 3.3: Bending rigidity κ and scaling exponent β at different temperatures for
pristine and defective h-BN sheet.

〈h2〉=αqβ

T (K) κ (eV) β κ (eV) β κ (eV) β

Pristine Stone-Wales Vacancy
200 1.5397 3.6863 1.6582 3.2110 1.3940 3.1473
300 1.6094 3.4861 1.5348 3.4913 1.5013 3.1329
500 1.7237 3.4441 1.7191 3.4076 1.5185 3.1180
1000 1.8213 3.3540 1.7771 3.4187 1.6399 3.0601
1500 1.7074 3.0489 1.7955 3.2099 1.7580 3.0272
2000 1.4354 2.6865 1.8573 3.1260 1.8295 2.8706
2500 1.6612 2.8697 1.4574 2.3312 1.7581 2.7154
3000 2.0662 2.9385 0.8856 1.11841 0.1103 0.3461
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3.4 Conclusions

It is found that the lattice parameter (a) and B-N nearest neighbor distance (Rxy)

in h-BN vary considerably at higher temperatures due to the height fluctuations in

the out-of-plane direction and the observed lattice parameter is not equal to
√

3Rxy.

As temperature increases the amplitude of the peaks in RDF decreases due to ther-

mal broadening. The obtained results for linear thermal expansion coefficient and

specific heat at constant volume of hBN are in good agreement with the earlier

atomistic studies. Specific heat shows considerable increase beyond the Dulong-

Petit limit at high temperatures, which is interpreted as a signature of strong an-

harmonicity present in h-BN. Presence of defects leads to increase in the height

fluctuations. Stone-Wales defects cause a larger height fluctuation as compared to

vacancy type defects. The height-height correlation function and bending rigidity,

calculated within the frame work of continuum theory of membranes, vary with

increase in temperature and defect concentration. The power-law exponent β for

the height-height correlation function shows deviation from the harmonic limit of

4 predicted by membrane theory. It decreases from 3.7 to 2.7 as the temperature

increases from 200 K to 3000 K. The non-universality of the scaling exponent β

is also an indication of the important role played by anharmonicity in h-BN. The

system size and temperature dependence of the bending rigidity and the power-law

exponent are derived. Comprehensive study of properties of h-BN incorporating

all types of energetically favorable defects is necessary for many of the potential

applications of h-BN to become a reality.
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Chapter 4

Directional Anisotropy, Finite Size

Effect and Elastic Properties

This chapter explains the details of the calculation of zero Kelvin elastic con-

stants of 2D-hBN using energy method. We present a systematic study of h-BN

for various system sizes. The Young’s modulus and Poisson ratio are found to

be anisotropic for finite sheets whereas they are isotropic for the infinite sheet

due to the presence of transverse displacement waves in it. Both of them in-

crease with system size in accordance with a power law. It is concluded from

the computed values of elastic constants that h-BN sheets, finite or infinite, sat-

isfy Born’s criterion for mechanical stability. Due to the the strong in-plane sp2

bonds and the small mass of boron and nitrogen atoms, h-BN possesses high

longitudinal and shear velocities. The variation of bending rigidity with system

size is also calculated.

4.1 Introduction

The mechanical robustness of h-BN is an important requirement for the man-

ufacturing of nano-devices and also in nano and opto-electronics applications. To
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the best of our knowledge, the elastic constants of a free standing 2D h-BN have

not been studied so far using the framework of classical molecular dynamics. In

this thesis, one of our aims is to calculate the elastic constants of a finite and infi-

nite 2D sheet of h-BN using the energy method (Krishnan and Ghosh 2014, Xiong

and Tian 2015). We also extracted the sound velocities using the derived elastic

constants and calculated the variation of bending rigidity with system size. The

obtained results of the mechanical properties of 2D h-BN sheet are expected to pro-

vide better ideas for the development of potentially and technologically important

integrated devices. It has been reported that, h-BN is considered as the thinnest 2D

material with ionic bonds and it can be used as a part of graphene like structures for

the design of novel nano-electro mechanical systems (NEMS) (Boldrin et al. 2011).

Various research groups have investigated the mechanical properties of h-BN us-

ing experimental tools (Bosak et al. 2006) as well as atomistic simulation using ab

initio method (Kudin et al. 2001, Ohba et al. 2001, Green et al. 1976, Peng et al.

2012a, Mirnezhad et al. 2013) and molecular dynamics (Mortazavi and Rémond

2012, Zhao and Xue 2013, Han et al. 2013).

4.2 Molecular dynamics modelling

In the present study we created a rectangular simulation cell of BN and sub-

jected it to different type of deformations to evaluate the energy, forces, etc., from

the simulated output data file and extracted the values of various properties using

the developed script. The number of atoms used in a simulation depends on the

objective of the simulation. We have carried out MD simulations on h-BN to mimic

two types of systems: (1) system of infinite spatial extent and (2) a series of systems

with finite system size. There is a finite size effect even in simulations mimicking

an infinite system. This is because the neighbors of atoms near the edge of a cell

are exactly the same as the atoms in the other side of the very same cell, and hence

their motion are correlated when the system size is small. These correlations would

decrease when the system size is increased. For this geometry, we have optimized

the system size so that the properties are independent of the system size. In the case
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of simulations intended to mimic a finite sheet, the simulation cell is taken to be a

finite sheet surrounded by a sufficiently large vacuum space so that the interaction

between the atoms in the simulation cells and the atoms in its replicas is negligible.

Here, the properties are expected to be system size dependent, and this aspect is

systematically studied by varying the system size from 400 atoms to 90000 atoms.

We have carried out calculations pertaining to the two dimensional h-BN

sheet of infinite spatial extent (in the x and y directions) as wells as sheets of various

finite sizes. Ideally, a simulation box with periodic boundary conditions in the x

and y directions and fixed boundary condition in the z direction (with sufficiently

large height for the simulation box) should suffice for the two dimensional sheet

of infinite size, whereas fixed boundary conditions in all the three directions would

be appropriate for sheets of finite size. However, there is a practical difficulty of

losing atoms across the boundary while using LAMMPS package for calculations

involving deformation if such boundary conditions are employed. A simple way

out is to augment the simulation box with vacuum spaces of adequate size in one or

more directions paying attention to following details.

In the case of simulation of the infinite sheet, we have to add the vacuum space

in the z-direction. The calculations done in this manner correspond to a system

comprising of infinite number of parallel sheets. The thickness of the vacuum space

has to be sufficiently large so that the interaction between the atoms in the sheet

of our interest with those in the replicas is negligibly small. We have found that

a vacuum space of 20 Å thickness is sufficient for this purpose. We have to add

vacuum spaces in the x and y directions too while carrying out simulation of finite

films. If the system is allowed to relax for a sufficiently long time after stretching the

box, the atoms can come back to their initial position at equilibrium if the boundary

atoms are not kept fixed. To do this, we have separated out the edge atoms and

imposed zero force constraint on the edge atoms.

In our study, the observed equilibrium lattice parameter of 2D BN nanosheet

of infinite spatial extent at zero Kelvin using NVE ensemble is obtained as 2.505 Å

57



with a nearest boron-nitrogen bond length as 1.45 Å. Our results are comparable to

the experimentally observed value a=2.504 Å (Bosak et al. 2006, Solozhenko et al.

1995) and the nearest boron-nitrogen bond length is 1.45 Å (Zeng et al. 2010). The

zigzag and armchair directions were taken to be oriented along the X and Y axes

respectively. Bond length and bond angles of an infinite unstrained and strained

pristine BN sheet with different orientation is shown in figure 4.1. The simulations

with finite sheets show considerable changes in the bond length and bond angle

while applying strain compared to an infinite sheet with the same strain. For exam-

ple, when a longitudinal strain εyy = 0.05 is applied to a sheet of size 400 atoms,

the B-N interatomic distance at the edge of the sheet is 1.52 Å as compared to 1.50

Å for the bond length in an infinite system subjected to the same strain. Similarly

there is a difference in the bond angles as well. It is 121.98◦ for the infinite system,

whereas it is 121.22◦ for the finite system upon imparting the same strain.

Figure 4.1: Bond length and bond angles of an infinite (a) unstrained pristine BN sheet.
Considerable change in the bond length and bond angle has been observed after apply-
ing a deformation to the (b) armchair and (c) zigzag direction. The white arrow in fig
(b) and (c) represents the direction of deformation in armchair and zigzag chirality.
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Structural relaxation of 2D h-BN has been performed using the conjugate-

gradient (CG) minimization algorithm. In CG algorithm, in each iteration, the force

gradient is combined with the previous iteration information to compute a new

search direction conjugate to the previous search directions. Newton’s equations

of motion of the atoms are solved using the standard Velocity - Verlet algorithm

(Swope et al. 1982). We observed that 0.1 fs is a reasonably good timestep for the

structural and thermal studies of h-BN (Thomas et al. 2015) and the same is used

for the elastic constant analysis. In this chapter we explains the calculation of zero

temperature elastic constants, even though this method can be used for calculating

temperature dependent elastic constants. All the calculations are done in the micro-

canonical ensemble (constant NVE) with energy kept constant within one part in

107 for times of the order of 100 ps. In hexagonal boron nitride, boron and ni-

trogen atoms experience strong covalent bonding within the layers, whereas they

experience a weak van der Waal’s interaction across the layers. The strength of the

inter-layer van der Waal’s interaction is such that the distance between the hexag-

onal layers is 3.34 Å. In order to calculate the elastic constants of 2D h-BN, we

studied change in energy of a rectangular sheet of atoms as a function of magnitude

of strain for various types of deformations.

4.3 Results and discussions

4.3.1 Elastic Constants

To calculate the elastic constants of h-BN, a rectangular simulation cell is

considered in which one of the basis vectors of the honeycomb lattice is taken to

be the basis vector along X direction. The other basis vector is in the Y directions

and its magnitude is
√

3 times the lattice parameter of the honeycomb lattice. The

changes in the energy upon deformation of the simulation cell are extracted, and the

elastic constants are calculated by processing this data.

When the applied stress is small, the stress and strain tensors are related by

the equation of linear elasticity, namely, σi j=Ci jklεkl (summation over repeated in-

59



dices implied). Here, σi j and εkl are the symmetric second rank stress tensor and

strain tensor respectively. The fourth rank tensor Ci jkl is known as the elasticity

tensor and its components are called the elastic moduli or elastic constants. 3D

hexagonal structures like graphite have five independent elastic constants, which

are C11, C12, C13, C33 and C66, in the Voigt notation (Anees et al. 2014). These are

again categorized in to three different classes, depending on the nature of the bond-

ing in the material. C11 and C12 belong to the first class and they are related to the

strong in-plane covalent bonding, C33 and C66 form the second class in which they

depend on the weak van der Waal’s bonding across the layers and C13 corresponds

to inter layer binding along with C33 and C66. Every crystal would be mechanically

stable if the energy of the deformed system is larger than that of the perfect crys-

tal. Mathematically, this implies that the elastic constant matrix must be positive

definite. This is the famous Born stability criterion.

The elastic behavior of a 2D system is described by the in-plane interactions

which is considered as isotropic and its matrix of second-order elastic constants is

given by:

Ci j =
1

A0d0

(
∂ 2E

∂εi∂ε j

)
,

where, E is the energy of the system, A0 is the equilibrium area of the 2D system, d0

is the van der Waals’s distance (which represents the effective thickness of the layer)

and ε is the strain tensor. The elastic energy E(ε) of the two-dimensional sheets can

be expressed using polynomial form as E(ε) = 1
2C11ε2

xx +
1
2C22ε2

yy +C12εxxεyy +

2C66ε2
xy. The longitudinal strain applied along the x direction is εxx, that along y

direction is εyy and the shear strain in the xy plane is εxy. These are denoted by the

symbols ε1, ε2 and ε6, respectively, in the Voigt notation. Here, the x (y) axis is

along the zigzag (armchair) direction, εi j’s are the infinitesimal strain tensors, and

the Ci j’s are the corresponding linear elastic constants (Ding and Wang 2013).

For the case of an isotropic two-dimensional sheet, the linear elastic constants sat-

isfy the relations of C11 = C22 and 2C66 = C11 −C12 (Zhou and Huang 2008).
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Then, the Born mechanical stability criterion for a 2D system like h-BN reduces

to C11 >C12. The 2D in-plane stress-strain relation for the h-BN system in terms of

stiffness matrix can be written as,


σ1

σ2

σ6

=


C11 C12 0

C21 C22 0

0 0 C11−C12
2




ε1

ε2

ε6

 , (4.1)

and the elastic energy for small deformation is given by

U(ε) =
1
2

(
ε1 ε2 2ε6

)
C11 C12 0

C21 C22 0

0 0 C11−C12
2




ε1

ε2

2ε6

 (4.2)

Finite size scaling: Usually the system size effect is studied by fitting the results

of simulations as a function of inverse system size. A power law like expression

C(N) = A − B/Nν is used to fit the data derived from the finite system size (N, the

number of atoms) and extrapolate the results to an infinite system limit (where A, B

and ν are positive constants). We have systematically varied the system size of the

simulation cell to understand the effect of system size on the calculated properties.

For the case of simulations mimicking an infinite system, we used simulation cells

without any vacuum space at the boundaries of the cell. Here we found that about

10000 atoms in a simulation cell is good enough to obtain convergence, with respect

to system size, in the values of the various properties of the material. Since all the

atoms are surrounded by atoms, there are no surface effects in the above mentioned

simulations.

However, in the context of nanomaterials, an appreciable fraction of the atoms

are in the surface region. Hence it is necessary to do simulations of such systems

with simulation cells with free surfaces. One of the ways of doing this is to attach

vacuum regions at the surfaces of the simulation cell to form a new simulation cell,

and continue to use periodic boundary conditions along all the three directions. The

thickness of the vacuum regions can be chosen in such a manner that the interaction
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between an atom in the boundary of the new cell with another in the replica of the

new simulation cell is practically negligible. We can then consider series of such

systems with various system sizes to study the system size dependence of physical

properties of finite systems.

In the normal case of minimization, one would expect the system to come

back to the original configuration when it is allowed to relax after changing the

length of the simulation box to induce the necessary strain. To avoid this, we have

tagged the edge atoms and enforced a constraint of zero force on them. Thus the

fractional coordinates of the inner atoms would readjust to come to new equilibrium

position. Thus, we can extract the energy required to calculate the elastic constants.

In the present study, we varied the system size of a finite h-BN sheet from 400 to

3,60,000 atoms and we found that the finite system very well mimics an infinite

system when the system size becomes ∼90,000 atoms or more.

We know that the atomic lattice of h-BN is six-fold-rotation symmetric, and

the in-plane orientation of h-BN in the X-Y plane is typically described by a chi-

rality angle θ : 0◦ ≤ θ ≤ 30◦, where θ = 0◦ corresponding to the zigzag chirality

and θ = 30◦ that of armchair chirality (Cao 2014). Then, using the calculated elas-

tic constants, one can calculate the Young’s modulus and Poisson’s ratio along an

arbitrary orientation θ as Ding and Wang (2013), Cadelano and Colombo (2012),

E(θ) =
C11C22−C12

2

C11s4 +C22c4 +
(

C11C22−C12
2

C66
−2C12

)
c2s2

(4.3)

and

ν(θ) =−

(
C11 +C22− C11C22−C12

2

C66

)
c2s2−C12(c4 + s4)

C11s4 +C22c4 +
(

C11C22−C12
2

C66
−2C12

)
c2s2

, (4.4)

where c = cosθ and s = sinθ . Our simulations shows that in the above equations

(4.3) and (4.4), if we use Cauchy relations C11 = C22 and C66 = (C11−C12)/2 for an

isotropic sheet, then

E(θ) = Y =

(
C11

2−C12
2

C11

)
(4.5)
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and

ν(θ) = ν =

(
C12

C11

)
(4.6)

We observed that the calculated elastic constants depend on boundary of

the used sheets. In the present study, the obtained elastic constants of a system

with infinite sheet size without vacuum space are C11 = C22 = 823.28 GPa, C12 =

245.23 GPa and C66 = 289.45 GPa, which clearly depicts the isotropic nature of the

material. A direct comparison has made with the theoretical value and the obtained

value of C66 using the Cauchy relation for a hexagonal system as 2C66 = C11−C12

= 289.025 GPa, which validate our efforts to calculate the elastic constants of 2D

h-BN using classical molecular dynamics simulation.

The finite system size simulations are carried out with finite simulation cells

surrounded by vacuum space of appropriate thickness on all sides. We have ana-

lyzed the system size dependence on the anisotropy of Young’s modulus and Pois-

son’s ratio of h-BN using equations (4.3) and (4.4) and the θ=0 gives the zigzag

direction and θ=30 that of armchair direction. Figure 4.2 shows the variation of

Young’s modulus with inverse system size. Even though the Young’s modulus for

the arm chair and zigzag configurations are substantially different for small sys-

tem sizes, they converge to almost the same value of ∼ 750 GPa when the system

size become higher. Thus the anisotropy of the Young’s modulus progressively de-

creases when the system size increases.

A similar trend is seen in the behaviour of Poisson ratio as well, shown in

figure 4.3. The second order linear elastic constants (Ci j, i, j = 1,2) of 2D h-BN are

investigated by calculating the change in internal energy E j while applying certain

specific type j of small deformations. For example, if only ε6 6= 0, the change in

energy will be a function only of ε6. This function is expected to be quadratic in ε6

only if the maximum deformation that is considered is very small.
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Figure 4.2: Variation of Young’s modulus with inverse system size. As the system
size become higher, the value of Young’s modulus tends to a saturated value in both
armchair and zigzag directions.

Figure 4.3: The variation of Poisson’s ratio with inverse system size in armchair and
zigzag chirality.
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The strain energy can be fitted to a polynomial of appropriate order in ε6.

The coefficient of quadratic term in this fit gives 2C66. We determined the optimal

order of the fit by an iterative procedure. Figure 4.4 shows the total energy as a

function of specific strains, and the corresponding polynomial fit. If we consider

a sheet with no vacuum space and is periodically repeating, then 10000 atoms are

good enough to evaluate the elastic constants and here C11 = C22 as shown in figure

4.4 (a). On other hand, if we consider a series of finite systems consisting of 400

atoms onwards, with periodic boundary condition and a vacuum space of 20 Å,

considerable variation of the elastic constants with system size is observed. Young’s

modulus for systems with 400, 25600 and 90000 atoms are found to be 272, 632 and

682 GPa, respectively. The variation in the values of the computed elastic constants

is shown in figure 4.4 (b). When the system size increases beyond 90,000 atoms,

the finite systems mimic the behaviour of an infinite system as shown in figure 4.4

(c) and (d).

In the current study, the positive values of elastic constants ensure the mechan-

ical stability of h-BN. Using Born-Stability criterion, we observed that the neces-

sary and sufficient condition for the elastic stability of a h-BN system reduced to

C11 > 0 and C11 > |C12| (Mouhat and Coudert 2014). The values of C11 and C12 are

found to be very well in agreement with the earlier experimental and ab initio DFT

studies, which indicates the strong in-plane covalent bonding between boron and

nitrogen atoms. The calculated Young’s modulus and Poisson’s ratio in comparison

to the existing data from the literature are tabulated in table 4.1.

Finite size scaling approach is commonly used to quantify the system size

dependence of physical properties estimated from simulations employing cells with

finite size, and to extrapolate their values in the limit of infinite system size. This

analysis begins with the simulation of systems with different size. In this study,

we used the finite size scaling method by implementing a power law fit to find the

values of the elastic constants C11 and C12 by observing how these quantities vary

with different system sizes. We also noticed that the first class elastic constants C11

and C12 varied considerably with system size.

As the system size increases, the surface effect become negligible and the

values of C11 and C12 showed a tendency to converge to their respective bulk value.
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Figure 4.4: The energy-strain response graph for the calculation of elastic constants of
h-BN. The total energy is plotted as a function of various specific strains necessary for
calculating the elastic constants. (a) Calculations on a sheet with 10000 atoms subject to
periodic boundary condition show that C11 = C22. (b) A finite system consisting of 400
atoms with periodic boundary condition and a vacuum space of 20 Å, shows significant
difference in the computed elastic constants. (c) and (d) When the system size increases
from 25,600 to 90,000 atoms, respectively, behaviour of the finite system tends to that
of an infinite system.

We fitted the values of C11 and C12 in each system size to the equation C(N) =

A − B/Nν and plotted the results as a function of 1/N. The value of ν , the scaling

exponent, obtained from the fit using the data is 0.4. The constant A represents

the asymptotic value of the elastic constant (the value in the limit of system size

tending to infinity). The variation of the elastic constants C11 and C12 with system

size, and the fit are shown in figure 4.5 and 4.6. From figure 4.5 and 4.6, it is

clear that both C11 and C12 show a similar increase with system size and reach a

saturated value. Our results are comparable to the experimentally determined elastic

moduli of single crystal hexagonal boron nitride using inelastic X-ray scattering by
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Bosak et al (Bosak et al. 2006) and the ab initio DFT calculations by Hamdi et al

(Hamdi and Meskini 2010). An exclusive study was done to compare the elastic

constants of BN nanosheet using ab-initio DFT calculations(Peng et al. 2012b).

Density functional theory calculations(Peng et al. 2012b, Milowska et al. 2013)

predicted the elastic properties of h-BN, with an accuracy comparable to the present

work, other experimental and atomistic simulation methods.

Table 4.1: Calculated elastic properties of the infinite h-BN and comparison with the
experimental and other theoretical calculations. Young’s modulus (Y) [in GPa] and
Poisson’s ratio (ν) are tabulated.

Reference Year Method Results
Present study 2016 Molecular Dynamics 750
Han et al 2014 Molecular Dynamics 881
Milowska et al 2013 Ab-initio 756
Zhao et al 2013 Molecular Dynamics 716

Young’s Modulus (GPa) Mirnezhad et al 2013 Ab-initio 829
Peng et al 2012 Ab-initio 802
Topsakal et al 2010 First-principle studies 769
Bosak et al 2006 Inelastic X-ray scattering 811
Kudin et al 2001 Ab-initio 781
Present study 2016 Molecular dynamics 0.297
Milowska et al 2013 Ab-initio 0.216

Poisson’s ratio Peng et al 2012 Ab-initio 0.217
Mirnezhad et al 2013 Ab-initio 0.213
Eun-Suok Oh 2010 Continuum lattice approach 0.413

4.3.2 Acoustic wave velocity using elastic constants

In the present study, the used bond order potential has an ability to describe

not only the structural stability around equilibrium, but also the anharmonic as well

as possible bond breaking mechanism and sp2 to sp3 phase transitions (Karssemei-

jer and Fasolino 2011). From the obtained elastic constants, the C11 and C12 are

independent due to the symmetry of the hexagonal structure. The in-plane stiff-

ness Y of an infinite system can be obtained from the elastic moduli C11 and C12 as

Y = (C2
11−C2

12)/C11. The Poisson’s ratio ν of the infinite system can be described
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Figure 4.5: Dependence of the elastic constants C11 on the inverse system size. We fitted
the values of C11 in each system size to the equation C(N) = A−B/Nν and plotted the
results as a function of 1/N, where N is the number of atoms in the simulation cell. The
value of the scaling exponent ν obtained from the fit is 0.4. The blue line represents the
value of the respective elastic constant extrapolated to infinite system size limit.

as the ratio of the transverse strain to the axial strain and is related to the elastic

moduli as ν = C11/C12. We also have calculated the in-plane stiffness of a 2D h-

BN with finite and infinite sheets. In the case of a finite sheet, we keep a vacuum

spacing of 20 Å to avoid the surface effects.

In the case of a finite sheet, as shown in figure 4.5 and 4.6, both the C11

and C12 increases with system size. We have observed that C11 is the dominant

factor in computing the in-plane stiffness as compared to C12. The study of elastic

properties gives a better understanding of the mechanical behaviour of the mate-

rial. In the case of h-BN structures, the presence of a non-zero stiffness in both

volumetric and shear deformations helps to generate the sound waves with different
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Figure 4.6: Dependence of the elastic constants C12 on the inverse system size is shown
in figure. We fitted the values of C12 in each system size to the equation C(N) = A−
B/Nν and plotted the results as a function of 1/N, where N is the number of atoms in
the simulation cell.

velocities depending on the deformation mode. Thus, the sound waves generated

due to volumetric deformations (compressions) are called longitudinal waves (p-

waves) and that of shear deformations are called shear waves (s-waves). Using the

in-plane elastic modulus (Young’s modulus) Y , Poisson’s ratio ν , two dimensional

mass density ρm, in-plane elastic constants C11 and C12, the longitudinal and shear

wave velocities can be expressed as (Kinsler et al. 1999):

Vp =

√
Y (1−ν)

ρm(1+ν)(1−2ν)
(4.7)

Vs =

√
C12

ρm
(4.8)
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The two dimensional mass density of h-BN can be written as ρ2D = 4mBN/(
√

(3)a2),

where a is the in-plane lattice parameter of h-BN and mBN is the atomic mass of

boron nitride. In the present study, the observed mass density is 15.180×10−7

kg/m2, which is twice the mass density of graphene. Due to the the strong in-plane

sp2 bonds and the small mass of boron and nitrogen atoms, 2D h-BN possess high

group velocities. We noticed that the longitudinal wave velocity is more as com-

pared to shear wave velocity which is consistent with earlier ab-initio studies (Peng

et al. 2012b). Using equation (4.7) and (4.8), the observed longitudinal and shear

wave velocities of a system with infinite boundary are 14.898 km/s and 7.3628 km/s

respectively. Figure 4.7 (a) shows that, as the system size increases, the total en-

ergy of the sample decreases and the Young’s modulus increases, which leads to an

increase of longitudinal and shear wave velocities as shown in figure 4.7 (b). Peng

et al., reported that the experimental measurement of the group velocities of 2D

h-BN is possible for the practical engineering applications. The sound frequency

and ranging channel can be formed using a velocity gradient which is the functional

mechanism of surface acoustic wave sensors and wave guides (Peng et al. 2012b).

Figure 4.7: As the system size increases, the Young’s modulus of h-BN system in-
creases, leading to an increase in longitudinal and shear wave velocities.
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4.3.3 Thin shell thickness and bending stiffness

In order to analyze the tensile and out-of-plane mechanical behaviors of 2D

materials, an effective thickness has to be defined and is entirely different from the

inter-layer distance. The thin shell thickness (ts) of 2D material is a key param-

eter which characterizes the structural flexibility. This is used to investigate the

non linear structural deformation mechanism and is directly related o the Foppl-von

Karman approach (Gao and Xu 2015). In this approach, the bending stiffness can

be extracted by coupling the in-plane stretching and out-of-plane bending modes.

Young’s modulus is the one of the most fundamental mechanical properties of ma-

terials to establish a relation between the tensile stress, energy, strain, etc.

The bending stiffness or bending rigidity (κ) is one of the important physical

properties of membranes and layered structures, which determines the elastic prop-

erties and mechanical stability (Nelson et al. 2004). In layered materials, acoustic

phonon mode is the lowest out-of-plane mode (ZA) and is used to determined the

bending rigidity from the coefficient of the quadratic dispersion relation. The ZA

mode in 2D h-BN is a bending mode and in the long wavelength range, the two

atoms in the unit cell move in the out-of-plane Z direction, which results the bend-

ing of the surface leads to the formation of ripples in the h-BN sheet. We have

noticed that the bending rigidity of h-BN has a strong dependency on temperature

and it increases with temperature (Thomas et al. 2015).

In general, tensile stiffness is a structural property of a material which is

greatly influenced by its geometry and composition whereas the Young’s modu-

lus is a material property. In h-BN, the strong chemical bonding leads to a high

tensile stiffness. Experimentally, the tensile stiffness D can be calculated and is re-

lated to the Young’s modulus Y and the shell thickness ts, and can be expressed as,

D = Yts. The bending rigidity or bending stiffness can be extracted from the me-

chanical tests or vibrational analysis using the equation κ = Yt3
s /12(1−ν2). Here,

ν is the in-plane Poisson’s ratio, then the shell thickness ts can be written as:
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ts =
(

κ[12(1−ν2)]

Y

)1/3

(4.9)

Slotman et al., reported that the zero Kelvin bending modulus of a finite

h-BN sheet is 0.54 eV (Slotman and Fasolino 2012). Using the equation κ =

Yt3
s /12(1−ν2), we calculated the thin shell thickness (ts) value of h-BN as 1.1304

Å, which is comparable to the earlier reported value of 0.94 Å, using density func-

tional theory studies (Gao and Xu 2015). In general, the thin shell thickness is

always much smaller than that of the inter-layer spacing d=3.4 Å of 2D h-BN (Hod

2012). We have calculated the zero temperature bending modulus of 2D h-BN with

different system size. The obtained zero Kelvin bending rigidity of a system with

infinite boundary is 0.62 eV and we already calculated the room temperature bend-

ing rigidity of h-BN is 1.6 eV (Thomas et al. 2015), obtained using the approach

continuum theory of membranes. It is seen that κ , Y and ν monotonically increase

with system size at zero Kelvin.

Figure 4.8: As the Young’s modulus and Poisson’s ratio increases, the bending rigidity
also increases to a saturated value of 0.56 eV.
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Figure 4.9: The calculated bending rigidity and its scaling with inverse system size. The
blue line represents the value of the respective bending rigidity extrapolated to infinite
system size limit.

However, the increase of ν with system size is less significant compared to

that of κ and Y . When the system size changes from 400 to 360000, ν increases

monotonically from ∼ 0.288 to ∼ 0.304. This shows that the lateral deformation

consequent upon deformation in any direction is slightly less in small systems as

compared to big systems. For the system size variation mentioned above, 1/(1−

ν2) increases from 1.09 to 1.10, whereas κ and Y increase by more than 250%.

Assuming a fixed plate thickness ts, we thus see that κ is proportional to Y for all

practical purposes. We see that Y treated as a function of ν can be fitted to an

accuracy of 1% with the expression Y (ν) =Y0+Y1ν +Y2ν2. Since ν2 << 1 for the

entire range of system sizes that is studied here, the relation κ(ν) =Y (ν)t3
s /12(1−

ν2) can be rewritten as κ =
(
t3
s /12

)
(Y0+Y1ν +(Y0+Y2)ν

2) to the order in ν2. The

graph of κ vs ν in figure 4.8 (b) shows exactly this dependence.

In this thesis work, we reported that a finite sheet with large system size, the

material possess a constant value of bending rigidity. As the Young’s modulus and
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Poisson’s ratio increases, the bending rigidity also increases to a saturated value of

0.56 eV as shown in figure 4.8 (a) and (b). The obtained value of bending rigidity

using the method of plate theory is consistent with the value obtained using contin-

uum theory of membranes, which validate the effort of present study. The bending

rigidity of h-BN with different system size is calculated using the equation obtained

from Foppl-von Karman approach, and its scaling behaviour with inverse system

size is depicted in figure 4.9.

4.4 Conclusions

The observed elastic moduli of a finite h-BN sheet are different for the armchair

and zigzag directions, thereby demonstrating its anisotropic linear elastic behavior.

The values of the independent elastic constants C11 and C12 are such that Born’s

criterion for mechanical stability of h-BN is satisfied. It has been noticed that there

is a strong system size dependency for the in-plane stiffness and Poisson’s ratio for

finite sheets. These properties show a power law convergence to the bulk values

when the system size tends to infinity. Due to the the strong in-plane sp2 bonds and

the small mass of boron and nitrogen atoms, 2D h-BN possess high group velocities.

As the system size increases, the Young’s modulus also increases, which leads to

an increase in the longitudinal and shear wave velocities. This information could

highly useful for the design of future graphene based nano-devices. The variation

of bending rigidity with system size is also investigated.

74



Chapter 5

Effect of Ripples on the Finite

Temperature Elastic Properties using

Strain-fluctuation Method

This chapter investigates the temperature dependent elastic constants of h-BN

between 100 and 1000K for the first time using the strain fluctuation method.

The Young’s, bulk and shear moduli and Poisson’s ratio are calculated from the

computed values of elastic constants and are found to decrease with increase

of temperature. The thermal rippling in h-BN leads to strong anharmonic be-

havior that causes large deviation from the isotropic elasticity. A detailed study

shows that the strong thermal rippling in large systems is also responsible for

the softening of elastic constants in h-BN. The variation of longitudinal and

shear velocities with temperature is also calculated from the computed values

of elastic constants and elastic moduli. The obtained results provide an indica-

tion of the general trend of the variation of elastic constants with temperature

in the anharmonic regime.
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5.1 Introduction

Knowledge of temperature dependent properties are essential for sophisti-

cated device fabrication. Since classical MD can incorporate the full anharmonicity

of the interatomic potential and can handle millions of atoms, it will be a proper and

efficient tool to probe the anharmonic as well as temperature dependent mechanical

and elastic properties of materials.

Even though graphene/h-BN based micro devices have the potential for im-

proved performance, the heat removal is a crucial issue in these devices (Anees et al.

2016). Since hexagonal boron nitride is stable in air and BN coatings can withstand

ultra high temperatures, it can be used as a part of high temperature oxidation re-

sistant coatings and also as a protective material against high temperature oxida-

tion damage in aerospace applications and micro-electromechanical systems. The

space-based technologies would experience harsh environments and large tempera-

ture fluctuations which will lead to changes in material properties such as thermal

expansion, thermal and electrical conductivity, elastic and mechanical properties,

etc. Thus, the effect of temperature on various physical properties of 2D materials

need to be elucidated.

To the best of our knowledge, the temperature dependent elastic constants of a

free standing monolayer hexagonal boron nitride have not been studied so far using

the framework of classical molecular dynamics. In this thesis work, an attempt has

also been made to calculate the temperature dependent elastic constants of h-BN

using the strain-fluctuation method derived from the fluctuation-dissipation theorem

(Landau and Lifshitz 1958) by varying the size and shape of the simulation cell and

is described in the following section. We extracted the Young’s modulus and sound

velocities from the derived elastic constants. The obtained results of the mechanical

and elastic properties of 2D h-BN sheet are expected to provide better ideas for the

development of potentially and technologically important integrated devices as well

as the manipulation of h-BN for engineering applications.
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5.2 Methodology

The effect of temperature on various material properties can be effectively

evaluated using Molecular dynamics (MD) simulation due to the explicit inclusion

of temperature (Gao et al. 2006). In general, there are different methods to calculate

the elastic constants of materials which include direct method (Lovett 1999), the

strain-fluctuation method (Ray 1988, Parrinello and Rahman 1982) and the stress-

fluctuation method (Ray 1982, Ray and Rahman 1984, 1985, Ray et al. 1985, Lutsko

1989). The stress and strain fluctuation methods use the ensemble averages of the

fluctuations in either strain or stress. The Ci jkl represents the fourth-rank elastic

stiffness tensor and εkl is the kl element of the second-rank strain tensor. The fourth

rank tensor Ci jkl is known as the elasticity tensor and its components are called the

elastic moduli or elastic constants. Generally, the relation between stress and strain

is given by the Hooke’s law and is represented as,

σi j =Ci jklεkl (5.1)

In order to convert from tensor notation to matrix notation, a pair of indices is

changed to a single number using the following rules: 11 → 1, 22 → 2, 33 →

3, 23 and 32 → 4, 13 and 31 → 5, and 12 and 21 → 6. Furthermore, in matrix

notation the indices 1, 2, and 3 map to x , y and z respectively. Crystals with

2D hexagonal symmetry, such as graphene and h-BN, have only three independent

elastic constants which are C11, C12 and C66, in the Voigt notation.

In the case of elastic properties, if f (t) is a mechanical force (or stress) acting

on a solid body that invokes a deformation (or strain) x(t), then the proportional-

ity factor α between these two quantities is the familiar elastic compliance. In the

limit of high temperatures with classical case, kT>>hω/2π and the fluctuation-

dissipation theorem can be simplified to
〈
x2〉 = kT α(0), where x represents the

mean square of the fluctuations of a general physical quantity x. It has been reported

that the stress-fluctuation method converges more rapidly than the strain-fluctuation
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method and it can also provide insight into the molecular origin of a given me-

chanical response (Yoshimoto et al. 2005). However, the implementation of stress

fluctuation method is challenging for a complex, many-body potential, such as the

REBO and Tersoff potential.

Using energy method, we noticed that the tuned Tersoff empirical potential

is able to quantitatively reproduce the zero Kelvin elastic constants of h-BN within

the framework of classical MD simulation (Thomas et al. 2016). The present thesis

work also aimed at elucidating the effect of ripples on the temperature dependent

elastic constants of 2D h-BN using the strain fluctuation method. We adopt this

method for the non-zero temperature elastic constants calculations and the basic

equation employed in the strain-fluctuation method (Ray 1988, Parrinello and Rah-

man 1982) can be directly derived from the equation
〈
x2〉 = kT α(0) as (Landau

and Lifshitz 1958):

〈
εi jεkl

〉
−
〈
εi j
〉
〈εkl〉=

kBT
A0d0

Si jkl, (5.2)

where kB is the Boltzmann constant, A0 is the equilibrium area of the 2D system,

d0 is the van der Waals’s distance (which represents the effective thickness of the

layer), Si jkl is the elastic compliance tensor, which is the inverse of the elastic stiff-

ness tensor, and 〈 〉 represents an ensemble average in a constant particle number,

pressure and temperature (NPT) ensemble. It is now generally recognized that equa-

tion (5.2) furnishes a satisfactory way of calculating temperature dependent elastic

constants using the strain fluctuations in molecular dynamics simulations (Fay and

Ray 1992). It has been found that though equation (5.2) is used in Ref. (Par-

rinello and Rahman 1982), the lack of satisfactory convergence at low temperatures

restricted them to incorporate the molecular dynamics simulations results. Later

studies also reported essentially the same conclusion (Sprik et al. 1984, Ray 1988).

However, this method is still used (John and Klug 1991) for the calculation of the

adiabatic elastic constants at temperatures above 100 K, in which, it is possible to

obtain results with acceptable accuracy as long as the simulation is run for a suf-
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ficiently long time. This method is more acceptable due to the simplicity of the

implementation of equation (5.2) compared to the corresponding formulas in the

EhN (E is the energy) and T hN (T is the temperature) ensembles (Ray and Rahman

1984, Ray 1988), where h is a tensor constructed from the three vectors forming

a parallelepiped, which is the periodically repeating molecular dynamics cell. The

statistical ensemble (EhN) is also related to the (HσN) or (HtN) ensembles; where,

H is the enthalpy, t is a tensor related to σ , the usual stress tensor, and is called

tensor of thermodynamic tension.

One of the advantage of using equation 5.2 is that it involves only the fluctuations in

the h matrix, which is derived from the three angles and sides of the simulation box

and furnishes a method of calculating the elastic constants which does not depend

explicitly on the potential (Ray 1988). We have performed MD calculations with

a time-dependent metric tensor which allows the volume and the shape of the MD

cell to vary with time. The size and shape of the simulation cell of a system of

N particles in a periodically repeating MD cell which changes with time in shape

and volume is controlled using the method developed by Parrinello and Rahman

(Parrinello and Rahman 1980). In these MD simulations, the size and angles of the

simulation cell is a dynamic variable. Let the edges of the MD cell be a, b, and c

(in a space-fixed coordinate system), and are time dependent. Inorder to perform

the simulations we have considered a parallelepiped with triclinic geometry and

is represented by three time-dependent vectors ~a, ~b, ~c and angles α , β , γ . Here,

c1 = ccosβ , c2 = c[cosα−cosβcosγ]/sinγ and c3 =
√

c2− c2
1− c2

2. The symmetry-

equivalent elastic constants are obtained from the fluctuations in the simulation box

lengths and angle. Then the h matrix of all parameters at equilibrium is:

h =



a bcosγ ccosβ

0 bsinγ
c[cosα−cosβcosγ]

sinγ

0 0
√

c2− c2
1− c2

2


(5.3)
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Then the symmetry-equivalent elastic constants are obtained from the fluctuations

in the simulation box lengths and angle. Then the instantaneous strain tensor ε and

the h matrix is related as (Ray 1988),

εi j =
1
2

[(
(h−1

0 )T hT h h−1
0
)

i j−δi j

]
, (5.4)

where h0 corresponds to the reference system and is initially averaged over all the

frames and h matrix corresponds to the instantaneous values of the edges of the

simulation box with respect to the reference system, and the superscript T denotes

the transpose of a matrix.

In order to perform molecular dynamics simulations, periodic boundary con-

ditions are employed in the x and y directions and a non-periodic and shrink-wrapped

with a minimum value boundary condition is employed along the z direction. We

used a simulation cell of size 100×100×1 (40000 atoms), which is capable of incor-

porating all long-wavelength rippling effects. We also used simulation cells of var-

ious sizes (30×30×1, 40×40×1, 50×50×1, 60×60×1, 70×70×1, 100×100×1,

125×125×1, 150×150×1, 175×175×1, 200×200×1) to incorporate the effect of

long wavelength ripples and also to study the system size effect. A vacuum separa-

tion of 30 Å is provided along the Z-direction to avoid the un-physical interactions

between the periodic images of the 2D h-BN layers. The conjugate-gradient al-

gorithm is used for the initial geometry relaxation and also to avoid the residual

stresses. The system has been equilibrated by coupling it to a Nosé-Hoover thermo-

stat.

We have performed the strain-fluctuation method at constant temperature and

under ambient pressure (NPT ensemble) for 0.5 nanosecond (ns), in which the ther-

modynamic tension and external hydrostatic pressure are set to zero. The size and

shape of the simulation cell is controlled using a Lagrangian which allows the vari-

ation of the shape and size of the periodically repeating molecular-dynamics cell

(Parrinello and Rahman 1982). In order to integrate the positions and velocities, a

standard Velocity-Verlet time stepping algorithm has been used. We have used an
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integration time step of 1.0 femtosecond (fs) for solving the equations of motion.

5.3 Results and discussions

In the case of 2D membranes, most commonly used harmonic approximation

neglects the interaction between the bending and stretching modes and these two

modes are decoupled. But, it is a well known fact that, at sufficiently long scales,

the flat phase of 2D h-BN is much larger than the interatomic separation and is well

defined by the combination of bending and stretching modes (Nelson et al. 2004).

This means that the existence of a 2D membrane is due to the anharmonic coupling

between the bending and stretching modes. This chapter intents to investigate the

temperature dependent elastic constants and elastic (Young’s) moduli of 2D h-BN.

In order to validate the anharmonic behaviour of hexagonal boron nitride, the vari-

ation of lattice parameter (aint) and linear thermal expansion coefficient (LTEC) as

a function of temperature has also been studied.

5.3.1 Thermal rippling behavior of h-BN

In harmonic approximation, one neglects the interaction between the in-plane

stretching (u(r)) and out-of-plane bending (h(r)) contributions of the h-BN mem-

brane, and these bending and stretching modes are decoupled. One can calculate

the correlation function for the out-of-plane (flexural) displacements h(r) (differ-

ent from h considered earlier) which, in Fourier space, is denoted as Gharm
0 (q) =

〈|h(q)|2〉u=0 = kBT
κq4 , where kB is the Boltzman constant, T is the temperature, and

the suffix u = 0 in the average denotes the absence of any external strain and the

subscript 0 indicates that we neglect anharmonic couplings between in-plane and

out-of-plane modes. The prediction from harmonic theory states that, divergence in

the mean-square amplitude of the out-of-plane displacements will take place and is

written as, 〈h2〉harm ∝ L2 or 〈h2〉harm = CL2, where L is the size of the sample, C

is a temperature dependent constant and 〈h2〉 = 〈|h(q)|2〉. This is the well known

result that harmonic theory of membranes predict the existence of a crumpled mem-

brane rather than a flat one. In particular, the harmonic theory predicts that a 2D
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membrane or crystal will not be stable. This contradiction is solved by including

the anharmonic coupling between bending and stretching modes in the calculation

(López-Polı́n et al. 2015).

In the large wavelength limit, i.e., for small q values, the height fluctua-

tions are suppressed by the anharmonic coupling between bending and stretching

modes giving rise to a renormalized q-dependent power law scaling behavior and is

〈h2〉anh = C′L2−η , where C′ is a constant and is not equal to C (Costamagna et al.

2012) (More details given in appendix C). We observed that the height of the rip-

ples formed in the sheet due to thermal fluctuations are proportional to the applied

temperature (Thomas et al. 2015) and also noticed that the height fluctuations vary

with increase in the system size and temperature.

The large reduction of elastic constants at high temperature is due to the in-

crease of thermal fluctuation, which leads to the enhancement of the entropic con-

tribution. In addition, as temperature increases, the location of the maximum slope

moves toward a higher strain because a larger strain is needed to flatten the en-

larged ripples at higher temperature (Lee 2015). As the temperature and system

size increases, mean square out-of-plane displacement amplitude also increases.

We have considered the membrane theory for h-BN and estimated the variation in

mean square out-of-plane displacement amplitude (〈h2〉) with temperature and sys-

tem size (L =
√

LxLy) at 300 K (Thomas et al. 2015). The value of universal scaling

exponent η at room temperature is obtained as 0.52. In this chapter, we investigate

qualitatively to which extent membrane theory can be applied to the description of

finite temperature elastic constants of h-BN from thermally excited ripples.

In the harmonic regime (short wavelengths), the Young’s modulus is not af-

fected by the interactions between bending and stretching modes, and it is well

approximated by Ehar
2D (q) ≈ E0

2D. But, if we consider the anharmonic region in the

h-BN spectrum, all the physical quantities such as linear thermal expansion coef-

ficient, elastic constants and specific heat show a scale dependence. It has been

reported that the Young’s modulus is a scale dependent parameter and one can
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define an effective Young modulus of a 2D h-BN (considering anharmonicities)

as Eanh
2D (q) = E0

2D
1+E0

2Db(q) , where b(q) can be obtained by using a Feynman-diagram

technique by coupling the lowest order in the in-plane displacements u(r) and the

out-of-plane displacements h(r) of h-BN membrane (Roldán et al. 2011, López-

Polı́n et al. 2015). In the anharmonic regime (long wavelengths), the effective elas-

tic moduli become Eanh
2D (q) ≈ 1

b(q) (Roldán et al. 2011). Here, the Young modulus

is highly dependent on the wave-vector k which follows a power law behaviour

E2D ∼ q2−2η .

When the ripple amplitude increases, it effectively softens the elastic moduli

of the material due to the anharmonic coupling between the bending and stretching

modes. The inverse system size (1/N) dependence of elastic constants C11 and C12

at 300 K is shown in figure 5.1 (a) and (b) respectively. Here, we fitted the values of

C11 and C12 in each system size using a polynomial function, where N is the number

of atoms in the simulation cell. Variation of Young’s modulus with inverse system

size at 300 K is shown in 5.1 (c). As the system size become higher, the value of

Young’s modulus decreases considerably with the variation of elastic constants due

to the thermally excited ripples.

From our analysis of the zero Kelvin elastic constants of h-BN using molec-

ular statics, we found that the elastic constants and Young’s modulus increase with

system size (Thomas et al. 2016). It has been noticed that the influence of temper-

ature shows thermal rippling behaviour which effectively reduces the elastic con-

stants, and such reduction is completely absent in the zero Kelvin calculations.

5.3.2 Temperature dependence of lattice parameter and thermal

expansion coefficient

Molecular dynamics simulations are done for a 2D h-BN sheet containing

40000 atoms, and the dimensions of the simulation boxes are Lx = 250.00Å, Ly =

433.0127 Å and Lz = 30 Å. The internal lattice parameter (aint) of h-BN is associ-

ated with the average sp2 bond length, which indicates the actual size of the system.
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Figure 5.1: Dependence of the elastic constants C11 and C12 on the inverse system size
(1/N) at 300 K is shown in (a) and (b) respectively. Here, we fitted the values of C11
and C12 in each system size using a polynomial function, where N is the number of
atoms in the simulation cell. Variation of Young’s modulus with inverse system size at
300 K is shown in (c). As the system size become higher, the value of Young’s modulus
decrease consistently with the variation of elastic constants due to the thermally excited
ripples.

The internal lattice parameter shows no obvious size dependence and changes lin-

early with temperature. Mathematically it can be expressed as, aint =
√

3Rxy, where

Rxy is the average bond length. Figure 5.2 (a) shows that the internal lattice param-

eter decreases with an increase in temperature and its magnitude reduces to 1.32%

of the equilibrium value at 1000 K and is consistent with the previous predictions

(Anees et al. 2016). The linear thermal expansion coefficient (LTEC) is computed

by the direct numerical differentiation of the internal lattice parameter and is shown

in figure 5.2 (b). It has been reported that the fluctuation amplitude follows a power-

law scaling with respect to the linear dimension of the 2D h-BN due to anharmonic

interactions between bending and stretching modes. Such thermal fluctuation or

rippling is found to be responsible for the effectively negative in-plane thermal ex-

pansion of graphene at relatively low temperatures (Gao and Huang 2014).

In h-BN, at low temperatures negative in-plane thermal expansion and at

high temperatures, a transition to positive thermal expansion is observed. The neg-

ative thermal expansion of h-BN is more prominent at low temperatures, and this

is due to the large negative Grüneisen parameter of the out-of-plane bending mode
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Figure 5.2: (a) Variation of in-plane lattice parameter (aint) of h-BN with temperature;
(b) The linear thermal expansion coefficient (LTEC) as a function of temperature.

(ZA) (Sevik 2014). The obtained room temperature LTEC is -3×10−6K−1, which

is comparable with the other MD studies (Anees et al. 2016) and quasi harmonic

predictions (Sevik 2014). The deviations from harmonic behavior can be charac-

terized by examining the radial distribution function as well (Zakharchenko et al.

2009).

5.3.3 Elastic constants

The strong anharmonic behavior of h-BN leads to unusual temperature de-

pendence of the elastic moduli. The study of temperature dependence of elastic

constants provide the intrinsic thermodynamic properties of materials at low and

high temperatures. Mermin-Wagner theorem (Mermin 1968, Mermin and Wagner

1966) states that at any finite temperature, the spontaneously developed out-of-plane

thermal fluctuations will eventually destroy the long-range translational symmetry

of the 2D hexagonal lattice and a 2D crystal would not exist in the thermodynamic
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limit. However, we observed the existence of h-BN sheet at finite temperatures with

significant thermal ripples. These out-of-plane intrinsic buckling (ripples) in h-BN

is a highly nonlinear phenomenon that profoundly influences the elastic proper-

ties of h-BN. The ripples can effectively soften the elastic moduli, in the sense that

stretching a crumpled h-BN sheet requires less force than stretching a flat one (Chen

2012). It is well known that elastic modulus of a crystalline solid is, in general tem-

perature dependent and in particular, linear temperature dependence has been pre-

dicted under the harmonic approximation (Weiner 2002). However, we observed a

nonlinear temperature dependence with significant anharmonic effect for the elastic

modulus of h-BN sheet.

Gao et al., (Gao and Huang 2014) reported that the amplitude of thermal

fluctuation depends on the membrane size. The observed elastic constants are sig-

nificantly reduced with out-of-plane thermal fluctuation and the reduction in the

elastic constants also depends on the size of h-BN membrane. In the case of small

h-BN membrane, the elastic constants possess high values and the value become

small for larger membranes and such reduction also increases with system size.

Our MD simulations of h-BN predicted that the elastic modulus depends on the

temperature and in-plane thermal expansion, and changes from low value to a high

value as the temperature increases. In the present study, we tried to emphasize the

intimate relationship between thermal rippling and thermoelasticity of h-BN within

the anharmonic limit (Zakharchenko et al. 2009).

We also noticed that the elastic modulus of h-BN is size dependent, which

is attributed to the in-plane contraction, meaning that lower modulus for larger h-

BN sheet is due to more significant rippling. The effect of temperature can also

lead to a variation in box lengths and angles of h-BN sheet. Figure 5.3 shows the

variation in (a) simulation cell size and (b) angle γ of h-BN as a function of MD

time step at different temperatures. When the simulation is carried out for a long

time, the value of box lengths and angles stabilises to a constant level and it is clear

from the analysis of these data that this method is slow to converge. A description

of the second order elastic constants, elastic energy, etc. of 2D h-BN is detailed
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in section 4.3.1. Using equation (4.5) and (4.6), Young’s modulus and Poisson’s

ration is calculated. The corresponding Bulk modulus (K) and shear modulus (G)

are related to the Young’s modulus and Poisson’s ratio using the equations:

K =
Y

3(1−2ν)
(5.5)

G =
Y

2(1+ν)
(5.6)

Figure 5.3: Variation in (a) simulation cell size and (b) angle gamma of h-BN as a
function of MD timestep at different temperatures.

We have extracted the box lengths and angle from the MD simulation after

performing the strain-fluctuation method in which the thermodynamic tension and

the external hydrostatic pressure are set to zero. In order to obtain the initial h0

matrix, the size and shape of the simulation cell of a system of N particles in a

periodically repeating MD cell is considered and is initially averaged over all the

frames. The instantaneous values of the h matrix are obtained by averaging the

length and angles of the simulation box over the course of simulation. These in-

stantaneous values of the h matrix are used for the calculation of the instantaneous

strain tensor using the matrix shown in equation 5.3. By using these values of in-

stantaneous strain, the elastic constants can be calculated using the equation (5.2)

and (5.4). Using the values of instantaneous strain, the independent elastic con-

stants C11 and C12 of h-BN sheet at various temperatures is calculated using the
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strain-fluctuation method and is shown in figure 5.4 (a) and (b) respectively. The

Young’s modulus and Poisson’s ratio are calculated using equations (4.3) and (4.4)

and the careful polynomial fitting shows a decreasing behaviour of these quantities

with an increase of temperature and are shown in figure 5.5 (a) and (b) respectively.

The computed elastic constants satisfy Born mechanical stability criterion in the

studied temperature range.

Figure 5.4: Temperature dependent elastic constants of h-BN calculated using strain-
fluctuation method. Independent elastic constants (a) C11 and (b) C12 are calculated
using the values of instantaneous strain.

It has already been reported the slow convergence of strain-fluctuation method

for the calculation of elastic constants (Gusev et al. 1996). In order to obtain results

with acceptable accuracy, the simulation are run for a sufficiently long time. Gao et

al., reported the difficulties of strain-fluctuation method to obtain a reliable data of

elastic constants at temperatures below 100 K (Gao et al. 2006) and they claim that

the stress-fluctuation method is a much more effective way to calculate the elastic

constants than the strain-fluctuation method because it converges more quickly and
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all the components of the stress tensor are expected to be obtained from a single

simulation. However, the stress-fluctuation method is more difficult to implement

because it requires the analytic second derivative of the potential energy function

with respect to strain. But in the case of potential energy functions with compli-

cated functional forms, this term can be difficult to obtain.

Figure 5.5: Temperature dependent (a) Young’s modulus and (b) Poisson’s ratio are
calculated from the computed values of elastic constants.

In addition, we present results for bulk and shear moduli in figure 5.6 (a)

and (b), the magnitude of which can be easily calculated using Young’s modulus

and Poisson’s ratio, employing formulas (5.5) and (5.6) respectively. Both bulk and

shear moduli retains the behavior of decreasing values with an increase of temper-

ature. It has been reported that the shear deformations play an important role in the

winkling and rippling nature of graphene and we could expect the same in h-BN as

well due to the structural similarity and the formation of out-of-plane fluctuations

in graphene and h-BN (Liu et al. 2012, Katsnelson and Geim 2008).
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Figure 5.6: Variation of computed (a) bulk and (b) shear modulus using strain-
fluctuation method for h-BN as a function of temperature.

While extrapolating and comparing to zero Kelvin elastic constants, it is clear

that the obtained values well agree with our calculated zero Kelvin elastic constants

C11 = 823 GPa and C12 = 245 GPa (Thomas et al. 2016). The obtained zero Kelvin

Young’s modulus, Poisson’s ratio, bulk and shear moduli are in good agreement

with the earlier theoretical studies (Milowska et al. 2013). The calculated value of

C11 decreases as a function of temperature more markedly in comparison to C12.

It should be noted, however, that there has been no experimental and theoretical

work that has been reported on the study of finite temperature elastic constants of h-

BN, which limits the direct comparison of the obtained results. We believe that the

obtained results quantitatively agree with the general behaviour. The considerable

decrease of the elastic constants and Young’s modulus with increasing temperature

is the direct consequence of the effect of ripples, low thermal expansion and nega-

tive Grüneisen parameter of the out-of-plane bending mode (ZA) (Sevik 2014).
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5.3.4 Sound velocities

The h-BN and most of the 2D materials show strong anisotropy and in an

anisotropic medium there are only certain directions along which elastic waves

can propagate in pure longitudinal and transverse modes (Yang et al. 2017). The

anisotropy of mechanical properties can be investigated from the independent elas-

tic constants by evaluating the anisotropic factors or elastic constants. The sound

waves responsible for the compressional (longitudinal) deformations (p-wave) are

called longitudinal waves (p-waves) in which the vibration of particles is parallel

to the direction of propagation. The waves generated due to the speed of shear

modes are called shear waves (s-wave) in which the polarizations are normal to the

direction of propagation. Using the in-plane elastic modulus (Young’s modulus)

Y , Poisson’s ratio ν , two dimensional mass density ρm and the in-plane elastic con-

stants C11 and C12 one can calculate the longitudinal and shear wave velocities using

the equations (4.7) and (4.8)(Kinsler et al. 1999, Thomas et al. 2016).

Using the in-plane lattice parameter a and the atomic mass of boron nitride

mBN , the two dimensional mass density can be defined as ρ2D = 4mBN/(
√

(3)a2).

The observed mass density of h-BN is 15.180×10−7 kg/m2, which is twice the mass

density of graphene. We observed that the longitudinal wave velocity (Vp) is more

as compared to shear wave velocity (Vs) which is consistent with earlier ab-initio

studies (Peng et al. 2012b). Using the equations (4.7) and (4.8), we calculated the

temperature dependent longitudinal and shear wave velocities of h-BN.

The observed room temperature longitudinal wave velocity is 8.9486 km/s

and that of shear wave velocity is 2.640 km/s respectively. The variation of sound

wave velocities with temperature is shown in figure 5.7 (a) and (b) respectively.

As the temperature increases, the Young’s modulus of the sample decreases, which

leads to the decrease of longitudinal and shear wave velocities as shown in fig-

ure. Since sophisticated experimental facilities are available for the investigation

of sound velocities, we can easily calculate the finite temperature elastic constants

from the calculated sound velocities. We believe that our calculations on the tem-
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perature dependent elastic constants would throw more light on the basic functional

mechanism of acoustic wave guides and surface acoustic wave sensors (Peng et al.

2012b).

Figure 5.7: Variation of calculated (a) longitudinal and (b) shear wave velocities of
h-BN using strain-fluctuation method with temperature.

5.4 Conclusions

The effect of ripples on the temperature dependent elastic constants of monolayer

hexagonal boron nitride have been investigated for the first time using strain fluctua-

tion method. The Young’s, bulk and shear moduli, Poisson’s ratio, sound velocities,

etc. are calculated from the computed values of elastic constants and are found to

decrease with increase of temperature. It has been observed that the out-of-plane

intrinsic ripples responsible for strong anharmonic behavior of h-BN leads to large

deviation from the isotropic elasticity. Because of the strong thermal rippling in

large systems, the h-BN sheet may have a negative thermal expansion coefficient at

relatively low temperatures, with a transition to positive thermal expansion at high
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temperatures and this also soften the elastic constants. This transition is a result of

two competing effects: positive thermal expansion due to in-plane modes and neg-

ative expansion due to out-of-plane fluctuation. The calculations show that h-BN

sheet satisfy Born’s criterion for mechanical stability. As the system size become

larger, the value of Young’s modulus decrease consistently with the variation of

elastic constants due to the thermally excited ripples. As the temperature increases,

the Young’s modulus of h-BN decreases, which leads to the decrease of longitudinal

and shear wave velocities.
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Chapter 6

Effect of temperature and defects on

the mechanical properties

This chapter explains the effect of changing the cut-off distance in the empir-

ical potential on the stress-strain relation and also the temperature dependent

Young’s modulus of pristine and defective hexagonal boron nitride. As the tem-

perature increases, the computed Young’s modulus shows a significant decrease

along both the armchair and zigzag directions. The computed Young’s mod-

ulus shows a trend in keeping with the structural anisotropy of h-BN. As the

temperature increases, the computed stiffness decreases and the system with

zigzag edge possesses a higher value of stiffness as compared to the armchair

counterpart and this behaviour is consistent with the variation of Young’s mod-

ulus. The defect analysis shows that presence of vacancy type defects leads to a

higher Young’s modulus, in the studied range with different percentage of defect

concentration, in comparison with Stone-Wales defect.
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6.1 Introduction

This chapter explains the temperature dependent tensile behavior of pristine

and defective boron nitride nanosheets. Here, we have attempted to optimize the

cut-off function of the used empirical interatomic potential for a better understand-

ing of the mechanical properties using the framework of classical MD. To the best of

our knowledge, no conclusive study has so far been reported on the analysis of tem-

perature dependence on the tensile properties of pristine and defective free-standing

h-BN using the tuned Tersoff potential. We have also investigated the influence of

vacancy and Stone-Wales type defects on the Young’s modulus of h-BN.

6.2 Methodology

Classical MD simulations have been performed with a finite rectangular h-BN

sheet of approximate size 50×86 Å containing 1600 atoms. The MD simulations

are carried out in NVT ensemble, with a Nose-Hoover thermostat for proper ther-

mal equilibration of the system. All the simulations have been performed using

a time step of 0.001 picoseconds. In order to eliminate the residual stress of the

h-BN structure, a conjugate gradient minimization algorithm is used for the initial

geometry relaxation. The direction along which force is applied to deform the h-

BN sheet will be designated as x. Then periodic boundary condition will be applied

along this direction (the sheet is infinite in extent along x-direction). The cell has

finite size in the perpendicular direction (designated as y), and it may be terminated

with either armchair or zigzag edge. Shrink-wrapped boundary condition has been

used in the y direction. After ensuring proper equilibration and relaxation, uniaxial

tension was applied along the x-direction for both armchair and zigzag terminations

(or configurations) at a strain rate of 109 s−1 for various temperatures and defect

concentration. To investigate the tensile properties, the entire simulations are done

for 500 picoseconds.

The detailed description and explanation of the Tersoff parameterization can

be found in section 2.3.1. The cut-off function plays a crucial role in the bonding
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characteristics of a material. The process of breaking a bond between a pair of atoms

will be influenced by the choice of the cut-off distance - the strength of the bond

between a pair of atoms depends on the neighbourhood of both the atoms. Larger

the cut-off distance, more the possibility of incorporating the bond order correctly.

Calculations with original potential cut-off function gave an anomalous behaviour

in stress-strain graph which made us to tune the cut-off parameter in the original

potential file. In the present work, we have used the original as well as optimized

cut-off distances to bring out the crucial role played by it. As shown in figure 6.1,

while the stress-strain behaviour computed with the original cut-off parameter is

un-physical, a physically meaningful stess-strain characteristic is obtained with the

modified cut-off distance. Here, we have varied the cut-off distance between 1.75 Å

and 2.35 Å which lies between the lower cut-off distance Ri j and the higher cut-off

value Si j of the original potential file. In this regard equation (2.15) can be rewritten

as (Dilrukshi et al. 2015)

fc(r) =

 1 if ri j < Ri j,

0 if ri j > Si j

 (6.1)

6.3 Results and discussions

6.3.1 Effect of original cut-off parameter on the mechanical be-

haviour

We have created a rectangular simulation cell of BN and subjected it to uniax-

ial deformations along the zigzag and armchair directions (which are oriented along

the X and Y directions), respectively. The obtained equilibrium lattice parameter of

2D h-BN at 300 K using NVT ensemble is 2.498 Å with a nearest boron-nitrogen

bond length of 1.45 Å. Results of our calculations on the structure is comparable to

the experimentally observed values, a=2.504 Å, c=6.66 Å (Bosak et al. 2006) with

a nearest boron-nitrogen bond length of 1.45 Å.
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Figure 6.1: Variation of engineering stress due to the bond stretch with bond strain
of armchair and zigzag deformation direction of h-BN sheet using the original Tersoff
potential cut-off parameter of 1.95 Å.

At first, we studied the tensile properties of pristine h-BN and analyzed the

temperature dependence on physical properties using the original cut-off parameter.

Later, the vacancy and Stone-Wales type defects were incorporated in h-BN and the

direction dependent Young’s modulus at room temperature has been calculated. We

have focused on the uniaxial strain, and the stress-strain characteristics are shown

in figure 6.1 for the cases in which force is applied along the armchair and zigzag

deformation directions, respectively, of the pristine h-BN using the original cut-off

parameter (1.95 Å). Please note that it is the engineering stress that is shown as a

function of the engineering strain. In this procedure, when the engineering strain

is applied to the atomic system, the bonds between boron and nitrogen atoms were

stretched or compressed, and the potential energy as a function of bond strain is

evaluated.

The variation in potential energy with strain for different potential cut-off val-

ues of armchair and zigzag configuration is shown in figure 6.2. In the simulation

using the original high and low cut-off parameters, we observed a sudden rise in the
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engineering stress at a strain of about 0.3. It has also been observed that the poten-

tial energy shows a sudden decrease of slope beyond the very same strain value of

0.3. These twin observations can be understood once we realize that the distance

between some of the neighbouring particles exceed the upper cut-off parameter Si j

when the strain exceeds a critical value. At this stage of deformation, the force on

all these particles become zero as fc(r) becomes zero, and hence the potential as

well as the force becomes zero, by definition of the cut-off. Hence these particles

have no restoring force, and hence there is a run-away situation. Simultaneously,

since the potential energy contribution of these atoms is zero, and not negative, there

is a sudden increase in the average potential energy. When the cutoff parameter is

increased, this run-away situation starts manifesting at larger strains when the aver-

age distance between neighbouring atoms exceed the new upper cut-off parameter.

Figure 6.2 very clearly depicts this point.

Figure 6.2: The variation in potential energy of pristine h-BN at room temperature with
different potential cut-off parameter for armchair and zigzag configurations. It has been
observed that the potential energy shows a sudden decrease of slope beyond a strain
value of 0.3. Using the original and lower cut-off parameters, we observed a sudden
rise in engineering stress corresponding to a small amount of engineering strain. This
can be understood from the fact that the force is zero for all the particles whose near-
est neighbour distance exceeds the upper cut-off distance Si j in the expression for the
potential. Since the potential energy of these atoms is zero, instead of a negative value
if the interaction was calculated with a larger cut-off, the average potential energy in-
creases. The nonzero kinetic energy of these particles manifests as an outward pressure
which leads to increase in stress and leads to a run-away situation.
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To understand the influence on the cut-off function on the potential energy,

the variation in the stress-strain relation with strain is noted for different cut-off

distances and is shown in figure 6.3 and the observed variations in potential energy

curves are reflected in the corresponding stress-strain graph. Our observations on

this unphysical stress-strain relation qualitatively similar to the earlier studies of

h-BN (Kumar et al. 2016) and carbon nanotubes (Dilrukshi et al. 2015).

Figure 6.3: The variation in stress-strain relationship of h-BN at room temperature with
different potential cut-off function for armchair and zigzag configurations. Due to this
sharp rise in stress value using the original (1.95 Å) and below original (< 1.95 Å) cut-
off parameter, h-BN shows an unphysical as well as fictitious fracture behavior. This is
due to the failure of the smoothing function in the empirical potential and at the stage
of deformation, the force on all these particles become zero as fc(r) becomes zero, and
hence the potential as well as the force becomes zero, by definition of the cut-off.

6.3.2 Influence of optimized cut-off parameter on the anisotropic

mechanical behavior

Young’s modulus is a measure of the stiffness of an elastic material and is one

of the prominent considerations in engineering design. In this section, we report

analysis of tensile test of h-BN using an optimized cut-off parameter (2.25 Å) of the

potential function. The insight gained on the underlying mechanism of deforma-

tion is expected to be valuable in the context of fabrication of h-BN materials with

specified mechanical applications. Most of the mechanical and elastic properties

of crystalline solids are strongly anisotropic in nature. In general, the inter-atomic
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potentials for real crystals are not harmonic, and they possess strong anharmonicity.

When the atomic displacements of these atoms are not very small compared to the

interatomic spacing, the anharmonicity of crystal lattices becomes prominent (Hiki

1981).

To calculate the value of Young’s modulus, first derivative of the straight line

portion of the stress-strain curve is considered and the data with engineering strain

of 1% is used. Simulations have been performed separately for armchair and zigzag

configurations. The variation in engineering stress corresponding to the applied

engineering strain of armchair and zigzag configuration at various temperatures is

shown in figure 6.4. The stress-strain graph shows a smooth variation in the entire

studied temperature range. The stress-strain graphs obtained using the optimized

cut-off parameter (2.25 Å) are devoid of the unphysical sharp increase in stress. In

both armchair and zigzag configurations, the observed maximum strain value lies

between 0.25 and 0.35. It is interestingly observed that by using the original cut-off

value (1.95 Å), the material shows a higher engineering stress and strain value.

Figure 6.4: Variation in engineering stress corresponds to the applied strain of armchair
and zigzag configurations at various temperatures of pristine h-BN using the optimized
cut-off parameter (2.25 Å) of the potential.

In order to investigate the system size dependence on the computed Young’s

modulus of h-BN, we used finite rectangular simulation cells of various sizes (10×10×1,

20×20×1, 30×20×1, 50×50×1, 70×70×1, 100×100×1). We noticed that, at a

temperature of 300 K, the system size does not have significant effect on the Young’s
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modulus value, but h-BN possesses strong directional anisotropy as shown in table

6.1. The variation in Young’s modulus of pristine h-BN at different temperatures is

shown in figure 6.4. Here, as the thermal energy increases, the atoms starts vibrat-

ing from the mean position and the regular atomic arrangement has altered. The

out of plane fluctuations, called ripples, in h-BN increase with temperature which

in turn decreases the strength of the material.

Table 6.1: The system size (rectangular sheet) dependence of Young’s modulus (YM) of
h-BN at 300 K. The variation in Young’s modulus with system are negligible as shown
in the table.

Simulation cell size Armchair YM (GPa) Zigzag YM (GPa)
10×10× 1 (400 atoms) 693.72 761.43
20×20× 1 (1600 atoms) 755.72 769.73
30×30× 1 (3600 atoms) 687.44 783.50
50×50× 1 (10000 atoms) 692.95 767.12
70×70× 1 (19600 atoms) 635.63 781.02
100×100× 1 (40000 atoms) 623.32 785.86

The observed room temperature Young’s modulus of armchair and zigzag

configuration are 755 GPa and 769 GPa respectively, the zigzag configuration shows

a higher value of Young’s modulus as compared to its armchair counterpart. The de-

crease of Young’s modulus with increase of temperature has also been observed and

are consistent with the earlier studies on graphene (Mirnezhad et al. 2013). A com-

parative study of the elastic modulii of pristine h-BN using various experimental,

theoretical and computational methods are given in table 6.2.

6.3.3 Stiffness of pristine h-BN

It is important to analyze the stiffness of any material, which is the ability

of a material to resist deformation. When a material behaves elastically, the work

done to deform the material is stored as the elastic energy. The elastic strain en-

ergy is calculated from the area under the linear portion of the stress-strain graph

and stiffness is also inferred from the elastic region of the stress-strain curve. In

general, a stiff material needs more force to deform compared to a soft material
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Figure 6.5: Variation of Young’s Modulus with temperature of pristine h-BN along the
armchair and zigzag configurations using the optimized cut-off parameter (2.25 Å) of
the potential.

and the higher the value of the Young’s modulus, the stiffer the material. Then the

stored elastic energy is obtained from the linear portion of the stress-strain curve of

the h-BN sheet before the onset of yield. As the temperature increases, the slope

of the stress-strain curve shows slight variation as shown in figure 6.4. We have

observed that the stored elastic energy of the material decreases with increase in

temperature and towards the lower temperatures, the zigzag configuration shows a

higher value of elastic energy as compared to the armchair configuration, which is

consistent with the values of Young’s modulus shown in figure 6.5. As the tem-

perature increases, the zigzag orientation is less vulnerable to elongation showing a

higher value of stiffness as compared to the armchair counterpart. We observe that,

the stored elastic energy and Young’s modulus of both the armchair and zigzag con-

figurations decreases with increase in temperature and the variation in stored elastic

energy with temperature is shown in figure 6.6.
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Table 6.2: Calculated Young’s modulus (Y) of pristine h-BN using the engineering
stress-strain relation in comparison to the earlier experimental, theoretical and com-
putational analysis. The interatomic potential parameter (IPP) used for the method of
calculation has also given.

Reference Method (IPP) Year Young’s modulus (GPa)
Present work MD (Tersoff) 2017 755 (Armchair)

769 (Zigzag)
Kumar et al MD (Tersoff) 2016 723 (Armchair)

733 (Zigzag)
Han et al MD (Tersoff) 2014 881
Le M Q MM 2014 754 (Armchair)

784 (Zigzag)
Zhao et al MD (Tersoff) 2013 716
Mirnezhad et al Ab initio 2013 829
Mortazavi et al MD (Tersoff) 2012 825
Andrew et al Equation of state and DFT 2012 821
Peng et al DFT 2012 828
Boldrin et al Atomistic continuum approach 2011 797
Eun-Sok Oh Continuum Lattice Approach 2011 977

(Tersoff-Brenner)
Li Song et al Experiment 2010 885
Topaskal et al DFT 2010 768
Sahin et al DFT 2009 795
Bosak et al In-elastic X-ray scattering 2006 776
Kudin et al DFT 2001 807
Obha et al DFT 2001 807

6.3.4 Young’s Modulus of defective h-BN

The theoretical study of defects are very important to analyze various proper-

ties of most of the materials, since the experimentally synthesized samples always

contain different types of defects which encourages one to look into various types of

possible defects in materials and is also close to experimental counterpart. Incorpo-

rating defects for the computational analysis of the calculation of mechanical prop-

erties helps to understand how the material behaves at different physical situations.

Structural defects in materials can be classified as incomplete bonding defects, topo-

logical defects and heterogeneous defects. In h-BN, the vacancy and Stone-Wales

defects with defect concentration varies from 0.1% to 1% have received much more

attention than any other kind of defects and the presence of defects may break the
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Figure 6.6: Temperature dependence on the elastic energy of pristine h-BN along the
armchair and zigzag orientations using the optimized cut-off parameter. The variation
in stored elastic energy with increase of temperature has been noticed and the strain rate
for the simulation is kept constant at 109 s−1.

symmetry of the perfect honeycomb lattice.

Usually vacancies, topological defects, grain boundaries, etc., are the com-

monly occurring defects in low dimensional materials. Stone-Wales (SW) defect

is one of the prominent topological defects observed in h-BN in addition to vacan-

cies. The mono vacancy defects are created by removing one boron or nitrogen

atom from the pristine h-BN. Stone-Wales defect leads to the 90◦ rotation of the

bonds between B-N atoms forming a non-hexagonal ring in the lattice without al-

tering the connectivity of the network (Ansari et al. 2014). That is, the rotation of

a B-N bond forms a SW defect in h-BN. In the case of a finite system, we can con-

sider the armchair and zigzag termination and here, the boundary itself may be a

defect. In vacancy defect, an atom is completely missing from the lattice site and in

Stone-Wales, two pairs of hexagons transforms to two pentagons and two heptagons

retaining the total number of atoms unlike vacancies.
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Usually, the defective h-BN systems exhibit different stress-strain behaviors

compared to the pristine case. At first, a significant decrease in the slope has been

observed, which indicates a reduced value of Young’s modulus in h-BN and the

similar situation has already been reported in graphene (Xu et al. 2013). The room

temperature variation of engineering stress with engineering strain at different con-

centration of vacancy and Stone-Wales defects in h-BN with armchair and zigzag

configurations have been analyzed. We varied the concentration of defects from

0.1% to 1.0%, which is close to most of the experimental studies. The room tem-

perature variation in the stress-strain curve of h-BN sheet with 0.1% of vacancy and

SW defect along the armchair and zigzag direction is shown in figure 6.7. As the

concentration of the defects increases, there is a reduction in the fracture stress for

both armchair and zigzag configurations.

Figure 6.7: The variation in engineering stress corresponds to the applied strain of
armchair and zigzag configurations of defective h-BN at 300 K using the optimized
cut-off parameter (2.25 Å) of the potential.

The variation in room temperature Young’s modulus with vacancy and SW de-

fect concentration of armchair and zigzag configurations is shown in figure 6.8. We

noticed that the Young’s modulus decreases linearly with increase in defect concen-

tration for both vacancy and Stone-Wales types of defects. We also observed that the

material with zigzag configuration possesses a higher fracture stress as compared to

the one in armchair configuration in presence of both vacancy and Stone-Wales

defects corresponding to a strain value of 0.3.
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We noticed that, as compared to SW defect, presence of vacancies leads to a

marginal increase in Young’s modulus in the armchair and zigzag configurations.

The increase in Young’s modulus in the zigzag configuration indicate the ability of

the material to resist the deformation even with defects, like in the case of pristine

h-BN sheet. We also observed that the SW defect retains the total number of atoms

in h-BN and preserves the sp2 B-N bonding by keeping two heptagons and two pen-

tagons corresponding to a single SW defect. But in vacancies, the number of atoms

reduces as the defect concentration increases. Here, the missing boron and nitrogen

atoms break the perfect bonding in h-BN which results in the formation of dangling

bonds, leading to a sharp decrease in the Young’s modulus, which is more in arm-

chair direction as compared to zigzag direction. In the case of vacancy defect, as

the defect concentration increases, the bond breaking happens and the inter atomic

interactions become weaker, resulting in decreasing of the Young’s modulus. It has

been reported that the interaction between dangling bonds or the chemical instabil-

ities due to the missing atoms in graphene sheet affects its mechanical properties

(Jing et al. 2012). Due to the structural similarities and perfect lattice matching of

h-BN to graphene, we could expect similar mechanical behavior in h-BN also.

Figure 6.8: The variation of Young’s modulus with vacancy and Stone-Wales defect
concentration along the armchair and zigzag configurations of h-BN at 300 K using the
optimized cut-off parameter. The decrease in Young’s modulus shows a linear behavior
with increase in defect concentration.
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6.3.5 Deformation dynamics

In most of the materials, the fracture mechanism can be temperature depen-

dent. Though graphene and h-BN possesses high mechanical stability, due to their

atomically thin nature, they are easily vulnerable to various types of fracture mech-

anisms and deformations. We observe that, the deformation mechanism in pristine

h-BN may involve formation of defects and breakage of bonds as shown in figure

6.9 for the case of armchair orientation, as an example. To understand the trans-

formation from brittle rupture to ductile fracture, we studied snapshots of atomic

configurations at different instants of time. Initially, a rectangular simulation cell of

h-BN in the MD environment has been relaxed.

After the cell relaxation, uniaxial tension was applied and the additional re-

laxation has been performed at a temperature of 300 K using NVT ensemble. The

snapshots of the deformation mechanisms in the armchair direction at 100 ps and

400 ps are shown in figure 6.9 (a) and (b) respectively. To visualize the atomic

structures and deformations, we used Visual Molecular Dynamics (VMD) package

(Humphrey et al. 1996). After the proper cell relaxation, the whole simulation is

done for 500 picoseconds at 300 K. We also observe that the edges of the h-BN are

easily affected by deformation as the material is subjected to deformation for longer

time.

6.3.6 Structural integrity analysis

From the earlier sections, we have explained the fracture behavior of pristine

and defective h-BN with varying temperature and defect concentration. We have

varied the temperature of the system from 100 K to 1000 K to analyze the mechan-

ical properties of pristine and defective h-BN by varying the defect concentration

from 0.1 % to 1.0 %. To understand the effect of deformation mechanism in h-BN,

we have analyzed the distribution of bond length in the system. The analysis of

the radial distribution functions (RDFs) of pristine and defective h-BN using the

modified cut-off parameter in the armchair and zigzag orientations also gives more

insight into the deformation mechanism. The detailed explanation of RDF can be

108



Figure 6.9: Snapshots of the fracturing dynamics of pristine h-BN sheet at 300 K. The
snapshot of the deformation during the initial relaxation at 200 ps is shown in (a) and the
deformation mechanisms at 400 ps is shown in (b). The oval shape shows the deformed
areas in the sheet.

found in section 3.3.2. In general, distribution functions are Dirac delta functions at

zero Kelvin temperature.

As the temperature increases, the thermal energy would cause broadening of

the delta functions to smooth peaks. Here, the room temperature RDF has been

evaluated and observed that the nearest B-N bond length of armchair and zigzag

orientations of pristine h-BN in comparison to the defective case as shown in figure

6.10. When the sample is elongated along x direction, it should contract in the y-

direction. For pristine h-BN in the armchair termination, the bond length increases

to 1.55 Å in the x direction and decreases to 1.41 Å in the y direction both starting

from the original value of 1.45 Å. For pristine h-BN in the zigzag termination, the

bond length increases to 1.54 Å in the x direction and decreases to 1.44 Å in the
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y direction both starting from the original value of 1.45 Å. Thus h-BN in zigzag

configuration is more resilient to deformation than the one in armchair counterpart.

Figure 6.10: The radial distribution functions of pristine and defective h-BN under
tensile tests at a temperature of 300 K. The binsize is taken as ∆r = 0.005. The RDFs
of pristine h-BN at the equilibrium state is in comparison to the case of Vacancy and
SW defect of (a) armchair and (b) zigzag configuration. When the sample is elongated
along x direction, it should contract in the y-direction. For pristine h-BN in the armchair
termination, the bond length increases to 1.55 Å in the x direction and decreases to 1.41
Å in the y direction both starting from the original value of 1.45 Å. For pristine h-BN
in the zigzag termination, the bond length increases to 1.54 Å in the x direction and
decreases to 1.44 Å in the y direction both starting from the original value of 1.45 Å.
Thus h-BN in zigzag configuration is more resilient to deformation than the one in
armchair counterpart.

For h-BN in armchair configuration together with 1% of vacancy, the lattice

parameter changes from 1.45 Å to 1.55 Å in the x-direction and 1.50 Å in the y-direction

upon deformation. For h-BN in zigzag configuration together with 1% of vacancy,

the lattice parameter changes from 1.45 Å to 1.56 Å in the x-direction and 1.44 Å

in y-direction. For h-BN in armchair configuration together with 1% of Stone-Wales

defects, the lattice parameter changes from 1.45 Å to 1.54 Å in the x-direction and

1.44 Å in the y-direction upon deformation. For h-BN in zigzag configuration together

with 1% of Stone-Wales defects, the lattice parameter changes from 1.45 Å to 1.56

Å in the x-direction and 1.44 Å in y-direction. Thus the lattice parameters of h-BN

with both armchair and zigzag terminations are relatively insensitive to presence of

small concentration of defects, even though the fracture stress and Young’s modulus do

change.

110



6.4 Conclusions
We observed that the mechanical properties of h-BN vary substantially with the cut-

off distance of the used empirical interatomic potential. As the temperature increases,

the observed Young’s modulus shows a significant decrease for both the armchair and

zigzag terminations, which is attributed to the presence of directional anisotropy in h-

BN. The variation of Young’s modulus with system size is elucidated for the better un-

derstanding of anisotropic behavior in h-BN. We also observed that the computed elas-

tic energy decreases with increase in temperature and the zigzag configuration shows a

higher value of stiffness as compared to the armchair counterpart. We observed that the

mechanical strength of h-BN is significantly affected by the vacancy and Stone-Wales

type defects, etc., and the computed room temperature Young’s modulus of pristine h-

BN is 755 GPa and 769 GPa respectively for the armchair and zigzag configurations.

The decrease in Young’s modulus shows a linear behavior with increase in defect con-

centration. The observed shift in the peak positions in the radial distribution functions

of the pristine and defective h-BN shows the changes in the structural features of zigzag

and armchair configurations in the presence of applied stress.
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Chapter 7

Summary and Future Work

7.1 Summary

Study of two-dimensional (2D) materials has become a vibrant field in condensed

matter physics. Two dimensional molecular sheets have received a lot of attention in

recent years because of their exceptional properties and applications and are at the fore-

front of current research. In the present thesis, an attempt has been made to investigate

the structural, thermo-mechanical and finite size as well as temperature dependent elas-

tic properties of monolayer hexagonal boron-nitride (h-BN). Classical molecular dy-

namics simulations were performed using a Tersoff bond order potential tuned for the

studies of hybrid Graphene/h-BN layered system.

In chapter 3, we studied the temperature dependence of lattice parameter, radial

distribution function (RDF), specific heat at constant volume, linear thermal expan-

sion coefficient (LTEC) and height-height correlation function of the thermally excited

ripples on pristine as well as defective h-BN sheet. As temperature increases the am-

plitude of the peaks in RDF decreases due to thermal broadening. The specific heat

shows considerable increase beyond the Dulong-Petit limit at high temperatures, which

is interpreted as a signature of strong anharmonicity present in h-BN. The height-height

correlation function and bending rigidity, calculated within the frame work of contin-

uum theory of membranes, vary with increase in temperature and defect concentration.

The power-law exponent β for the height-height correlation function shows deviation
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from the harmonic limit of 4 predicted by membrane theory. It decreases from 3.7 to

2.7 as the temperature increases from 200 K to 3000 K. The non-universality of the

scaling exponent β is also an indication of the important role played by anharmonicity

in h-BN.

In chapter 4, we investigated the system size dependence on the mechanical stabil-

ity, bending stiffness and elastic properties of hexagonal boron nitride. We observed

that the elastic moduli of a finite h-BN sheet is different for the armchair and zigzag di-

rections, thereby demonstrating its anisotropic linear elastic behavior. The values of the

independent elastic constants C11 and C12 are such that Born’s criterion for mechanical

stability of h-BN is satisfied. We noticed that there is a strong system size dependency

for the in-plane stiffness and Poisson’s ratio of finite sheets. These properties show a

power law convergence to the bulk values when the system size tends to infinity. Using

the formula derived from Foppl-von Karman plate theory, variation of bending rigidity

with system size is determined from the measured value of thin shell thickness. Due

to the the strong in-plane sp2 bonds and the small mass of boron and nitrogen atoms,

2D h-BN possess high group velocities. As the system size increases, Young’s modulus

also increases, which leads to an increase in the longitudinal and shear wave velocities.

In chapter 5, the effect of ripples on the temperature dependent elastic constants of

monolayer hexagonal boron nitride have been investigated for the first time using strain

fluctuation method. Classical molecular dynamics simulations are performed with a

tuned Tersoff empirical inter atomic potential and the independent elastic constants C11

and C12 and thermal expansion coefficient are calculated as a function of temperature.

The Young’s, bulk and shear moduli, Poisson’s ratio, sound velocities, etc., are cal-

culated from the computed values of elastic constants and are found to decrease with

increase of temperature. We observed that the out-of-plane intrinsic ripples responsible

for strong anharmonic behavior of h-BN leads to large deviation from the isotropic elas-

ticity. Because of the strong thermal rippling in large systems, the h-BN sheet may have

a negative thermal expansion coefficient at relatively low temperatures, with a transi-

tion to positive thermal expansion at high temperatures and this also soften the elastic

constants. This transition is a result of two competing effects: positive thermal expan-
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sion due to in-plane modes and negative expansion due to out-of-plane fluctuation. The

calculations show that h-BN sheet satisfy Born’s criterion for mechanical stability. As

the system size become larger, the value of Young’s modulus decrease consistently with

the variation of elastic constants due to the thermally excited ripples. As the tempera-

ture increases, the Young’s modulus of h-BN decreases, which leads to the decrease of

longitudinal and shear wave velocities.

Chapter 6 explains the influence of empirical potential and effect of temperature

on the mechanical properties of pristine and defective hexagonal boron nitride. We ob-

served that the mechanical properties of h-BN vary substantially with the cutoff distance

of the used empirical interatomic potential. As the temperature increases, the observed

Young’s modulus shows a significant decrease for both the armchair and zigzag ter-

minations, which is attributed to the presence of directional anisotropy in h-BN. The

variation of Young’s modulus with system size is elucidated for the better understand-

ing of anisotropic behavior in h-BN. We also observed that the computed elastic energy

decreases with increase in temperature and the zigzag configuration shows a higher

value of stiffness as compared to the armchair counterpart. The defect analysis shows

that presence of vacancy type defects leads to a higher Young’s modulus, in the stud-

ied range with different percentage of defect concentration, in comparison with Stone-

Wales defect.

Our results indicate that the effect of temperature and defects on the mechanical

properties of boron nitride nanosheet should be taken into account for the analysis and

development of technologically prominent graphene/h-BN nanodevices for future ap-

plications. We also believe that the obtained results can be useful for the strain-based

ripple manipulation of h-BN for engineering applications.

7.2 Future prospects

• To elaborate the finite temperature analysis of the structural, thermo-mechanical,

finite size elastic properties and the effect of ripples on pristine and defective low

dimensional materials such as BC3, SiC, silicene and MoS2. and their deriva-

tives like carbon and boron nitride nanotubes (CNTs and BNNTs) using classical
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molecular dynamics simulation.

• The study of the physical properties of hybrid graphene/h-BN heterostructures and

bilayers (graphene on hBN) would help to understand whether or not the h-BN

substrate changes fundamentally by the thermal rippling properties of graphene.

The most common 2D vertical heterostructures, graphene/hexagonal boron nitride

(denoted as G/h-BN), have stimulated extensive interest and have applications in

nano electronics, photo-detection and energy harvesting/conversion.

• The study of pristine as well as materials with different types of defects includ-

ing Stone-Wales, vacancy, tetrahedron, etc., would help to predict their properties

realistically for better practical applications.

• To study the Chemistry of materials using reactive force field (ReaxFF) which

implicitly describes the chemical bonding without expensive quantum mechanical

calculations.

• A more systematic study would be worthwhile to acquire better understanding of

temperature dependent elastic constants of pristine and defective 2D structures in

arbitrary orientations using stress-fluctuation method.

• The modelling and simulation of different polymers with graphene and h-BN gives

information of possible confinement of polymers in these materials and the stud-

ies also provide the graphene-polymer and hBN-polymer interfacial mechanical

behavior using molecular dynamics. The study of density profiles, structural char-

acteristics and mobility aspects would be promising.
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Appendix A

LAMMPS Features

LAMMPS is an acronym for Large-scale Atomic/Molecular Massively Parallel Simu-

lator designed to run efficiently on parallel computers. The major features of LAMMPS

with specific commands are described here.

A.1 General features
• Runs efficiently on single-processor desktop or laptop machines, but is designed

for parallel computers

• Open-source distribution under the terms of the GNU Public License

• Distributed memory message-passing interfaces (MPI)

• Highly portable C++

• Easy to extend with new features and functionality

A.2 Particle and model types
• Atoms

• Polymers and biological systems

• Metallic systems

• Granular materials

• Coarse-grained systems
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A.3 Force fields
• Pairwise potentials: Lennard-Jones, Morse, Yukawa, etc.

• Many body potentials: Tersoff, REBO, AIREBO, LCBOP, ReaxFF, COMB,

Stillnger-Weber, EAM, MEAM, etc.

A.4 Integrators
• Velocity-Verlet integrator

• Predictor-corrector algorithm

• Energy minimization via conjugate gradient or Steepest-descent method

A.5 Ensembles, boundary conditions and constrains
• NVE, NVT and NPT ensembles for temperature and pressure control

• Inclusion of thermostats (Nose-Hoover) and barostats (Berendsen) with ensembles

• Periodic and non-periodic (fixed, shrink wrapped, shrink-wrapped with a mini-

mum value) boundary conditions

A.6 Output of the MD simulation
• Text dump files for the information of atom coordinates and temperature info (log

file),

• Dump file for velocities and other per-atom (dump) quantities

A.7 LAMMPS non-features
LAMMPS is a fast and parallel engine designed for molecular dynamics (MD) simu-

lations. Till date, LAMMPS itself provides only a modest amount of functionality for

setting up simulations and analyzing the output. Many tools are required for the pre and

post processing mechanisms which are not included in LAMMPS.

• Run through a GUI

• Build molecular systems
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• Assign force-field coefficients automatically

• Visualisation and plotting of data
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Appendix B

LAMMPS Input File
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Appendix C

Theory of Two dimensional Crystalline

Membrane

The main aim of this appendix is to understand the physics of two-dimensional

crystalline membrane. The structural and thermo-mechanical properties of membranes

are of fundamental importance and are relevant for technological applications. Crys-

talline membranes are two-dimensional membranes whose constituent particles form

a crystalline mesh. Crystalline membranes embedding in a three dimensional space

allows fluctuations not only within the two internal dimensions of the membrane (in-

plane modes) but also in the direction perpendicular to the plane of the membrane (out-

of-plane or flexural modes) (Braghin and Hasselmann 2010, Hasselmann and Braghin

2011). In 3D systems, this type of in-plane and out-of-plane displacements takes place

only close to the critical temperatures, whereas in 2D systems this behavior happens

at any finite temperature. A good example of a truly 2D free standing membrane is

graphene where carbon atoms form a membrane with a hexagonal lattice structure.

C.1 Phenomenological Theory of Membranes

Crystal lattice dynamics theories are based on the concept of phonons, i.e.,

weakly interacting waves of atomic (or ionic) vibrations and corresponding quasiparti-

cles. Harmonic approximation assuming that atomic displacements (~u) from the equi-

librium position is much smaller than the interatomic distance (d). For 3D systems,
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harmonic approximation holds up to the melting temperature while in 2D system, this

assumption fails. Therefore, Landau and Peierls (in 1930s) and later Mermin-Wagner,

suggested that 2D crystals cannot exist within the framework of harmonic approxima-

tion. One can assume that the atomic displacements~u satisfy the condition

〈~u2
n, j〉<< d2, (C.1)

where n labels the elementary cell and j is the atom within the elementary cell.

It has been shown that the harmonic approximation cannot be applied at any finite

temperature to 2D crystals neither for in-plane nor for out-of-plane modes since the

condition in equation (C.1) is violated due to divergent contributions of acoustic long

wavelengths modes with q→ 0. In this situation, it becomes necessary to consider

anharmonic interactions between in-plane and out-of-plane modes. In the limit q→ 0,

acoustic modes can be described by elasticity (Landau and Lifshitz 1970). Then the

corresponding effective Hamiltonian H reads

H =
1
2

∫
d2x
(

κ(∇2h)2 +µuαβ
2 +

λ

2
uαα

2
)
, (C.2)

where h is the out of plane deformation, κ is the bending rigidity, µ and λ are Lame

coefficients and the deformation tensor uαβ is

uαβ =
1
2

(
∂uβ

∂xα

+
∂uα

∂xβ

+
∂hβ

∂xα

∂hβ

∂xβ

)
(C.3)

In the deformation tensor, the nonlinear terms
∂hβ

∂xα
are included while ∂uγ

∂xα
is ex-

cluded since out-of-plane fluctuations are stronger than in-plane ones. Neglecting all

nonlinear terms in the deformation tensor, H is split into two independent Hamiltonians

in~q representation and is:

H0 =
κ

2 ∑
~q

q4|h~q|2 +
1
2 ∑

~q

[
µq2|~u~q|2 +(λ +µ)(~q.~u~q)

2] , (C.4)

where the subscript 0 indicates the harmonic approximation and h~q and ~u~q are Fourier

components of h(~r) and~u(~r), respectivly.
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The correlation functions in harmonic approximation,

Go(~q) = 〈|h~q|2〉0 =
T

κq4 (C.5)

Dαβ

0 (~q) = 〈u∗
α~q uβ~q〉0 =

qα qβ

q2
T

(λ +2µ)q2 +

[
δαβ −

qαqβ

q2

]
1

µq4 , (C.6)

where 〈〉0 means average with the Hamiltonian H0 in equation (C.4).

For a surface z = h(x,y), the components of the normal are:

nx =−
∂h
∂x

1√
1+ |∇h|2

(C.7)

ny =−
∂h
∂y

1√
1+ |∇h|2

(C.8)

nz =
1√

1+ |∇h|2
(C.9)

Where ∇h is a 2D gradient and if |∇h|<< 1, the normal-normal correlation function

is related to 〈|h~q|2〉 as

〈~n~q ~n−~q〉= q2〈|h~q|2〉 (C.10)

On substituting equation (C.5) into (C.10), we find

〈~n~q ~n−~q〉=
T

κq2 (C.11)

A membrane is globally flat if the correlation function 〈~n0~n~r〉 = ∑q〈|~n~q|〉ei~q~R leads

to a constant as R→∞ (normals at large distances have, on average, the same direction).

Equation (C.11) leads to a logarithmic divergence. Moreover, the mean square in-plane

and out-of-plane displacements calculated from equations (C.5) and (C.6) are diverged

as L→ ∞ (L is the sample size). Therefore it is concluded that the statistical mechanics

of 2D systems cannot be based on the harmonic approximation. While taking into
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account, the coupling between~u and h due to the non-linear terms in the equation (C.3)

(deformation tensor) drastically changes.

We can introduce the renormalized bending rigidity κR(q) by writing

G(~q) =
T

κR(q)q4 (C.12)

Then the first order anharmonic correction to κ is

δκ = κR(q)−κ =
3TY

8πκq2 , (C.13)

where, Y = [4µ(λ +µ)/λ +2µ] is the 2D Young’s modulus. At

q = q∗ =

√
3TY
8πκ2 (C.14)

the correction δκ = κ , and the coupling between in-plane and out-of-plane distor-

tions cannot be considered in the context of perturbation.

In the presence of strongly interacting long-wavelength fluctuations, scaling consid-

erations are useful (Ma 2000). Let us assume the behaviour of the renormalized bending

rigidity κR(q) at small q is determined by some exponent η , κR(q) ∝ q−η , yielding

G(q) =
A

q4−ηqη

0
,〈|~n~q|2〉=

A
q2−ηqη

0
, (C.15)

where the parameter q0 = (Y/κ)1/2 of the order of d−1 is introduced to make A di-

mensionless. One can also assume a renormalization of the effective Lame coefficients

λR(q), µR(q) ∝ qηu which means

〈u∗
α~q uβ~q〉 ∝

1
q2+ηu

(C.16)

Finally, it has been assumed that anharmonicities changes the equation 〈h2
n j〉 ∝

T
Eat

∑q
1
q4 ∝

T
Eat

L2 (where Eat is of the order of cohesive energy) in to

〈h2〉 ∝ L2ζ (C.17)
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The values of η ,ηu and ζ are similar to critical exponents in the theory of critical

phenomena. They are not independent.

ζ = 1−η/2,ηu = 2−2η (C.18)

The exponent ηu is positive if 0 < η < 1. This means that the interaction between

out-of- plane and in-plane phonons makes the former one harder and the latter one

softer. For a complete description of membrane theory, readers are highly recommended

to read chapter 9 of the standard textbook (Katsnelson 2012) and also the articles (Kat-

snelson and Fasolino 2012, Los et al. 2009).
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