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ABSTRACT 

Due to activities aimed at improving the socio-economic status and wellbeing of people, natural 

resources are exploited, and, as a result, environment has changed in terms of climate and land 

use. These changes have great influence on the local hydrologic cycle and hydrologic response 

of the catchment. In addition to climatic factors, the flow characteristics of a stream depend upon 

catchment characteristics such as topography, soil, geology and land use and land cover. The 

land use experiences rapid spatio-temporal changes that become one of the critical factors 

influencing the pattern of streamflow.  

 The major objective of the present thesis work was to analyze and investigate the 

interaction between hydrologic response and the land use/land cover (LU/LC) pattern in two 

contrasting catchments namely Netravati river basin, a humid catchment and Harangi catchment, 

a sub-humid catchment of Karnataka State, India. This research work was explicitly carried out 

to: a) perform LU/LC classification and identifying the driving factors using multi-date satellite 

images, b) prediction of future trends in LU/LC pattern using Land Change Modeler (LCM) and 

CA-Markov model, c) estimate Actual Evapotranspiration (AET) and Land Surface Temperature 

(LST) using satellite images, d) explore the applicability of the semi distributed model to 

estimate streamflow, e) explore the applicability of monthly rainfall-runoff polygon in explaining 

hydrological processes in humid and sub-humid catchments, and f) analyse the relationship 

between changes in hydrological response and LU/LC change pattern. Study areas selected for 

the present work: Netravati river basin and Harangi catchment. The Netravathi basin 

geographically lies between 75º 01′ E and 75º 46′ E longitude and 12º 29′ N and 13º 11′ N 

latitude with an area of 3312.74 sq. km. Harangi catchment geographically lies between 75
0
 38’ 

E and 75
0
 55’ E longitude and 12

0
 24’ N and 12

0
 40’ N latitude with an area of 417.54 sq. km.  

The study utilized LCM and CA-Markov models for the prediction of LU/LC for the years 

2010 and 2016 in Netravati river basin and 2013 and 2016 in Harangi catchment by considering 

LU/LC maps of 2005, 2007 and 2007, 2010 as base maps respectively. LCM and CA-Markov 

model predicted the LU/LC change by 2010 with an accuracy of 80.1% and 82.13%, respectively 

in Netravati river basin. An accuracy of 86.6% and 80% is obtained in Harangi catchment by 

using LCM and CA-Markov model respectively. The result of land change prediction for the 
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year 2016 by CA-Markov model in Netravati river basin shows a decrease in forest, fallow land 

and land with or without scrub land between 2010 and 2016, contributing to an increase in built-

up land and plantation. Predicted map of Harangi catchment for the year 2016 shows that the 

plantation is increasing from 175.77 to 220 sq.km area, but forest, fallow and wasteland are 

showing a decreasing trend. Then, the present study estimated AET by using Priestley Taylor 

method based on satellite data in Netravati and Harangi catchments. The Split Window (SW) 

algorithm was utilized for spatial mapping of LST. Result shows that AET has increased during 

the study period of 1997-2015. Since the AET estimation method is based on brightness 

temperature and fractional vegetation cover, the increase in LST and decrease in fractional 

vegetation cover has lead to increase in AET.   

The present research work discussed about calibration of continuous hydrological model 

to predict runoff volume in Netravati river basin. The result of simulation run for the calibration 

period shows that the model is underestimating peak flows during monsoon and overestimating 

low flows during summer. The Nash Sutcliffe Efficiency determined for calibration period is 

about 0.251. This indicates that this model which required 19 parameters seem to be data 

intensive and necessitated the development of simple methodology to estimate streamflow. 

Therefore, the study developed a simple methodology to study the hydrological response to 

changes in two contrasting catchments namely Netravati river basin and Harangi catchment by 

using rainfall-runoff polygon method. The methodology involved qualitative and quantitative 

interpretation of runoff coefficient and geometric properties of polygon in relationship with the 

catchment behavior. Netravati river basin is represented by the less steep and wider polygon 

indicates the fact that the catchment response to rainfall is variable in each month especially 

from June to September during all periods. Harangi catchment is characterized by more steep 

and narrow polygon implies the consistent variation of catchment response to rainfall pattern in 

each month especially from the end of June to the end of August during all the periods. The 

analysis concluded that the influence of LU/LC change on rainfall-runoff conversion mechanism 

is predominant in Netravati river basin when compared to Harangi catchment. This is clearly 

represented by wider polygon and smaller over all slope of polygon w.r.t x-axis.  

Keywords: hydrologic modeling, land use and land cover change, LCM, CA-Markov, AET, 

rainfall-runoff polygon 
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CHAPTER 1 

    INTRODUCTION 

1.1 PREFACE 

Water is the most essential natural resource for life next to air and is likely to become 

a scarce resource in many regions of the world. On the other hand, water can also 

constitute as a threat, for example, in the case of floods (Mauser and Bach 2009; 

Wijesekara et al. 2012; Ozturk et al. 2013). The strong connection between human 

and water makes it necessary in several practical applications to have the best 

knowledge as possible on specific hydrological processes at spatial and temporal scale 

of interest. This is essential to effectively plan, develop and manage the water 

resources, as well as to prevent its adverse effects (Lin et al. 2009; Tong et al. 2012). 

Global advances in the economy and standards of living have resulted in a growing 

dependency on water resources (Nandakumar and Mein, 1997; Legesse et al. 2003). 

In addition to climate change, land use change is one of the important human 

interventions altering the quality and quantity of both surface and ground water. The 

study of hydrological cycle and hydrological response of a catchment have become 

very complex due to complicated inter-relationship between various hydrological 

components such as precipitation, evaporation, transpiration, infiltration and runoff. 

Both climate and land use change have adverse implications on the natural hydrologic 

system in terms of variation in the runoff regime, evapotranspiration (ET), sub surface 

flow, infiltration etc.,  (Xu and Singh, 1998; Lorup et al. 1998; McColl and Aggett, 

2007). Combined with rainfall and runoff, ET controls the availability and distribution 

of water at the Earth's surface, and for this reason, is of significance to a number of 

water-related research and application areas. The spatial variations in ET from a 

heterogeneous catchment can be significantly large on account of differences in 

climate, vegetation and soil properties. Therefore to assess the natural hydrologic 

system, researchers have investigated the relationship between climate, land use and 

hydrological processes (Nandakumar and Mein, 1997; Bormann et al. 2009; Tang et  

al. 2011). 
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1.2 THE HYDROLOGIC CYCLE 

The hydrologic cycle describes the continuous movement and changes in the state of 

water between the earth and atmosphere. This cycle includes the processes illustrated 

in Figure 1.1: evapotranspiration (water going into the atmosphere), condensation 

(forming of clouds); precipitation (in various forms, such as rain, snow, sleet and 

hail), runoff (flow of rainwater on the earth’s surface and in surface water bodies) and 

percolation (water infiltrating into the earth to form and/or recharge groundwater 

bodies). The water movement from the earth’s surface to the atmosphere is supported 

by the solar radiation, while the water movement at and below the surface of the earth 

is mainly driven by gravity. The main effect of the hydrologic cycle is that of 

maintaining the heat balance of the earth, through moving and redistributing water 

masses (Chow et al. 1988).  

 

Figure 1.1 The hydrological cycle (Department of Natural Resource Ecology and 

Management" (NREM) at Iowa State University) 

Hydrology means the science that deals with the occurrence, circulation and 

distribution of water of the earth and earth’s atmosphere. It provides a knowledge of 

various phases of water as it passes from the atmosphere to the Earth and returns to 

the atmosphere (Subramanya 2008). In addition, it forms the basis for water resources 

assessment and management and the solution of practical problems relating to floods 

and droughts, erosion and sediment transport and water pollution (Daofeng et al. 

2004). Increasing stress on the available water resources in the search for improved 
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economy and well-being of people, leading to the pollution of surface water and 

groundwater, has highlighted the central role of hydrology in all water and 

environmental initiatives (Xu and Singh 1998). 

Hydrologic response of a watershed is highly complex due to heterogeneous 

distribution of various hydrologic components within the watershed. In addition to 

climatic factors, the flow characteristics of a stream depend upon catchment 

characteristics such as topography, soil, geology, land use/land cover (LU/LC) 

(Siriwardena et al. 2006, Isik et al. 2013). Over a period of time, topography, soil and 

geology remains more or less constant in a catchment. However, land use experiences 

rapid spatio-temporal changes, which becomes a critical factor influencing the pattern 

of streamflow (Lorup et al. 1998; Niehoff et al. 2002; Delgado et al. 2010). Response 

of these factors to runoff can be determined by modeling.  

1.3 HYDROLOGIC MODELS 

Due to increased need for water for various day to day activities and agricultural 

purpose, water resource management becomes a challenge for planners and policy 

makers (Costa et al. 2003; McColl and Aggett 2007; He and Hogue 2012). 

Hydrologic models have become increasingly important tools for the management of 

the water resources (Sarkar and Kumar 2012; Shirke et al. 2012). They are used for 

flow forecasting to support reservoir operation, for flood protection, in spillway 

design studies and for many other purposes. Runoff models are probably what most 

hydrologists spontaneously refer to when discussing hydrological models. The basic 

principle in hydrologic modeling is that the model is used to calculate stream flow 

based on meteorological data and catchment characteristics, which are available in a 

basin or in its vicinity (Lorup et al. 1998; Ye et al. 2013; Zhou et al. 2013). 

Hydrologic models have become an indispensable tool for the study of 

hydrological processes and the impact of modern anthropogenic factors on the 

hydrologic system. The broad classification of hydrologic models is as shown in 

Figure 1.2.  
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Figure 1.2 Classification of hydrologic models 

Hydrologic models can be classified into the following categories based on the 

presence of random variables, their distribution in space, and temporal variation 

(Chow et al. 1988): 

1. Deterministic models: Randomness is not considered; a given input always 

produces the same output. Therefore, these models can be used for 

forecasting. 

a) Deterministic lumped model: A lumped model is generally applied to a 

single point or a region without dimension for the simulation of various 

hydrological processes (Niel et al. 2003). The parameters used in the 

lumped model represent spatially averaged characteristics in a system. The 

conceptual parameterization in the models is simple and computationally 

efficient. 

b) Deterministic semi-distributed model: It divides the whole catchment 

into Hydrologic Response Units (HRUs) based on other variables in 

addition to land use and land cover, soil type and slope and simulates the 

various hydrological processes in each HRU.   

c) Deterministic distributed model: It considers the hydrological 

processes taking place at each grid and defines the model variables as 

functions of the space dimensions (Beven et al. 1980; Feyen et al. 2000). 
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Watershed-scale models can further be categorized on a spatial basis as 

lumped, semi-distributed or distributed models. The lumped modeling approach 

considers a watershed as a single unit for computations where the watershed 

parameters and variables are averaged over this unit (Niel et al. 2003; Magar and 

Jothiprakash, 2011; Cheng, 2011). The semi-distributed models partition the whole 

catchment into sub-basins or hydrologic response units (HRUs) (Daofeng et al. 2004). 

In contrast, the spatial heterogeneity is represented by grids in the case of distributed 

models. Compared to lumped models, semi-distributed and distributed models better 

account for the spatial variability of hydrologic processes, input, boundary conditions 

and watershed characteristics (Legesse et al. 2003; Thanapakpawin et al. 2006; Lin et 

al. 2008; McColl et al. 2007; Elfert and Bormann 2010).   

2. Stochastic models: The output of these models is at least partially random. 

Therefore, these models make statistical predictions. Stochastic models are 

classified as space independent or space correlated depending on whether 

random variables in space influence each other. 

The hydrological models can also be classified according to whether the 

hydrological processes are described as conceptual, empirical, or fully physically 

based (Figure 1.2). Empirical models such as Artificial Neural Networks (ANNs), 

Fuzzy Logic, Genetic Algorithm (GA) etc., are used to establish a relationship 

between rainfall and runoff to predict runoff in different catchments (Halff et al. 1993; 

Shirke et al. 2012; Chen et al. 2013). Empirical models contain no physical 

transformation function to relate input to output; such models usually build a 

relationship between input and output based on hydro-meteorological data (Sudheer et 

al. 2002; Sarkar and Kumar, 2012). ANN models are capable of modeling non-linear 

relationships between inputs and outputs. Thus, daily runoff forecasting using ANN 

models has become quite important for effective planning and management of water 

resources (Shirke et al. 2012). Ondieki (1997) has investigated four catchments 

ranging from semi-humid to semi-arid catchments to evaluate the water resource 

potential of non-perennial streams. This study has concluded that rainfall would have 

some relationship with runoff as well as suspended sediment load.  However, the 

rainfall alone could not explain the runoff variance efficiently, which can be attributed 
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to antecedent moisture content, rainfall intensity and physical catchment 

characteristics such as geology, soil, slope and land use and land cover conditions 

(Costa et al. 2003). The major limitation of empirical models is the absence of explicit 

consideration of physical processes such as sub surface flow, surface runoff and 

infiltration in the catchment. In addition, these numerical models are not capable of 

modeling the influence of change in vegetation on various hydrological components.    

Conceptual rainfall-runoff models are simplifications of the complex 

processes of runoff  generation in a catchment. The particular components of these 

models often have to be described by empirical functions based on the observation of 

certain processes. Viviroli et al. (2009) introduces a semi-distributed hydrological 

modeling system PREecipitation-Runoff-EVApotranspiration HRU Model 

(PREVAH) that implements a conceptual process-oriented approach and has been 

developed especially to suit conditions in mountainous environments with their highly 

variable environmental and climatic conditions. Also, a built-in automatic calibration 

model significantly reduces the amount of user intervention that is usually required 

for tuning the model parameters. Monte Carlo model is the one, which can be used to 

obtain estimates of parameter uncertainties. Valent et al. (2012) have used lumped 

conceptual model, Hron rainfall runoff model which is a modified version of 

Hydrologiska Bryåns Vattenbalansavdelning (HBV) model to predict runoff and also 

to test the calibration procedure. Results suggested that the model has uncertainties 

with respect to conceptualization of complex runoff generation process and the 

quality of input data (Tian et al. 2013).  Parajka et al. (2006) have utilized 

scatterometer data in a conceptual semi-distributed model to study the soil moisture 

dynamics which alter the hydrological processes.  

In contrast, the physically based distributed models are able to explicitly 

represent the spatial variability of the important land surface characteristics such as 

topographic elevation, slope, aspect, vegetation, soil as well as climatic parameters 

including precipitation, temperature and ET distribution (Grayson, 1992; Wijesekara 

et al. 2012; Niehoff et al. 2002; Akbari and Singh, 2012). Shen and Phanikumar 

(2010) utilized the Process-based Adaptive Watershed Simulator (PAWS) to evaluate 

the integrated hydrological response of the surface–subsurface system using a novel 
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non-iterative method that couples runoff and groundwater flow to vadose zone 

processes approximating the 3D Richards equation. The model solves the governing 

equations for the major hydrological processes efficiently so that large-scale 

applications become relevant. The model performance may deteriorate in catchments 

dominated by perched water table dynamics because the model assumes that soil 

moisture does not flow laterally in the unsaturated part of the soil column. 

1.4 HYDROLOGIC RESPONSE TO LU/LC CHANGE DYNAMICS 

Recent studies have demonstrated the potential of an integrated modeling approach to 

evaluate the impact of land use changes on water resources (McColl and Aggette, 

2007; Wijesekara et al., 2012). Choi and Deal (2008) combined a semi-distributed 

hydrologic model and a dynamic urban growth model (LEAMluc) for examining the 

implications of urbanization on the hydrological processes in the basin. They found 

that the land use scenarios generated by the model show noticeable changes in surface 

flow in some areas as a result of very high population growth. He and Hogue (2012) 

have used a semi-distributed model to evaluate the impact of future urbanization on 

flow regimes and found that increasing development increases the total annual runoff 

and wet season flows. Integrating land use models with a precipitation-runoff model 

provides quantitative information about the effects of land use intensities and 

strategies on hydrological output. Different land uses in different sub-watersheds 

yield significantly different hydrologic output (Lin et al., 2009).  

1.5 ANALYSIS OF HYDROLOGIC RESPONSE CHARACTERISTICS 

THROUGH RUNOFF COEFFICIENT    

Any water resources engineering structure design necessitates accurate estimation of 

surface water yield and peak flow that is usually calculated based on runoff 

coefficient and precipitation characteristics. The runoff coefficient in any watershed is 

influenced by many concerned factors including precipitation intensity and duration, 

Land use/Land cover (LU/LC), geology, infiltration rate, soil type and topography. In 

recent past, runoff values are highly modified in urbanized catchments due to 

anthropogenic effects (Kadioglu and Sen 2001). Rodriguez-Blanco et al. (2012) 

considered a series of rainfall-runoff events to analyse the principle hydrological 

patterns and identified the factors, which impel the hydrological response. Their study 
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indicates that water yield mainly depends on antecedent moisture condition in 

addition to the rainfall amount. In addition, the hydrographs with quick increase and 

slow recession indicates that subsurface flow is probably the prevailing process 

effecting the runoff response of the catchment to rainfall events. However, hydrologic 

response of a catchment is most commonly expressed through runoff coefficient. 

Since it represent the amount of rainfall becomes runoff in relationship with 

catchment physical properties (Nazir et al. 2015). In any water resources design, the 

runoff coefficient value is chosen instinctively from the pre-defined table based on the 

personal judgement rather than hard data. Nevertheless, the runoff coefficient 

estimated in any river basin varies widely from storm to storm depending on the 

antecedent moisture condition (Kadioglu and Sen 2001; Rodriguez-Blanco et al. 

2012). Furthermore, the runoff coefficient value varies temporally with changes in 

rainfall of that particular area. The increase in percentage of imperviousness may 

increase the value of runoff coefficient. This is because of the decrease in the amount 

of infiltration and storage due to imperviousness. On the other hand, the vegetation 

rich area may produce high surface runoff due to saturated watershed storage 

conditions (Nazir et al. 2015). Goldshleger et al. (2009) made an effort to generalize 

the relationship between percentage of impervious area and storm runoff coefficient 

that reflects the global trends of expansion and densification of urban zones; wherein 

the surface imperviousness have been derived from RS data including aerial 

photographs.  

1.6 ROLE OF REMOTE SENSING IN HYDROLOGIC MODELING 

Physically based hydrologic models are an important evolutionary step in representing 

hydrological processes using spatially distributed data. Better representation of 

physical processes in space and time needs the availability of digital products (e.g., 

distributions of elevation, soil, vegetation) and remotely sensed data (e.g., soil 

moisture, vegetation), along with new technologies for measuring temporal and 

spatial variability in precipitation (Daofeng et al 2004; Ruelland et al. 2008). The 

distributed hydrological models need spatially variable rainfall and temperature data, 

which now can be obtained from Tropical Rainfall Measuring Mission (TRMM) 

precipitation products, Advanced Very High Resolution Radiometer (AVHRR), 
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Moderate Resolution Imaging Spectroradiometer (MODIS), and Landsat images with 

high spatial and temporal resolution (Haigen et al. 2015). For topography-based 

hydrologic models, digital elevation models (DEMs), Shuttle Radar Topography 

Mission (SRTM), and ASTER are routinely used to device the land-surface 

topography, which contains crucial information about the surface water flow and the 

interaction of surface water and ground water (Khan et al. 2013). With the 

development of remote sensing and satellite technology, the satellite data can be used 

to derive a variety of surface parameters such as radiant surface temperature and 

vegetation fraction, and their spatial and temporal comparison. Also, these variables 

can be used for regional hydrologic modeling of important hydrological processes. 

One of the important hydrologic model inputs such as land use and land cover can be 

obtained from Landsat TM images, LISS-III and LISS-IV images (Bhagyanagar et al. 

2012). The recent missions of European Space Agency included Sentinel series 

operational satellites with an aim to meet requirements of earth observation. These 

satellites are capable of providing data for various applications including sea-surface 

topography, sea-surface height and significant wave height, ocean and land-surface 

temperature, ocean and land-surface colour, sea and land ice topography, sea-water 

quality and pollution monitoring, inland water monitoring, climate monitoring and 

modelling, land-use change monitoring, fire detection, weather forecasting, and 

measuring earth's thermal radiation for atmospheric applications 

(https://earth.esa.int/web/guest/missions/esa-operational-eo-missions).  

1.7 SCOPE OF THE RESEARCH WORK 

The human activities are the major drivers leading to dynamic changes in land use and 

climate, which in turn made it complex to ascertain the hydrologic response, since the 

hydrologic components are distributed heterogeneously. In order to model the 

complex system many models have been developed which began with lumped 

conceptual and extended up to physically based distributed models. Among them, the 

physically based models are capable of representing the physical characteristics of 

watershed in an explicit way. In contrast, the semi-distributed and fully-distributed 

models are efficient in representing the spatial heterogeneity of the watershed. 

However, physically based models are data demanding and therefore necessitates the 

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions
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development of simple methodology with limited availability of data to study the 

hydrologic response characteristics of a catchment.  

As the earth’s environment is undergoing rapid change, there is a necessity to analyse 

and predict the impact of plausible future changes in vegetation pattern and climate on 

hydrological response. Most of the previous studies have evaluated the impact of land 

use change on hydrologic response by considering catchments in a single climatic 

condition. However, it is equally important to analyse the variation in the hydrologic 

response in catchments with different land use characteristics and climatic conditions. 

Therefore, the catchment comparison studies mainly focus on seasonality and 

variability in hydrologic responses of different geo-climatic catchments.  

1.8 STUDY OBJECTIVES  

With the aim of analysing and evaluating the interaction between hydrologic response 

and the land use pattern in contrasting geo-climatic settings, the following objectives 

are formulated for this study:     

1. To perform LU/LC classification and identifying the driving factors for LU/LC 

changes in two study catchments using multi date satellite images 

2. To predict the future trends in LU/LC pattern using Land Change Modeler 

(LCM) and CA-Markov model and to validate them 

3. To estimate Actual Evapotranspiration (AET) and Land Surface Temperature 

(LST) using satellite images 

4. To explore the applicability of the semi distributed model to estimate stream 

flow in Netravati river basin 

5. To explore the applicability of monthly rainfall-runoff polygon in explaining 

hydrological processes in contrasting catchments in humid and sub-humid 

catchments 

6. To analyse the relationship between changes in hydrological response and 

LU/LC change pattern 
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1.9 STUDY AREAS 

The study to accomplish the above-mentioned objectives is conducted in the 

following two catchments located in different hydro climatic regions of Karnataka 

State, India: 

1. Netravati river basin (Humid climate) 

2. Harangi catchment (Sub-humid climate) 

1.9.1 Netravati river basin 

The Netravati River originates at Bellaraya Durga in the Dakshina Kannada district and 

flows westward up to its confluence with the Arabian Sea. The study area geographically 

lies between 75
0
 01’ E and 75

0
 46’ E longitude and 12

0 
29’ N and 13

0
 11’ N latitude, and 

covers an area of 3288.3 km
2
 (Figure 1.3 a).  This river basin consists of many sub basins 

namely, Kumaradhara, Kallaji hole, Gowri hole, Belthangadi hole, Netravati hole, Neriya 

hole, and Shisla hole. The heavy rainfall in the area supports luxurious growth of 

vegetation. The upper portion of the basin covered with dense timber forest of evergreen 

trees with or without scrub, at varying growth stages from small trees to fully grown 

forest, lies in the Western Ghats. The southwest monsoon period is the coolest part of the 

year with the mean daily temperature below 20
0
C. The mean daily temperature during the 

months March to May is 35
0
C. The weather is highly humid all through the year and 

particularly, during the southwest monsoon when mean humidity exceeds 85%. The 

highest and lowest reliefs are formed at 1463 m and 3 m, respectively, above the mean 

sea level. The annual rainfall over the area varies between 1300 mm and 5700 mm. The 

mean annual rainfall is 3621.44 mm. 
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Figure 1.3 a) Netravati river basin and b) Harangi catchment 

1.9.2 Harangi catchment  

Harangi river is a major tributary of river Cauvery and has its origin in 

Pushpagiri Hills, Coorg District situated on its western part and separated from 

Bhagamandala (the source of Cauvery) by a high ridge. The study area geographically 

lies between 75
0
 38’ E and 75

0
 55’ E longitude and 12

0
 24’ N and 12

0
 40’ N latitude, 

with an area of 417.54 km
2
 (Figure 1.3 b). Harangi catchment is blessed with 

bountiful rainfall in the upper reaches and has important tributaries like Madapura and 

Hotti hole. Heavy rainfall, steep valleys and absence of any storage reservoirs has led 

to the practice of irrigation in patches in some valleys mostly depending on rains 

during Southwest monsoon. The climate is characterized by high humidity and mild 

temperature. The temperature generally varies from 10
0 

C to 12.8
0 

C in December to 

about 32
0
 C to 35

0
 C in the summer months of April and May. The highest and lowest 

reliefs are formed at 1525 m and 884 m respectively above the mean sea level. The 

mean annual rainfall is 2332.59 mm. 
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1.10 ORGANIZATION OF THESIS 

The thesis comprises of five chapters and list of references. A brief description of the 

each chapter is presented here. 

Chapter 1 introduces the problem being considered for the study, describes the 

present state-of-the-art knowledge, scope of the research work, the 

objectives of the study and details of study areas. 

Chapter 2 deals with the review of literature regarding: i) models to analyse LU/LC 

change, ii) the effect of LU/LC change on stream flow pattern and other 

hydrologic components such as infiltration, sub surface flow, and 

evapotranspiration, iii) model comparison and performance evaluation, iv) 

the importance of satellite based evapotranspiration estimation v) 

application of monthly rainfall-runoff polygons in explaining hydrological 

processes, ending with vi) closure. 

Chapter 3 describes the detailed methodology adopted to accomplish the research 

objectives in two catchments namely, Netravati river basin (humid 

climate) and Harangi catchment (sub-humid climate) located in different 

hydroclimatic regions of Karnataka State, India. 

Chapter 4 presents the results obtained from the study and the elaborative discussion 

on the results obtained.  

Chapter 5 lists out conclusions from the study and discusses scope for future research 

on the topic. 
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CHAPTER 2 

    REVIEW OF LITERATURE 

2.1 GENERAL  

Hydrological processes are complex in nature. Studying their complexity is the 

fundamental step in various hydrological applications such as flood prediction, hydro 

power estimation, sewer design, water supply network design and irrigation projects 

(Mishra et al. 2005; Warburton et al. 2012). The spatial and temporal variability of 

hydrological processes has its significant dependency on rainfall pattern, and physical 

and hydraulic properties of the watershed. Hydrological models provide a better 

understanding of outcome of processes by evaluating the response of watershed to 

various inputs such as rainfall, evapotranspiration and watershed properties etc., 

(Tong et al. 2012). Few studies have studied the applicability of numerical, lumped 

and semi distributed models in the prediction of stream flow, which is necessary to 

optimize water availability for various applications such as reservoirs and dams 

design and drinking water supply. Li et al. (2009); Choi and Deal (2008); Mao and 

Cherkauer (2009) assessed the effect of change in land use and landscape on 

hydrologic response of catchment and inferred that the spatial and temporal variability 

of land use pattern has significant influence on hydrological processes in the 

catchment. However, analyzing the LU/LC change and identifying the driving factors 

is very complex. Using multi-temporal land use information, numerous models have 

been proposed to explore the process of land use and land cover change (LUCC) 

(Niehoff et al. 2002; Jain and Chaudhry 2003; Zak et al. 2008; Yu et al. 2011). 

Based on the previous studies, this chapter presents: i) a brief description of 

models used to analyse LU/LC change, ii) a review of available literature pertaining 

to the effect of LU/LC change on stream flow pattern and other hydrologic 

components such as infiltration, sub surface flow, and evapotranspiration, iii) a brief 

discussion on model comparison and performance evaluation, iv) importance of 

satellite based evapotranspiration estimation v) application of monthly rainfall-runoff 

polygons in explaining hydrological processes, ending with vi) closure.         
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2.2 DIFFERENT APPROACHES FOR DETECTION OF LAND USE AND 

LAND COVER CHANGES  

LU/LC change is one among the prominent human interventions altering the earth’s 

environment. The study of causes, processes and effects of LUCC is one of the 

important research topics of landscape ecology (Lee et al. 2008; Liu et al. 2009). 

Models that study land use change facilitate the analyse the causes and consequences 

of land use changes in order to better ascertain the functioning of the land use system 

and to help in land use planning and policy. Furthermore, models can be used for the 

exploration of future land use changes under different scenarios (Verburg et al. 2004). 

Modeling land-use change as a function of biophysical and socio-economic driving 

factors is one technique for unraveling the complex relationships in land-use change 

systems and provides insights into the extent and location of land-use change 

(Aspinall 2004).  

Driving factors are the forces that cause changes in the land use over a period 

of time at a specific location. The driving factors form a complex system of 

dependencies, interactions, and feedback loops and they effect at several temporal and 

spatial levels. It is therefore difficult to analyze and represent them comprehensively. 

Due to the human–environment relationship, for ascertaining the process behind the 

change in landscape and its causes, it is necessary to study the interrelationship 

between human and nature (YueChen and ChunYang 2008). Evaluating the driving 

forces and forecasting future trend requires a thorough understanding of methods and 

critical interpretation of socio-economic and environmental data. The studies by 

Campbell et al. 2005; Liu et al. 2009; Yu et al. 2011; Wang et al. 2011 classified four 

types of driving factors such as economic, biophysical, institutional/policy and 

social/cultural which alter the land use pattern. The economic driving forces include 

market forces, trade policy and agreements, economic policy, land use policy, and 

land tenure policy. Biophysical factor includes rainfall, run-off, and topography. 

Institutional/policy driving forces include national and international policies to 

conserve biodiversity and natural climate. Social/cultural driving forces include 

urbanization, immigration, population dynamics, and cultural change. Usually the 

change in each land use type depends on neighboring land use type as well as 
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population growth and economic growth trend (Yu et al. 2011). According to Lin et 

al. (2009), the factors that drive land-use change in any watershed include the altitude, 

slope, distance from river, soil erosion, soil drainage, distance from major roads, 

distance from a built-up area and population density. Wang et al. (2011) considered 

natural and socio-economic driving factors to simulate the land use change dynamics. 

Natural factors are relatively stable and have cumulative effect on regional 

environment, whereas socio-economic factors are highly variable which have a direct 

relationship with the human activities. However, it is necessary to consider the 

different policies and scenarios to forecast future trend in land use change (Liu et al. 

2009; Wang et al. 2011; Yu et al. 2011).  

2.2.1 Sources of Data and Pre-processing 

The study of the change in pattern of land use over a period of time and identification 

of driving factors requires spatial and non-spatial data. Hence, inputs to the land use 

change models are derived from variety of sources including remote sensing, field 

survey and other mappings. Many ecosystem processes are difficult to monitor 

directly. The remote sensing data is one of the efficient sources which can provide 

spatial and temporal data (Liu et al. 2009). Land use change takes place in any spatio-

temporal manner. Identification of causes for change involves the collection of precise 

and valid data comprising spatial and non-spatial information (Jing-an et al. 2006).  

Satellite data is available at various resolutions ranging from coarser resolution (MSS-

79m, TM-30m, LISS III-23.5m) to finer resolution (LISS IV-5.8m, Cartosat I-2.5m 

and Cartosat II-less than 1m). Different resolution satellite images are used in some 

applications in order to compensate the inconsistency in data (Yu et al. 2011). 

Generally raw satellite images do not have spatial reference and sometimes 

radiometric errors will be induced. Hence, the images will have to be geometrically 

corrected and geocoded to the respective coordinate system (eg. Transverse Mercator 

coordinate system, Geographic Coordinate System etc.,) using topographic maps. 

More than 50 Ground Control Points (GCPs) are necessary to accomplish geo-

referencing process (Liu et al. 2009; Yu et al. 2011).  

Non-spatial data has been collected through historic data statistics and field 

survey. As these data are collected manually, errors and gaps will be induced which 
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reduces the data consistency and reliability (Jing-an et al. 2006). Due to the 

developmental activities in the area, there may be a change in administrative 

boundary. Hence, the social and economical data collected for a period is inconsistent. 

The interpolation techniques have been used to create spatially and temporally 

consistent data (Yu et al. 2011). The integration of remote sensing data with non 

spatial data is necessary to model the land use change and also to study the impacts of 

socio-economic, natural, and cultural factors. 

2.2.2 Modeling the Land Use Change Dynamics 

The land use change models can be broadly categorized as spatially explicit and 

aspatial models. In contrast to spatial optimization models, empirical–statistical 

models have been developed to identify the factors that influence land-use changes, 

and predict future land-use change patterns upon changes in driving factors as 

specified in scenarios. CLUE-S (Conversion of Land Use and its Effects at a Small 

regional extent) model is one of the well known examples of empirical–statistical 

models (Lin et al. 2009; Verburg et al. 2006). Many geographers and economists have 

analysed and predicted the location of LUCCs using empirical-statistical models 

(Verburg et al. 1999; Veldkamp et al. 2001; Yu et al. 2011; Lin et al. 2008), and rule 

based models especially cellular automata (YueChen and ChunYang 2008). The 

selection of models also depends on type of influencing factors: spatial and non-

spatial factors. Many existing models are incapable of handling both spatial and non-

spatial factors in the process of modeling the land use change (Lin et al. 2008; 

Verburg et al. 2006). Among spatial and aspatial models, Yu et al. (2011) have 

emphasized only on aspatial model for two reasons: first is that for ascertaining the 

process of land conversion, it is sufficient to determine the quantity and rate of LUCC 

but not their spatial location. Second, the LUCC process is very complex as it depends 

upon several driving factors and choice of a particular land depends on the interest of 

users. And so, it is difficult to develop a rule based spatially explicit model to predict 

the future location of LUCC. 

It is true that all existing simulation models are not capable of taking the 

complexity of both macro-driving factors and micro spatial pattern in LUCC (Verburg 

el al. 2006; Lin et al. 2008; Yu et al. 2011; Changhong et al. 2011). There are mainly 
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two types of Dynamics model: top-down dynamics model and bottom-up dynamics 

model. The top-down model handles the macro drivers, whereas bottom-up model 

reflects the micro spatial pattern. System Dynamics model (SD) and Artificial Neural 

Network (ANN) come under top-down model, Cellular Automata (CA) model is a 

representative type of bottom-up approach (YueChen and ChunYang 2008; Yu et al. 

2011). SD describes the interrelationship between the rate of change of input variables 

and different land use types (YueChen and ChunYang 2008; Zheng et al. 2012). ANN 

is based on the principle of neural system and uses nonlinear functions. Therefore it is 

capable of modeling nonlinear complex systems such as land use and land cover 

change. Usually ANN was extensively used in classification applications. Also, with 

the advancement in research, ANN is gradually applied to simulation studies, as it can 

model nonlinear complexities (YueChen and ChunYang 2008). CA model is designed 

to simulate the complicate relationship among the micro spatial pattern of land use 

change. Hence, bottom-up approach is an efficient method to study the complexity in 

the spatial automatic changes (YueChen and ChunYang 2008; Wang et al. 2011). 

Wang et al. (2011) utilized the advantages of both top-down and bottom-up 

approaches by integrating three models such as SD model, ANN and CA. The 

integrated models are thus capable of analyzing both macro driving factors and micro 

spatial pattern change. 

Verburg et al. (1999) had taken up a study to assess the short term LUCC and 

its ecological consequences using CLUE-S model. In the CLUE-S model, specific 

land use conversion elasticity has been assigned to each land use type based on expert 

knowledge and observed behavior in the recent past (Verburg et al. 2001; Lin et al. 

2008; Liu et al. 2009; Zheng et al. 2012). CLUE-S is suitable for spatially explicit and 

multi-scale simulation of land use change under certain assumptions of possible future 

developments, defined as scenarios. However, the CLUE-S model is not meant for 

predictions, but rather gives possible spatial outcomes of feasible land use 

developments (Verburg et al. 1999). SD model is suitable for studying the dynamic 

behavior of complex system over a period of time. However, it could not express the 

dynamics on a spatial scale. SD model can express ‘when’ and ‘how much’ change 

has taken place, whereas CLUE-S model can answer ‘where’ the change has been 

occurred. To bridge the gap between temporal land demand and spatial supply, Zheng 
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et al. (2012) have coupled SD and CLUE-S models to simulate future landscape 

pattern.  

In a number of models, temporal dynamics are taken into account using initial 

land use as a criterion for the resultant changes. The MameLuke settlement model 

aims at modeling the dynamics between demography and ethnic identity in a spatially 

and temporally explicit way. This model allows for stakeholder integration in 

formulating rules based on real actions (Huigen 2004). In addition, Cellular automata 

do this explicitly by using decision rules that determine the conversion probability 

(Hong et al. 2011). Zak et al. (2008) suggested that no single factor is capable of 

bringing change in land use and highlighted the importance of considering the 

nonlinear effects of combining climatic, socio economic and technology based 

factors. In contrast to spatial optimization models, empirical-statistical models such as 

equation based models (EBMs) have been designed to predict the future trend in the 

pattern of land use based on specified scenarios (Lin et al. 2008).  One deficiency in 

EBMs is that they cannot deal with non-mechanistic, nonlinear variation of the 

variables and their relationships. A multi actor modeling (MAM) based on agent 

based modeling (ABM) framework has been used to overcome the difficulties in 

EBM. ABM is a conceptual model that has rules (agents) (Ralha et al. 2013).  

2.3 HYDROLOGICAL MODELS 

Hydrological processes at the catchment scale are not stationary as the changes taking 

place in the catchment are highly variable in nature (Mauser and Bach, 2009; 

Cornelissen et al. 2013). Various models are available to solve the hydrological 

problems.  Rainfall-Runoff (RR) prediction is one of the most complicated processes 

in environmental modeling. This is due to the spatial and temporal variability of 

topographical characteristics, rainfall patterns, and the number of parameters to be 

derived during the calibration (Nandakumar and Mein 1997).  

2.3.1 Functionality and Complexity of Models 

While choosing a model for specific application, it is important to consider its 

applicability to simulate the impact of land use and climate change and also prediction 

performance (Schreider et al. 2002; Ty et al. 2012; Abushandi and Merkel 2013). The 
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functionality and complexity of the models are the major criteria in model selection. 

The functionality of a model depends on the hydrologic process representation, the 

equations adopted to simulate these processes and model discretization (Xu and 

Singh, 1998; Hogue et al. 2006). Whereas, complexity of a model comprises of 

estimated data, resources, time and cost that are required to parameterize and calibrate 

a model, as well as the professional judgment and experience required to operate these 

models (Verma et al. 2010; Shen and Phanikumar 2010).  

The descriptions of several widely-used hydrological models are provided in 

Table 2.1. These models can simulate hydrologic processes such as, i) Soil-

Vegetation-Atmosphere Transfer (SVAT) processes: canopy rain interception and 

evaporation, stem flow, canopy snow interception, snowmelt, vegetation transpiration 

and soil evaporation; ii) Soil moisture storage and runoff generation processes: 

infiltration, depression storage, subsurface runoff, Horton (infiltration excess) 

overland flow; iii) channel routing; and iv) other processes: groundwater flow, glacier 

melt, lakes, wetlands (Post and Jones 2001; Thanapakpawin et al. 2006; Jiang et al. 

2007). The equations adopted to simulate these processes vary between models. 

Empirical approaches are based on experimentally derived simple relationships such 

as linear regressions. Empirical methods for calculating evaporation include radiation-

based equations (e.g., Priestley-Taylor) (Wu and Johnston 2007) and snow melt 

phenomena using degree-day method, whereby the rate of melting increases as the air 

temperature increases (Wijesekara et al. 2012). Whereas, the analytical model use 

simplified assumptions to derive solutions for the governing equations for 

conservation of mass, momentum, and/or energy. Examples include the Green-Ampt 

equation, which describes the infiltration of rainfall or snowmelt into the subsurface 

(Li et al. 2009). In physically-based models, mass transfer, momentum and energy are 

simulated using partial differential equations which are solved by various numerical 

methods such as the Saint-Venant equations for surface flow (Kim et al. 2012), the 

Richards equation for unsaturated zone flow (Elfert and Bormann 2010), and the 

Penman-Monteith equation for evapotranspiration which is recommended for 

calculating reference evapotranspiration by the Food and Agricultural Organization 

(FAO) (Mackay 2001; Wu and Johnston 2007; Mao and Cherkauer 2009; Cornelissen 

et al. 2013). In contrast to empirical and analytical models, the physically based 
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models are characterized by higher intrinsic accuracy for predicting the effect of land 

use disturbances or climate change. However, these models are quite data intensive 

(Shen and Phanikumar 2010). 

The functionality of a model also depends on the model’s ability to spatially 

discretize the watershed based on soil and vegetation (Wooldridge et al. 2001; He and 

Hogue 2012). The purpose of discretizing a watershed into different units is to 

account for the spatial variability and pathways of water movement and to describe 

geologic and land cover variability and the effects of slope and aspect on hydrologic 

response (Wu and Johnston 2007; Chien et al. 2013). Apart from spatial 

discretization, the time step at which model simulations are performed (i.e., temporal 

discretization) is also important. Some models can only run at a specific time interval 

(e.g., sub-daily, daily or monthly). Time discretization may affect the ability of a 

model to predict the output. In addition, temporal discretization has important 

implications such as data availability and preparation (model complexity) (Chien et al. 

2013). 

The complexity of a model is equally important while evaluating the ability of 

the models to simulate the desired land use and climate change scenarios. In many 

applications, modelers face data scarcity problems which lead to the selection of low 

complexity lumped and/or conceptual models. However, when more detailed results 

are needed, a fully distributed and/or physically based approach would be required 

and it may be necessary to collect the various data to run the model (Elfert and 

Bormann 2010). The low-complexity models are typically characterized by modest 

requirements regarding meteorological data (e.g., monthly temperature and 

precipitation data) and low input data requirements, whilst the medium-complexity 

models involve higher requirement of meteorological data (e.g., daily temperature and 

precipitation data) and medium model input requirements. The highly-complex 

models, on the other hand require more frequent meteorological data (e.g., hourly to 

daily temperature and precipitation data) and very high model input requirements 

(Chien et al. 2013; Niu and Sivakumar 2013). The set of models presented in Table 1 

are of high complexity, since these models require minimum 5 to 10 years of input 

datasets for the calibration and validation. These models require more simulation time 
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period, because of semi-distributed or distributed based watershed discretization. For 

example, HEC-HMS model performs continuous simulation based on soil moisture 

and linear reservoir volume accounting model, which requires 10-12 model 

parameters to represent surface and sub-surface hydrological processes. This requires 

more number of input data to estimate these parameters, which makes the model 

complex (Verma et al. 2010).   
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Table 2.1 Popular Hydrologic models and methods of computing their inputs 

Model Main components Evapo-transpiration Overland flow Subsurface flow Spatial scale 

HEC-HMS 

[Verma et al. 

2010] 

Precipitation, Losses, 

Baseflow, Runoff transformation 

and Routing 

 

Priestley-Taylor 

CN, kinematic wave 

Equations, Soil Moisture 

Accounting Model 

Linear reservoir 

volume accounting 

model, Exponential 

recession model 

Semi-

distributed 

MIKE SHE 

[Wijesekara et al. 

2012] 

Interception, Overland/ 

Channel flow, Unsaturated/ 

Saturated zone, Snowmelt; 

Aquifer/ rivers exchange, 

Advection/dispersion 

of solutes, Plant growth, soil 

erosion and irrigation 

Based on canopy storage 

and soil evaporation 

2-D diffusive wave 

equations (St. Venant 

equations) 

3-D groundwater flow 

(Green Ampt 

infiltration 

Method) 

Distributed 

SWAT [Wu and 

Johnston, 2007] 

Hydrology, Weather, 

Sedimentation, Soil temperature 

and 

Penman–Monteith, 

Hargreaves, Priestley-

Taylor 

CN method Lateral 

subsurface 

flow/ 

Semi-

distributed 
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properties, Crop growth, 

Nutrients, Pesticides, 

Agricultural 

management and Channel and 

Reservoir routing 

ground 

flow (Green and Ampt 

Equation) 

WaSiM [Elfert 

and Bormann, 

2010] 

Evapotranspiration, Soil module, 

Infiltration, Overland flow, 

Interflow, Base flow Routing 

Penman–Monteith Horton overland flow Green and Ampt 

Equation 

Distributed 

DHSVM 

[Thanapakpawin 

et al. 2006] 

Surface and subsurface flow, 

Soil moisture, Snow cover, 

Runoff and Evapotranspiration 

Penman–Monteith 

equation 

Saturation excess and 

infiltration excess 

mechanisms 

Saturated subsurface 

flow 

Distributed 

Variable 

Infiltration 

Capacity (VIC) 

model [Mao and 

Cherkauer, 2009] 

Infiltration, Runoff, 

Baseflow processes, 

Evapotranspiration. 

Penman–Monteith 

equation 

Soil property based 

surface flow simulation 

Variable infiltration 

capacity curve 

Distributed 
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PAWS 

[Shen and 

Phanikumar, 

2010] 

Overland flow, Snowpack, Soil 

moisture, Groundwater flow 

and Stream flow 

Penman Monteith + 

Root extraction 

Manning’s formula + 

Kinematic wave 

formulation + Coupled 

to Richards equation 

Green and Ampt 

equation 

Distributed 
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2.3.2 Application of Hydrologic Models to Study the Impact of LUCC  

The water and energy balances are significantly influenced by land cover pattern via 

its effect on transpiration, interception, evaporation and infiltration (Ozturk et al. 

2013; Nandakumar and Mein 1997; Mao and Cherkauer 2009; Delgado et al. 2010). 

The transformation of earth’s land surface has many consequences for biophysical 

and ecological system in terms of urban heat islands, alteration in stream flow pattern, 

global atmospheric circulation and extinction of living species (Schreider et al. 2002; 

Yu et al. 2011). The rapid increase in population has led to change in land use in 

terms of deforestation aimed at improving agricultural production (Lorup et al. 1998). 

In a number of semi-arid regions, this has resulted in land degradation due to soil 

erosion, reduced productivity and drought (Ondieki 1997; Lorup et al. 1998; Legesse 

2003; He and Hogue 2012). In the upper Midwestern United States, the hydrology is 

effected by human activities through conversion of forest and prairie grasslands to 

agricultural lands (Mao and Cherkauer 2009). Jing and Ross (2015) assessed the 

possible relationship between LUCC and streamflow due to mining activities by using 

Hydrological Simulation Program—Fortran (HSPF) model. The study showed that the 

mining affected basins experienced tremendous increase in streamflow; necessitating 

reclamation schemes to improve the hydrological condition of the basin.  

The heterogeneous distribution of various hydrologic components made it 

difficult to study the hydrologic response to changes (Siriwardena et al. 2006; 

Delgado et al. 2010; Niu and Sivakumar 2013). In recent years, many researchers 

have investigated the relationship between land use change and hydrologic response 

in catchments (Ozturk et al. 2013; Nandakumar and Mein 1997; Mao and Cherkauer 

2009; Ondieki 1996; Lorup et al. 1998; Legesse et al. 2003; He and Hogue 2012; Niel 

et al. 2003; Isik et al. 2013). The methods used are lumped, distributed, conceptual or 

physical models. Lorup et al. (1998) have combined a statistical method with 

hydrological modeling i.e., Nedbor-Afstromnings Model (NAM), a lumped 

conceptual model in order to distinguish between the effects of climate variability and 

LULC change on runoff through studying six semi-arid catchments. As model gave 

reasonably good performance, the difference between simulated and observed flow 
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was considered to be a key test variable to assess the impact of land use change on 

catchment runoff.  

While analyzing the effect of vegetation pattern, one should consider not only 

the percentage of different land use categories, but also the variation in the 

characteristics of specific land use class, e.g., type of crop and other management 

aspects (Lorup et al. 1998; Warburton et al. 2012). Thanapakpawin et al. (2006) 

utilized the Distributed Hydrology-Soil Vegetation Model (DHSVM), a spatially 

explicit landscape/hydrology model that considers spatial heterogeneity of the 

watershed to simulate forest-crop expansion and crop to forest reverse expansion 

scenario based on land use transition during the period 1989-2000. They found that 

the expansion of crop fields in high land zone led to slightly higher annual and wet 

season water yields compared to similar expansion in lowland- midland zone.  

A better knowledge of basin hydrology and the relationship between land use 

change and relative variation in ET, baseflow and surface runoff generation and 

associated water distribution will be helpful to watershed planners and decision 

makers (Thanapakpawin et al. 2006; Tang et al. 2011; Wang et al. 2012). Assessment 

of the rainfall-runoff relationship is vital in modeling and designing urban drainage 

(Laouacheria and Mansouri 2015). Numerical models such as regression, ANN, fuzzy 

and GA are data driven models which are not capable of modeling spatially explicit 

relationship of hydrologic response with respect to physical characteristics of the 

basin. In contrast, process based distributed models have the potential to quantify and 

forecast the dynamics of water availability with land use and climate change (Haigen 

et al. 2015). However, these models are data intensive and not applicable to 

catchments with sparse datasets (Thanapakpawin et al. 2006; Elfert and Bormann 

2010; Lin et al. 2008). Lorup et al. (1998) first used a hydrological model for 

predicting the effect of land use change on runoff but faced lack of data to validate the 

results. Thanapakpawin et al. (2006) adopted the Diurnal interpolation scheme using 

Variable Infiltration Capacity (VIC) model and to obtain the required data, sub-

divided the daily records into three-hourly temperature, radiation and relative 

humidity.  
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Clearance of tropical forest land is known to lead to increase in the annual 

runoff. Costa et al. (2003) studied the relationship between precipitation, discharge, 

ET and LULC change in a large catchment (175360 sq. km) considering 50 years data 

using statistical analysis. Their study revealed that the conversion of forest land to 

grass land leads to reduction in ET value and an associated increase in runoff. The 

change of hydrologic response of a catchment due to land use change will be 

influenced by the intensity of conversion of natural vegetation and location of the 

change. The interaction of land use and hydrologic processes exhibits spatial and 

temporal variation, as fluxes of water within a catchment vary vertically and laterally.  

Niehoff et al. (2002) investigated the impact of changes of land surface 

condition on storm-runoff generation from three catchments with different land use 

patterns. Later, Warburton et al. (2012) studied the difference in hydrological 

response in three South African catchments with different vegetation covers using the 

conceptual and physical, Agricultural Catchments Research Unit (ACRU) model. To 

analyse the influence of heterogeneity associated with the vegetation cover on stream 

flow patterns, three different catchments were selected. Results showed that the 

stream flow generated was not proportional to the relative area of that land use. The 

location of a specific land use within a catchment has a role in the response of the 

stream-flow from the catchment.  

2.3.3 Scenario based Simulation of Hydrological Response in a Catchment 

It is of interest to simulate the effect of possible changes in climate variables and land 

use that may occur in the near-future by considering scenario conditions. Climate 

change has its direct influence on runoff which is one of the major components of 

hydrological cycle (Huang et al. 2015). Westmacott and Burn (1997) used the Mann-

Kendall trend test and a regionalization procedure to quantify the severity of climatic 

effects within the river basin, which is helpful to increase awareness of future 

consequences for water resource systems planning and management strategies. 

Results indicate that the timing of a hydrologic event was influenced to a greater 

extent due to changes in temperature. Legesse et al. (2003) assessed the sensitivity of 

water resources to land use change as well as climatic variability in a semi-arid to 

sub-humid basin. Results show that the physically based semi-distributed model is 
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capable of representing the dynamics of the hydrograph at monthly scale better than at 

the daily scale. The climate scenario study revealed that the hydrologic system seems 

to be more reactive to an increase in rainfall than to a decrease in rainfall. Also, the 

system response depends not only on the quantity but also on the quality of rainfall 

and the number of rainy days. This requires the model to run at less than a day 

interval, which is very much data intensive.  

Li et al. (2009); Ozturk et al. (2013) observed that the influence of climatic 

variability is more significant on surface hydrology than land use change. The impact 

of change in temperature is difficult to assess clearly because the temperature 

fluctuation will have its own effect on other hydro-meteorological variables also 

(Legesse et al. 2003). Huang et al. (2015) simulated the runoff of the upstream of 

Minjiang River for nine climate change scenarios by varying precipitation, 

temperature and potential evapotranspiration. The study inferred that precipitation 

variation has more influence on simulated runoff than the temperature variation. The 

upstream of Minjiang River is located in alpine-cold region, which is a plateau 

climate and subtropical climate region. In the study area, the rainfall drops from 

Songpan, Heishui to Mao, Wenchuan county, and increases from Wenchuan to 

downstream of Dujiangyan. The daily maximum precipitation is more than 200 mm, 

and annual average evaporation is 600–800 mm. 

Simulating the hydrologic response of a catchment to different scenario 

conditions involves calibrating and validating the model using present conditions and 

running the model with parameters for newly framed scenarios and comparing the 

results (Legesse et al. 2003; Siriwardena et al. 2006; Elfert and Bormann 2010; Li et 

al. 2009; Isik et al. 2013; Niu and Sivakumar 2013). Model calibration is a process of 

manual/automatic adjustment of model parameters to match between predicted and 

observed values based on objective functions. Normally, physically based models 

such as PRMS, SWAT etc., involves large number of model parameters making the 

models complex. However, sensitivity analysis can suggest as to which parameter is 

more sensitive than others in predicting simulation results. Model validation is a 

process of evaluating the ability of model to simulate the hydrological components of 

a catchment by calibrated model parameters for different conditions than calibration 
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period. Therefore, model simulation period is divided into two different sets; 

calibration and validation data set (Legesse et al. 2003). Siriwardena et al. (2006) 

formulated calibration strategies based on time step (monthly and annually) and 

exponent ‘c’ of objective function (0.5 and 1.0). It is observed that slightly better 

results were obtained by calibrating the model using these strategies. Elfert and 

Bormann (2010) have done manual calibration of WaSiM-ETH by comparing 

predicted result with observed values for a period of 10 years data set. Initial two 

years of data was used as warm-up period to reduce the effect of model’s initial 

conditions on the output. WaSiM-ETH model was calibrated and validated by 

considering three quality measures namely mean absolute water balance error, 

coefficient of determination and model efficiency. In the physically based spatially 

distributed model, the temporal aggregation of fluxes as well as increased spatial scale 

resulted in improvement of model efficiency (Elfert and Bormann 2010).   

In order to study the effect of future LU/LC patterns on hydrological systems, 

researchers formulated various scenarios, which are as shown in Table 2.2. The 

agricultural scenarios based on Special Report on Emissions Scenarios (SRES) of 

International Panel on Climate Change (IPCC) and also national policy measures 

were implemented to observe the variations in hydrologic components. Mainly, 

conversion of agricultural land to urban, forest land and grassland was considered for 

the analysis (Wu and Johnston 2007; Niu and Sivakumar 2013). Scenario-based 

studies imply that even a validated catchment model might not be able to simulate 

significant changes in the water flows when large parts of the catchment of interest 

are affected by an extreme land use change (Legesse et al. 2003).  According to Mao 

and Cherkauer (2009), forests have the lowest total spring runoff, which is mainly due 

to higher annual ET that keeps soil moisture levels low, leading to increased 

infiltration. However, grassland, woodland and cropland have higher total spring 

runoffs because of their lower ET losses and more rapid loss of winter snow cover. In 

addition, the scenarios based on land use policy and urban development provide 

opportunity to take valid decisions in selecting land use policies that can reduce 

natural hazard (McColl and Aggett 2007; He and Hogue 2012). Generally scenario 

based studies do not try to reconstruct the vegetation history but only attempt to 
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propose the possible and plausible scenarios for studying the potential impact on 

hydrology.   

With advances in research, many hydrological models are integrated with land 

use change models. The spatial pattern optimization model (OLPSIM) and 

Conversion of Land Use and its Effects at a Small regional extent (CLUE-s) model 

were integrated with a hydrologic model, Hydrologic Engineering Center’s 

Hydrologic Modeling System (HEC-HMS) based on Soil Conservation Service Curve 

Number (SCS-CN) (Nagaraj and Yaragal 2008) approach to investigate the impact of 

more realistic developmental scenarios on watershed by considering driving factors 

(Lin et al. 2009). More recently, Sahua et al. (2012) compared the performance of 

four modified SCS-CN methods in computing surface runoff in two catchments in 

Maharashtra State, India. Their study mentioned that in spite of the much larger 

catchment area of the Kalu watershed compared with those of the U.S. watersheds, 

used for developing the SCS-CN model, all the four modified SCS-CN-based models 

performed reasonably well. Wijesekara et al. (2012) tried to assess the impact of 

potential land use changes over next 20 years on the hydrologic processes by 

combining the Cellular Automata (CA) model and MIKE-SHE/MIKE11 hydrologic 

model. The results showed that there was a reduction of net capacity of water 

retention on surface due to the expansion of built-up and agricultural area which has 

led to an increase in surface runoff caused by reduction in infiltration.  

Table 2.2 Land use and land cover change scenarios 

 

Serial 

No. 

Author(s) 

Name 

Scenario Details 

1 Thanapakpawin 

et al. (2006) 

1. Reversal of all croplands back to evergreen 

needleleaf forests (above 1000 MSL) and to 

deciduous broadleaf forests (below 1000 MSL) 

2. Doubling the cropland area by adding new crop 

cells 

3. Doubling of cropland that is limited to either 

highland zones or lowland 

4. Doubling of cropland that is limited to midland 

basin zones 

2 Choi and Deal 

(2008) 

1. Base economic growth (current population) 

2. High economic growth (125% weight to 

population projection) 
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3. Uber economic growth (150% weight to 

population projection) 

3 Elfert and 

Bormann (2010) 

1. Change from agricultural land into forest 

2. Change from agricultural land into urban area 

3. Change from agricultural land into forest and 

urban area in equal parts 

4 Wijesekara et al. 

(2012) 

1. Evergreen to Agriculture/Built-up 

2. Deciduous to Agriculture/Built-up 

3. Agriculture to Built-up/Rangeland/parkland 

4. Rangeland/parkland to Built-up/Agriculture 

5 He and Hogue 

(2012) 

1. Scenario 1: Current development 

2. Scenario 2: Doubles scenario 1 

3. Scenario 3: Doubles scenario 2 

4. Scenario 4: Triples scenario 2  

6 Cornelissen et 

al. (2013) 

LU1 scenario:  

1. Economic growth 

2. Improved political and socio-economic situation 

3. Innovations in agricultural sector 

4. Expansion of cultivated areas by 15% 

LU2 scenario: 

1. Economic stagnation 

2. Protected forests are not controlled 

3. No new technology that enhance production 

4. Expansion of cultivated areas by 30% 

LU3 scenario 

1. Business as usual 

2. Productivity does not increase 

3. Expansion of cultivated areas by 20% 

 

In recent times, Global Circulation Models (GCMs) and Regional Climate 

Models (RCMs) models are being used to generate estimates for future changes in 

climate. GCMs are efficient in studying the future changes in climate. GCMs have 

high temporal resolution with low spatial resolution. It is essential to downscale GCM 

results to regional climate variable. Downscaling is a process of developing the 

relationship between large scale variables and small scale variables to represent the 

local climatic conditions (Wibig et al. 2015; Ribalaygua et al. 2013). Despite the 

ongoing development in GCMs and RCMs, uncertainty exists on the magnitude of the 

changes in temperature, precipitation, Green house gases, aerosols etc., (Merritt et al. 

2006; Ghosh and Misra 2010). These global and regional models are less reliable in 

simulating detailed spatial and temporal features.  Given the difficulties in deducing 

future climatic trends by using GCMs and RCMs, Tong et al. (2012) preferred to use 
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a range of hypothetical climate scenarios. Wang et al. (2015) considered hypothetical 

scenarios and inferred that, streamflows are highly correlated to precipitation, while 

weakly correlated to temperature under humid climatic conditions. Soil moisture and 

actual evaporation are likely to vary with temperature. The integration of models 

provided a comprehensive picture of the watershed by incorporating the dominant 

land use transitions and their impact on the land phase of the hydrologic processes. 

This is an improvement over the use of a single scenario such as an increase in 

deforestation or afforestation (Niehoff et al. 2002; Tong et al. 2012; Wijesekara et al. 

2012; Ozturk et al. 2013).  

2.3.4 Model Comparison and Performance Evaluation 

Comparison of models enables the identification of possible sources of uncertainty in 

hydrologic modeling and forms a basis for investigation of the effects of different 

model structures on model prediction (Jiang et al. 2007; Viney et al. 2009; 

Cornelissen et al. 2013). If hydrological models are applied within a single study, 

model calibration often results in reliable simulation of the past. However, the 

influence of model choice and model calibration on the simulation of climate and land 

use change impacts remains unclear, even if uncertainties and climate are considered 

(Kumar et al. 2013). The different model structures capture different aspects of the 

catchment response and, therefore, more aspects of the catchment response are 

captured in the combined model (Butts et al. 2004). Breuer et al. (2009) have applied 

10 lumped, semi-lumped and fully distributed hydrological models to analyse their 

performance in scenario based runoff prediction. Depending on the spatial support 

and the associated data aggregation and interpolation, models deal differently with 

model input, which leads to differences in model output. They achieved a better 

comparison of model results by homogenizing important model input data such as 

precipitation, temperature and Leaf Area Index (LAI). However, forcing model to use 

comparable model inputs can help to avoid drawing wrong conclusions with respect 

to the effects of model structure (Huisman et al. 2009). This implies that during the 

selection of models to study the effect of model structure and functionality on the 

output, it is necessary to consider the consistency among selected model inputs and 

time steps. Also, when the aim is to tackle different aspects in single modeling 
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framework, it is more appropriate to integrate two or more models with different 

functionalities.  

Butts et al. (2004) developed a modeling framework that permits changes in 

the model structure, including both conceptual and physically based process 

descriptions, to be considered within the same modeling tool. Their results showed 

that the model performance was quite sensitive to model structure. Also, the 

distributed routing and distributed rainfall information increase the simulation 

accuracy and predictive capability of the model. The sensitivity of stream flow 

simulations to variations in acceptable model structure was as large as uncertainties 

arising from parametric and measurement uncertainty, but the model simulations 

appeared to be less sensitive to rainfall uncertainty. Biondi et al. (2010) utilized a 

precipitation-dependent Hydrologic Uncertainty Processor (HUP) for assessing the 

hydrologic uncertainty in predicting actual stream flow based on precipitation 

quantity. Their study found that hydrologic uncertainty grows with the value of 

discharge predicted by the model and that it is higher when associated with higher 

precipitation values.  

Singh et al. (2013) used SWAT CUP software to describe and demonstrate the 

use of different approaches such as the Sequential Uncertainty domain parameter 

Fitting (SUFI-2), Generalized Likelihood Uncertainty Equation (GLUE) for stream-

flow measurement and best parameter estimation for stabilizing the correlation 

between the simulated parameters and observed parameters. Laouacheria and 

Mansouri (2015) used Watershed Bounded Network Model (WBNM) and Hydrologic 

Engineering Center-Hydrologic Modeling System (HEC-HMS) hydrological models 

to predict the runoff hydrographs of urban catchments and also evaluated the effect of 

parameters on the shape of the runoff hydrograph. It was inferred that, catchment size 

did not affect the routing calculations but it had a direct influence on the unit 

hydrograph.  

Cornelissen et al. (2013) studied four models (WaSiM, SWAT, UHP-HRU 

and GR4J) that vary in complexity, spatial resolution, and process representation to 

compare the effects caused by different models to improve the assessment of 

hydrological processes and to study the influence of land use and climate change on 
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discharge. The variation between simulation qualities of the models can be attributed 

to uncertainty in input data, calibration strategy, parameterization and difference in 

model structure (Huisman et al. 2009; Breuer et al. 2009; Cornelissen et al. 2013).  

Laouacheria and Mansouri (2015) inferred that CN and lag time were more 

sensitive in estimating peak discharge by HEC-HMS model, where as in the case of 

WBNM model, initial loss and lag parameter were more sensitive. An analysis of 

ensemble model predictions shows that the best ensembles are not necessarily those 

containing the best individual models. Conversely, it appears that some models that 

predict well individually do not necessarily perform well when combined with other 

models (Viney et al. 2009). Bormann et al. (2009) investigated the impact of data 

resolution of land use information on simulated water balances for current catchment 

conditions and land use scenarios, and found that spatially distributed models are 

more suitable when compared to lumped models to analyse the effects of the patterns 

of land use change.       

To evaluate model performance, researchers used many performance measures 

comprising a combination of numerical measures and graphical plots. Lorup et al. 

(1998) used Nash-Sutcliffe efficiency (Figure 2.1A, B, E and F), error index, and 

model efficiency (Figure 2.1C) (Ozturk et al. 2013; Mao and Cherkauer 2009; Elfert 

and Bormann 2010; Thanapakpawin et al. 2006; He and Hogue 2012; Li et al. 2009) 

and joint plots of the simulated and observed hydrographs, scatter plots and flow 

duration curves to test the model performance. If Nash-Sutcliffe coefficient is zero, 

which indicates that model’s prediction is no better than using the mean of the 

observed values (Choi and Deal 2008; Ozturk et al. 2013).  

Different criteria assess the performance in different ways. The coefficient of 

efficiency (Figure 2.1E) (Siriwardena et al. 2006; McColl and Aggett 2007; Jiang et 

al. 2007; Bormann et al. 2009) was used to assess the goodness of fit, whereas the 

bias (He and Hogue 2012) and absolute percentage bias (Thanapakpawin et al. 2006; 

Breuer et al. 2009; Bormann et al. 2009; Li et al. 2009) were used to compare the 

simulated with observed long term water balance. Root Mean Square Error (RMSE) 

and relative RMSE (Niu and Sivakumar 2013) compare measured and simulated data 

(Thanapakpawin et al. 2006; Jiang et al. 2007; Li et al. 2009; Breuer et al. 2009). 
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Thanapakpawin et al. (2006) used Relative Efficiency (Erel), a modified form of Nash-

Sutcliffe efficiency because Erel is more sensitive to over or under estimation in model 

prediction, as it is based on relative deviation. (Figure 2.1D). Bormann et al. (2009) 

introduced a criterion called ‘scenario effect’, which is defined as the difference in 

long-term water flow between simulations of the current state and future scenario 

conditions. The performance of six well-known models in estimation of runoff is 

shown in Table 2.3, whilst a graphical representation is presented in Figure 2.1.  

Table 2.3 The performance of different models in estimating the runoff 

 

Serial 

No. 

Model Name Correlation 

Coefficient 

Efficiency Reference 

Figure 

1 MIKE-SHE 

 (Ozturk et al. 

2013) 

0.72 0.52 (Nash-

Sutcliff) 

Figure 2.1A 

2 VIC 

(Mao and 

Cherkauer 2009) 

0.91 (Index of 

agreement, d) 

0.74 (Nash-

Sutcliff) 

Figure 2.1B 

3 WaSiM-ETH 

(Elfert and 

Bormann 2010) 

0.83 (Coefficient 

of determination)  

0.81 (Model 

efficiency) 

Figure 2.1C 

4 DHSVM 

(Thanapakpawin et 

al. 2006) 

-- 0.74 (Relative 

efficiency) 

Figure 2.1D 

5 HSPF 

(He and Hogue 

2012) 

0.87 0.72 (Nash-

Sutcliff) 

Figure 2.1E 

6 SWAT 

(Li et al. 2009) 

-- 0.53 (Nash-

Sutcliff) 

Figure 2.1F 
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A 

 
B 

 
E: Coefficient of efficiency, d: Index of Agreement 

C 

 
R2: Coefficient of determination, ME: Model Efficiency 
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D 

 

E 

 
NSE : Nash Sutcliffe Efficiency  
F 

 

Figure 2.1 Graphical representation of performance of the six models  

2.4 SATELLITE BASED EVAPOTRANSPIRATION ESTIMATION 

Evapotranspiration (ET) is one of the major sources of water loss in the water balance 

system of any river basin. Its accurate estimation is essential to analyse hydrological, 

climatic and ecosystem processes (Liou and Kar 2014). The estimation of ET is 

essential for agricultural water management, crop yield modeling, draught monitoring 
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and hydrological and climatic studies (Ambsat et al. 2008). The process of ET is 

greatly influenced by spatio-temporal pattern of vegetation. Development of models 

to ascertain the relationship between LU/LC change and actual ET taking place in a 

watershed has become an important topic of research. Surface energy balance 

methods such as Surface Energy Balance Index (SEBI), Surface Energy Balance 

System (SEBS), Simplified Surface Energy Balance Index (S-SEBI), Surface Energy 

Balance Algorithm for Land (SEBAL) and Two Source Models (TSM) had been used 

for the estimation of ET (Liou and Kar 2014). Sobrino et al. (2005; 2007) used a 

Simplified Surface Energy Balance Index method (S-SEBI) on an instantaneous time 

basis, integrated over a day for the estimation of evapotranspiration on a daily basis. 

In this, a simple method for retrieving daily ET from Landsat image based on the S-

SEBI model has been proposed. It is based on the estimation of the evaporative 

fraction from land cover classification. Remote sensing (RS) images have become an 

important source of data for estimation of regional as well as meso-scale level of ET 

from the earth surface (Rajeshwari and Mani 2014). Land Surface Temperature (LST) 

helps to establish the critical interaction between surface radiance and energy balance 

components (Liou and Kar 2014). Landsat images have been utilized for LST 

estimation in many studies. But atmospheric interference has to be considered in 

estimating surface temperature by using Landsat satellite images. This is due to the 

fact that, radiance will be attenuated by the atmosphere through absorption; also 

thermal radiance will be emitted by the atmosphere. Therefore the radiance reaching 

the sensor is a combination of ground thermal radiance and upwelling atmospheric 

emission (Qin et al. 2001). The thermal remote sensing facilitates precise estimation 

of surface emissivity for accurate determination of radiometric temperature. Hence, 

the development of any algorithm for accurate estimation of surface emissivity is 

certainly better than assigning default values set to one; because natural surfaces are 

not perfect emitters (Brunsell and Gillies 2002). Various methods such as Split-

Window (SW) (Skokovic and Sobrino 2014; Jimenez-Munoz et al. 2014, 2014; 

Rajeshwari & Mani 2014; Latif 2014), Dual-Angle (DA) and Single-Channel (SC) 

method (Qin et al. 2001) have been used for LST estimation from satellite data. These 

methods are based on parameters such as Normalized Differential Vegetation Index 

(NDVI), Fractional Vegetation Cover (FVC) and emissivity (Maskova et al. 2008). 
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Rajeshwari & Mani (2014) obtained FVC values using linear relation between NDVI 

and FVC.  

2.5 APPLICATION OF MONTHLY RAINFALL-RUNOFF POLYGONS IN 

EXPLAINING HYDROLOGICAL PROCESSES 

Runoff coefficient based analysis of hydrological response of any river basin is useful 

for land use and flood management in the basin (Sriwongsitanon and Taesombat 

2011). The estimation of runoff coefficient is a difficult task, since it has to account 

for all the factors influencing transformation of precipitation into runoff (Kadioglu 

and Sen 2001; Rodriguez-Blanco et al. 2012).  Runoff coefficient can be estimated 

statistically by plotting precipitation v/s runoff to obtain the slope of regression line, 

assessing linear relationship between rainfall and runoff. However, the rainfall-runoff 

relationship is a nonlinear process due to the influence of physical characteristics of 

the catchment (Kadioglu and Sen 2001). Rodriguez-Blanco et al. (2012) suggested 

considering other factors affecting the hydrological response of a watershed. Event 

based runoff coefficient plays key role in catchment comparison studies since it takes 

into account the influence of different landscapes in transforming the rainfall into 

runoff. A runoff coefficient greater than 1 indicates that groundwater or snowmelt 

may contribute to runoff in addition to rainfall (Kadioglu and Sen 2001). Rodriguez-

Blanco et al. (2012) inferred that baseflow contributes 75% of the annual water yield 

in any agroforestry and temperate humid catchments. Therefore, combined influence 

of baseflow and rainfall has to be considered in computing runoff coefficients. Nazir 

et al. (2015) have used the recursive digital filter method Eckhardt to separate the 

baseflow from the daily streamflow. Blume et al. (2007) concluded that Constant-k 

method for baseflow separation is more efficient than graphical methods, as it can 

handle events with multiple peaks. 

Every catchment has different quantum of seasonality depending upon the 

timing, volume, intensity, frequency and duration of precipitation and runoff. 

Therefore, the seasonality is considered as a key signature for regionalization studies 

to cluster identical hydrological response. Runoff coefficient is one of the important 

flow response indices, which can be computed by regression against catchment 

properties for estimating river flows at ungauged sites (Visessri and Mclntyre 2015). 
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Mimikou (1984) inferred catchment size and runoff coefficient can be used for 

prediction of flood flows, annual runoff yield and unit graphs of  various storm events 

for ungauged basins. Seasonality can be quantified using statistical indices to indices 

derived from geometrical approaches. Ali et al. (2013) highlights the applicability and 

usefulness of statistical approaches such as Parde coefficients, seasonality histograms, 

seasonality ratio, and standard flow metrics for quantifying seasonality and catchment 

inter-comparison studies. Burn index is one of the most commonly used geometric 

approach to quantify the seasonality of the maximum annual runoff or the annual 

maximum daily precipitation through defining the mean date and variability of 

occurrence of extreme events (Ali et al. 2013). Another commonly used geometrical 

approach namely precipitation-runoff polygon is used by Kadioglu and Sen (2001) to 

study the rainfall-runoff transformation in a catchment. The significant variability in 

the rainfall-runoff response characteristics is demonstrated effectively based on 

contrasting shape of polygons (Nazir et al. 2015). Most of the available 

statistical/geometrical indices considers the rainfall and runoff in isolation during 

seasonality analysis; whereas polygon based method is capable of representing the 

nonlinear relationship between rainfall and runoff in the same diagram.  The 

qualitative interpretation of precipitation runoff polygon affords a descriptive way to 

observe the dynamics prevailing in specific months and the relationship between 

precipitation and runoff and their degree of seasonality (Ali et al. 2013). Ali et al. 

(2013) are the first to utilize precipitation-runoff polygon based interpretations along 

with quantitative metrics for seasonality analysis for an array of catchments across 

different hydro-climatic zones. The study suggested that the polygon based analysis 

can be used effectively for assessment of the impacts of climatic change on 

hydrological regime, provided the data of past, present and future precipitation and 

runoff is available (Kadioglu and Sen 2001). Pektss and Cigizoglu (2013) adopted a 

hybrid approach by combining time series decomposition with ANN and compared its 

performance with ARIMA, ARIMAX and ANN in predicting monthly runoff 

coefficients. This study concluded that the hybrid model can produce the runoff 

coefficient time series.     

Many studies have utilized the potential benefit of physically based semi-

distributed and fully distributed modelling approach to evaluate the impact of land use 
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changes on hydrological response (Thanapakpawin et al. 2006; McColl and Aggett 

2007; Choi and Deal 2008; Lin et al. 2008; Elfert and Bormann 2010; He and Hogue 

2012; Wijesekara et al. 2012; Vaizi 2014). Sriwongsitanon and Taesombat (2011) 

have studied the influence of changes in LU/LC over time on flood behaviour of the 

upper Ping river basin, Northern Thailand through evaluating the relationship between 

peak flow rate, runoff coefficient and LU/LC pattern. Studies under high forest cover 

indicate that runoff coefficient is higher for larger flood event and lower for smaller 

flood events. This is due to the fact that the rainfall losses due to evapotranspiration, 

interception and soil moisture capacity are high in forested areas during small flood 

events. However, the runoff coefficient is high during larger flood events because 

dense forest patches are associated with high antecedent moisture condition leading to 

less infiltration. Crooks and Kay (2015) have used Climate and Land use Scenario 

Simulation in Catchments (CLASSIC) model for continuous simulation of flow series 

in the Thames between 1890 and 2013 to answer questions such as: a) are the model 

parameters determined from catchment physical properties suitable for the whole 

period (low flows and high flows)?; b) is the data quality an issue in assessing the 

model output results? In such applications, it is important to use hydrological models 

with unchanged model parameters while estimating impacts of change with respect to 

data quality, and spatial variation in rainguage density. Nourani and Saeidifarzad 

(2016) compared the long term lag time parameter in a conceptual rainfall-runoff 

model to the LU/LC change using observed streamflow data coupled with 

computational intelligence tool such as ANN and hybrid wavelet-ANN. However, 

these models are data intensive and not applicable to catchments with sparse datasets. 

Nazir et al. (2015) used the mean rainfall-runoff polygon method to analyse the 

effects of LU/LC changes on the mean monthly runoff coefficient in a tropical 

catchment and concluded that the length of polygon peripheral is highly influenced by 

climate variability rather than land use characteristics, is therefore a useful method in 

hydrological modelling (Ali et al. 2013). 

 

 

 



44 

 

2.6 CLOSURE 

The present review described the various modeling approaches to assess the 

impact of land use changes on hydrologic response at catchment scale and also 

discusses the importance of scenario based studies. In addition, a brief description 

about model comparison in order to identify uncertainties is provided.  

Several studies indicated that the conversion of forest land to grass land or 

crop land leads to reduction in ET value and an associated increase in surface flow. 

Legesse et al. (2003); Siriwardena et al. (2006); Elfert and Bormann, (2010); Li et al. 

(2009); Isik et al. (2013); and Niu and Sivakumar (2013) simulated the effects of 

scenario based changes in land use and climate on the hydrologic system. The results 

of climate scenario study showed that the influence of climate variability is more 

significant when compared to land use change. These scenario based studies do not 

actually project the future changes, but can only indicate possible future changes. This 

shows that, it is necessary to develop models which can predict future changes in 

climate and land use pattern in more realistic manner. 

However, integration of various models is an improvement over the use of 

single model. Lin et al. (2009); Wijesekara et al. (2012) have integrated the 

hydrologic models with land use change models to study the impact of foreseeable 

changes. Since, LUCC models are reasonably good at forecasting the near-future 

changes in LULC pattern by considering drivers such as demographic, socio-

economic and national policies etc., GCM and RCM models have been developed to 

simulate the real future climate change pattern. However, many researchers preferred 

scenario based forecasting due to difficulties and uncertainties associated with 

downscaling techniques and representation of detailed spatial features in climate 

models.  

Also, the present study has reviewed the importance of comparison of models 

in identifying possible sources of uncertainties in hydrologic modeling. Based on the 

literature review, it can be concluded that the variations in the simulating efficiency of 

various models can be attributed to uncertainty in the calibration strategy, model input 

and structure and parameterization. When the aim of the study is to tackle different 
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aspects in single modeling framework, then it is more appropriate to integrate two or 

more models with different functionalities. 

Estimation of actual ET and reference ET is essential for studing water 

balance of river basin ecosystem. ET estimation at global and regional scale can be 

made better by use of RS data along with measured meteorological variables. As RS 

data can provide LST, NDVI, Leaf Area Index (LAI), surface albedo and surface 

emissivity, which are vital inputs for ET models (Liou and Kar 2014).  

From the literature review, it is evident that many studies have been carried 

out to assess the impact of land use change on hydrological response of the particular 

catchment using various models. Among them, the physically based distributed and 

semi distributed models are more suitable for these studies. However, these models 

are data intensive and not applicable to catchments with sparse datasets. Therefore, it 

necessitates the development of a simpler method to analyse the impact of LU/LC 

change on hydrologic response characteristics of any catchment. It is found that, the 

comparison of different models is very much helpful to differentiate the effect of 

choice of model, structural uncertainty and better understanding of hydrological 

processes. Recently, few researchers have analysed the impact on stream flow due to 

land use and climate change scenarios. The models have been developed to forecast 

the future change in land use pattern by considering driving factors. Also, these 

LUCC models have been coupled with hydrological models which lead to more 

realistic assessment of future stream flow changes. The studies so far have analysed a 

single hydroclimatic condition; and very few studies have been done related to 

comparative evaluation in different hydroclimatic conditions.  

 

 

 

 

 

 



46 

 

 

 

 

 

 



47 

 

CHAPTER 3 

  DATA AND METHODOLOGY 

3.1 GENERAL 

The rapid development in the pace of industrialization and urbanization has put pressure on 

the earth’s natural resources leading to degradation and becoming a global problem. The 

intervention of humankind in the natural ecosystem is leading to changes in hydrological 

phenomenon in the form of floods and draughts. It is essential to model the complex 

relationship between various hydrological processes and their behavior in relation to human 

induced changes. In addition to climatic factors, hydrological response of a catchment 

depends upon catchment characteristics such as topography, soil, LU/LC, geology etc., 

Therefore, the broad objective of present research wok is to study and compare the 

hydrologic response characteristics such as ET and runoff coefficient to land use and land 

cover changes in humid and sub-humid catchments. Data used in the present study and 

analysis of the same are presented in next sections of this chapter.  

3.2 DATA COLLECTION  

Following are the data used for the study and description of the same is provided in Table 

3.1. 
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Table 3.1 Description of the data products 

Type of Data Period Source Description 

 

 

 

Conventional 

Data 

Toposheets 

(1:50000) 

1973 Survey of India (SOI), 

Bengaluru 

- 

Rainfall data 1970-

2013 

Indian Meteorological 

Department (IMD), 

Pune 

Daily rainfall 

data 

Meteorological 

data  

1970-

2013 

Indian Meteorological 

Department (IMD), Pune 

Daily data 

Streamflow 1970-

2013 

Central Water 

Commission (CWC), 

Bengaluru 

Daily stream 

flow data 

Soil data - National Bureau of Soil 

Survey and Land Use 

Planning (NBSS and 

LUP) 

Description 

of soil types 

Remote 

Sensing Data 

DEM - Bhuvan Geospatial Data 

Portal 

Resolution: 

30m 

Satellite image 1997, 

2005, 

2007, 

2010, 

2013 

National Remote Sensing 

Centre (NRSC), 

Hyderabad 

Landsat images 

LISS-III 

images 

Resolution: 

23.5m 

Resolution: 

30m 

Field Data Soil Samples 

from Netravati 

river basin 

- Field survey 38 soil 

samples at 

0.5m and 1m 

depth in 19 

sampling 

locations 

3.3 METHODOLOGY  

This chapter presents the detailed procedure adopted to accomplish the research objectives in 

two catchments namely, Netravati river basin (humid climate) and Harangi catchment (sub-

humid climate) located in different hydroclimatic regions of Karnataka State, India. The 

overview of the methodology adopted in this research is shown in Figure 3.1 and the same is 

described in the following steps: 
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Figure 3.1 Schematic representation of overall methodology 

STEP 1: Delineation of study area from the toposheet and satellite imagery. 

STEP 2: Collection of data required for the study including meteorological data, toposheet, 

satellite images, streamflow, soil sample collection and laboratory analysis. Later, the 

estimated soil physical and hydraulic properties were used to calculate model parameters of 

SMA model.   

STEP 3: Classification of satellite images and prediction of future trends in LU/LC pattern 

using LCM and CA-Markov model.  

STEP 4: Estimation of LST and actual ET using Split Window algorithm and Priestley Tailor 

method respectively.  
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STEP 5: Estimation of streamflow using a semi-distributed model namely HEC-HMS and 

validation using measured streamflow data. The parameters of the model were estimated 

based on soil physical and hydraulic properties and the classified LU/LC maps.   

STEP 6: Analysing the hydrological processes in two contrasting catchments through 

quantitative and qualitative interpretation of rainfall-runoff polygons  

STEP 7: Analyse the hydrologic response to LU/LC change  

STEP 8: Comparison of hydrologic responses such as runoff coefficient and ET between 

humid and sub-humid catchments  

3.4 PREDICTION OF LAND USE/LAND COVER DYNAMICS 

Review of literature indicates that very few studies have focused on the comparison of 

performance of LU/LC change models in analyzing the vegetation pattern in river 

basin/catchment/watershed. Therefore, the study analysed the dynamics of LU/LC change 

and predicted its possible future changes in Netravati river basin and Harangi catchment, 

Karnataka, India. This study specifically addressed: 1) Spatial and temporal changes in 

LU/LC classes, 3) Selection of driving factors for change, 4) Preparation of suitability maps, 

5) Prediction of LU/LC changes using Land Change Modeler (LCM) and CA-Markov model 

and their validation 6) Comparison of two models performance in different study areas. The 

outline of methodology adopted is shown in Figure 3.2. 
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Figure 3.2 Flowchart of simulating LU/LC change using LCM and CA-Markov 

3.4.1 Land Use and Land Cover Change Detection and Selection of Driving Factors 

The land use/ land cover change detection was carried out through multi-date image 

classification based on Maximum likelihood algorithm, Minimum distance to mean 

algorithm and Parallelepiped algorithm using remote sensing images of the year 2005, 2007 

and 2010 for Netravati river basin and 2007, 2010 and 2013 for Harangi catchment. The 

methodology adopted is shown in Figure 3.3. The classification algorithms are explained as 

follows.  
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Figure 3.3 Flowchart showing the methodology for detection of LU/LC change 

i. Maximum Likelihood Algorithm 

The maximum likelihood method takes advantage of the probability of a pixel being a 

member of an information class in its decision making. This algorithm relies on the second-

order statistics of the Gaussian probability density function for each class. The basic 

discriminate function for pixel X is 

X ϵ Cj if p(Cj/X) = max[p(C1/X), p(C2/X), …, p(Cm/X)]        (3.1) 

Where max [p(C1/X), p(C2/X), …, p(Cm/X)] is a function that picks up the largest probability 

among those inside the bracket. 
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ii. Minimum Distance to Mean Algorithm 

The decision rule in the minimum-distance-to-mean algorithm is based on the relativity 

among the spectral distances between the pixel in question and the center (mean) of all 

information classes that have been derived from the training samples. The decision rule 

behind this classifier takes the following form: 

Pixel X ϵ Cj if d(Cj) = min[d(C1), d(C2), ..., d(Cm)]                     (3.2) 

Where min [d(C1), d(C2), ..., d(Cm)] is a function for identifying the smallest distance among 

all. 

iii. Parallelepiped Algorithm 

The parallelepiped algorithm assigns a pixel to one of the predefined information classes in 

terms of its value in relation to the DN range of each class in the same band. This comparison 

is expressed mathematically as 

Pixel X ϵ Cj if min DNj ≤ DNx ≤ max DNj                            (3.3) 

The decision rule states that pixel X under consideration is a member of information class Cj 

if and only if its value falls inside the DN range of that class in the same band. 

The base map of the study areas was delineated from Survey of India (SOI) toposheet 

of 1:50000 scale using ArcGIS 9.3 software. The satellite images were geo-referenced with 

respect to coordinate system of toposheet using image-to-map transformation. Seven classes 

were identified in Netravati river basin by the classification process of RS dataset namely 

built-up land, fallow, plantation, forest, land with or without scrub, sandy area, and river. 

Similarly in Harangi catchment also, seven LU/LC classes were delineated during 

classification of images namely urban area, forest area, water body, water logged area, 

plantation, fallow land and waste land. The study made use of ERDAS IMAGINE 9.1, a 

image processing software to accomplish the process of LU/LC change detection.  

After obtaining results of classification, it is necessary to check their accuracy. 

Accuracy assessment was carried out and the kappa coefficient was calculated for all the 
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three methods in order to select best the classification algorithm among them for Harangi 

catchment. For this process, 40 ground truth points were chosen within the study area that 

includes sample points in all LU/LC classes. Based on the results of accuracy assessment, 

best classification algorithm namely Maximum likelihood algorithm was identified and its 

results were utilized for change detection in Harangi catchment. The same procedure was 

adopted to select best classification algorithm for LU/LC classification and change detection 

of Netravati river basin.  

Based on the trend of LU/LC change pattern and the basic knowledge of the study 

areas, driving factors were identified. The selected driving factors include slope, soil, road 

network, river network, distance to road and distance to river. Then, the maps of driving 

factors were generated, which have been used as input for the preparation of suitability maps 

by using overlay analysis in ArcGIS 10.1. The LU/LC projections were performed in LCM 

and CA-Markov models by creating a transition probability matrix to calculate the quantity 

of each land use change by a desired date. The study used LU/LC maps of Netravati river 

basin of the year 2005 (t1) and year 2007 (t2) as inputs to the model for simulating the 

changes in the year 2010 (t3). Whereas for Harangi catchment, LU/LC maps of the year 2007 

(t1) and year 2010 (t2) were used as inputs to the model for simulating the changes in the year 

2013 (t3). Result of the model was validated by comparing predicted images of the year 2010 

and 2013 with original classified images of the year 2010 and 2013, respectively. The 

validated model was used to simulate the LU/LC change scenario during the year 2016 for 

both Netravati river basin and Harangi catchment. 

3.4.2 Driving Factors 

The driving factors are the forces that cause change in LU/LC pattern of any area. The 

driving factors such as socio economic, biophysical and infrastructural factors were identified 

based on LU/LC change analysis in the present study (Table 3.2). Different criterions were 

used to determine which LU/LC classes of watershed were suitable for changing from one 

class to another with time. Since new developments cannot usually come-up in river network, 

and in road–rail networks, these classes were assigned under constraints for LU/LC change. 
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The river network was considered as a constraint for all the LU/LC classes except water 

body. The driving forces for LU/LC change were the proximity to road–rail network, 

settlement, slope, river network and associated LU/LC classes. These factors were served as 

criterion that define some degree of suitability for an activity under consideration. Figure 3.4 

and 3.5 show the driving forces used in Netravati river basin and Harangi catchment 

respectively. The distance to roads and river network was calculated using Euclidean 

distance tool. Soil map for the study area was extracted from the map obtained from NBSS 

and LUP. 

Table 3.2 Summary of driving factors 

Driver  Category Source References  

Slope  Biophysical  ASTER DEM  

 

Verburg et.al (2004) 
Soil  Biophysical  NBSS and LUP 

Distance to river  Biophysical  Arc map 10.1 

Distance to roads Infrastructural  Arc map 10.1 

River network Biophysical  ASTER DEM 

Road map Socio economic QGIS 
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Figure 3.4 Driving factors: a) slope b) soil c) distance to river d) distance to road e) 

river network f) road network map of Netravati river basin 
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Figure 3.5 Driving factors:  a) slope b) soil c) distance to river d) distance to road e) 

river network f) road network map of Harangi catchment 

3.4.3 Suitability Maps 

The term suitability is used to provide information whether areas are suitable or not for 

changing one class to another based on certain conditions. In this study, driving factors like 

slope, distance to river, distance to road, soil and different land use and land cover classes 

were considered to define the multiple criteria for making decisions about future status of 

various land use and land covers, which is essential for preparation of suitability map. The 

factors and the respective criteria considered for this analysis are given in Table 3.3. The 

generated suitability maps of Netravati river basin and Harangi catchment are as shown in 

Figure 3.6 and Figure 3.7 respectively. The suitability maps along with the transition 

probability area matrix were given as inputs to the CA-Markov model to predict future 

change.  
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Table 3.3 Criteria used for creating suitability maps. 

LU/LC Classes Slope  Road 

network 

Soil References 

 

Built-up land / 

Urban area 

0-6%-very 

suitable,7-13%-

suitable,4-25%- 

residential, 

>15%-not 

suitable. 

20-500m  Behera et al., 

2012 

Fallow <10% 10-500m  

Plantation <15% >100m Clayey soil 

Forest 2-65% >1000m High and 

medium clay 

content 

Land with or 

without scrub / 

waste land 

<10% 10-500m  

River / water 

body 

<1% 30-200m  
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Figure 3.6 Suitability maps: a) built-up land b) fallow c) plantation d) forest e) land 

with or without scrub f) water body and g) river sand of Netravati river basin 
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Figure 3.7 Suitability maps: a) urban area b) fallow c) plantation d) forest e) waste land 

f) water body and g) waterlogged area of Harangi catchment 

3.4.4 Land Change Modeler (LCM) 

Land Change Modeler is an integrated model within IDRISI Selva, which was used to 

analyze the changes in LU/LC dynamics. Land change prediction in LCM is an empirically 

driven process that moves in a stepwise fashion from change analysis, transition potential 

modeling to change prediction. It is based on the historical change from time 1 to time 2 land 

cover maps to project future scenarios (Schulz et al., 2010; Olmedo et al., 2013). Change 

analysis provides the gains and losses by category, net change by category and contributors 

to net change experienced by different LU/LC classes. The transition sub models were loaded 

with driver maps such as road, river, slope and soil map by using transition potential tool. 

Multi-Layer Perceptron (MLP) neural network was used to model the transitions, since 

multiple variables need to be modeled at the same time (Schulz et al., 2010; Kumar et al., 

2015). The change prediction tool contains Markov chain, which was used to find out the 

transition probability matrix from which probability of changing from one class to another 

was obtained.  
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3.4.5 Cellular Automata-Markov (CA-Markov) Model 

Markov chain is one of the most accepted methods for modelling LU/LC change using 

current trends because it uses evolution from ‘t − 1’ to ‘t’ to project probabilities of land use 

changes for a future date ‘t + 1’. These probabilities are generated from past changes and 

then applied to predict future changes but it does not consider spatial knowledge distribution 

within each category and transition probabilities are not constant among landscape states; so 

it may give the right magnitude of change but not the right direction (Muller and Middleton 

1994). In this study, Markovian process was used to obtain a transition area matrix from 

transition probability matrix. The transition area matrix obtained from ‘t − 1’ and ‘t’ time 

period was used as the basis for predicting the future LU/LC scenario. CA-Markov model is 

a combination of Cellular Automata and Markov model (Behera et al., 2012; Wang et al., 

2012). Markov model provides the states of conversion between different land use types and 

the rate of conversion among the land use types whereas CA-Markov provides spatial 

transitions in an area with time (Sang et al., 2011).  

3.5 SATELLITE BASED EVAPOTRANSPIRATION ESTIMATION  

3.5.1 Evapotranspiration Estimation using Priestley-Taylor (PT) method 

Evapotranspiration (ET) is a key process in land surface–atmosphere studies. It mainly 

depends on water availability and incoming solar radiation and then reflects the interactions 

between surface water processes and climate. The spatial and temporal quantification of 

surface ET based on satellite derived products is of paramount importance in various 

environmental applications such as crop water monitoring, irrigation scheduling, 

hydrological studies, and weather forecasting. Therefore, the present research work aims to 

estimate actual evapotranspiration by using satellite data in Netravati river basin and Harangi 

catchment, Karnataka State, India. The detailed procedure adopted to estimate actual ET by 

using Priestley Taylor method in Netravati river basin and Harangi catchment is as shown in 

Figure 3.8. This study made use of cloud free (less than 10% cloud cover) Landsat image of 

30m resolution for the years 1997, 1999, 2003, 2011 and 2015 during pre-monsoon period 
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(January to March) for the estimation of Land Surface Temperature (LST) and ET. Landsat 8 

images with band 2 (green), 3 (blue), 4 (red), 5 (near infra-red), 10 (thermal infra-red 1) and 

11 (thermal infra-red 2) were used for the years from 2015. Landsat 5 and Landsat 7 images 

were used for the year 1997, 1999 and 2003, 2011 respectively. The parameters such as 

saturated vapour pressure, vapour pressure deficit, net short and long wave radiation, 

transmissivity, psychometric constant and air pressure used in the model were obtained from 

Food and Agriculture Organization (FAO). ERDAS IMAGINE 9.1, a image processing 

software was used for modelling ET and LST.   

 

Figure 3.8 Flowchart for actual ET estimation using Priestley-Taylor method 

Priestley Taylor Equation was used for the estimation of Actual ET (AET). The 

equation is most suitable for estimating areal ET from a wet environment where the effect of 

the local advection is minimal (Laxmi et al. 2015). As all the parameters were calculated 

from instantaneous observation, daily AET (24 hour) was estimated based on assumption 

that evaporative fraction remains constant. Assuming that the soil heat flux integrated over 

24-hours (Gdaily) is negligible, AET rate over 24 hours can be calculated as: 

AETdaily =             (3.4) 

where, 

λ=Latent heat of water (2.47x10
6
kJkg

-1
); EF=Evaporative Fraction  

р=Density of water (1000kgm
-3

);  
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G=Soil heat flux (Wm
-2

); R= Net daily radiation (Wm
-2

) 

Illustration of each parameter involved in Eq. 3.4 are given in the following sub-articles 

i. Estimation of Net Radiation R: 

R=Rs (1-α) + R1down-R1up             (3.5) 

where,  

Rs is incoming solar radiation (Wm
-2

) 

R1down is long wave downward radiation 

R1up is long wave upward radiation 

 = Surface albedo 

ii. Incoming Solar Radiation (Rs): 

Rs=Gsc*dr*τsw*cosθ             (3.6) 

where,  

Gsc=solar constant at the top of atmosphere (1376 Wm
-2

) 

dr=inverse relative earth sun distance; τsw =two way atmospheric transmissivity 

iii. Inverse relative Earth - Sun distance: 

 dr=1+0.033*cos[ ]            (3.7) 

where, 

 J=sequential day of year and the angle (Jx2π/365) is in radians 

iv. Two-way atmospheric transmissivity (τsw): 

τsw includes transmissivity of both direct solar beam radiation and diffuse radiation to the 

surface. Assuming clear sky and relatively dry condition, it can be related to elevation as 

below, 

τsw=0.75+2x10
-5

Z             (3.8) 
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where,  

Z = elevation in meter 

v. Solar angle θ: 

It is the angle between the plumb line on the surface of the earth extending vertically 

upwards with the direction of sun.  

vi. Long wave downward radiation (R1down)  

Downward radiation cannot be obtained or received from space born sensors. It has to be 

calculated from LST as per Stefan-Boltzmann law. The equation is as follows: 

R1down=εaσLST
*4

               (3.9) 

where, 

σ=Stefan-Boltzmann constant, εa=atmospheric emissivity 

vii. Atmospheric emissivity (εa) 

Emissivity of an object is the ratio of energy radiated by that object at a given temperature to 

the energy radiated by a perfect black body at same temperature. It is calculated as 

(Bastiaanssen 1995): 

εa=0.85(-ln τsw)
0.09             

(3.10) 

viii. Long Wave Upward Radiation (R1up) 

It is the radiation flux emitted from the earth surface to the temperature.  

R1up= εsσLST
*4

           (3.11) 

where, 

εs=surface emissivity calculated from Normalized Difference Vegetation Index (NDVI)  

εs =1.0094+0047*ln(NDVI)           (3.12) 
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3.5.2 Split Window Algorithm  

LST from Landsat 8 data was calculated by applying a structured mathematical Split-

Window (SW) algorithm, which is diagrammatically represented in Figure 3.9. It uses 

brightness temperature of two bands of thermal infra-red (TIR), mean and difference in Land 

Surface Emissivity (LSE) for estimating LST of an area. The mathematical form of algorithm 

is as given below.  

LST = TB10 + C1 (TB10-TB11) + C2 (TB10-TB11)
2
 + C0 + (C3+C4W) (1- ε) + (C5+C6W) Δε 

             (3.13)      

where, 

LST is Land Surface Temperature (K)  

C0 to C6 are Split-Window Coefficient values (Table 3.4) (Skokovic and Sobrino 2014)   

TB10 and TB11 are brightness temperature of band 10 and band 11 (K)   

ε is Mean LSE of Thermal Infra-Red (TIR) bands;  

Δε is Difference in LSE 

W is atmospheric water vapour content 

Table 3.4 Split window coefficient value 

Constant  value  

C0  -0.268  

C1  1.378  

C2  0.183  

C3  54.300  

C4  -2.238  

C5  -129.200  

C6  16.400  
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Figure 3.9 Estimation of LST using Split Window algorithm 

Illustration of each parameter involved in Eq. 3.13 are given in the following sub-sections 

i. Atmospheric Spectral Radiance  

Atmospheric Spectral Radiance (SR) is determined by: 

SR= ML*Qcal + AL                            (3.14)     

where, 

Qcal is Digital Numbers (DN) in band 10 or 11 of Landsat 8 and ML and AL are 

multiplicative and additive constants of corresponding band.  

ii. Brightness Temperature (TB) 

TB is the microwave radiation radiance traveling upward from the top of Earth's atmosphere. 

The calibration process was done for converting thermal DN values of thermal bands TIR to 

TB. The equation adopted to estimate TB for both the TIRs bands is as follows.   

           (3.15) 
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where,  

K1 and K2 = thermal conversion constants which are different for the two TIR bands  

iii. Land Surface Emissivity (LSE) 

The LSE of the region is necessary to calculate LST of the area under study. Therefore, LSE 

was estimated by taking weighted average of emissivity of soil and vegetation (Table 3.5).  

LSE = εs (1-FVC) + εv * FVC              (3.16)    

where,  

εs and εv - soil and vegetative emissivity values of the corresponding bands.  

Table 3.5 Emissivity Values (Rajeshwari and Mani 2014) 

Emissivity  Band 10  Band 11  

εs 0.971  0.977  

εv 0.987  0.989  

iv. Fractional   Vegetation Cover (FVC)                                    

Fractional vegetation cover is the estimate of fraction of area of a pixel covered with 

vegetation. It is estimated using NDVI normalization method (Rajeshwari and Mani 2014).  

FVC=              (3.17) 

where,  

NDVIs =NDVI for soil; NDVIv = NDVI for vegetation  

The above equation 3.17 is the normalization of NDVI values assuming linear relation 

between NDVI and FVC. A bare pixel was selected from true color composite of area and 

corresponding NDVI was obtained and taken as NDVIs. Then, NDVI was obtained for a 

fully vegetated pixel, which was taken as NDVIv. Normalization was done for the resultant 

image, pixel which shows values greater than or equal to 1 were assigned a value of 1 and 

those pixel which shows value less than or equal to zero was assigned a value of 0.  
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v. Mean and differential emissivity  

Mean and differential LSE were calculated for Landsat 8-band 10 and 11 by using the 

following equations.  

 ε = (ε10+ ε11)/2            (3.18)       

Δε = ε10- ε11            (3.19) 

3.6 CONTINUOUS HYDROLOGIC MODELLING  

3.6.1 Hydrologic Engineering Center - Hydrologic Modeling Software (HEC-HMS) 

model  

The study adopted a methodology to estimate streamflow in Netravati river basin, Karnataka 

State, India, using a continuous simulation model namely Soil Moisture Accounting (SMA) 

model in HEC-HMS modeling framework which incorporates surface, sub-surface and 

ground water parameters in the process of simulation (Figure 3.10).  

 

Figure 3.10 Methodology for streamflow estimation using HEC-HMS model 
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The HEC-HMS is developed by the US Army Corps was selected due to its 

simplicity and versatility for estimating streamflow in Netravati river basin, Karnataka state, 

India during the year 2003-2006. HEC-HMS contains three main components: basin model, 

meteorological model, and control specifications (Verma et al. 2010; Abushandi and Merkel 

2013). The basin model stores the physical datasets describing the catchment properties; the 

meteorological model includes precipitation, evapotranspiration; and the control specification 

describes the duration and time step for continuous simulation. HECGeoHMS is an extension 

to ArcGIS 10.1 version was used to prepare basin model and meteorological model. The first 

step was to define the basin area and sub-basins, a stream network, and diversions and 

junctions. Second step was to prepare meteorological model based on areal distribution of 

rainfall which was estimated using Inverse Distance method. The HEC-HMS model requires 

different datasets including a DEM, weather data, soil type and land use/land cover maps. 

Final step was to export these models to HEC-HMS modeling framework. The HEC-HMS 

program offers several options to represent different components of the hydrological system, 

specially the rainfall-runoff transformation process. The selected options for the study are as 

follows: 

i) Canopy method was used for representing canopy interception storage, which is removed 

through evaporation. 

ii) Surface method accounts for water loss due to surface depression storage, which is 

usually removed by evaporation and infiltration. 

iii) Soil Moisture Accounting (SMA) model was selected to estimate the volume of water 

transferred as runoff. This model is recommended to be applied for continuous 

simulations, since it is capable of considering soil moisture conditions, ground water 

storage and baseflow characteristics of river basin. 

iv) Clark Unit Hydrograph model was selected to transform direct runoff into streamflow. 

v)  The baseflow was characterized by a linear reservoir model, to be used with SMA model 
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vi) The flow routing was done based on lag model. The Basin lag is estimated as 0.6*time of 

concentration.  

i. Soil-Moisture Accounting (SMA) Model  

The conceptual design of soil-moisture accounting model is as shown in Figure 3.11. Water 

is stored on the canopy, in surface depressions, in the soil profile, and in two groundwater 

layers. Canopy storage is considered as an initial loss that must be satisfied before any 

precipitation reaches the soil surface. Infiltration is deduced as the precipitation that exceeds 

the canopy storage capacity. Precipitation that cannot be infiltrated is allocated to depression 

storage. Overflow from depression storage becomes surface runoff. Canopy interception is 

computed for both pervious and impervious parts of the subbasin. Infiltration or depression-

storage losses are not deducted from precipitation in case of impervious surfaces. Water is 

removed from canopy storage by evaporation. Water is removed from depression storage by 

evaporation and infiltration. The soil-moisture accounting model assumes that the potential 

infiltration rate decreases linearly with increasing water content. Soil-moisture storage is 

partitioned into two zones: an upper zone and a tension zone. Water is removed from the 

upper zone by evapotranspiration (ET) and by percolation to the upper groundwater layer. 

Water is removed from the tension zone by ET but not by percolation. Water is extracted 

from the tension zone only when the upper-zone storage is depleted. The rate of percolation 

between two adjacent layers depends on a user-specified maximum rate and the degrees of 

saturation of the two layers. The two groundwater layers are optional, the upper groundwater 

layer can be used to account for shallow subsurface flow processes such as drainage of 

saturated hill slopes. The lower groundwater layer can represent a more extensive aquifer that 

is hydraulically connected to the stream. Lateral outflow from the groundwater layers can be 

routed to the stream as baseflow (Fleming and Neary 2004). 
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Figure 3.11 Schematic diagram of HEC-HMS soil-moisture accounting model 

ii. Clark Unit-Hydrograph Method 

The processes of translation and attenuation dominate the movement of flow through a 

watershed. Translation is the movement of flow down the gradient through watershed in 

response to gravity. Attenuation results from the frictional forces and channel storage effects 

that resist the flow. The translation of flow through the watershed could be described by a 

time-area curve, which expresses the curve of the fraction of watershed area contributing 

runoff to the watershed outlet as a function of time since the start of effective precipitation. 

Effective precipitation is that precipitation that is neither retained on the land surface nor 

infiltrated into the soil. The time-area curve is bounded in time by the watershed TC. Thus, 

TC is a hydrograph parameter of the Clark unit-hydrograph method. Attenuation of flow can 

be represented with a simple, linear reservoir for which storage is related to outflow as 

(Straub et al. 2000): 
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S = RO              (3.20) 

where, 

S is the watershed storage, 

R is the watershed-storage coefficient, and 

O is the outflow from the watershed. 

iii. Linear Reservoir Model 

The linear reservoir baseflow model is used in conjunction with the continuous SMA model. 

This baseflow model simulates the storage and movement of subsurface flow as storage and 

movement of water through reservoirs. The reservoirs are linear: the outflow at each time 

step of the simulation is a linear function of the average storage during the time step. The 

outflow from groundwater layer 1 of the SMA is inflow to one linear reservoir, and the 

outflow from groundwater layer 2 of the SMA is inflow to another. The outflow from the two 

linear reservoirs is combined to calculate the total baseflow for the basin (HEC-HMS 

Manual).  

3.6.2 Calibration of the Model 

It was necessary to establish values for 19 parameters to model hydrological processes in 

each sub-basin: 12 for the SMA model, 2 for Clark’s model, 4 for the independent linear 

storage tanks model used to represent baseflow and 1 for Lag method of routing. 

Furthermore, 5 parameters corresponding to the initial content of canopy and surface storage 

included in the SMA model had to be considered. The list of parameters considered for the 

present study as given in Table 3.6. In the present study attempt has been made to optimize 

model parameters through the process of calibration by considering four years input data 

between years 2003-2006, in order to get goodness of fit between computed and observed 

streamflow, which was decided based on RMSE and Nash Sutcliffe Efficiency, through 

manual calibration procedure.  
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The model parameters related to infiltration and soil layer were considered based on 

the laboratory measurement, characterization and spatial interpolation of soil physical and 

hydraulic properties. The details of laboratory measurement are as follows:  

I. Laboratory Measurement and Characterization of Soil Physical and Hydraulic 

Properties 

Soil is one of the highly heterogeneous natural resources on earth surface. The soil physical 

and hydraulic properties have greater influence on hydrological processes including 

baseflow, infiltration and ground water flow. Soil layer acts as a boundary which separates 

rainfall into runoff and infiltration. Primary reason for the poor management of ground water 

resources is due to the insufficient knowledge about hydraulic properties of the soil 

formations. So, the knowledge of hydraulic properties of soil is significant for the improved 

planning and management of water resources. Soil hydraulic properties depend mainly on 

soil structure, soil texture, organic matter content, and bulk density. Soil properties are 

spatially variable; hence, to simulate realistic field conditions, a large number of samples are 

required. The continuous modeling of streamflow using semi-distributed models such as 

HEC-HMS requires soil physical and hydraulic properties. Therefore, soil samples were 

collected from Netravati river basin for estimating soil properties. The NBSS LUP has 

provided soil map of Netravati river basin that includes description of seven soil classes. By 

keeping NBSS LUP map as reference, 38 soil samples were collected at 0.5m and 1m depth 

in 19 sampling locations. The soil samples were collected at 0.5m and 1m depth because 

surface soil properties have the greatest effect on hydrology (infiltration, soil moisture 

retention and water holding capacity). The physical and hydraulic properties of soil measured 

in laboratory include bulk density, particle size distribution, organic matter content and 

hydraulic conductivity. The spatial variability of soil properties was analyzed by using three 

interpolation techniques such as Ordinary Kriging (OK), Inverse Distance Weighting (IDW) 

and Radial Basis Function (RBF). 
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Table 3.6 Initial model parameter values assigned under different models 

Model  Parameter Initial Value Reference 

Canopy Method 1. Initial Storage (%) 5-25 Dijk and Bruijnzeel 

2001 

Grimmond and Oke 

1991 
2. Max Storage (MM) 1-9 

3. Crop Coefficient 1 Hamel and Guswa 

2015 

Sridhar 2007 

Surface Method 4. Initial Storage (%) 1-5 Garcia et al. 2008 

5. Max Storage (MM) 6.4-9.4 

Loss Method-SMA 

Model 

6. Soil (%) 25-40 Garcia et al. 2008 

7. Groundwater 1 (%) 50-65 

8. Groundwater 2 (%) 40-75 

9. Maximum Infiltration 

(MM/HR) 

3-5 

10. Impervious (%) 0.5-4.5 

11. Soil Storage (MM) 50-85 

12. Tension Storage (MM) 50-68 

13. Soil Percolation (MM/HR) 1-8 

14. GW 1 Storage (MM) 456-767 

15. GW 1 Percolation (MM/HR) 1.5-2.25 

16. GW 1 Coefficient (HR) 0.04-0.1 

17. GW 2 Storage (MM) 330-671 

18. GW 2 Percolation (MM/HR) 0.75-1.1 

19. GW 2 Coefficient (HR) 0.01-0.2 

Transform Method: 

Clark Unit 

Hydrograph  

20. Time of Concentration (HR)- 

Kirpich method 

5.3-9.73 Straub et al. 2000 

21. Storage Coefficient (HR) 1.38-3.95 

Baseflow Method: 

Linear Reservoir 

Model  

22. GW 1 Initial Discharge 

(M3/S) 

0.0014-0.0043 HYSEP Method 

23. GW 2 Initial Discharge 

(M3/S) 

0.00014-0.00043 

Routing Method: Lag 

Model 

24. Lag time (Minutes)  0-316 HEC-HMS manual 

i.  Bulk Density: Bulk density is an indicator of soil compaction. It is calculated as the 

weight of soil divided by its volume as given in Equation 3.21. This volume includes the 

volume of soil particles and the volume of pores among soil particles. Bulk density is 

typically expressed in g/cm
3
 and is dependent on soil texture, densities of soil mineral (sand, 

silt, and clay) and organic matter particles, as well as their packing arrangement. 
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           (3.21)  

ii. Particle-size distribution: The particle size distribution (also called grain size 

distribution) is one of the most important characteristics of the soil. It has an effect on many 

properties of the soil such as the ease of tillage, the capillary conductivity of soil, the 

available moisture, the permeability of soil, compaction, etc. Particle size analysis is the 

standard laboratory procedure for the determination of the particle size distribution of soil 

and it is required in classifying the soil (Lambe 1967). The mechanical sieve analysis was 

performed to determine the particle sizes larger than 0.075 mm and the hydrometer method 

(Figure 3.12) was used to determine the particle sizes smaller than 0.075 mm. clay is defined 

as particles with diameter less than 0.005 mm. Silt has a particle diameter ranges from 0.005 

mm to 0.05 mm and sand has particle diameter ranges from 0.05 mm to 1mm. Larger 

particles with grain sizes greater than 1 mm were considered as gravels (Punmia et al. 2005). 

The triangular classification of U. S. Public Roads Administration, textural classification 

system was used to categorize the soil based on the percentage of sand, silt and clay sizes 

(Figure 3.13).   

 

Figure 3.12 Experimental setup of Hydrometer analysis 
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         Figure 3.13 Textural classification chart: U. S. Public Road Association 

iii. Organic matter content: Organic matter in soils is widely distributed over the earth’s 

surface occurring in almost all terrestrial and aquatic environments (Schnitzer, 1978). Soils 

contain a large variety of organic materials ranging from simple sugars and carbohydrates to 

the more complex proteins, fats, waxes, and organic acids. Walkley and Black, (1934) 

method for determining the soil organic matter (OM) content uses a specified volume of 

acidic dichromate solution reacting with a determined amount of soil in order to oxidize the 

OM (Figure 3.14 a). 

iv. Saturated hydraulic conductivity (ks): Soil saturated hydraulic conductivity is one of the 

most important soil hydraulic parameters as it charecterizes the soil's ability to transmit 

water. It is a fundamental input for modeling runoff, drainage, and movement of solutes in 

soil. In laboratory, the value of ks can be determined by several different instruments and 

methods such as permeameter, pressure chamber and consolidometer. In this study, falling 

head method using permeameter was used to determine ks (Figure 3.14 b).  
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a)                                                                b) 

 

Figure 3.14 Experimental setup of a) Organic matter content test and b) Saturated 

hydraulic conductivity test 

II. Spatial Interpolation using Geostatistical Wizard 

The spatial distribution maps of soil properties such as sand, silt, clay, saturated hydraulic 

conductivity, organic matter content and bulk density were prepared by using three different 

interpolation techniques. First step is to select appropriate interpolation technique. In order to 

select the appropriate technique, the predicted results obtained from different techniques 

were compared with observed values. A technique is considered accurate when the root mean 

square error is approaching zero. The second step is to choose a suitable semivariogram 

model in case of kriging interpolation technique. The soil samples were divided into training 

and validation data sets. The training data set was utilized for preparing the semivariogram 

model and validation data set was to test the developed model. Validation statistics obtained 

for each model were compared as in the earlier step for selecting appropriate interpolation 

technique. Based on the validation statistics, the techniques selected for preparing spatial 

distribution maps of soil properties include Ordinary Kriging, Inverse Distance Weighting 

(IDW) and Radial Basis Function. The present study used power factor p=2 for IDW spatial 

interpolation; a greater value of p gives more weight to closer observations. 

 

 

a) 

b) 
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3.7 RELATIONSHIP BETWEEN HYDROLOGICAL RESPONSE AND LANDUSE 

CHANGE PATTERN 

In the present research work, an effort has been made to assess the potential of mean monthly 

rainfall-runoff polygons in explaining the rainfall-runoff transformation processes in two 

contrasting catchments -Netravati river basin (Humid) and Harangi catchment (Sub-humid). 

This study specifically focuses on: i) the applicability of monthly rainfall-runoff polygons in 

explaining hydrological processes in contrasting catchments in humid and sub-humid 

environment, ii) the relationship between changes in hydrological response and LU/LC 

change pattern.  

The detailed systematic approach adopted to analyse the relationship of climate 

variability and LU/LC change with hydrological response of two hydrologically different 

catchments is as shown in Figure 3.15. The study determined the mean monthly and annual 

runoff coefficient at Netravati river basin and Harangi catchment for period 1, period 2 and 

period 3. The details of three periods are given in Table 3.7. The data used for the study 

includes rainfall, discharge, toposheet, and satellite images. Measured daily discharge time 

series data at Bantwal station of Netravati river basin and Kudige station of Harangi 

catchment was collected from Central Water Commission (CWC), Pune, India. The 

corresponding recorded daily rainfall time series data was collected from Indian 

Meteorological Department (IMD), Pune, India. The raingauge stations considered for 

analysis in Netravati river basin include Bantwal, Belthangady, Dharmasthala, Mani, 

Subramanya, Koila/Puthur, Kokkada, and Sunkadakatte, whereas Harangi catchment 

includes Galibeedu, Harangi, Madapur, Merkera, Somawarapete, Kudige and Surlabi. The 

data consist of daily time series observation from 2003-2010 in Netravati river basin and 

2005-2012 in Harangi catchment.  
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Table 3.7 The period of analysis: period 1, period 2 and period 3 in Netravati river 

basin and Harangi catchment 

Period 

of 

Analysis 

Netravati river basin Harangi catchment 

LU/LC 

Map 

Rainfall and 

Runoff data 

LU/LC 

Map 

Rainfall and 

Runoff data 

Period 1 2005 2003, 2004, 2005 2007 2005, 2006, 2007 

Period 2 2007 2005, 2006, 2007 2010 2008, 2009, 2010 

Period 3 2010 2008, 2009, 2010 2013 2010, 2011, 2012 

 

 

Figure 3.15 Methodology adopted to analyze hydrologic response to LU/LC change and 

catchment comparison 
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3.7.1 LU/LC Classification and Change Analysis 

The satellite images of IRS-P6, LISS III multispectral sensor data collected from NRSC, 

Hyderabad, India were used for the preparation of LU/LC maps for the years 2005, 2007 and 

2010 of Netravati river basin and the years 2007, 2010 and 2013 of Harangi catchment.  The 

previously classified LU/LC maps of both the study areas were used here for analysing the 

hydrologic response to LU/LC change.  

3.7.2 Spatial Interpolation of Rainfall 

The measured rainfall data was available for raingauge stations distributed uniformly over 

the study areas. A well-known spatial interpolation method namely Inverse Distance 

Weighting (IDW) method was used to obtain the average areal rainfall in the study 

catchments. Then the mean monthly rainfall and runoff were estimated for the study periods.  

3.7.3 Mean Rainfall-Runoff Polygon Method 

The rainfall-runoff polygon is constructed on a cartesian co-ordinate system by plotting 

rainfall v/s runoff and connecting each point by drawing line on a month to month basis 

(Kadioglu and Sen 2001; Nazir et al., 2015; Ali et al., 2014). The hydrological response 

characteristics of two contrasting study areas were expressed and interpreted through 

quantitative and qualitative approaches.   

i. Quantitative Interpretation 

The runoff coefficient is one of the important factors representing the hydrological response 

of any watershed which is calculated as the ratio of runoff to precipitation. In the present 

research work, the mean monthly runoff coefficient was estimated as the arithmetic average 

of the preceding and current month’s runoff coefficients (Kadioglu and Sen 2001; Nazir et 

al., 2015).  

           (3.22) 
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where, RCm is mean monthly runoff coefficient 

Rrc  is runoff to rainfall ratio of current month 

Rrp is runoff to rainfall ratio of preceding month 

The average annual runoff coefficient was calculated as the arithmetic average of 12 months 

coefficient values.  

                        (3.23) 

where, RCa is the average annual runoff coefficient. 

ii. Qualitative Analysis 

The qualitative interpretation of monthly runoff coefficients was carried out based on the 

features of polygon geometry, as shown in Figure 3.16 (Nazir et al., 2015). The detailed 

interpretation is as follows:  

1. Variability of annual hydrological cycle 

Polygon criterion: Polygonal side 

The polygon sides represent the change in average values of precipitation or runoff 

for preceding months. All sides connected together form a closed polygon 

representing the natural balance between precipitation runoff conversions in a year. 

The end point of polygon is the mean runoff coefficient for a particular month. 

2. Seasonality behavior of mean rainfall and runoff 

Polygon criterion: order of polygon side  

Each polygon consists of rising order of sides as well as falling order. Normally, the 

runoff coefficient associated with rising order is higher in comparison with falling 

order. This indicates the seasonality in the mean monthly runoff coefficient. During 

rising sequence, the catchment becomes wetter with time, whereas along the falling 

sequence the same catchment becomes drier. This explains one of the important 
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natural processes namely precipitation is the main contributor for runoff generation 

during rising order, whereas falling order symbolizes more contribution from 

groundwater flow and baseflow to runoff than precipitation. It is important to 

consider the direction of time around the polygons to advise about inter-annual 

variation in the monthly runoff coefficient (Ali et al., 2014).   

 

Figure 3.16 Mean monthly rainfall-runoff polygon  

3. Temporal trend detection  

Polygon criterion: size and shape of polygon  

This is one of the important criterions to explain about the linearity and nonlinearity 

of the relationship between rainfall and runoff. A narrow polygon constitutes smaller 

polygonal area indicating the consistency of the monthly rainfall and runoff 

coefficients. The narrow polygon represents the uniformity of representative runoff 

coefficient for the catchment under study. Wider polygon implies the temporal 

heterogeneity of the runoff coefficient in the catchment due to the influence of factors 

such as evapotranspiration, retention, infiltration contributing to baseflow and 

groundwater storage. Mainly it explains the temporal trends of rainfall and runoff 

over a given period. The closeness of the slope of each side vertically or horizontally 
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indicates the relative amount of the rainfall and runoff in composing the numerical 

value of the monthly runoff coefficient.  

4. Rainfall-runoff conversion mechanism  

Polygon criterion: length of polygonal peripheral and slope of overall polygon  

The length of polygon side specifies the magnitude of the change in average values 

for consecutive months. The total amount of rainfall and runoff in any catchment 

under study can be estimated by adding the length of polygon peripheral. It also acts 

as an indicator for identifying seasonal effects on the annual hydrological cycle of the 

catchment. The present study considers that more precipitation is converted into 

runoff when the overall slope of the polygon with respect to the horizontal axis is 

smaller.  

5. Groundwater, baseflow contribution and evapotranspiration (ET)  

Polygon criterion: slope of each polygon sides 

A steep slope signifies that the volume of runoff not only depends on rainfall 

contribution but also have significant influence of ground water recharge, baseflow 

pattern and evapotranspiration. In addition, the steep slope of the polygon side of a 

month is considered as the dry month that is influenced by groundwater recharge and 

ET (Nazir et al., 2015). 

3.8 SUMMARY   

This chapter presented the detailed course of action adopted to address the research 

objectives under four different sections including LU/LC change analysis and prediction, 

estimation of actual ET using satellite images, studying the applicability of semi distributed 

model for streamflow estimation and comparison of hydrologic response characteristics of 

humid and sub-humid catchments to LU/LC change. The results obtained by adopting these 

methodologies will be provided and discussed in Chapter 4-Results and Discussion.   
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CHAPTER 4 

    RESULTS AND DISCUSSION 

4.1 GENERAL 

The increase in population growth and urbanization are leading to the conversion of 

vegetation rich areas into human settlements and infrastructure development hotspots, 

which restricts the sustainable development of regional environment. This will 

significantly vary the hydrological fluxes of the river basin, which in turn decreases 

the infiltration, canopy storage and water storage of basin. The change in vegetation 

cover influences the different hydrological processes including runoff, 

Evapotranspiration (ET), and baseflow. Hence, the present research work intends to 

carry out a detailed analysis to ascertain the hydrological response to spatio-temporal 

changes taking place in humid and sub-humid catchments of Karnataka state, India. 

The chapter presents the results of analysis described in methodology chapter. This 

chapter also consists of four different themes discussed under following sections:  

 Prediction of future trends in LU/LC pattern of Netravati river basin and 

Harangi catchment. 

 Actual ET and Land Surface Temperature (LST) estimation using satellite 

images 

 Streamflow estimation using continuous hydrologic modelling 

 Comparison of hydrologic response characteristics of two contrasting 

catchments 

4.2 PREDICTION OF FUTURE TRENDS IN LU/LC PATTERN 

4.2.1 LU/LC Dynamics in Netravati River Basin 

The LU/LC changes of the study area for the years 2005, 2007 and 2010 were studied 

and LU/LC maps and area changes are as shown in Figure 4.1 (a), (b) and (c) and 

Table 4.1, respectively. The study has classified the satellite images using three 

classification algorithms - Maximum likelihood algorithm, Minimum distance to 
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mean algorithm and Parallelepiped algorithm. The detailed accuracy assessment of 

classified maps by all the three algorithms was done for satellite images of Harangi 

catchment. Therefore, the accuracy of the classified maps of Netravati river basin was 

evaluated only based on the Kappa value. It is observed that Kappa value with respect 

to the Maximum likelihood algorithm is 0.73, which is the highest compared to 

parallelepiped (0.58) and minimum distance to mean algorithm (0.55). All the three 

algorithms have come across confusion while classifying land with or without scrub, 

built-up land, and fallow land, because more or less similar signatures characterize 

these three classes. Also, algorithms failed to discriminate among plantation and 

forest area because their reflectance values are close to each other. Therefore, the 

classification accuracy can be improved by considering more representative 

signatures, using high spectral resolution images etc.,  

 

Figure 4.1 LU/LC maps for the years a) 2005, b) 2007 and c) 2010 of Netravati 

river basin 
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Table 4.1 LU/LC distribution in Netravati river basin for the years 2005, 2007 

and 2010 and change in area 

LULC class Year Change in Area (sq. km) 

2005 (sq. 

km) 

2007 (sq. 

km) 

2010 (sq. 

km) 

2005-2007 2007-2010 

Built-up land 74.16 146.80 200.94 72.64 54.13 

Fallow  377.55 374.21 358.63 -3.34 -15.57 

Plantation 203.59 293.75 445.47 90.16 151.71 

Forest 1801.18 1695.84 1603.56 -105.34 -92.28 

Land with or 

without scrub  

793.89 735.56 639.36 -58.33 -96.19 

Sandy area 9.63 19.99 16.66 10.36 -3.32 

River 28.25 22.15 23.68 -6.1 1.54 

Total 3288.3 3288.3 3288.3 0 0 

i. Change Detection Analysis during 2005-2010 

The post classification change detection technique has been adopted to analyze 

the LU/LC change between the years 2005 and 2010 (Table 4.1). Based on the results 

of accuracy assessment process, the LU/LC statistics obtained using Maximum 

likelihood algorithm, which gave better accuracy with 0.73 Kappa value, has been 

utilized for further analysis in the study.  

LU/LC change during 2005 – 2007 

 The results show that, the built-up land and plantation are increased from 

74.16-146.80 sq.km, 203.59-293.75 sq. km respectively. The fallow land, forest area, 

and land with or without scrub are decreased from 377.55-374.21 sq.km, 1801.18-

1695.84 sq.km, and 793.89-735.56 sq.km respectively. The increase in the population 

growth and industrial expansion has led to the conversion of land with or without 

scrub into built-up land. In the process of improving the agricultural productivity, 

most of the forest areas are converted into plantations.  

LU/LC change during 2007 - 2010 

The noteworthy change is observed under classes such as built-up land, plantation, 

forest area, fallow land and land with or without scrub. In specific, built-up land and 

plantation are drastically increased from 146.80-200.94 sq.km and 293.75-445.47 

sq.km, respectively. In contrast, the fallow land, forest area, and land with or without 

scrub have shown a decreasing trend of 374.21-358.63 sq.km, 1695.84-1603.56 sq.km 
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and 735.56-639.36 sq.km respectively. There is a slight variation in the water body 

and sandy area also.  

LU/LC change during 2005 - 2010 

The LU/LC change detection results for the years 2005 and 2010 indicated a 

drastic change in forest area, plantation and built-up land among all other classes 

(Table 4.4).  Forest area is found to be the most dominant class among other classes in 

2005 and has decreased drastically during 2010 from 1801.18 sq.km to 1603.56 

sq.km. Eventually, there is an abrupt increase in built-up land from 74.16 sq.km to 

200.94 sq.km and plantation from 203.59 sq.km to 445.47 sq.km during 2005 and 

2010, respectively. This may be because most of the forest and land with or without 

scrub have been converted to plantation. The result shows an increase in population 

and built-up land expansion, promoting the conversion of land with or without scrub 

to built-up land. The changes in water and sandy area are interdependent, as when 

water spread area increases, the amount of sandy area decreases and vice versa. This 

relationship is valid for the present study also, as per the values provided in Table 4.1.  

4.2.2 LU/LC Dynamics in Harangi Catchment 

A spatio-temporal quantification of changes in the land use pattern of Harangi 

catchment during 2007-2013 was performed using three classification algorithms. The 

classified LU/LC maps and graphical representation of area changes for the years 

2007, 2010, and 2013 are shown in Figure 4.2 and 4.3, 4.4 and 4.5, 4.6 and 4.7 

respectively.  The classification was carried out using three different methods - 

Maximum likelihood algorithm, Minimum distance to mean algorithm and 

Parallelopiped algorithm and the classified area of different LU/LC classes are given 

in Table 4.2. 
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Figure 4.2 Classified images of Harangi catchment using Maximum Likelihood 

Algorithm for years a) 2007, b) 2010 and c) 2013 

 

Figure 4.3 Graph of LULC change for years 2007, 2010 and 2013 in Harangi 

catchment using Maximum Likelihood Algorithm 
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Figure 4.4 Classified images of Harangi catchment using Parallelepiped 

Algorithm for years a) 2007, b) 2010 and c) 2013 

 

Figure 4.5 Graph of LULC change for years 2007, 2010 and 2013 in Harangi 

catchment using Parallelepiped Algorithm 
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Figure 4.6 Classified images of Harangi catchment using Minimum Distance to 

Mean Algorithm for years a) 2007, b) 2010 and c) 2013 

 

Figure 4.7 Graph of LULC change for years 2007, 2010 and 2013 in Harangi 

catchment using Minimum Distance to Mean Algorithm 
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Table 4.2 Results of LU/LC classification of Harangi catchment using Maximum 

likelihood, Parallelepiped and Minimum distance to mean algorithm  

      Methods      

        & Year     

 

 

 

LU/LC  

Classes 

Maximum Likelihood 

Algorithm (km
2
) 

Parallelepiped Algorithm 

(km
2
) 

 

Minimum Distance to 

Mean Algorithm (km
2
) 

2007 2010 2013 2007 2010 2013 2007 2010 2013 

Urban Area 13.07 13.35 13.72 9.39 5.76 6.15 95.07 18.59 54.92 

Fallow Land 68.90 62.38 42.63 37.38 37.19 36.49 37.14 46.95 17.16 

Plantation 56.07 88.91 

146.5

5 65.34 75.64 144.11 54.92 41.50 158.16 

Forest Area 183.12 161.37 

131.0

2 184.77 186.48 140.53 186.98 222.81 99.95 

Waste land 72.86 62.00 57.15 97.00 82.41 63.07 22.77 59.35 61.28 

Water 

Logged area 17.99 22.56 23.81 18.72 22.37 23.93 15.70 21.36 23.21 

Water Body 6.71 8.14 3.83 6.11 8.86 4.43 6.14 8.16 4.03 

Total 418.71 418.71 

418.7

1 418.71 418.71 418.71 418.71 418.71 418.71 

The detailed accuracy assessment of classified maps was carried out by 

estimating the Kappa value and overall accuracy. The results of accuracy assessment 

is as given in Table 4.3. It is observed that Kappa value with respect to the Maximum 

likelihood algorithm is 0.81 which is the highest value compared to parallelepiped 

(0.71) and minimum distance to mean algorithm (0.68). A Kappa value of 0.75 or 

greater indicates a good degree of classification. There is no simple way to evaluate 

the errors in the classification associated with change detection. In addition to the 

errors generated in the classification of single date satellite image, the analyst must 

contend with the propagation of errors in the classification of second-date satellite 

image, the change-detection algorithm, registration and radiometric differences 

between the images of different dates. In the present research work, the accuracy was 

assessed based on overall accuracy and Kappa coefficient. Overall accuracy refers to 

the proportion of agreement between a classification result and the reference data at 

certain specific locations. Kappa coefficient is a more discerning statistical parameter 

for comparing the accuracy of different classifiers and offers better interclass 

discrimination than the overall accuracy measure. The results of accuracy assessment 

process shows that, the overall accuracy and kappa coefficient for Maximum 
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likelihood algorithm, Parallelepiped algorithm and Minimum distance to mean 

algorithm are 89.36%, 81.47% and 78.67% and 0.81, 0.71 and 0.68 respectively 

(Table 4.3). The graphical representation of the results obtained from three 

classification algorithm shows that the area distribution under different land use 

categories varies drastically from one algorithm to another algorithm (Figure 4.3, 4.5 

and 4.7). Hence, accuracy assessment process was used to take decision regarding the 

selection of efficient classification algorithm. Results indicate a decrease in Kappa 

value from the Maximum likelihood algorithm to the Parallelepiped algorithm, and 

from the Parallelepiped algorithm to the Minimum distance to mean algorithm. This 

general trend indicates that the Maximum likelihood algorithm is the most accurate, 

followed by the Parallelepiped algorithm and the least accurate method would be the 

Minimum distance to mean algorithm.  

Table 4.3 Kappa values and overall classification accuracy of three different 

classification algorithms for the LU/LC maps of the year 2013 in Harangi 

catchment 

2013 LU/LC map 

Methods Kappa Value 

Overall 

Classification 

Accuracy [%] 

Maximum Likelihood Algorithm 0.81 89.36 

Parallelepiped Algorithm 0.71 81.47 

Minimum Distance to Mean 

Algorithm 
0.68 78.67 

Minimum distance to mean algorithm provided less accurate classification 

results. Because, it has misclassified four LULC classes such as urban area, 

plantation, fallow land and forest area. It can be observed clearly in the LU/LC maps 

and graph of Minimum distance to mean algorithm (Figure 4.6 and 4.7). The result of 

Parallelepiped algorithm also shows less efficiency compared to Maximum likelihood 

algorithm, because of misclassification of three land use classes such as urban area, 

plantation and forest area (Figure 4.4 and 4.5). Even though Maximum likelihood 

algorithm provided classified LU/LC maps with 89.36 % accuracy, it has failed to 

represent spatial distribution of urban area and it has misclassified waste land and 

fallow land as urban area (Figure 4.2). All the three algorithms have come across 

confusion while classifying waste land, urban area, fallow land and waterlogged area. 
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The major reason for misclassification that has been done by these algorithms is due 

to poor performance of algorithms in distinguishing waste land, fallow land and urban 

area. Since, these three classes are characterized by more or less similar signatures. 

Similarly, algorithms failed to distinguish between forest area and plantation as they 

are represented by similar tones of red in False Colour Composite (FCC) image. The 

accuracy of classification can be improved by including more number of 

representative signatures for each class, using high resolution satellite images, using 

secondary data such as study area knowledge from field survey and Google Earth 

maps etc.,   

i. Change Detection Analysis during 2007-2013 

The postclassification change detection technique was adopted to analyse the LU/LC 

change between the years 2007 and 2013 (Table 4.4). Based on the results of accuracy 

assessment process, the LU/LC statistics obtained using Maximum likelihood 

classifier, which gave better accuracy with 0.81 Kappa value, was utilized for 

studying the change. The forest land, fallow land and plantation are the land cover 

types occupying highest percentage of area in the study region, covering about 70% of 

the total area.  

Table 4.4 Results of change detection between 2007 and 2013 in Harangi 

catchment using Maximum likelihood algorithm 

Sl.No 
LU/LC Class 

Name 

% area Changes in area (%) 

2007 2010 2013 

2007-

2010 

2010-

2013 

2007-

2013 

1 Urban Area 3.12 3.19 3.28 0.07 0.09 0.16 

2 Fallow Land 16.45 14.90 10.18 -1.56 -4.72 -6.27 

3 Plantation 13.39 21.23 35.00 7.84 13.77 21.61 

4 Forest Area 43.74 38.54 31.29 -5.19 -7.25 -12.44 

5 Waste land 17.40 14.81 13.65 -2.59 -1.16 -3.76 

6 

Water Logged 

area 4.30 5.39 5.69 1.09 0.30 1.39 

7 Water Body 1.60 1.94 0.91 0.34 -1.03 -0.69 

 
Total 100 100 100 0 0 0 
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LU/LC change during 2007 - 2010 

The results show that, mainly the plantation, water logged area, urban area and water 

body are increased from 56.07 sq.km to 88.91 sq.km, 17.99 sq. km to 22.56 sq.km, 

13.07 to 13.35 sq. km and 6.71 sq. km to 8.14 sq. km respectively. The forest area, 

fallow land and waste land are reduced from 183.12 sq.km to 161.37 sq.km, 68.90 

sq.km to 62.38 sq.km and 72.86 sq. km to 62 sq.km respectively. The major 

occupation of the population in Harangi catchment is agriculture. In the course of 

increasing the agriculture-based income, people are converting waste land, fallow 

land and forest area into plantation. The coffee plantation is the dominant plantation 

type prevailing in harangi catchment.   

LU/LC change during 2010 - 2013 

The notable change is observed under classes such as plantation, forest area, fallow 

land and waste land. In particular, a drastic increase in plantation from 88.91 sq.km to 

146.55 sq.km is observed. In contrast, the forest area, waste land and fallow land have 

shown a decreasing trend of 161.37 sq. km to 131.02 sq. km, 62 sq. km to 57.15 sq. 

km and 62.38 sq. km to 42.63 sq. km. There is a slight variation in the water logged 

area and urban area of about 22.56 sq.km and 23.81 sq.km and 13.35 sq. km to 13.72 

sq. km respectively. Harangi reservoir is located near the catchment outlet, which is 

the major water storage system providing water for drinking and agricultural activities 

in the downstream. This will have the influence on the variation of water spread area 

and water logged area.   

LU/LC change during 2007 - 2013 

The LU/LC change detection results for the years 2007 and 2013 indicated a drastic 

change in forest area, plantation and waste land among all other classes (Table 4.4).  

The forest area decreased dramatically from 183.12 sq. km to 131.02 sq. km. The 

waste land is decreased from 72.86 sq. km to 57.15 sq. km. Also, fallow land and 

water body are decreased from 68.90 sq. km to 42.63 sq. km and 6.71 sq. km to 3.83 

sq. km respectively. In contrast, plantation and waterlogged area are observed to have 

an increasing trend of about 56.07 sq. km to 146.55 sq. km and 17.99 sq. km to 23.81 

sq. km. The urban area has been increased from 13.07 sq. km to 13.72 sq. km.  
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The results indicate that increase in urban area from year 2007 to 2013 is 

because of improved living style of people in this region. As study area is a rural 

catchment, the main occupation is agriculture. Hence, it is observed that forest area 

and waste land has been decreased drastically, which have been utilized for 

agricultural activity specially coffee plantation. Also, there is a fluctuation in the 

water body and waterlogged area because of change in water level from year to year 

in the Harangi reservoir. Harangi reservoir is one of the important water sources for 

drinking and agricultural activity in the region. Overall, there is a drastic change in all 

LU/LC classes of the study area.    

4.2.3 Land Change Modeler (LCM)  

i. Application to Netravati River Basin 

Land use maps for the year 2005 and 2007 were given as the input maps to calibrate 

the LCM model to analyse LU/LC dynamics in Netravati river basin. The gains and 

losses experienced by each class in terms of cells are as shown in Figure 4.8 (a) and 

(b). Built-up land and plantation is increased which means forest and land with or 

without scrub might have converted to built-up land.  From the graph, it is clear that 

the increase in plantation is mainly due to the conversion of forest. A portion of 

fallow land has been used for cultivation, thereby increasing the area of plantation 

(Figure 4.8 (b)). The spatial pattern in the exchange between fallow land and 

plantation and urban and plantation classes in Netravati river basin is as shown in 

Figure 4.9 (a) and (b). The transition sub models were selected based on the major 

transitions, which are found to be useful for the prediction of future changes. The sub 

models and the corresponding transition probability matrix used for Netravati river 

basin are as shown in Table 4.5 and Figure 4.10 respectively. 
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Figure 4.8 a) Gains and Losses experienced by each classe and b) contributors to 

net change in plantation for Netravati river basin from 2005 to 2007 

 

Figure 4.9 The exchanges between a) fallow land and plantation and b) urban 

and plantation for Netravati 

Table 4.5 Transition sub models used in LCM for Netravati river basin 

From To  Sub-Model Name 

Sandy area  River From sandy area 

Plantation  Built-up land   

Plantation Fallow land From plantation 

Land with or without scrub Plantation   

Land with or without scrub Forest From land with or without 

scrub  Land with or without scrub Built-up land 

Land with or without scrub River 

River Land with or without scrub From River 

River Sandy area 
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Figure 4.10 Transition probability matrix for Netravati catchment derived from 

LCM 

ii. Application to Harangi Catchment 

Land use maps for the year 2007 and 2010 were given as the input maps to 

calibrate the LCM model to analyse LU/LC dynamics in Harangi catchment. The 

gains and losses experienced by each class in terms of cells are shown in Figure 4.11 

(a). Forest and wasteland are experiencing a decreasing trend where as plantation and 

waterlogged areas had increased abruptly. Fallow land also shows a decreasing trend 

but the rate of reduction is very less. Figure 4.11 (b) shows the contributions to the net 

change experienced by plantation in Harangi catchment. The conversion of fallow 

land to plantation is more compared to plantation to fallow land. The spatial pattern in 

the exchange between fallow land and plantation and urban and plantation classes in 

Harangi catchment are shown in Figure 4.12 (a) and (b). 

The transition sub models were selected based on the major transitions, which 

are found to be useful for the prediction of future changes. The sub models and the 

corresponding transition probability matrix used for Netravati river basin and Harangi 

catchment are shown in Table 4.6 and Figure 4.13, respectively.  
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Figure 4.11 a) Gains and Losses experienced by each classes and b) contributors 

to net change in plantation for Harangi from 2007 to 2010 

 

Figure 4.12 The exchanges between a) fallow land and plantation and b) urban 

and plantation for Harangi. 

Table 4.6 Transition sub models used in LCM for Harangi catchment 

From To  Sub-Model Name 

Forest  Plantation  Forest transitions 

Forest Urban   

Fallow land  Urban  Fallow land transitions 

Fallow land Plantation   

Fallow land Wasteland   

Waste land Plantation  Wasteland transitions 

Waste land Urban   

Water logged Water  Waterlogged transitions 
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Figure 4.13 Transition probability matrix for Harangi catchment derived 

from LCM 

4.2.4 CA-Markov Model 

The generated transition probability matrix and transition area matrix by using CA-

Markov model for Netravati river basin and Harangi catchment are given in Table 4.7, 

4.8 and Table 4.9, 4.10, respectively. CA–Markov model used transition area matrix 

obtained from Markov chain analysis to predict the changes in LU/LC of the year 

2010 and 2013 in Netravati and Harangi catchment, respectively.   

Table 4.7 Transition probability matrix for the year 2005 and 2007 for Netravati 

river basin 

 Forest  Urban  Fallow 

land  

Water  Plantation  Scrubland  River 

sand 

Forest 0.649 0.022 0.085 0.006 0.107 0.127 0.001 

Urban 0.213  0.113  0.258 0.011 0.119  0.274 0.007 

Fallow 

land 

0.236  0.087 0.217  0.005  0.194  0.251   0.007 

Water 0.216 0.117  0.125  0.086   0.046   0.397 0.010 

Plantation 0.377   0.040   0.208   0.003  0.260  0.106   0.003 

Scrubland 0.154   0.113   0.184 0.009   0.067   0.447 0.022 

River 

sand 

0.036   0.078   0.081   0.025   0.019   0.622   0.136 
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Table 4.8 Transition area matrix for the year 2005 and 2007 for Nethravathi 

river basin 

 Forest  Urban  Fallow 

land  

Water  Plantation  Scrubland  River 

sand 

Forest 1674744   168005 201659 10140 451960 302723 6341 

Urban 48823 32124 76502 3776 59527 128563 3912 

Fallow 

land 

136704 68178 107629 3627 150908 159412 4371 

Water 11540 3699 5235 4691 4446 11296 741 

Plantation 271970 65300 130861 2409 197734 112095 2884 

Scrubland 271787 90999 206612 18074 166316 358944 11787 

River 

sand 

3548 2132 5634 501 3529 13094 818 

Table 4.9 Transition probability matrix for the year 2007 and 2010 for Harangi 

river basin 

 Urban  Plantation Water 

logged 

Waste 

land 

Fallow 

land  

Water  Forest 

Urban 0.051 0.056 0.022 0.605 0.220 0.001 0.042 

Plantation 0.009 0.405 0.003 0.018 0.144 0 0.418 

Water 

logged 

0.057 0.008 0.515 0.149 0.095 0.172 0.001 

Waste land 0.046 0.122 0.040 0.427 0.224 0.004 0.133 

Fallow land  0.106 0.200 0.131 0.156 0.333 0.001 0.068 

water 0.005 0.005 0.048 0.183 0.026 0.660 0.070 

forest 0.004 0.299 0.001 0.034 0.070 0.000 0.589 

Table 4.10 Transition area matrix for the year 2007 and 2010 for Harangi river 

basin 

 Urban  Plantation Water 

logged 

Waste 

land 

Fallow 

land  

Water  Forest 

Urban 1104 1219 471 12988 4734 17 903 

Plantation 1444 62573 485 2866 22326 2 64623 

Water 

logged 

2238 344 20190 5869 3728 6747 51 

Waste land 5110 13422 4435 46724 24552 468 14638 

Fallow land  11532 21727 14215 16960 36161 209 7464 

water 76 76 687 2596 375 9333 993 

forest 1216 83831 391 9787 19671 18 165170 
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4.2.5 Prediction and Validation 

LCM and CA-Markov model were used to predict land use changes in Netravati river 

basin and Harangi catchment for the year 2010 and 2016. Validation was carried out 

by using the module ‘validate’, which compares the output image with the reference 

image and calculates the accuracy. For Netravati river basin, CA-Markov and LCM 

provided 82.13% and 80.1% accuracy respectively, where as for Harangi catchment, 

an accuracy of 86.6% and 80% are given by LCM and CA-Markov model 

respectively. The validation results show that CA-Markov model is better for future 

prediction in Netravati river basin (Figure 4.14 and 4.15), whereas LCM is good in 

predicting future changes for Harangi basin (Figure 4.16 and 4.17), because, Harangi 

catchment is characterized by steep slope compared to Netravati river basin and CA-

Markov model is more sensitive to spatial transitions based on slope in comparison 

with LCM. The result of land change prediction in Netravati river basin for the year 

2016 by CA-Markov model shows a decrease in forest, fallow land and land with or 

without scrub land between 2010 and 2016, contributing to an increase in built-up 

land and plantation. LCM is found to be good in predicting changes in forest and land 

with or without scrub, whereas all other classes are well predicted by CA-Markov 

model in Netravati river basin. 

The predicted map for the year 2010 and 2016 in Netravati river basin (Figure 

4.14 and 4.15) shows that forest area, fallow land, scrub land is decreased from 

1603.59 to 1375.59 sq.km, 453.54 to 420.01 sq.km, and 639.44 to 617.61 sq.km 

respectively, which have contributed to the increase in plantation and urban area from 

445.38 to 588.21 sq.km and 200.85 to 244.76 sq.km respectively. The projections for 

the year 2013 and 2016 in Harangi catchment (Figure 4.16 and 4.17) indicates that 

forest area, fallow land, and waste land are reduced from 129.7 to 81 sq.km, 40.23 to 

25 sq.km and 44.41 to 42 sq.km respectively. This decrease in area has contributed to 

the increase of plantation and urban area from 175.77 to 220 sq.km and 13.7 to 18 

sq.km respectively.    
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Figure 4.14 Predicted LU/LC map for a) 2010 and b) 2016 using CA-Markov 

model in Netravati river basin 

 

Figure 4.15 Predicted scenarios of LU/LC area for the years a) 2010 and b) 2016 

using CA-Markov model in Netravati river basin 
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Figure 4.16 Predicted LU/LC map for a) 2013 and b) 2016 using LCM model in 

Harangi catchment 

 

Figure 4.17 Predicted scenarios of LU/LC area for the years a) 2013 and b) 2016 

using LCM in Harangi catchment 

Depending upon the topographic features of the study area, the accuracy of 

different models varies accordingly, since slope is considered as one of the important 

factors causing the change. For instance, forest area with slope < 15% has been 

converted to built-up land and plantation. Based on the accuracy value alone, it cannot 

be concluded as to which model is the best. One model works better in one study area, 

while the other will give appropriate results in some other area with different 
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biophysical factors. The prediction accuracy is mainly dependent on the classified 

images which are used as base maps. In this study, there is a chance for 

misclassification between sandy area and land with or without scrub, forest area and 

plantation. The use of more driver variables can improve the accuracy of the results to 

some extent. Also, models which can take up several different time period LU/LC 

images, instead of considering only two time period LU/LC images, can improve the 

accuracy of model prediction. The major benefit of applying LU/LC dynamic models 

to predict possible future changes is that they provide better alternatives to define 

suitable weightages based on multi criteria evaluation. 

The constraints and drivers are the criteria that define the changes in the 

particular LU/LC class. In this study, built-up land expansion is restricted in river, 

sandy area, less distance to river network, and forest cover with steep slope. The 

drivers used in this study are soil data, road and river network, distance to road and 

river and slope map. Distance between 20 to 500m is most suitable for built-up land 

and beyond 500m is not suitable, and hence such areas near existing built-up land 

have been converted to plantation and new built-up land. Such areas of forest and land 

with or without scrub have been converted to built-up land. Slope is also considered 

as an important factor causing these changes.  

4.3 ESTIMATION OF ACTUAL EVAPOTRANSPIRATION (AET) USING 

SATELLITE IMAGES  

The present research work estimated the AET by using Priestley Taylor (PT) method 

in Netravati river basin and Harangi catchment for the years 1997, 1999, 2011 and 

2015. LST is one of the major inputs for the estimation of AET calculated using Split 

Window algorithm. The Fractional Vegetation Cover (FVC) and Land Surface 

Temperature (LST) were estimated and analysed for Netravati river basin and Harangi 

catchment during February month of the years 1997, 1999, 2003, 2011 and 2015 and 

are shown in Figure 4.18, 4.20 and Figure 4.19, 4.21, respectively. The estimated LST 

in Netravati river basin during February month of the years 1997, 1999, 2003, 2011 

and 2015 are in the range of 237.12-332.29 Kelvin, 196.61-338.30 Kelvin, 258.13-

303.90 Kelvin, 281.18-318 Kelvin, and 260.81-362.02 Kelvin respectively (Figure 

4.20). The LST in Harangi catchment during February month of the years 1997, 1999, 
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2003, 2011 and 2015 ranges from 228.62-312.23 Kelvin, 188.77-324.70 Kelvin, 

261.04-295.07 Kelvin, 269.65-300.20 Kelvin and 256.29-351.39 Kelvin respectively 

(Figure 4.21). From the results, it is observed that the estimated LST value contain 

outliers (extreme values). The presences of outliers in all the analysed images are due 

to cloud cover and scan line errors that were present in the satellite image.  The area 

covered by outliers is very less; therefore its effect on the overall result is negligible. 

The LST shows an increasing trend, whereas FVC indicates a decreasing trend during 

study period. The variation in LST can be attributed towards the change in vegetation 

pattern of the study areas, which is influenced by urbanization and industrialization. 

The comparison between LST and FVC maps indicate that the LST is low in 

vegetation dense area like Western Ghat region in comparison with the areas which 

experiences continuous land surface change (Figure 4.18, 4.20 and Figure 4.19, 4.21). 

It can be concluded that the decrease in vegetation fraction and increase in land 

degradation increased the LST. The accuracy of estimated LST and FVC depends 

mainly on the quality of satellite images used as input for the analysis. It is observed 

that FVC value is low in some areas that is supposed to have higher value of FVC 

(Figure 4.19 (a) and (c)). This is because of the presence of cloud cover in the satellite 

image. Due to lack of measured LST data, validation of estimated LST values could 

not be carried out. However, it is verified with the weather forecast website: 

 (http://www.accuweather.com/en/in/mangalore/188760/weather-forecast).  
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Figure 4.18 The FVC maps of Netravati river basin during February month of 

the years a) 1997, b) 1999, c) 2003, d) 2011 and e) 2015 
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Figure 4.19 The FVC maps of Harangi catchment during February month of the 

years a) 1997, b) 1999, c) 2003, d) 2011 and e) 2015 
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Figure 4.20 The LST maps of Netravati river basin during February month of 

the years a) 1997, b) 1999, c) 2003, d) 2011 and e) 2015 
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Figure 4.21 The LST maps of Harangi catchment during February month the 

years a) 1997, b) 1999, c) 2003, d) 2011 and e) 2015 

The actual ET estimated by using Priestley Taylor method in Netravati river basin 

for the years 1997, 1999, 2011, and 2015 are in the range of 0.22-2.27 mm/day, 2.14-

4.98 mm/day, 1.07-1.92 mm/day, and 2.22-7.39 mm/day respectively (Figure 4.22). 

Result shows that AET has been increased during the study period of 1997-2015. The 

AET in Harangi catchment during 1997, 1999, 2011, and 2015 are in the range of 

1.04-2.14 mm/day, 2.33-4.28 mm/day, 1.25-1.92 mm/day and 0.92-2.96 mm/day 

respectively (Figure 4.23). The results indicate that the increase in LST and decrease 

in fractional vegetation cover has led to increase in AET. This is because, the 

Priestley Taylor method is based on brightness temperature and fractional vegetation 

cover, which have great influence on the estimated AET. The AET is observed to be 

high in the regions where vegetation fraction is high, eg., Western Ghat region, 

plantations. This is due to the fact that, forest canopies capture highest percentage of 

precipitation leading to high rate of AET. Also, the rate of transpiration is much 

higher from the vegetation rich areas, where plants uptake water from root zone. The 

estimated AET could not be validated due to lack of measured AET data in the study 

area. However, Laxmi (2015) validated the adopted methodology for Netravati river 

basin which is also based on Priestley Taylor method.  
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Figure 4.22 AET map of Netravati river basin during February month of the 

years a) 1997, b) 1999, c) 2011 and d) 2015 
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Figure 4.23 AET map of Harangi catchment during February month of the years 

a) 1997, b) 1999, c) 2011 and d) 2015 

The presence of cloud cover in satellite images is the major reason for obtaining 

very low and very high strange values in AET maps. Therefore, it is suggested to 

apply Digital Image Processing technique to remove cloud cover in the satellite image 

before utilizing for the analysis. The principal advantage of this method is that they 

require only satellite data, easy to implement and ET estimates are possible in areas 
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without field measured data. However, the disadvantage is that this method requires 

many input parameters, which made the method data intensive.    

4.4 STREAMFLOW ESTIMATION USING CONTINUOUS HYDROLOGIC 

MODELLING 

The Hydrological-modeling framework in HEC-HMS involves the preparation of 

basin and meteorological model for simulation of streamflow. The basin model was 

prepared using DEM, which indicates the physical characteristics of the river basin. 

The meteorological model was prepared by considering daily rainfall data of seven 

rain gauge stations and daily evapotranspiration (ET), which is estimated using 

Hargreaves method. The Figures 4.24 and 4.25 shows the temporal variation in 

rainfall and ET respectively. The SMA model parameters were estimated based on the 

soil physical and hydraulic properties measured in the laboratory.   

  

Figure 4.24 The temporal variation in rainfall 
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Figure 4.25 The temporal variation in ET 

4.4.1 Assessment of Spatial Variability of Soil Physical and Hydraulic Properties  

i. Laboratory Analysis of Soil Properties 

The soil physical properties such as particle size distribution (% of gravel, sand, silt 

and clay), bulk density and soil hydraulic property i.e., saturated hydraulic 

conductivity were measured in laboratory for 38 soil samples collected at 0-50cm soil 

layer and 50-100 cm soil layer in spatially well distributed 19 sampling locations in 

Netravati river basin. The wet and dry sieve analysis was done to determine the soil 

particle size distribution for each soil sample. The descriptive statistics of soil 

properties in 0-50cm and 50-100cm soil layers are given in Table 4.11 and Table 

4.12. 
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Table 4.11 Descriptive statistics of soil properties for (0-50 cm) soil layer 

 

Table 4.12 Descriptive statistics of soil properties for (50-100 cm) soil layer 

 

ii. Spatial Variability Analysis of Soil physical and Hydraulic Properties 

The study attempted to interpolate soil properties such as sand, silt, clay, saturated 

hydraulic conductivity, organic matter content and bulk density spatially. In order to 

check the accuracy of different interpolation techniques, the soil data was divided into 

training data set (12 sample points) and validation data set (7 sample points).  

 For carrying out geospatial analysis for surface (0-50cm) soil layer, firstly 

appropriate method was chosen based on validation statistics. The details of 

interpolation techniques are given Table 4.13. The error associated with the 

interpolated map by using three models is as given in Table 4.15. For sand, silt, clay 

and saturated hydraulic conductivity, OK is found to be the best with less error. 

Whereas for organic matter content and bulk density, IDW and RBF techniques are 

found to be more accurate with similar error factor of 1.08%, 1.09% and 1.05g/cc, 

1.04g/cc respectively. The degree of spatial dependence of these soil parameters was 

computed by finding percentage ratio of nugget to sill value of semivariogram. If this 

Soil Properties Min Max SD Skewness Kurtosis 

%Sand 23.33 68.53 15.50 -0.55 -1.02 

%Silt 28.94 75.51 12.26 1.18 1.16 

%Clay 0.54 26.50 7.00 1.43 2.14 

Saturated Hydraulic 

conductivity (cm/sec) 
1.5E-05 0.006 0.0017 2.07 4.35 

Organic Matter (%) 0.27 5.45 1.43 0.78 -0.14 

Bulk density (gm/cc) 1.24 2.04 0.27 0.16 -1.31 

 Soil Properties Min Max SD Skewness Kurtosis 

%Sand 7.35 66.30 16.08 -0.20 -0.68 

%Silt 33.15 76.92 13.27 0.58 -0.88 

%Clay 0 32.35 8.82 0.62 0.21 

Saturated Hydraulic 

Conductivity (cm/sec) 5.83E-06 0.02 0.006 2.13 3.73 

Organic Matter Content 

(%) 0.16 3.13 0.93 0.53 -0.94 

Bulk density (gm/cc) 1.24 2.12 0.22 0.55 0.17 
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percentage ratio is less than 25%, it was considered as the indicator of strong 

dependence and if it is between 26-75%, it was indicator of medium spatial 

dependence. Results indicate that sand, silt, clay, saturated hydraulic conductivity and 

bulk density showed medium spatial dependence, whereas organic matter content 

showed strong spatial dependence. The spatial interpolation maps obtained by 

technique that proved best for respective soil property (0-50cm soil layer) are shown 

in Figure 4.26. 

Similarly, for subsurface (50-100cm), spatial interpolation was carried out for 

all soil properties (Table 4.14). Result shows that, IDW technique is best for 

predicting sand and silt with error of 6.62% and 5.01%. OK is the better technique for 

clay, saturated hydraulic conductivity and organic matter content with error of 0.12%, 

0.002 cm/sec and 0.26% respectively (Table 4.15). Bulk density was predicted more 

accurately by IDW and RBF techniques. The results of spatial dependency shows that 

sand, silt, clay, saturated hydraulic conductivity and bulk density have showed 

medium spatial dependence, whereas organic matter content has showed strong 

spatial dependence.  The spatial interpolation maps obtained by technique that proved 

best for respective soil property (50-100cm soil layer) are shown in Figure 4.27.
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Figure 4.26 Spatial interpolation map of soil properties (0-50cm) a. Sand, b. Silt, c. Clay, d. Saturated hydraulic conductivity, e. 

Organic matter content, f. Bulk density 
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Figure 4. 27 Spatial interpolation map of soil properties (50-100cm) a. Sand, b. Silt, c. Clay, d. Saturated hydraulic conductivity, 

e. Organic matter content, f. Bulk density 
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Table 4.13 Model Structure of Ordinary Kriging Interpolation Technique for Soil Parameters for (0-50 Cm) Soil Layer 

 
Semivariogram 

Model 

Lag size/No. 

of Lags 

Sector 

type 

Nugget 

(c0) 

Partial Sill 

(c ) 

c0/(c0+c) 

(%) 

Spatial 

dependence 

Sand  Stable 8587.00/12 4 & 45ᵒ 104.74 281.78 27 Medium 

Silt Stable 8587.00/12 4 & 45ᵒ 45.64 258.55 15 Strong 

Clay Stable 8357.36/12 4 & 45ᵒ 14.61 16.41 47 Medium 

Saturated Hydraulic 

Conductivity (cm/sec) 
Stable 5508/12 4 & 45ᵒ 2.78e006 2.63e006 51.3 Medium 

Organic Matter Content 

(%) 
Stable 8587.00/12 4 & 45ᵒ 1.59 2.34 40.4 Medium 

Bulk Density (g/cc) Stable 8587.00/12 4 & 45ᵒ 0.053 0.083 38.9 Medium 

Table 4.14 Model structure of Ordinary Kriging Interpolation Technique for soil parameters for (50-100 cm) soil layer 

 
Semivariogram 

Model 

Lag size/No. 

of Lags 

Sector 

type 

Nugget 

(c0) 

Partial Sill 

(c ) 

c0/(c0+c) 

(%) 

Spatial 

dependence 

Sand  Stable 8587.00/12 4 & 45ᵒ 114.03 41.38 73.3 Medium 

Silt Stable 5389.98/12 4 & 45ᵒ 54.95 94.17 36.84 Medium 

Clay Stable 5909.73/12 4 & 45ᵒ 32.99 33 49.99 Medium 

Saturated Hydraulic 

Conductivity (cm/sec) 
Stable 4435.28/12 4 & 45ᵒ 6.13 4.01 60.45 Medium 

Organic Matter Content 

(%) 
Stable 4507.93/12 4 & 45ᵒ 0 0.81 0 Strong 

Bulk Density (g/cc) Stable 8587.00/12 4 & 45ᵒ 0.021 0.021 50 Medium 
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Table 4.15 Error Associated in Spatial Interpolation of Soil Properties by Three 

Techniques 

Soil Properties Ordinary Kriging 

(Error) 

IDW (Error) RBF (Error) 

 50cm 100cm 50cm 100cm 50cm 100cm 

Sand (%) 0.07 8.54 2.65 6.62 1.08 7.47 

Silt (%) 3.27 6.34 5.00 5.01 4.36 5.11 

Clay (%) 1.44 0.12 2.34 1.61 2.12 1.22 

Saturated Hydraulic 

Conductivity (cm/sec) 

0.00002 0.0025 0.0003 0.0028 0.0002 0.0027 

Organic Matter 

Content (%) 

1.14 0.26 1.08 0.27 1.09 0.29 

Bulk Density (g/cc) 0.06 0.08 0.05 0.07 0.04 0.07 

 

4.4.2 Model Calibration  

The data set used for model calibration of four years, between 01/01/2003 to 

31/12/2006. Due to insufficient availability of measured data, calibration could be 

done only at one stream gauging location, ie., Bantwal station, which is situated at the 

outlet of Netravati river basin. HEC-HMS offers automatic calibration facility, which 

is an iterative process to minimize the objective function. However, the optimized 

values obtained by HEC-HMS are not always realistic, due to default constraints set 

by the software. Therefore, the present study adopted the manual calibration 

procedure, which helps to find and assign practical range of values for parameters. 

The model calibration was carried out by fitting the outflow and the hydrograph shape 

between estimated outflow and the measured flow data at stream gauge location 

(Figure 4.28). During calibration, the SMA model parameters - soil storage, tension 

zone storage, soil percolation rate, GW 1 and 2 storage and the respective storage 

coefficients, GW 1 and 2 percolation rate were modified to reduce the objective 

function. The result of simulation run for the calibration period shows that the model 

is underestimating peak flows during monsoon and overestimating low flows during 

summer. The Nash Sutcliffe Efficiency obtained for calibration period is 0.251, which 

indicates that the model prediction efficiency is very much low. The lack of available 

observed data at different sub basins is the major reason for obtaining lower model 

efficiency. This indicates that the model is data intensive to apply in data scarce 

catchments. Therefore, the present research work necessitates the development of 
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simple methodology to study hydrologic response characteristics of study areas. The 

next section of this chapter presents details about the simple approach to compare and 

analyse the hydrologic response characteristics to LU/LC changes.      

 

Figure 4.28 The goodness of fit between predicted and observed streamflow 

4.5 HYDROLOGIC RESPONSE CHARACTERISTICS TO LU/LC CHANGE 

IN HUMID AND SUB-HUMID CATCHMENTS 

4.5.1 Analysis based on Runoff Coefficient (RC) and Rainfall-runoff polygons 

The study determined the mean monthly and annual runoff coefficient at Netravati 

river basin and Harangi catchment for period 1, period 2 and period 3 (Table 3.7). 

Period 1 of Netravati river basin includes rainfall-runoff data of the years 2003, 2004, 

and 2005 and LU/LC map of the year 2005. Period 2 of Netravati river basin 

comprises rainfall-runoff data of the years 2005, 2006, and 2007 and LU/LC map of 

the year 2007. Period 3 of Netravati river basin comprises rainfall-runoff data of the 

years 2008, 2009, and 2010 and LU/LC map of the year 2010. Similarly, Period 1 of 

Harangi catchment covers rainfall-runoff data of the years 2005, 2006, and 2007 and 

LU/LC map of the year 2007. Period 2 of Harangi catchment covers rainfall-runoff 

data of the years 2008, 2009, and 2010 and LU/LC map of the year 2010. Period 3 of 
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Harangi catchment consists of rainfall-runoff data of the years 2010, 2011, and 2012 

and LU/LC map of the year 2013. The LU/LC maps and the corresponding monthly 

rainfall-runoff polygons for Netravati river basin and Harangi catchment are provided 

in Figure 4.29 and 4.30 respectively. Such polygons are capable of providing useful 

qualitative explanations about the rainfall-runoff transformation mechanism. At first 

look, the vertices of the polygon represent the ratio of runoff to rainfall, which is as 

shown in Figure 4.29 and 4.30. Runoff coefficient is usually calculated as the ratio of 

average of monthly runoff amount to the average of monthly rainfall depth. However, 

the present study calculated the mean monthly runoff coefficient as the arithmetic 

average of the preceding and current month’s runoff coefficients as given in Table 

4.16. The study also calculated the mean annual runoff coefficient (Table 4.16).  

The annual runoff coefficient in Netravati river basin is observed to be small 

during period 1 with a value of 0.47, followed by 0.49 in the period 3 and the largest 

value of 0.57 is observed during period 2. The annual runoff coefficient during three 

different periods with varying LU/LC pattern in Harangi catchment shows different 

values, where largest runoff coefficient of 0.15 is observed during period 1 and period 

3, followed by 0.14 during period 2. The variations in the estimated runoff coefficient 

value not only depends on rainfall and runoff value but also depends on physical 

characteristics of the catchment such as vegetation pattern, geological outcrops, and 

topography. Among them vegetation pattern is the significant one which undergoes 

spatio-temporal changes.  
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Figure 4.29 LU/LC maps and the corresponding monthly rainfall-runoff 

polygons for Period 1, 2 and 3 for Netravati river basin 
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Figure 4.30 LU/LC maps and the corresponding monthly rainfall-runoff 

polygons for Period 1, 2 and 3 for Harangi catchment 
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Table 4.16 Mean monthly precipitation (P), runoff (Q), runoff coefficients (RCm) and annual runoff coefficient (RCa) for 

Netravati river basin and Harangi catchment 

   

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec. (RCa) 
N

et
ra

v
at

i 
ri

v
er

 b
as

in
 

Period 

1 

Q 0.00 0.00 0.00 0.00 0.02 9.62 27.49 33.65 12.96 7.69 2.84 0.00 

 P 0.00 0.18 0.51 3.76 5.72 30.75 36.68 31.90 10.86 8.67 1.92 0.06 

 RCm 0.00 0.00 0.00 0.00 0.00 0.16 0.53 0.90 1.12 1.04 1.19 0.74 0.47 

Period 

2 

Q 0.00 0.00 0.00 0.00 0.69 12.32 42.90 37.99 22.21 11.71 7.06 0.75 

 P 0.00 0.06 0.24 2.94 7.77 31.39 43.06 30.99 18.79 10.45 3.15 0.90 

 RCm 0.00 0.00 0.00 0.00 0.04 0.24 0.69 1.11 1.20 1.15 1.68 0.83 0.57 

Period 

3 

Q 0.00 0.00 0.04 0.00 0.00 7.92 34.01 32.08 22.61 11.82 5.51 1.26 

 P 0.32 0.38 3.15 2.68 5.38 24.18 42.82 26.59 18.88 10.85 7.10 1.23 

 RCm 0.00 0.00 0.01 0.01 0.00 0.16 0.56 1.00 1.20 1.14 0.93 0.90 0.49 

H
ar

an
g

i 
ca

tc
h

m
en

t 

Period 

1 

Q 0.00 0.00 0.00 0.00 0.00 2.80 12.39 9.74 4.56 1.84 0.94 0.00 

 P 0.01 0.00 1.03 1.96 8.93 17.16 40.11 26.49 14.45 8.12 2.43 0.26 

 RCm 0.00 0.00 0.00 0.00 0.00 0.08 0.24 0.34 0.34 0.27 0.31 0.19 0.15 

Period 

2 

Q 0.00 0.00 0.00 0.00 0.00 1.29 7.16 5.93 3.38 1.85 1.24 0.27 

 P 0.00 0.09 3.04 1.39 2.12 11.22 32.52 20.80 11.91 6.23 3.56 1.00 

 RCm 0.00 0.00 0.00 0.00 0.00 0.06 0.17 0.25 0.28 0.29 0.32 0.31 0.14 

Period 

3 

Q 0.00 0.00 0.00 0.00 0.00 2.26 5.33 5.76 4.18 1.69 1.66 0.41 

 P 0.01 0.41 0.98 4.56 3.29 22.73 36.69 32.25 17.85 7.12 7.21 0.49 

 RCm 0.00 0.00 0.00 0.00 0.00 0.05 0.12 0.16 0.21 0.24 0.23 0.84 0.15 
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The seasonality being an important hydrological signature used effectively in 

catchment inter comparison studies. The seasonality in the rainfall and runoff pattern 

may produce different RC values. During Southwest monsoon, the rainfall occurs in 

high amount and intensity for long duration contributing high runoff, thus results in a 

large value of runoff coefficient. Result of the present study shows that the RCm never 

exceeded ‘1’in Harangi catchment whereas it is exceeded during all three periods in 

Netravati river basin. These exceeded values indicate the contribution of baseflow and 

groundwater storage to runoff in addition to rainfall. In Netravati river basin, RCm has 

exceeded in the months of September, October, November during period 1, whereas 

during period 2, it has exceeded more frequently in the months of August, September, 

October, and November. During period 3, it has exceeded in the months of August, 

September and October. In Harangi catchment, the highest RCm values observed are 

0.34 in September, 0.32 in November and 0.84 in December during period1, period 2 

and period 3 respectively. This indicates that RCm can efficiently represent 

seasonality existing between the months.  

4.5.2 Relationship between LU/LC changes and hydrological response 

The mean monthly surface runoff and rainfall values show a similar trend during all 

three periods in both the catchments. The mean monthly runoff polygon shows 

monthly variation in rainfall and runoff, which reflects the seasonal pattern. The 

monsoon, winter and summer seasons prevailing in the present study areas are 

between June-October, November-February and March-May respectively. The 

monthly RC was extracted for the LU/LC maps corresponding to month of satellite 

pass in both the study areas is as given in Table 4.17.  

The result shows significant variation in annual runoff coefficient value 

between three periods of study in Netravati river basin reflected by wider polygon 

(Figure 4.29). Specifically, RCm values of Netravati river basin for the years 2005, 

2007 and 2010 are showing an increasing trend (Table 4.17). This indicates that the 

changes in vegetation pattern from one period to another period have great influence 

on the rate of conversion of rainfall to runoff. In addition, the LU/LC change analysis 

shows dynamic changes over three study periods (Table 4.1). Especially, agricultural 
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area and built-up land shows increasing trend, whereas forest area shows decreasing 

trend.  

The result of Harangi catchment shows, there is a correlation between monthly 

rainfall and runoff values represented by narrow polygon (Figure 4.30). Specially, 

RCm value of Harangi catchment for the years 2007, 2010 and 2013 (month of 

satellite pass) is showing an increasing trend (Table 4.17). In fact, the LU/LC change 

analysis shows a slight increase in urban area, but there is a major conversion from 

forest area to plantation (Table 4.4). Based on the analysis, it can be concluded that 

the influence of LU/LC change on rainfall-runoff conversion mechanism is 

predominant in Netravati river basin when compared to Harangi catchment.  

Table 4.17 The RCm value corresponding to LU/LC map (month of satellite pass) 

of Netravati river basin and Harangi catchment 

Period 

of 

Analysis 

Netravati river basin Harangi catchment 

LU/LC 

Map 

Month of 

Satellite 

Pass 

RCm LU/LC 

Map 

Month of 

Satellite 

Pass 

RCm 

Period 1 2005 December 0.74 2007 December 0.19 

Period 2 2007 December 0.83 2010 December 0.31 

Period 3 2010 December 0.90 2013 December 0.84 

4.5.3 Insights on Mean monthly rainfall runoff polygons and catchment 

behaviour 

The graph of mean monthly rainfall versus mean monthly runoff were plotted and 

then the polygons were drawn and qualitative interpretation procedures were adopted 

to compare the hydrological dynamics prevailing in two contrasting catchments. The 

detailed interpretations of the polygons are as follows: 

i. Annual hydrological cycle features  

The polygon sides denote the linear variation in mean values of rainfall and runoff 

between consecutive months. During all the periods, the polygon sides from March to 

May are almost parallel to the y-axis in Netravati as well as Harangi catchment. This 

shows that soil moisture storage and antecedent moisture content is significantly low 

resulting in more infiltration and less runoff. For instance, during March-May months 
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of period 1, rainfall has increased from 0-6mm without any runoff in Netravati river 

basin (Figure 4.29). The sum of length of the polygonal peripheral represents the 

annual hydrological cycle. The length of peripheral is short from the month of April-

May and March-April due to the consistency of the rainfall pattern as the rainfall 

amount on each event is low in Netravati and Harangi catchment respectively (Figure 

4.29 and 4.30). More the length of polygon sides, more the variability of rainfall in 

contributing to runoff. There is a long peripheral length during May-September due to 

monsoon season, there is an increased rainfall frequency and amount in both Netravati 

and Harangi catchment. This increase in rainfall depth leads to the large surface 

runoff. The Harangi catchment polygon (Figure 4.30) has a least peripheral length 

compared to Netravati river basin (Figure 4.29), which shows that Harangi catchment 

does not take much time to complete its annual cycle of rainfall runoff conversion 

process.  

ii. Seasonality in catchment behavior 

The rising or falling order of the polygon sides indicates the seasonality in mean 

monthly runoff coefficient. The rising sequence represents wet season, indicated by 

increase in runoff coefficient value, whereas falling sequence represents dry season, 

indicated by decrease in runoff coefficient value. In Netravati river basin, wet and dry 

sequence is between May to August and August to April respectively (Figure 4.29). In 

Harangi catchment, wet and dry sequence is during May to July and July to April 

respectively (Figure 4.30). In the polygon diagram, the rising sequence has been 

observed due to increase in rainfall from month to month, which makes the ground 

surface wet by infiltrating more water into the ground contributing to soil and 

groundwater storage which in turn increases the antecedent soil moisture. Similarly, 

the falling sequence is noticed due to reduction in the amount of rainfall making the 

catchment drier that causes the runoff coefficient values to become smaller. It is 

observed in the polygon diagrams of both the catchments that even though the rainfall 

starts increasing from the month of March to May, there is negligible contribution to 

runoff generation. It shows the transition from dry season to wet season, during which 

rainfall amount will get lost in soil storage, infiltration, tension zone storage, ground 

water storage and ET.  
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iii. Temporal trend detection based on size and shape of polygon 

The size and shape of polygon is one of the important indicators explaining the 

temporal variation in the catchment response to precipitation variation between 

months in a year. Netravati river basin is represented by the less steep and wider 

polygon which indicates that the catchment response to rainfall is variable in each 

month especially from May to September in all periods (Figure 4.29). Consider the 

polygon of Netravati river basin for period 1, it is observed that rainfall is increased 

by about 25mm between May to June contributing about 10mm runoff, whereas 

during June to July, the rainfall has increased about 5mm contributing about 17mm 

runoff. This implies that the rainfall occurring in the preceding months help in 

increasing the antecedent moisture content, saturation of soil storage and ground 

water storage. Therefore during successive months, even a small magnitude of 

increase in rainfall leads to heavy increment in runoff. This wider polygon constitutes 

larger polygonal area which implies high variability in the relationship between 

monthly rainfall and runoff coefficient.  

Harangi catchment is characterized by more steep and narrow polygon which 

implies the consistent variation of catchment response to rainfall pattern in each 

month especially from end of June to the end of August during all the periods (Figure 

4.30). The uniformity of the temporal variation of monthly runoff coefficients results 

in narrow polygons. The temporal variation of monthly runoff coefficient is uniform 

throughout the year resulting in narrow polygon.  

iv. Rainfall-runoff conversion mechanism  

The sum of length of polygon peripheral can provide an estimate of total amount of 

rainfall and runoff in any catchment. In the present study, the length of polygonal 

peripheral of Netravati river basin is more compared to Harangi catchment (Figure 

4.29 and 4.30). Both the catchments are characterized by upward slope in the rainfall-

runoff polygon. This is because; there is a consistent increase/decrease in runoff with 

the corresponding increase/decrease in rainfall.  

Land use changes have significant impact on slope of runoff coefficient polygon 

by shifting its position, which tend to shift downwards. Smaller the overall slope of 

the polygon with respect to horizontal axis, larger the amount of rainfall converted 

into runoff by varying catchment characteristics. In this study, 45
° 
slope line is drawn 
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as an indicator to measure the shift of the polygon. Netravati river basin is 

characterized by polygons of slope slightly lesser than 45
°, 

indicates that more amount 

of rainfall is converted into runoff. It is observed that the polygon downward shifting 

is increased from period 1 to period 3. The LU/LC change analysis during period 1, 2 

and 3 which shows that forest area has been decreased due to conversion of it to 

agricultural and urban area. This reduction in well-vegetated area has led to the 

generation of more surface runoff. The polygons of Harangi catchment do not show 

significant shift in their position during all three periods.  

v. Characterization of ground water recharge and ET based on slope of each 

polygon side  

During all the periods of LU/LC in both the catchments, the polygon sides in the 

month of March, April, and May are almost vertical. This steep slope indicates that 

contribution of rainfall to runoff is negligible but there is a significant ET, infiltration 

and GW recharge. In fact, Netravati river basin had a dry season from the months of 

September to April. After May, there is a significant contribution to runoff due to the 

onset of Southwest monsoon, which is represented by varying slopes.        

4.6 SUMMARY  

The main aim of the present research work was to carry out a detailed analysis for 

ascertaining the hydrological response to spatio-temporal changes taking place in 

Netravati river basin and Harangi catchment, Karnataka state, India. This chapter 

presented the results and the relevant discussion under four different themes namely 

prediction of future trends in LU/LC pattern of Netravati river basin and Harangi 

catchment, actual ET and Land Surface Temperature (LST) estimation using satellite 

images, streamflow estimation using continuous hydrologic modelling, and 

comparison of hydrologic response characteristic of two contrasting catchments. The 

obtained results facilitated in drawing the conclusions in relationship with objectives 

of the study and are provided in the Chapter 5.  
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CHAPTER 5 

    SUMMARY AND CONCLUSIONS 

5.1 GENERAL 

The major focus of this dissertation was to study and compare the hydrologic 

response characteristics prevailing in two catchments namely Netravati river basin 

and Harangi catchment located in different hydro-climatic conditions. In the process 

of accomplishing this major objective, the present research work specifically 

addressed: a) LU/LC change analysis and prediction of future trends in LU/LC pattern 

by using LCM and CA-Markov model, b) the spatio-temporal pattern of AET in 

humid and sub-humid catchments by using remote sensing data, c) the applicability of 

semi-distributed model in continuous simulation of streamflow, and d) finally, 

hydrologic response characteristics were studied in two contrasting catchments using 

rainfall-runoff polygons.  

This chapter provides summary and major conclusions drawn based on the 

results obtained. The summary is presented under above-mentioned four themes. In 

addition, limitations of the study and scope for further studies are enumerated.  

5.2 SUMMARY  

5.2.1 LU/LC Change Analysis and Prediction of Future Trends in LU/LC 

Pattern 

The LCM and CA-Markov modeling approaches modeled the influence of spatial 

relationship between biophysical drivers and LU/LC changes in Netravati river basin 

and Harangi catchment, which is necessary to predict the impact on river basin 

environment. The major findings of the study are as follows: 

1. The CA-Markov and LCM model gave 82.13% and 80.1% accuracy 

respectively in Netravati river basin.  

2. An accuracy of 86.6% and 80% is obtained in Harangi catchment by using 

LCM and CA-Markov model respectively.  
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3. The validation results show that CA-Markov model is better for future 

prediction in Netravati river basin, whereas LCM is good in predicting future 

changes for Harangi catchment, because, Harangi catchment is characterized by 

steep slope compared to Netravati river basin and CA-Markov model is more 

sensitive to spatial transitions based on slope in comparison with LCM.  

4. The prediction accuracy is mainly dependent on the classified images which 

were used as base maps, since there is a chance for misclassification between 

sandy area and land with or without scrub, forest area and plantation. 

5. It is observed that the forest area and scrub land has decreased in 2016 leading 

to an increase in plantation and built-up land in Netravati river basin. Predicted 

map of Harangi catchment for the year 2016 shows that the plantation is 

increasing from 175.77 to 220 sq.km area, but forest, fallow and wasteland are 

showing a decreasing trend.  

5.2.2 The Spatio-temporal Pattern of AET in Humid and Sub-humid 

Catchments 

The present research work estimated the AET in Netravati and Harangi catchment by 

using Priestley Taylor method and the outcomes are as follows:   

1. The comparison between LST and FVC maps indicate that the LST is low in 

vegetation dense area in comparison to the areas which experiences continuous 

land surface change. It can be concluded that the decrease in vegetation fraction 

and increase in land degradation will increase LST. 

2. The actual ET estimated by using Priestley Taylor method in Netravati river 

basin during February month the years 1997, 1999, 2011, and 2015 are in the 

range of 0.22-2.27 mm/day, 2.14-4.98 mm/day, 1.07-1.92 mm/day, and 2.22-

7.39 mm/day respectively. The AET in Harangi catchment during 1997, 1999, 

2011, and 2015 are in the range of 1.04-2.14 mm/day, 2.33-4.28 mm/day, 1.25-

1.92 mm/day and 0.92-2.96 mm/day respectively. 

3. Results show that AET has been increased during the study period of 1997-

2015. Since the AET estimation method is based on brightness temperature and 
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fractional vegetation cover, the increase in LST and decrease in fractional 

vegetation cover has lead to increase in AET. 

4. The AET is observed to be high in the regions where vegetation fraction is high, 

eg., Western Ghat region, and agricultural plantations. This is due to the fact 

that, forest canopies capture highest percentage of precipitation leading to high 

rate of AET. Also, the rate of transpiration is much higher from the vegetation 

rich areas, where plants uptake water from root zone. 

5. The presence of cloud cover in satellite images is the major reason for obtaining 

very low and very high strange values in AET maps. 

6. The study shows that satellite data can be efficiently used for estimation of ET 

in any river basin which is lacking in measured data.  

5.2.3 The Applicability of Semi-Distributed Model in Continuous Simulation of 

Streamflow 

Aim of the study was to calibrate the hydrological model based on SMA model for 

estimating streamflow in Netravati river basin. The following inferences are drawn:  

1. The Nash Sutcliffe Efficiency and Mean absolute error obtained for calibration 

period are 0.251 and 244.4 m3/sec respectively, which indicates that the model 

prediction efficiency is lower for daily stream flow prediction. 

2. The lack of available observed data at different sub basins is the major reason 

for obtaining lower model efficiency. 

5.2.4 Rainfall-Runoff Polygon Method to Study Hydrologic Response 

Characteristics  

The hydrological responses of two contrasting catchments were compared through 

qualitative and quantitative interpretation of rainfall-runoff polygons. The following 

inferences are listed based on the analysis:  

1. The Netravati river basin is characterized by high temporal variability of 

monthly runoff coefficient indicated by wider polygon, whereas Harangi 

catchment is characterized by uniform temporal variability of monthly runoff 

coefficient throughout the year resulting in narrow polygon. 
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2. The mean monthly runoff polygon method can be used as efficient tool to study 

the seasonality behavior of catchments.  

3. Results of the study show that rainfall-runoff polygon in combination with 

LU/LC change analysis is capable of explaining hydrologic response in a better 

way.  

5.3 CONCLUSIONS 

1. The results of the study show that CA-Markov model is better for future 

prediction in Netravati river basin, whereas LCM is good in predicting future 

changes for Harangi catchment, because Harangi catchment is characterized by 

steep slope compared to Netravati river basin and CA-Markov model is more 

sensitive to spatial transitions based on slope in comparison with LCM.  

2. The accuracy of prediction is mostly dependent on the classified images, which 

were used as base maps and the selected driving factors, since there is a chance 

for misclassification between sandy area and land with or without scrub, forest 

area and plantation.  

3. The qualitative assessment of LST and FVC maps shows that the decrease in 

vegetation fraction and increase in land degradation has increased LST. 

4. The AET is observed to be high in the regions where vegetation fraction is high, 

eg., Western Ghat region, and agricultural plantations. Based on the analysis, it 

can be concluded that high rate of AET takes place from forest canopies that 

capture highest percentage of precipitation and also the rate of transpiration is 

much higher from the vegetation rich areas, where plants uptake water from root 

zone. 

5. The results of analysis show that model efficiency is lower for calibration of 

daily streamflow. This is due to lack of availability of measured streamflow data 

at all sub-basins. Therefore, it can be concluded that the semi-distributed model 

with 24 parameters is data intensive, make it difficult to apply in catchments 

with scarce data.   
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6. The shape, size and slope of polygons effectively reflected the difference 

between two catchments. This variation is mainly due to changes in the rate of 

conversion of rainfall into runoff from one catchment to another.  

7. The rainfall-runoff polygon based methodology proves to be a simple and 

efficient way of studying the rainfall-runoff conversion mechanism in any 

catchment, provided there is availability of past and present rainfall runoff data 

and satellite images. 

5.4 LIMITATIONS OF THE STUDY 

1. The LU/LC change prediction models do not consider drivers representing 

agricultural practices and economic growth.  

2. Prediction accuracy of LCM and CA-Markov model in predicting the future 

trend in LU/LC is mainly based on two previous year LU/LC maps.  

3. The non availability of cloud free satellite data has limited the analysis of AET 

only for few years. 

4. The hydrological model calibration efficiency is limited due to lack of measured 

data at different sub basins.  

5.5 SCOPE FOR THE FUTURE STUDIES 

1. Improving the LU/LC change prediction accuracy by considering more driving 

factors including agricultural management and economic growth. 

2. Developing land use change prediction model which can take up more number 

of base LU/LC maps instead of taking just two base periods. 

3. SMA model can be calibrated and validated by considering small catchment 

which is surplus with all input data. 

4. Hydrologic response characteristics can be studied in detail by considering 

baseflow contribution separately.  
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