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ABSTRACT OF THE THESIS

In this thesis we consider nonlinear ill-posed operator equations of the form

F (x) = y, where F : X → Y is a nonlinear operator between Hilbert spaces

X and Y. Many problems from computational sciences and other disciplines

can be brought to the form F (x) = y. In practical applications, usually

noisy data yδ are available instead of y. The problem of recovery of the exact

solution x̂ from noisy equation F (x) = yδ is ill posed, in the sense that

a small perturbation in the data can cause large deviation in the solution

and the solutions of these equations are usually unknown in the closed form.

Thus the computation of a stable approximation for x̂ from the solution of

F (x) = yδ, becomes an important issue in the ill-posed problems, and most

methods for solving these equations are iterative.

We consider iterative regularization methods and their finite dimensional

realization, for obtaining an approximation for x̂ in the Hilbert space. The

choice of regularization parameter plays an important role in the convergence

of regularization methods. We use the adaptive scheme of Pereverzev and

Schock (2005), for choosing the regularization parameter. The error bounds

obtained are of optimal order with respect to a general source condition.

Keywords: Ill-posed nonlinear equations, Regularization methods,

Monotone operator, Lavrentive regularization, Tikhonov regularization,

Projection methods, Adaptive method.

Mathematics Subject Classification: 47J06, 47H30, 47H07, 49M15.
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Chapter 1

INTRODUCTION

1.1 GENERAL INTRODUCTION

Keller (1976) formulated the following general definition of inverse problems,
which is frequently referred in the literature.

“We call two problems inverses of one another if the formulation of each
involves all or part of the solution of the other. Direct problems has been
studied widely for some time, while the other is newer and not so well un-
derstood and it is called the inverse problem.”

Inverse problems are wide in range, and are important in applied mathe-
matics & other sciences which have witnessed a rapid growth over past few
decades. Inverse problems have wide variety of applications in sciences and
engineering. A well known and prominently known real world medical appli-
cation includes tomography, cell detection in various cancer diseases, which
helps to calculate the defective cell densities in human body.

In many practical applications it is observed that, the inverse problems
are not well-posed, in the sense that a unique solution that continuously
depends on data is not guaranteed. A problem which is not well-posed is
called ill-posed(see Definition 1.2.1.)

If the range space is defined as set of solutions to the direct or forward
problem, existence of a solutions to the inverse problem is clear. However,
a solution may fail to exist if the elements of range space are perturbed by
noise. Uniqueness of solution to an inverse problem is often not easy to show,
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but it is an important issue. If the uniqueness is not guaranteed by the given
data, then either additional data have to be observed or the set of favorable
solutions has to be restricted using a-priori information on the solution.

Until the beginning of the last century it was generally believed that for
natural problems the solution will depend continuously on the data. If this
was not the case, the mathematical model of the problem was believed to be
inadequate. Therefore, these problems were called ill or badly posed. Only
in the second half of the last century it was realized that a large number
of problems arising in science and technology are ill-posed in any reasonable
mathematical setting. This initiated a large amount of research in stable and
accurate methods for numerical solution of ill-posed problems. Today inverse
and ill-posed problems are still an active area of research. This is reflected in
a large number of article in the journals(“Inverse Problems”, “Inverse Prob-
lems and Imaging”, “Inverse and Ill-Posed Problems”, “Inverse Problems in
Engineering”, “Mathematical Inverse Problems” etc) and monographs(see for
example Engl et al. (1996), Groetsch (1993), Keller (1976), Ramm (2005)).

1.2 DEFINITIONS AND BASIC RESULTS

Let X be a real Hilbert space with inner product 〈., .〉 and norm ‖.‖. Let
B(x, r) and B(x, r), stand respectively, for the open and closed balls in X

with center x and radius r > 0.

DEFINITION 1.2.1. Let X and Y are Hilbert spaces and F : X → Y be
an operator(linear or non-linear). Then the equation

F (x) = y (1.2.1)

is said to be well-posed if the following three conditions hold.

a) for each y ∈ Y , there is a solution x ∈ X of (1.2.1),

b) the solution x is unique in X and

c) the dependence of x upon y is continuous.
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If condition (a) and (b) holds then the map is invertible and condition (c)

indicates that the inverse mapping is continuous. An equation of the type
(1.2.1) which is not well-posed is called ill-posed.

It is always assumed that (1.2.1) has a solution x̂, for exact data, that is,
F (x̂) = y, but due to non-linearity of F (or if F is not injective), this solution
need not be unique. Therefore we consider a x0−minimal norm solution of
(1.2.1). Recall that (Engl et al. (1996), Tautenhahn and Jin (2003), Qi-nian
and Zong-yi (1999)) a solution x̂ of (1.2.1) is said to be an x0−minimal norm
solution (x0−MNS) of (1.2.1) if

F (x̂) = y, (1.2.2)

‖x0 − x̂‖ = min
x∈D(F )

{‖x− x0‖ : F (x) = y}. (1.2.3)

Here and below D(F ) denote the domain of F . The elements x0 ∈ X in
(1.2.3) plays the role of a selection criteria (Engl et al. (1989)) and it is
assumed to be known.

We need the following definitions in the sequel.

DEFINITION 1.2.2. Let F be an operator mapping a Hilbert space X into
a Hilbert space Y . If there exists a bounded linear operator L : X → Y such
that for x0 ∈ X

lim
h→0

‖F (x0 + h)− F (x0)− L(h)‖
‖h‖

= 0,

then F is said to be a Fréchet-differentiable at x0 and the bounded linear
operator F ′(x0) := L is called the first Fréchet-derivative of F at x0.

DEFINITION 1.2.3. F : X → X is a monotone operator if it satisfies the
relation

〈F (v)− F (w), v − w〉 ≥ 0, ∀v, w ∈ D(F ).

REMARK 1.2.4. (Ramm, 2005). If F is a linear operator, then prob-
lem (1.2.1) is ill-posed if either N(F ) 6= 0 or y /∈ R(F ) or R(F ) is not
closed (N(F ) is the null space of F and R(F ) is the range of F ). i.e., F−1

is unbounded. For a nonlinear and Fréchet differentiable operator F there
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are several possibilities of ill-posedness. If F ′(x) is continuously invertible
at some point x, then F (x) is a local homeomorphism. But F may be a
homeomorphism, despite of the fact that F ′(x) is not continuously invertible.

In nonlinear case, ill-posedness always means that the solutions do not
depend continuously on the data i.e., F ′(x) is not continuously invertible.

The theory of linear ill-posed problems is very well-developed (Engl et al.,
1996) and can be considered as almost complete. Hence, we deal with non-
linear case, where the theory is not so well developed as in the case of linear
one. Next we give few motivational examples of ill-posed problems.

EXAMPLE 1.2.5. Geological Prospecting:(Vasin and George (2014)
and Vasin et al. (1996)). Let the half-space is modeled by two-layers of con-
stant different densities σ1, σ2 separated by a surface S to be determined. In
the Cartesian coordinate system, whose plane xOy coincides with the ground
surface and the axis z is directed downward, the inverse gravimetry problem
has the form (see, Vasin et al. (1996) and references in it):

Γ∆σ

∫ ∫
D

1

[(x− x′)2 + (y − y′)2 +H2]1/2
dx′dy′

−
∫ ∫

D

1

[(x− x′)2 + (y − y′)2 + u2(x′, y′)]1/2
dx′dy′ = ∆g(x, y);

(1.2.4)
here Γ is gravity constant, ∆σ = σ1 − σ2 is the density jump at the interface
S, described by the function u(x, y) to be evaluated. ∆g(x, y) is the anoma-
lous gravitational field caused by deviation of the interface S from horizontal
asymptotic plane z = H, i.e., for the sought for solution û(x, y) the following
relation holds

lim
|x|,|y|→∞

|û(x, y)−H| = 0,

g(x, y) is given on the domain D.
Since in (1.2.4) the first term does not depend on u(x, y) equation can be

written as

F (u) ≡ −
∫ ∫

D

1

[(x− x′)2 + (y − y′)2 + u2(x′, y′)]1/2
dx′dy′ = f(x, y),
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where f(x, y) = ∆g(x, y) + F (H).

EXAMPLE 1.2.6. (Nguyen, 1998). Non-linear singular equation in the
form ∫ t

0

(t− s)−λx(s)ds+ F (x(t)) = f0(t), 0 < λ < 1 (1.2.5)

where f0 ∈ L2[0, 1] and non-linear function F (t) satisfies the following con-
ditions:

1) ‖F (t)‖ ≤ a1 + a2|t|, a1, a2 > 0

2) F (t1) ≤ F (t2) iff t1 ≤ t2

3) F is differentiable.

Thus, F is a monotone operator from X = L2[0, 1] into Y = L2[0, 1]. In
addition, assume that F is compact operator. Then the equation (1.2.5) is
an ill-posed problem because the operator K defined by

Kx(t) =

∫ t

0

(t− s)−λx(s)ds,

is also compact.

EXAMPLE 1.2.7. (Hoang and Ramm, 2010). Consider a nonlinear oper-
ator equation F : L2[0, 1]→ L2[0, 1] defined by

F (u) := B(u) + (arctan(u))3 :=

∫ 1

0

e−|x−y|u(y)dy + (arctan(u))3. (1.2.6)

Since the function u→ arctan3 u is an increasing function on R, one has

〈(arctan(u))3 − (arctan(v))3, u− v〉 ≥ 0,∀u, v ∈ L2[0, 1].

Moreover,

e−|x| =
1

π

∫ ∞
−∞

eiλx

1 + λ2
dλ
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Therefore, 〈B(u− v), u− v〉 ≥ 0, so

〈F (u− v), u− v〉 ≥ 0,∀u, v ∈ L2[0, 1].

Thus, F is a monotone operator. Note that

〈(arctan(u))3 − (arctan(v))3, u− v〉 = 0 iff u = v a.e.

Therefore, the operator F, defined in (1.2.6), is injective and F has at most
one solution. The Fréchet derivative of F is

F ′(u)w =
3(arctan(u))2

1 + u2
w +

∫ 1

0

e−|x−y|w(y)dy.

If u(x) vanishes on a set of positive Lebesgue measure, then F ′(u) is not
boundedly invertible. If u ∈ C[0, 1] vanishes even at one point x0, then F ′(u)

is not boundedly invertible in L2[0, 1].

1.3 REGULARIZATION METHODS

Since (1.2.1) is ill-posed, regularization techniques are required to obtain an
approximation for x̂. By regularization method of ill-posed equation, (1.2.1)
with yδ in place of y, where ‖y − yδ‖ ≤ δ, we mean, a family {Rα : α > 0}
of bounded linear operator from Y to X such that, Rαy

δ → x̂ as α→ 0 and
δ → 0.

1.3.1 Tikhonov regularization

Tikhonov Regularization has been investigated by many authors (see e.g Engl
et al. (1996), Engl et al. (1989) and Neubauer (1989)) to solve non-linear ill-
posed problems in a stable manner. In Tikhonov Regularization, a solution
of the problem (1.2.1) is approximated by a solution of the minimization
problem

Jα(x) = min
x∈D(F )

‖F (x)− yδ‖2 + α‖x− x0‖2 (1.3.1)
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where α > 0 is a small regularization parameter and yδ ∈ Y is the available
noisy data, for which we have the additional information that

‖y − yδ‖ ≤ δ.

It is known that (Engl et al., 1989) the minimizer xδα of the functional Jα(x)

satisfies the Euler equation

F ′(x)∗(F (x)− yδ) + α(x− x0) = 0.

Here F ′(.)∗ : Y → X denotes the adjoint of the Fréchet derivative F ′(.) :

X → Y. It is also known that (Engl et al., 1996) for properly chosen regu-
larization parameter α, the minimizer xδα of the functional Jα(x) is a good
approximation to the solution x̂ with minimal distance from x0. Thus the
main focus is to find a minimizing element xδα of the Tikhonov functional
(1.3.1). But the Tikhonov functional with non-linear operator F might have
several minima, so to ensure the convergence of any optimization algorithm to
a global minimizer xδα of the Tikhonov functional (1.3.1), one has to employ
stronger restrictions on the operator (Ramlau, 2003).

1.3.2 Lavrentiev regularization

In this section we assume that X = Y is a real Hilbert space. When F is
a nonlinear monotone operator, instead of Tikhonov Regularization method,
one may consider Lavrentiev regularization method. In this method the
regularized approximation xδα is obtained by solving the operator equation

F (x) + α(x− x0) = yδ (1.3.2)

where x0 is an initial guess of x̂. Using Minty-Browder Theorem (see section
2.1 Alber and Ryazantseva (2006)) one can prove that (1.3.2) has a unique
solution for all α > 0.

7



1.3.3 Choice of regularization parameter

In general a regularized solution xδα can be written as xδα = Rαy
δ, where Rα

is a regularization function. A regularization method consists not only of a
choice of regularization function Rα but also of a choice of the regularization
parameter α. A choice α = αδ of the regularization parameter may be made
in either an a priori or a posteriori way (Groetsch (1993)). Suppose there
exists a function ϕ : (0, a]→ (0,∞) with a ≥ ‖F ′(.)‖ and v ∈ X such that

x0 − x̂ = ϕ(F ′(.))v, (1.3.3)

where x0 is an initial guess and F ′(x̂) is the Fréchet derivative of F at some
point, and

‖x̂−Rαy‖ ≤ ϕ(α),

then ϕ is called a source function and the condition (1.3.3) is called source
condition.

Note that (Groetsch (1993)) the choice of the parameter αδ depends on
the unknown source conditions. In applications, it is desirable that α is cho-
sen independent of the source function ϕ, but may depend on the data (δ, yδ),

and consequently on the regularized solutions. For linear ill-posed problems
there exist many such a posteriori parameter choice strategies (George and
Nair (1993), Groetsch and Guacaneme (1987), Guacaneme (1990) and Taut-
enhahn (2002)).

Pereverzev and Schock (2005), considered an adaptive selection of the
parameter which does not involve even the regularization method in an
explicit manner. Let us briefly discuss this adaptive method in a gen-
eral context of approximating an element x̂ ∈ X by elements from the set
{xδα : α > 0, δ > 0}.

Assume that there exist increasing functions ϕ(t) and ψ(t) for t > 0 such
that

lim
t→0

ϕ(t) = 0 = lim
t→0

ψ(t)

8



and
‖x̂− xδα‖ ≤ ϕ(α) +

δ

ψ(α)
,

for all α > 0, δ > 0. Here, the function ϕmay be associated with the unknown
element x̂, whereas the function ψ may be related to the method involved
in obtaining xδα. Note that the quantity ϕ(α) + δ

ψ(α)
attains its minimum for

the choice α := αδ such that ϕ(αδ) = δ
ψ(αδ)

, that is for

αδ = (ϕψ)−1(δ)

and in that case
‖x̂− xδα‖ ≤ 2ϕ(αδ).

The above choice of the parameter is a priori in the sense that it depends on
unknown functions ϕ and ψ.

In an a posteriori choice, one finds a parameter αδ without making use
of the unknown source function ϕ such that one obtains an error estimate of
the form

‖x̂− xαδ‖ ≤ cϕ(αδ),

for some c > 0 with αδ = (ϕψ)−1(δ). The procedure in Pereverzev and Schock
(2005) starts with a finite number of positive real numbers, α0, α1, α2, ..., αN ,

such that α0 < α1 < α2 < ... < αN . The following theorem is essentially a
reformulation of a theorem proved in Pereverzev and Schock (2005).

THEOREM 1.3.1. (see, George and Nair (2008)) Assume that there exists
i ∈ {0, 1, 2, ..., N} such that ϕ(αi) ≤ δ

ψ(αi)
and for some µ > 1,

ψ(αi) ≤ µψ(αi−1) ∀i ∈ {0, 1, 2, ...N}.

Let
l := max{i : ϕ(αi) ≤

δ

ψ(αi)
} < N

k := max{i : ‖xδαi − x
δ
αj
‖ ≤ 4

δ

ψ(αj)
,∀j = 0, 1, ..., i− 1}.
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Then l ≤ k and

‖x̂− xδαk‖ ≤ 6µϕ(αδ), αδ := (ϕψ)−1(δ).

1.3.4 Iterative methods

In the last few years many authors considered iterative methods, for exam-
ple, Landweber method (Hanke et al. (1995), Ramlau (1999)), Levenberg-
Marquardth method (Hanke (1997a)), Gauss-Newton (Bakushinskii (1992),
Blaschke et al. (1997)), Conjugate Gradient (Hanke (1997b)) and Newton
like methods (Kaltenbacher (1997), Nair and Ravishankar (2008)). Iterative
methods for finding the solution of F (x) = 0 have the following form:

1) Beginning with a starting value x0,

2) Successive approximates xi, i = 1, 2, ... to x∗ are computed with the aid
of an iteration functionG : X → X, defined asG(xi) = xi+1, i = 1, 2, ...,

3) If x∗ is a fixed point of G i.e., G(x∗) = x∗, all fixed points of G are
also zeros of F , and if G is continuous in a neighbourhood of each of
its fixed points, then each limit point sequence xi, i = 1, 2..., is a fixed
point of G, and hence a solution of the equation F (x) = 0.

Most of the above mentioned iterative methods involves inverse and Fréchet
derivative of the operator F . Ramlau (2003), considered a method called
TIGRA (Tikhonov gradient method) for the implementation of Tikhonov
Regularization defined iteratively by

xδk+1 = xδk + βk[F
′(xδk)

∗(yδ − F (xδk)) + αk(x
δ
k − x0)]. (1.3.4)

Note that the above method is free from the inverse of the Fréchet derivative
of the operator involved.

In this thesis we considered iterative regularization method involving in-
verse of the Fréchet derivative of the operator under consideration and also we
considered an iterative method free from the inverse of the Fréchet derivative
of the operator.
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1.4 OUTLINE OF THE THESIS

The thesis is organized in six chapters. In Chapter 1 we present general
introduction to the problem, some examples for nonlinear ill-posed equations,
introduction to some regularization methods and some results related to the
thesis.

In Chapter 2, for solving F (x) = y, we consider an iterative method
defined for n = 1, 2, 3, · · · by

xδn+1,α = xδn,α − (F ′(xδn,α) + αI)−1[F (xδn,α)− yδ + α(xδn,α − x0)] (1.4.5)

where x0 := xδ0,α is the starting point of the iteration. We make use of the
adaptive scheme suggested by Pereverzev and Schock (2005) for choosing the
regularization parameter α, depending on the noisy data yδ and the error δ.
Under general source condition on x0 − x̂, the error ‖xδn,α − x̂‖ between the
regularized approximation xδn,α and the exact solution x̂ is of optimal order.

Chapter 3 deals with finite dimensional realization of the method consid-
ered in Chapter 2. The algorithm for the proposed method is given followed
by a numerical example which confirms the efficiency of our approach.

Chapter 4 is the modified Tikhonov Gradient-Type method(TGTM) is
defined for n = 1, 2, 3, ... by

uδn+1,α = uδn,α − β(F ′(uδn,α)∗(F (uδn,α)− yδ) + α(uδn,α − u0)) (1.4.6)

where u0 = uδ0,α is the initial approximation. Note that inversion of the
Fréchet derivative of the operator is not involved in the above method. We
select the regularization parameter α using adaptive method and obtained
an optimal order estimate.

In Chapter 5, we consider finite dimensional realization of the method
considered in Chapter 4. Numerical examples and corresponding computa-
tional results are presented.

In Chapter 6, we conclude the thesis by giving scope for future work.
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Chapter 2

A QUADRATIC CONVERGENCE
YIELDING ITERATIVE METHOD
FOR THE IMPLEMENTATION OF
LAVRENTIEV REGULARIZATION
METHOD FOR ILL-POSED
EQUATIONS

George and Elmahdy (2012), considered an iterative method which converges
quadratically to the unique solution xδα of the method of Lavrentiev regular-
ization, i.e., F (x) + α(x − x0) = yδ, approximating the solution x̂ of the
ill-posed problem F (x) = y where F : D(F ) ⊆ X −→ X is a nonlinear
monotone operator defined on a real Hilbert space X. The convergence anal-
ysis of the method was based on a majorizing sequence. In this chapter, we
expand the applicability of the method considered by George and Elmahdy
(2012) by weakening the restrictive conditions imposed on the radius of the
convergence ball and also by weakening the popular Lipschitz-type hypothe-
ses considered in earlier studies such as George and Elmahdy (2012), Mahale
and Nair (2009), Nair and Ravishankar (2008), Semenova (2010) and Taut-
enhahn (2002). We show that the adaptive scheme considered by Pereverzev
and Schock (2005) for choosing the regularization parameter can be effec-
tively used here for obtaining optimal order error estimate.
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2.1 INTRODUCTION

For monotone operator F, one usually uses the Lavrentiev regularization
method (Tautenhahn (2002)). In this method the regularized approximation
xδα is obtained by solving the operator equation

F (x) + α(x− x0) = yδ. (2.1.1)

It is known (cf. Tautenhahn (2002),Theorem 1.1) that (2.1.1) has unique
solution xδα for α ≥ 0, provided F Fréchet differentiable and monotone in the
ball B(x̂, r) ⊂ D(F ) with radius r =‖ x̂− x0 ‖ + δ

α
. (In section 2.2 we prove

that (2.1.1) has a unique solution for all x ∈ B(x0, r) under some assumption
on the Fréchet derivative of F ). However the regularized equation (2.1.1) re-
mains nonlinear and one may have difficulties in solving it numerically. So
one has to use iterative regularization methods (Bakushinsky and Smirnova
(2005), Blaschke et al. (1997), Deuflhard et al. (1998), George (2006), George
(2010), George and Nair (2008), Hoang and Ramm (2010), Mahale and Nair
(2009), Nair and Ravishankar (2008), Ortega and Rheinboldt (1970), Semen-
ova (2010), Tautenhahn (2002)).

George and Elmahdy (2012), considered the method, defined iteratively
for n = 1, 2, 3, · · · by

xδn+1,α = xδn,α − (F ′(xδn,α) + αI)−1[F (xδn,α)− yδ + α(xδn,α − x0)], (2.1.2)

where x0 := xδ0,α is the starting point of the iteration for solving (2.1.1). They
proved that xδn,α converges quadratically to xδα. The convergence analysis in
George and Elmahdy (2012), was based on a majorizing sequence and the
conditions (see(2.10) and (2.11) in George and Elmahdy (2012)) required
for the convergence of the method are not easy to verify. The convergence
analysis in George and Elmahdy (2012) was carried out using the following
assumptions:

ASSUMPTION 2.1.1. There exists r > 0 such that B(x0, r) ∪ B(x̂, r) ⊂
D(F ) and F is Fréchet differentiable at all x ∈ B(x0, r) ∪B(x̂, r).
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ASSUMPTION 2.1.2. There exists a constant K0 > 0 such that for every
u, v ∈ B(x0, r) ∪ B(x̂, r) and w ∈ X, there exists an element φ(u, v, w) ∈ X
satisfying [F ′(u)− F ′(v)]w = F ′(v)φ(u, v, w), ‖φ(u, v, w)‖ ≤ K0‖w‖‖u− v‖.

ASSUMPTION 2.1.3. There exists a continuous and strictly increasing
function ϕ : (0, a]→ (0,∞) with a ≥ ‖F ′(x̂)‖ satisfying;

(i) limλ→0ϕ(λ) = 0,

(ii) supλ≥0
αϕ(λ)
λ+α

≤ cϕϕ(α) ∀α ∈ (0, a] and

(iii) there exists v ∈ X with ‖v‖ ≤ 1 such that

x0 − x̂ = ϕ(F ′(x̂))v.

But in our result, we replace Assumption 2.1.3 by the following.

ASSUMPTION 2.1.4. There exists a continuous and strictly increasing
function ϕ : (0, a]→ (0,∞) with a ≥ ‖F ′(x0)‖ satisfying;

(i) limλ→0ϕ(λ) = 0,

(ii) supλ≥0
αϕ(λ)
λ+α

≤ ϕ(α) ∀α ∈ (0, a] and

(iii) there exists v ∈ X with ‖v‖ ≤ 1 such that

x0 − x̂ = ϕ(F ′(x0))v. (2.1.3)

We replace Assumption 2.1.2 by the following.

ASSUMPTION 2.1.5. Suppose there exists a constant K0 > 0 such that
for all w ∈ X and u, v ∈ B(x0, r) ⊆ D(F ), there exists element φ(u, v, w) ∈
X such that [F ′(u)− F ′(v)]w = F ′(v)φ(u, v, w), ‖ φ(u, v, w)‖ ≤ K0‖w‖‖u−
v‖.

Using the above assumptions, we prove that the method (2.1.2) converges
quadratically to the solution xδα of (2.1.1).
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Note that, a sequence (xn) is said to be converging quadratically to x∗, if
there exists a positive number Mq, not necessarily less than 1, such that

‖xn+1 − x∗‖ ≤Mq‖xn − x∗‖2,

for all n sufficiently large. And the convergence of (xn) to x∗, is said to be
linear if there exists a positive number M0 ∈ (0, 1), such that

‖xn+1 − x∗‖ ≤M0‖xn − x∗‖.

Note that regardless of the value of Mq quadratic convergent sequence will
always eventually converge faster than a linear convergent sequence. For an
extensive discussion of convergence rate see Ortega and Rheinboldt (1970).
We provide an optimal order error estimate under a general source condition
on x0− x̂. We choose the regularization parameter α in (xδn,α) from finite set

DN := {αi : 0 < α0 < α1 < · · · < αN},

using the adaptive parameter selection procedure suggested by Pereverzev
and Schock (2005).

Further we replace Assumption 2.1.5 by the weaker assumption:

ASSUMPTION 2.1.6. There exists a constant k0 > 0 such that for all w ∈
X and u ∈ B(x0, r), there exists an element, say φ(u, x0, w) ∈ X satisfying
[F ′(u)− F ′(x0)]w = F ′(x0)φ(u, x0, w) and ‖φ(u, x0, w)‖ ≤ k0‖w‖‖u− x0‖.

REMARK 2.1.7. There are classes of operators for which Assumption 2.1.5
is not satisfied but the method (2.1.2) converges.

Here we extend the applicability of (2.1.2) with the following advantages:

(1) The sufficient convergence criteria are weaker.

(2) The computational cost of the constant k0 is smaller than that of the
constant K0, even when K0 = k0.
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(3) The convergence domain of (2.1.2) with Assumption 2.1.6 can be large,
since K0

k0
can be arbitrarily small(see Example 4.4 in (Argyros and

George, 2013)).

(4) Note that Assumption 2.1.3 involves the Fréchet derivative at the ex-
act solution x̂ which is unknown in practice, while Assumption 2.1.4
depends on the Fréchet derivative F at x0.

(5) Assumption 2.1.6 is weaker than Assumption 2.1.5(see Example 4.3 in
Argyros and George (2013)).

2.2 PREPARATORY RESULTS

First we prove that (2.1.1) has a unique solution xδα in B(x0, r).

THEOREM 2.2.1. Let x̂ ∈ B(x0, r) ⊂ D(F ) be a solution of (1.2.1).
Assumption 2.1.5(or Assumptions 2.1.6) is satisfied, and let F := D(F ) ⊆
X −→ X be Fréchet differentiable in B(x0, r) with K0r < 1 (or k0r <

1). Then the regularized problem (2.1.1) possesses a unique solution xδα in
B(x0, r).

Proof. For x ∈ B(x0, r), let Mx =
∫ 1

0
(F ′(x̂+ t(x− x̂)))dt . Suppose Mx +αI

is invertible. Then

(Mx + αI)(x− x̂) = α(x0 − x̂) + yδ − y (2.2.1)

has a unique solution xδα in B(x0, r). Thus F (x) − yδ + α(x − x0) = (Mx +

αI)(x− x̂)− α(x0 − x̂)− (yδ − y) = 0 has a unique solution xδα in B(x0, r).

So it remains to show that for K0r < 1(or k0r < 1), Mx + αI is invertible.
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Let A0 := F ′(x0). Note that by Assumption 2.1.5(or 2.1.6), we have

‖(A0 + αI)−1(Mx − A0)‖ = sup
‖v‖≤1

‖(A0 + αI)−1(Mx − A0)v‖

= sup
‖v‖≤1

‖(A0 + αI)−1

∫ 1

0

[F ′(x̂+ t(x− x̂))

−F ′(x0)]vdt‖

= sup
‖v‖≤1

‖(A0 + αI)−1A0

∫ 1

0

φ(x̂+ t(x− x̂), x0, v)dt‖

≤
∫ 1

0

‖φ(x̂+ t(x− x̂), x0, v)dt‖ ≤ K0r(or k0r) < 1.

So I+(A0 +αI)−1(Mx−A0) is invertible for all x ∈ B(x0, r) with K0r < 1(or
k0r < 1). Now from the relation Mx +αI = (A0 +αI)[I + (A0 +αI)−1(Mx−
A0)], it follows that for all x ∈ B(x0, r) with K0r < 1, (2.1.1) has a solution
in B(x0, r).

THEOREM 2.2.2. Let 0 < K0r(or k0r) < 1, xδα be the solution of (2.1.1),
x̂ ∈ B(x0, r), Assumption 2.1.4 and Assumption 2.1.5 (or 2.1.6) be satisfied.
Then

‖xδα − x̂‖ ≤
1

1−K0r

(
δ

α
+ ϕ(α)

)
. (2.2.2)

Proof. Let M :=
∫ 1

0
F ′(x̂ + t(xδα − x̂))dt. Then by fundamental theorem of

integration
F (xδα)− F (x̂) = M(xδα − x̂) (2.2.3)

and hence by (2.1.1), we have

(M + αI)(xδα − x̂) = yδ − y + α(x0 − x̂).

Thus

xδα − x̂ = (A0 + αI)−1[yδ − y + α(x0 − x̂) + (A0 −M)(xδα − x̂)]

= s1 + s2 + s3

where s1 := (A0 + αI)−1(yδ − y), s2 := (A0 + αI)−1α(x0 − x̂) and s3 :=
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(A0 + αI)−1(A0 −M)(xδα − x̂). Note that

‖s1‖ ≤
δ

α
(2.2.4)

by Assumption 2.1.4
‖s2‖ ≤ ϕ(α) (2.2.5)

and by Assumption 2.1.5(or 2.1.6), we have

‖s3‖ = ‖(A0 + αI)−1(A0 −M)(xδα − x̂)‖

= ‖(A0 + αI)−1

∫ 1

0

[F ′(x0)− F ′(x̂+ t(xδα − x̂))](xδα − x̂)‖

= ‖(A0 + αI)−1A0

∫ 1

0

φ(x̂+ t(xδα − x̂), x0, x
δ
α − x̂)dt‖

≤ K0r‖xδα − x̂‖. (2.2.6)

The result now follows from (2.2.4)-(2.2.6).

2.3 CONVERGENCE ANALYSIS OF (2.1.2) USING

ASSUMPTION 2.1.5

In this section we prove that xδn,α converges to xδα quadratically using As-
sumption 2.1.5.

THEOREM 2.3.1. Suppose Assumption 2.1.5 holds and r < min{ 1
K0
, 1}.

Let xδn+1,α be as in (2.1.2). Then xδn,α converges quadratically to xδα and

‖xδn+1,α − xδα‖ ≤ (
K0

2
)2n+1−1e−γr2

n+1

(2.3.1)

where γr = − ln r > 0.

Proof. Since F (xδα) + α(xδα − x0) = yδ, we have

xδn+1,α − xδα = xδn,α − xδα − (F ′(xδn,α) + αI)−1[F (xδn,α)− F (xδα) + α(xδn,α − xδα)]
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= (F ′(xδn,α) + αI)−1[F ′(xδn,α)(xδn,α − xδα)

−(F (xδn,α)− F (xδα)]

= (F ′(xδn,α) + αI)−1[F ′(xδn,α)−
∫ 1

0

F ′(xδα + t(xδn,α − xδα))dt]

(xδn,α − xδα)

= (F ′(xδn,α) + αI)−1

∫ 1

0

[F ′(xδn,α)− F ′(xδα + t(xδn,α − xδα))]dt

(xδn,α − xδα). (2.3.2)

So by Assumption 2.1.5, we have

‖xδn+1,α − xδα‖ ≤ ‖(F ′(xδn,α) + αI)−1F ′(xδn,α)‖

‖
∫ 1

0

φ(xδα + t(xδn,α − xδα), xδn,α, (x
δ
n,α − xδα))dt‖

≤ K0

2
‖xδn,α − xδα‖2. (2.3.3)

This shows that xδn,α converges quadratically to xδα. The estimate (2.3.1)
follows from (2.3.3).

2.4 CONVERGENCE ANALYSIS OF (2.1.2) USING

ASSUMPTION 2.1.6

Throughout this section we assume that r < 1
3k0
, δ < Crα0 and α ≥ α0 where

Cr := (1−3k0r
1−k0r

)r.

To prove the convergence of (xδn,α) defined in (2.1.2) using the weaker
Assumption 2.1.6, instead of the strong Assumption 2.1.5, we introduce the
parameter ρ > 0.

Let ‖x0 − x̂‖ ≤ ρ with

ρ ≤ 1

2

[
Cr −

δ

α0

]
. (2.4.1)

THEOREM 2.4.1. Suppose Assumption 2.1.6 holds and r < 1
3k0
. Let xδn+1,α
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be as in (2.1.2). Then xδn,α converges linearly to xδα and

‖xδn+1,α − xδα‖ ≤ qn+1r (2.4.2)

where q = 2k0r
1−k0r

< 1.

Proof. For x ∈ B(x0, r), let Ax = F ′(x) and An = F ′(xδn,α). Then by As-
sumption 2.1.6, we have

‖(A0 + αI)−1(Ax − A0)‖ = sup
‖v‖≤1

‖(A0 + αI)−1(Ax − A0)v‖

= sup
‖v‖≤1

‖(A0 + αI)−1A0φ(x, x0, v)‖

≤ k0r < 1.

So, I + (A0 + αI)−1(Ax − A0) is invertible,

‖I + (A0 + αI)−1(Ax − A0)‖ ≤ 1

1− k0r
(2.4.3)

and

(Ax + αI)−1 = [I + (A0 + αI)−1(Ax − A0)]−1(A0 + αI)−1. (2.4.4)

By (2.3.2), we have

xδn+1,α − xδα = (An + αI)−1 ×∫ 1

0

[An − F ′(xδα + t(xδn,α − xδα))]dt(xδn,α − xδα). (2.4.5)

If xδn,α ∈ B(x0, r), then by (2.4.4) and (2.4.5), we have

xδn+1,α − xδα = (An + αI)−1

∫ 1

0

[An − A0 + A0 − F ′(xδα + t(xδn,α − xδα))]dt

×(xδn,α − xδα)

= (An + αI)−1[A0

∫ 1

0

φ(xδn,α, x0, x
δ
n,α − xδα)dt
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−A0

∫ 1

0

φ(xδα + t(xδn,α − xδα), x0, x
δ
n,α − xδα)]dt

= [I + (A0 + αI)−1(An − A0)](A0 + αI)−1A0

×
∫ 1

0

[φ(xδn,α, x0, x
δ
n,α − xδα)

−φ(xδα + t(xδn,α − xδα), x0, x
δ
n,α − xδα)]dt.

So by Assumption 2.1.6 and (2.4.3) we have

‖xδn+1,α − xδα‖ ≤
2k0r

1− k0r
‖xδn,α − xδα‖

= q‖xδn,α − xδα‖ ≤ qn+1‖x0 − xδα‖

≤ qn+1r. (2.4.6)

This proves (2.4.2). Now it remains to prove that xδn,α ∈ B(x0, r) for all
n > 0. Note that, by the definition of xδα, we have

F (xδα)− F (x̂) + α(xδα − x̂) = yδ − y + α(x0 − x̂). (2.4.7)

Since F is monotone, by taking inner product with xδα − x̂ on both sides of
the above equation one can prove that

‖xδα − x̂‖ ≤
δ

α
+ ‖x0 − x̂‖.

Therefore by the triangle inequality

‖xδα − x0‖ ≤ ‖xδα − x̂‖+ ‖x̂− x0‖

≤ 2ρ+
δ

α0

. (2.4.8)

So by (2.4.6) and (2.4.8) we have,

‖xδk+1,α − x0‖ ≤ ‖xδk+1,α − xδα‖+ ‖xδα − x0‖

≤ (qk + 1)‖xδα − x0‖ <
1

1− q

(
2ρ+

δ

α0

)
≤ r.

22



Thus by induction xn ∈ B(x0, r) for all n > 0.

2.5 ERROR BOUNDS UNDER SOURCE CONDITIONS

Combining the estimates in Theorem 2.2.2 and Theorem 2.3.1 we obtain the
following Theorem.

THEOREM 2.5.1. Let xδn,α be as in (2.1.2) and let the assumptions in
Theorem 2.2.2 and 2.3.1 be satisfied. Then we have the following;

‖xδn,α − x̂‖ ≤ (
K0

2
)2n−1e−γr2

n

+
1

1−K0r
(
δ

α
+ ϕ(α)). (2.5.1)

Let
nδ := min{n : e−γr2

n ≤ δ

α
} (2.5.2)

and let

C1 := max{
(
K0

2

)2n−1

,
1

1−K0r
}. (2.5.3)

THEOREM 2.5.2. Let xδn,α be as in (2.1.2) and let the assumptions in
Theorem 2.5.1 be satisfied. Let nδ be as in (2.5.2) and C1 be as in (2.5.3).
Then

‖xδnδ,α − x̂‖ ≤ C̃1(ϕ(α) +
δ

α
) (2.5.4)

where C̃1 = 2C1.

Similarly, combining the estimates in Theorem 2.2.2 and Theorem 2.4.1
we obtain the following Theorem.

THEOREM 2.5.3. Let xδn,α be as in (2.1.2) and let the assumptions in
Theorem 2.2.2 and 2.4.1 be satisfied. Then we have the following;

‖xδn,α − x̂‖ ≤ qnr +
1

1−K0r
(
δ

α
+ ϕ(α)). (2.5.5)

Let
nδ := min{n : qn ≤ δ

α
} (2.5.6)
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and let
C2 := max{r, 1

1−K0r
}. (2.5.7)

THEOREM 2.5.4. Let xδn,α be as in (2.1.2) and let the assumptions in
Theorem 2.5.3 be satisfied. Let nδ be as in (2.5.6) and C2 be as in (2.5.7).
Then

‖xδnδ,α − x̂‖ ≤ C̃2(ϕ(α) +
δ

α
) (2.5.8)

where C̃2 = 2C2.

2.5.1 A priori choice of the parameter

Note that the error ϕ(α) + δ
α
in (2.5.4) or (2.5.8) is of optimal order if αδ :=

α(δ) satisfies, αδϕ(αδ) = δ. Now using the function ψ(λ) := λϕ−1(λ), 0 <

λ ≤ a, we have δ = αδϕ(αδ) = ψ(ϕ(αδ)), so that αδ = ϕ−1(ψ−1(δ)). Hence
by (2.5.4) or (2.5.8) we have the following.

THEOREM 2.5.5. Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a, and let the
assumptions in Theorem 2.5.2 or Theorem 2.5.4 holds. For δ > 0, let
α := αδ = ϕ−1(ψ−1(δ)). Let nδ be as in (2.5.2) or (2.5.6). Then

‖xδnδ,α − x̂‖ = O(ψ−1(δ)).

The regularization parameter α is selected from some finite set

DM(α) := {αi = µiα0, i = 0, 1, · · · ,M},

where µ > 1, α0 > 0.

Let
ni := min{n : e−γr2

n ≤ δ

αi
}

or
ni := min{n : qn ≤ δ

αi
}.

Then for i = 0, 1, · · · ,M, we have

‖xδni,αi − x
δ
αi
‖ ≤ (

K0

2
)2ni−1 δ

αi
, ∀i = 0, 1, · · · ,M
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or
‖xδni,αi − x

δ
αi
‖ ≤ r

δ

αi
, ∀i = 0, 1, · · · ,M.

Let xi := xδni,αi . The parameter choice strategy that we are going to con-
sider here, we select α = αi from DM(α) and operates only with correspond-
ing xi, i = 0, 1, · · · ,M. The proof of the following Theorem is analogous to
the proof of Theorem 4.4 in George (2010)(see also George and Nair (2008))
so we ignore the details.

THEOREM 2.5.6. Assume that there exists i ∈ {0, 1, 2, · · · ,M} such that
ϕ(αi) ≤ δ

αi
. Let assumptions of Theorem 2.5.1 and Theorem 2.5.2 hold and

let
l := max{i : ϕ(αi) ≤

δ

αi
} < M,

k := max{i : ‖xi − xj‖ ≤ 4C̃
δ

αj
, j = 0, 1, 2, · · · , i− 1}.

Then l ≤ k and
‖x̂− xk‖ ≤ cψ−1(δ),

where c = 6C̃µ.

2.6 CONCLUSION

In this chapter we considered an iterative method, it can be considered as
a modified iteratively regularized Lavrentiev method for solving nonlinear
ill-posed operator equation (1.2.1). Note that, in the iteratively regularized
Lavrentiev method for approximately solving the nonlinear ill-posed equation
(1.2.1) with a monotone operator F involves finding a fixed point of G(x) :=

x− (F ′(x) +αI)−1[F (x)− yδ +α(x− x0)], where x0 is an initial guess which
may incorporate a priori knowledge of an exact solution and yδ. Precisely
we considered the sequence (xδn,α) defined iteratively by xδn+1,α = G(xδn,α) for
obtaining the fixed point of G(x).

In the next chapter we consider the finite dimensional realization and the
implementation of the method considered in this chapter.
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Chapter 3

FINITE DIMENSIONAL
REALIZATION OF A QUADRATIC
CONVERGENCE YIELDING
ITERATIVE REGULARIZATION
METHOD FOR ILL-POSED
EQUATIONS WITH MONOTONE
OPERATORS

In Chapter 2 we considered a quadratic convergent iterative method for ob-
taining approximate solution to nonlinear ill posed operator equation F (x) =

y, where F : D(F ) ⊆ X → X is a monotone operator and X real Hilbert
space. In this chapter we consider the finite dimensional realization of the
method considered in Chapter 2. A numerical example is given to justify our
theoretical results.

3.1 INTRODUCTION

Let {Ph}h>0 be a family of orthogonal projections onX onto R(Ph), the range
of Ph. Our aim is to obtain an approximation for xδα, in the finite dimensional
space R(Ph). For the results that follow, we impose the following conditions.
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Let
εh := ‖F ′(.)(I − Ph)‖,

and
bh := ‖(I − Ph)x̂‖.

We assume that limh−→0 εh = 0 and limh→0 bh = 0. The above assumption is
satisfied if Ph → I point wise and if F ′(.) is compact operator. Further we
assume that there exist ε0 > 0, b0 > 0 and δ0 > 0 such that εh < ε0, bh < b0

and δ < δ0.

3.2 THE PROJECTION METHOD AND ITS CON-

VERGENCE

We consider the iterative method defined for n = 0, 1, 2, · · · by

xh,δn+1,α = xh,δn,α −R−1
α (xh,δn,α)Ph[F (xh,δn,α)− yδ + α(xh,δn,α − x0)], (3.2.1)

where Rα(x) := PhF
′(x)Ph + αPh and xh,δ0,α := Phx0 as an approximation for

xh,δα . First we prove that

PhFPh(x) + αPh(x− x0) = Phy
δ (3.2.2)

has a unique solution xh,δα in B(Phx0, r) and then we prove that the sequence
(xh,δn,α) defined in (3.2.1) converges quadratically to xh,δα .

Let
r ≥ 2(r0 + max{1, ‖x̂‖}) with r0 := ‖x̂− x0‖.

Here after we assume that εh ∈ (0, ε0), δ ∈ [0, δ0], a0 ≥ ε0+δ0, α ∈ (δ+εh, a0).

PROPOSITION 3.2.1. Let F be a monotone operator and {Ph}h>0 be a
family of orthogonal projections of X onto R(Ph) with R(Ph) ⊂ D(F ). Then
PhFPh is a monotone operator on X and the operator equation (3.2.2) has
a unique solution xh,δα for all x0, y

δ ∈ X. Furthermore xh,δα ∈ B(Phx0, r).
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Proof. Since F is monotone and R(Ph) ⊂ D(F ), we have

〈PhFPh(x)− PhFPh(y), x− y〉 = 〈F (Phx)− F (Phy), Phx− Phy〉 ≥ 0.

That is PhFPh is monotone operator and D(PhFPh) = X. Therefore by
Browder–Minty theorem (Alber and Ryazantseva (2006), Theorem 1.15.21)
R(PhFPh+αI) = X (see also, Pereverzev and Schock (2005)) and PhFPh+αI
is injective. Hence the equation

(PhFPh + αI)x = Ph(y
δ + αx0)

has a unique solution xh,δα . Note that xh,δα satisfies

PhF (xh,δα ) + αPh(x
h,δ
α − x0) = Phy

δ. (3.2.3)

Let Mh =
∫ 1

0
F ′(x̂+ t(xh,δα − x̂))dt. Then, by (3.2.3), we have

(PhMhPh +αI)(xh,δα −Phx̂) = αPh(x0− x̂) +Ph(y
δ− y) + (PhMh(I −Ph))(x̂)

and hence

‖xh,δα − Phx̂‖ ≤ ‖(PhMhPh + αI)−1

×[αPh(x0 − x̂) + Ph(y
δ − y)

+(PhMh(I − Ph))(x̂)]‖

≤ ‖Ph(x0 − x̂)‖+
‖Ph(yδ − y)‖

α

+
‖PhMh(I − Ph)‖‖x̂‖

α

≤ r0 +
δ

α
+
εh‖x̂‖
α

. (3.2.4)

Therefore,

‖xh,δα − Phx0‖ ≤ ‖xh,δα − Phx̂‖+ ‖Ph(x̂− x0)‖
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≤ 2r0 +
δ

α
+
εh‖x̂‖
α

≤ 2r0 + max{1, ‖x̂‖}εh + δ

α
≤ 2r0 + max{1, ‖x̂‖} < r,

that is xh,δα ∈ B(Phx0, r).

For convenience we define en := ‖xh,δn,α − xh,δα ‖. We need the following
Lemma for proving our results.

LEMMA 3.2.2. Let x ∈ D(F ). Then ‖(PhF ′(x)Ph + αI)−1PhF
′(x)‖ ≤ 2.

Proof. Observe that,

‖(PhF ′(x)Ph + αI)−1PhF
′(x)‖ = sup

‖v‖≤1

‖(PhF ′(x)Ph + αI)−1PhF
′(x)v‖

= sup
‖v‖≤1

‖(PhF ′(x)Ph + αI)−1

PhF
′(x)(Ph + I − Ph)v‖

≤ sup
‖v‖≤1

‖(PhF ′(x)Ph + αI)−1PhF
′(x)(Ph)v‖

+ sup
‖v‖≤1

‖(PhF ′(x)Ph + αI)−1PhF
′(x)(I − Ph)v‖

≤ 1 +
εh
α
≤ 2.

THEOREM 3.2.3. Let Assumption 2.1.5 holds and xh,δn+1,α be as in (3.2.1).
Then xh,δn,α converges quadratically to xh,δα and

‖xh,δn+1,α − xh,δα ‖ ≤ K2n+1−1
0 r2n+1

. (3.2.5)
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Proof. Using (3.2.3) and Assumption 2.1.5, we have

xh,δn+1,α − xh,δα = xh,δn,α − xh,δα − (PhF
′(xh,δn,α)Ph + αI)−1

×Ph[F (xh,δn,α)− F (xh,δα ) + α(xh,δn,α − xh,δα )]

= (PhF
′(xh,δn,α)Ph + αI)−1[(PhF

′(xh,δn,α)Ph + αI)(xh,δn,α − xh,δα )

−Ph(F (xh,δn,α)− F (xh,δα ))− α(xh,δn,α − xh,δα )]

= (PhF
′(xh,δn,α)Ph + αI)−1[PhF

′(xh,δn,α)(xh,δn,α − xh,δα )

−Ph(F (xh,δn,α)− F (xh,δα ))]

= (PhF
′(xh,δn,α)Ph + αI)−1Ph[F

′(xh,δn,α)(xh,δn,α − xh,δα )

−(F (xh,δn,α)− F (xh,δα ))]

= (PhF
′(xh,δn,α)Ph + αI)−1

×Ph[F ′(xh,δn,α)−
∫ 1

0

F ′(xh,δα + t(xh,δn,α − xh,δα ))dt](xh,δn,α − xh,δα )

= (PhF
′(xh,δn,α)Ph + αI)−1Ph[

∫ 1

0

(F ′(xh,δn,α)

−F ′(xh,δα + t(xh,δn,α − xh,δα )))dt](xh,δn,α − xh,δα ) (3.2.6)

= −(PhF
′(xh,δn,α)Ph + αI)−1PhF

′(xh,δn,α)

Ph

∫ 1

0

φ(xh,δα + t(xh,δn,α − xh,δα ), xh,δn,α, x
h,δ
n,α − xh,δα )dt. (3.2.7)

Therefore, by (3.2.7), Lemma 3.2.2 and Assumption 2.1.5, we have in turn

‖xh,δn+1,α − xh,δα ‖ ≤ 2
K0

2
‖xh,δn,α − xh,δα ‖2 ≤ K0e

2
n, (3.2.8)

i.e., xh,δn,α converges quadratically to xh,δα . The estimate (3.2.5) follows from
(3.2.8) and the fact that e0 ≤ r.

THEOREM 3.2.4. Let Assumption 2.1.6 holds and xh,δn+1,α be as in (3.2.1).
Let 0 < r < 1

4K0
. Then xh,δn,α converges linearly to xh,δα ,

‖xh,δn+1,α − xh,δα ‖ ≤ qn+1r, (3.2.9)

where q = 2K0r
1−2K0r

.
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Proof. For x ∈ B2r(Phx0) ∩ R(Ph) let Ax = F ′(x) and A0 = F ′(Phx0). Then
by Assumption 2.1.6 we have

‖(PhA0Ph + αI)−1Ph(Ax − A0)Ph‖

= sup
‖v‖≤1

‖(PhA0Ph + αI)−1Ph(Ax − A0)Phv‖

= sup
‖v‖≤1

‖(PhA0Ph + αI)−1PhA0φ(x, Phx0, Phv)‖

= sup
‖v‖≤1

‖(PhA0Ph + αI)−1PhA0[Ph + I − Ph]φ(x, Phx0, Phv)‖

≤ k0[1 +
εh
α

]r ≤ 2k0r < 1.

So, I + (PhA0Ph + αI)−1Ph(Ax − A0)Ph is invertible,

‖I + (PhA0Ph + αI)−1Ph(Ax − A0)Ph‖ ≤
1

1− 2k0r
(3.2.10)

and

(PhAxPh + αI)−1 = [I + (PhA0Ph + αI)−1Ph(Ax − A0)Ph]
−1

×(PhA0Ph + αI)−1. (3.2.11)

By (3.2.6), we have

xh,δn+1,α − xh,δα = (PhAnPh + αI)−1Ph

∫ 1

0

[An − F ′(xδn,α + t(xh,δn,α − xh,δα ))]dt

×(xh,δn,α − xh,δα ), (3.2.12)

where, here and below An = F ′(xh,δn,α). Suppose xh,δn,α ∈ Br(Phx0), then by
(3.2.11) and (3.2.12), we have

xh,δn+1,α − xh,δα

= (PhAnPh + αI)−1

∫ 1

0

Ph[An − A0 + A0 − F ′(xh,δα + t(xh,δn,α − xh,δα ))]Phdt

×(xh,δn,α − xh,δα )
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= (PhAnPh + αI)−1Ph[A0

∫ 1

0

φ(xδn,α, Phx0, x
h,δ
n,α − xh,δα )dt

−PhA0

∫ 1

0

φ(xh,δα + t(xh,δn,α − xh,δα ), Phx0, x
h,δ
n,α − xh,δα )]dt

= [I + (PhA0Ph + αI)−1Ph(An − A0)Ph]
−1(PhA0Ph + αI)−1PhA0

×[Ph + I − Ph]
∫ 1

0

[φ(xh,δn,α, Phx0, x
h,δ
n,α − xh,δα )

−φ(xh,δα + t(xh,δn,α − xh,δα ), Phx0, x
h,δ
n,α − xh,δα )]dt.

So by Assumption 2.1.6 and (3.2.10) we have

‖xh,δn+1,α − xh,δα ‖ ≤
1

1− 2k0r
[2k0r] ‖xh,δn,α − xh,δα ‖

≤ q‖xh,δn,α − xh,δα ‖ ≤ qn‖Phx0 − xh,δα ‖

≤ qnr. (3.2.13)

Therefore (xh,δn,α) converges to xh,δα as n → ∞. Now it remains to prove that
xh,δn,α ∈ B2r(x0) for all n > 0. Note that 0 < q < 1 and hence

‖xh,δn,α − Phx0‖ ≤ q‖xh,δn−1,α − xh,δα ‖+ ‖xh,δα − Phx0‖

≤ qn‖xh,δα − Phx0‖+ ‖xh,δα − Phx0‖

≤ 2r.

Therefore, since xh,δα ∈ Br(Phx0) ⊂ B2r(Phx0), by using an induction argu-
ment one can prove that xh,δn,α ∈ B2r(Phx0) for all n > 0.

REMARK 3.2.5. 1. As mentioned in Chapter 2, the applicability of
(3.2.1) is extended to a large domain under the weaker Assumption
2.1.6 because the convergence domain of (3.2.1) with Assumption 2.1.6
can be large, since K0

k0
can be arbitrarily small.(see for e.g., Example

7.3 in Argyros et al. (2013)).

2. Instead of Assumption 2.1.5, if we use the following Lipschitz condition:

‖F ′(x1)− F ′(x2)‖ ≤ L‖x1 − x2‖ (3.2.14)
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then from (3.2.6) we have

‖xh,δn+1,α − xh,δα ‖ ≤ ‖PhF ′(xh,δn,α)Ph + αI)−1‖

×‖
∫ 1

0

[(F ′(xh,δα + t(xh,δn,α − xh,δα ))− F ′(xh,δn,α))dt]‖

×‖xh,δn,α − xh,δα ‖

≤ 1

α

L

2
‖xh,δn,α − xh,δα ‖2 (3.2.15)

≤
( L

2α

)2n+1−1

‖xh,δ0,α − xh,δα ‖2n+1

=
(Le0

2α

)2n+1−1

e0

≤
(Lr

2α

)2n+1−1

r. (3.2.16)

Thus if L < 2α, (or Lr
2α

< 1,) then by (3.2.15)(or (3.2.16)) xh,δn+1,α

converges to xh,δα .

3.3 ERROR BOUNDS UNDER SOURCE CONDITIONS

In this section we obtain an error estimate for ‖xh,δn,α − x̂‖ under the source
condition (2.1.3). As in Proposition 3.2.1, one can prove that

PhFPh(x) + αPh(x− x0) = Phy (3.3.1)

has a unique solution xhα ∈ B(Phx0, r).

PROPOSITION 3.3.1. Let F : D(F ) ⊆ X → X be a monotone operator
in X. Let xh,δα be the solution of (3.2.3) and xhα be the unique solution of
(3.3.1). Then

‖xh,δα − xhα‖ ≤
δ

α
. (3.3.2)

Proof. Let Fh =
∫ 1

0
F ′(xhα + t(xh,δα − xhα))dt. Then, by (3.2.3) and (3.3.1), we

have
Ph[F (xh,δα )− F (xhα)] + α(xh,δα − xhα) = Ph(y

δ − y)
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and hence
(PhFhPh + αI)(xh,δα − xhα) = Ph(y

δ − y).

So
‖xh,δα − xhα‖ ≤ ‖(PhFhPh + αI)−1Ph(y

δ − y)‖ ≤ δ

α
.

This completes the proof.

THEOREM 3.3.2. Let Assumption 2.1.4 and Assumption 2.1.5 hold. Let
x̂ be the solution of (1.2.1), 0 < r < 1

K0
and xhα be the solution of (3.3.1).

Then
‖xhα − x̂‖ ≤ C̃[ϕ(α) +

εh
α

+ bh] (3.3.3)

where C̃ = max{2(K0r0+1),‖x̂‖}
1−K0r0

.

Proof. Let Mα :=
∫ 1

0
F ′(x̂+ t(xhα − x̂))dt. Then since xhα satisfies

PhF (xhα) + αPh(x
h
α − x0) = Phy,

we have PhMα(xhα − x̂) + αPh(x
h
α − x0) = 0. Hence,

(PhMαPh + αI)(xhα − Phx̂) = αPh(x0 − x̂) + PhMα(I − Ph)x̂.

Therefore,

xhα − Phx̂ = [(PhMαPh + αI)−1Ph − Ph(F ′(x0) + αI)−1]α(x0 − x̂)

+Ph(F
′(x0) + αI)−1α(x0 − x̂)

+(PhMαPh + αI)−1PhMα(I − Ph)x̂

= (PhMαPh + αI)−1Ph[F
′(x0)−Mα +Mα(I − Ph)]

(F ′(x0) + αI)−1α(x0 − x̂)

+Ph(F
′(x0) + αI)−1α(x0 − x̂) + (PhMαPh + αPh)

−1PhMα(I − Ph)x̂

:= Γ1 + Γ2, (3.3.4)

where

Γ1 := (PhMαPh + αI)−1Ph[F
′(x0)−Mα +Mα(I − Ph)](F ′(x0) + αI)−1α(x0 − x̂)
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and

Γ2 := Ph(F
′(x0) + αI)−1α(x0 − x̂) + (PhMαPh + αPh)

−1PhMα(I − Ph)x̂.

By Assumption 2.1.4, 2.1.5 and Lemma 3.2.2, we have

‖Γ1‖ ≤ ‖(PhMαPh + αI)−1Ph

∫ 1

0

[F ′(x̂+ t(xhα − x̂))

φ(x0, x̂+ t(xhα − x̂), (F ′(x0) + αI)−1α(x0 − x̂))]dt‖

+
εh
α
‖(F ′(x0) + αI)−1α(x0 − x̂)‖

≤ ‖(PhMαPh + αI)−1PhMα‖‖φ(x0, x̂+ t(xhα − x̂), (F ′(x0) + αI)−1α(x0 − x̂))dt‖

+
εh
α
‖(F ′(x0) + αI)−1α(x0 − x̂)‖

≤ 2K0[‖x0 − x̂‖+
1

2
‖xhα − x̂‖]‖(F ′(x0) + αI)−1α(x0 − x̂)‖+

εh
α
ϕ(α)

≤ 2K0‖x0 − x̂‖ϕ(α) + 2
K0

2
‖xhα − x̂‖‖x0 − x̂‖+

εh
α
ϕ(α)

≤ 2K0r0ϕ(α) + ϕ(α) +K0r0‖xhα − x̂‖

≤ (2K0r0 + 1)ϕ(α) +K0r0‖xhα − x̂‖ (3.3.5)

and

‖Γ2‖ ≤ ϕ(α) +
εh
α
‖x̂‖. (3.3.6)

Now the result (3.3.3) follows from (3.3.4), (3.3.5) and (3.3.6) and the fol-
lowing triangle inequality

‖xhα − x̂‖ ≤ ‖xhα − Phx̂‖+ ‖(I − Ph)x̂‖.

THEOREM 3.3.3. Let the assumptions in Theorem 3.2.3 and Theorem
3.3.2 be satisfied. Let xh,δn,α be as in (3.2.1) and 0 < r < 1

k0
. Then

‖xh,δn,α − x̂‖ ≤ (K0r)
2n−1r + max{1, C̃}[ϕ(α) +

δ + εh
α

+ bh]. (3.3.7)
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Proof. Note that,

‖xh,δn,α − x̂‖ ≤ ‖xh,δn,α − xh,δα ‖+ ‖xh,δα − xhα‖+ ‖xhα − x̂‖.

So by Proposition 3.3.1, Theorem 3.2.3 and Theorem 3.3.2 we have,

‖xh,δn,α − x̂‖ ≤ (K0r)
2n−1r +

δ

α
+ C̃(ϕ(α) +

εh
α

+ bh)

≤ (K0r)
2n−1r + max{1, C̃}[ϕ(α) +

δ + εh
α

+ bh].

Let bh ≤ δ+εh
α
,

nδ := min{n : (K0r)
2n−1 ≤ δ + εh

α
} (3.3.8)

and
C0 = r + 2 max{1, C̃}. (3.3.9)

THEOREM 3.3.4. Let nδ and C0 be as in (3.3.8) and (3.3.9), respectively.
Let xh,δnδ,α be as in (3.2.1) and assumption in Theorem 3.3.3 be satisfied. Then

‖xh,δnδ,α − x̂‖ ≤ C0(ϕ(α) +
δ + εh
α

). (3.3.10)

3.3.1 A priori choice of the parameter

Note that the error estimate ϕ(α) + δ+εh
α

in (3.3.10) is of optimal order if
αδ := α(δ, h) satisfies, ϕ(αδ)αδ = δ + εh.

Now using the function ψ(λ) := λϕ−1(λ), 0 < λ ≤ a, we have δ + εh =

αδϕ(αδ) = ψ(ϕ(αδ)), i.e., αδ = ϕ−1(ψ−1(δ+ εh)). In view of the above obser-
vations and (3.3.10) we have the following theorem.

THEOREM 3.3.5. Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a, and the assump-
tions in Theorem 3.3.4 hold. For δ > 0, let αδ = ϕ−1(ψ−1(δ+ εh)), bh ≤ δ+εh

α

and nδ be as in (3.3.8). Then

‖xh,δnδ,α − x̂‖ = O(ψ−1(δ + εh)).

37



3.3.2 An adaptive choice of the parameter

As in section 2.5, we consider the balancing principle for choosing the pa-
rameter α. Precisely, the regularization parameter α is selected from finite
set

DN(α) := {αi = µiα0, i = 0, 1, 2, ..., N}

where µ > 1, α0 > 0. Let

ni := min{n : (K0r)
2n−1 ≤ δ + εh

αi
}.

Let xhi := xh,δni,αi . We select α = αi from DN(α) for computing xi, for each
i = 0, 1, 2, ...., N.

THEOREM 3.3.6. Assume that there exists i ∈ {0, 1, 2, ..., N} such that
ϕ(αi) ≤ δ+εh

αi
. Let the assumptions of Theorem 3.3.4 and Theorem 3.3.5 be

satisfied and let

l := max{i : ϕ(αi) ≤
δ + εh
αi
} < N,

k := max{i : ‖xhi − xhj ‖ ≤ 4C0
δ + εh
αj

, j = 0, 1, 2, ..., i}.

Then l ≤ k and ‖x̂− xhk‖ ≤ cψ−1(δ + εh) where c = 6C0µ.

3.4 IMPLEMENTATION OF THE ADAPTIVE CHOICE

RULE

Finally the adaptive algorithm associated with the choice of the parameter
specified in Theorem 3.3.6 involves the following steps:

• Choose α0 = δ + εh.

• αi = µiα0, i = 0, 1, 2, · · · ,M.

3.4.1 Algorithm

1. Set i← 0.

38



2. Solve xi := xδni,αi by using the iteration (3.2.1).

3. If ‖xi − xj‖ > 4C̃ 1
µj
, j < i, then take k = i.

4. Set i = i+ 1 and return to step 2.

3.5 IMPLEMENTATION OF THE METHOD

Let XM be a sequence of finite dimensional subspaces of X and let Ph, (h =
1
M

) denote the orthogonal projection onX withR(Ph) = XM . Let {Φ1,Φ2, . . . ,ΦM}
be a basis for XM . We assume that ‖Phx− x‖ → 0 as h→ 0 ∀x ∈ X.

Since xh,δn,α ∈ XM , there exist λn1 , λn2 , ..., λnM ∈ R, such that xh,δn,α =∑M
i=1 λ

n
i Φi. Then from (3.2.1) we have,

(PhF
′(xh,δn,α) + αI)

M∑
i=1

(λn+1
i − λni )Φi

=
M∑
i=1

ηiΦi −
M∑
i=1

FiΦi + α
M∑
i=1

(X0,i − λni )Φi

where Phyδ =
∑M

i=1 ηiΦi, PhF (xh,δn,α) =
∑M

i=1 FiΦi and Ph(x0−xh,δn,α) =
∑M

i=1(X0,i−
λni )Φi, i = 1, 2, · · ·M. Then xh,δn+1,α is a solution of (3.2.1) if and only if
[λn+1− λn] = [λn+1

1 − λn1 , λn+1
2 − λn2 , ..., λn+1

M − λnM ]T is the unique solution of

[MM + αBM ][λn+1 − λn] = BM [η − FM + α(X0 − λM)]

where MM = (〈F ′(xh,δn,α)Φi,Φj〉), BM = (〈Φi,Φj〉) i, j = 1, 2, ...,M,

FM = [F1, F2, · · · , FM ]T , η = [η1, η2, · · · , ηM ]T ,

X0 = [X0,1, X0,2, · · · , X0,M ]T and λM = [λn1 , λ
n
2 , · · · , λnM ]T .
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3.6 NUMERICAL EXAMPLE

EXAMPLE 3.6.1. Consider the following integral equation

F (u) ≡ −
∫ ∫

Ω

1

[(x− x′)2 + (y − y′)2 + u2(x′, y′)]1/2
dx′dy′ = f(x, y)

(3.6.1)
where f(x, y) = ∆g(x, y) + F (H) and F : H ′(Ω) ⊆ L2(Ω) → L2(Ω), Ω =

[0,m]× [0,m].

The above equation satisfies the equation (3.2.15) (see (Vasin, 2013),(Vasin
et al., 1996)).

The derivative of the operator F at the point u0(x, y) is expressed by the
formula

F ′(u0)h =

∫ ∫
D

u0(x′, y′)h(x′, y′)

[(x− x′)2 + (y − y′)2 + (u0(x′, y′))2]3/2
dx′dy′. (3.6.2)

Applying to the integral equations (3.6.1) two-dimensional analogy of rect-
angle’s formula with uniform grid for every variable, we obtain the following
system of nonlinear equations:

m2∑
i=1

m1∑
j=1

1

[(xk − x′j)2 + (yl − y′i)2 + u2(x′j, y
′
i)]

1/2
∆x∆y = f(xk, yl);

k, l = 1, 2, ...,m for the unknown vector {uj,i = u(xj, yi), i, j = 1, 2, ...,m} in
vector-matrix form this system takes the form:

FM(uM) = fM , (3.6.3)

where uM , fM are vectors of dimension M = m2.

The discrete variant of the derivative F ′(u0) has the form

{F 0
nhn}k,l =

m∑
i=1

m∑
j=1

∆x∆y u0(x′j, y
′
i)h(x′j, y

′
i)

[(xk − x′j)2 + (yl − y′i)2 + u2
0(x′j, y

′
i)]

3/2
, (3.6.4)

where u0(x, y) = H is constant, F 0
M is symmetric matrix, for which the
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component with member (k, l) is evaluated by formula (3.6.4).

For our computation we have taken

û(x, y) = 5− 2exp−[(x/10−3.5)2(y/10−2.5)2] − 3exp−[(x/10−5.5)2(y/10−4.5)2],

where û(x, y) is given on the domain D = {0 ≤ x ≤ m, 0 ≤ y ≤ m}.
Let ∆x = ∆y = 1, M = m2, ∆ = 0.25, H = 5. We have taken yδ =

F (û(x, y)) + δ in our computations.

We choose orthonormal system of box function Φi(t, τ) = Ψk(t)Ψl(τ), i =

(k− 1)m+ l, k, l = 1, 2, 3, ..,m, i = 1, 2, ...,M(= m2) where Ψk(t),Ψl(τ) are
L2-orthogonalized characteristic functions of the intervals [k−1

m
, k
m

]× [ l−1
m
, l
m

]

as a basis of XM in [0, 1]× [0, 1].

In Table 3.1 the results of numerical experiments for different values of
δ are presented. Here xh,δn,αk is the numerical solution obtained by method
(3.2.1); the relative error of solution and residual are

∆1 =
‖x̂− xh,δn,αk‖
‖xh,δn,αk‖

, ∆2 =
‖Fn(xh,δn,αk)− yn‖

‖yn‖
.

Table 3.1: Relative error and residual

δ + εh αk m ∆1 ∆2

0.1 0.3240 0.2281 1.9605
0.02 0.0648 35 0.2280 1.9606
0.01 0.0324 0.2277 1.9606
0.1 0.3240 0.2486 1.9598
0.02 0.0648 40 0.2484 1.9598
0.01 0.0324 0.2481 1.9599

The plots of the exact solution and approximate solution for different
values of m and δ obtained is given in figure 3.1 to 3.8.
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Figure 3.1: Exact solution for m = 35
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Figure 3.2: Approximate solution for m = 35 and δ = 0.1
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Figure 3.3: Approximate solution for m = 35 and δ = 0.02
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Figure 3.4: Approximate solution for m = 35 and δ = 0.01
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Figure 3.5: Exact solution for m = 40
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Figure 3.6: Approximate solution for m = 40 and δ = 0.1
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Figure 3.7: Approximate solution for m = 40 and δ = 0.02
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Figure 3.8: Approximate solution for m = 40 and δ = 0.01
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3.7 CONCLUSION

In this chapter we considered finite dimensional realization of the method
considered in Chapter 2. We used adaptive scheme suggested by Pereverzev
and Schock (2005) for choosing the regularization parameter. The numerical
example justifies our theoretical results.
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Chapter 4

LOCAL CONVERGENCE OF A
TIKHONOV GRADIENT
TYPE-METHOD UNDER WEAK
CONDITIONS

In this chapter we consider the local convergence of a Tikhonov gradient type-
method for approximating a solution x̂ of the nonlinear ill-posed operator
equation F (x) = y. In our convergence analysis, we use hypotheses only on
the first Frec̀het derivative of F in contrast to the higher derivatives used in
the earlier studies.

4.1 INTRODUCTION

Throughout this chapter and next chapter we assume that F : D(F ) ⊆ X →
Y is weakly (sequentially) closed, continuous and Fréchet differentiable with
convex domain D(F ). In Tikhonov regularization, one computes the global
minimizer of the Tikhonov functional;

Jα(x) = min
x∈D(F )

‖F (x)− yδ‖2 + α‖x− x0‖2 (4.1.1)

where α > 0 is a small regularization parameter. It is known (Scherzer et al.
(1993)) that Jα(x) has a unique solution xδα if F is weakly (sequentially)
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closed, continuous and Fréchet differentiable with convex domain D(F ).

Ramlau (2003) considered iterative method defined for n = 0, 1, 2, · · · by

xδn+1 = xn + βn(F ′(xδn)∗(yδ − F (xδn)) + αn(xδn − x0)) (4.1.2)

where βn is a scaling parameter and αn is the regularization parameter to
obtain approximation for x̂. The convergence analysis in Ramlau (2003) was
carried out using the following assumptions (A):

(A1) F is twice Frec̀het differentiable with continuous second derivative.

(A2) The first derivative is Lipschitz continuous:

‖F ′(x1)− F ′(x2)‖ ≤ L‖x1 − x2‖.

(A3) There exists w ∈ Y with

x̂− x0 = F ′(x̂)∗w.

(A4) ‖w‖ ≤ q and Lq ≤ 0.241.

And also assumed that Lipschitz constant L is explicitly given. Note that βn
in (4.1.2) is depending on the Lipschitz constant L and satisfying (see (4.15)
in Ramlau (2003))

βn ≤ min{ γα

‖ 5 Jα(xn)‖2
,

4γα

4K2 + 4α + 12qαL+ 4KL+ L2

(Jα(xn)− φmin,n)

‖ 5 Jα(xn)‖2
}.

Here φmin,n = min{Jα(xn)+t5Jα(xn) : t ∈ R+}, K = max{L‖yδ−F (x0)‖+

‖F ′(x0)‖, 2Lq√
1−Lq + ( 1

1−Lq + 1)‖F ′(x0)‖} (see (3.14) in Ramlau (2003)) and γ
is such that γ + 3L‖w‖ ≤ γ + 3Lq < 1 ( see (3.20) in Ramlau (2003)).

The purpose of this chapter is to consider the local convergence of the
modified form of the iterative procedure (4.1.2), but with a fixed β (a generic
constant) and α instead of βn and αn. Here β is depending only on α and
‖F ′(.)‖. The modified Tikhonov Gradient-Type method(TGTM) is defined
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for n = 1, 2, 3... by

uδn+1,α = uδn,α − β(F ′(uδn,α)∗(F (uδn,α)− yδ) + α(uδn,α − u0)) (4.1.3)

where u0 is the initial approximation. The iterative procedure in (4.1.2) is
a bit cumbersome than (4.1.3). Our approach in this chapter is two fold:
(i) using hypothesis (A2) we prove the convergence of {uδn,α} in (4.1.3) to
uδα, the unique solution of Jα(x). (ii) instead of (A2), using two additional
assumptions (Assumption 2.1.5 and 4.2.5) we prove the convergence of {uδn,α}
in (4.1.3) to uδα.We also obtain an error estimate for ‖uδn,α−x̂‖ using a general
source condition on x̂ − u0 involving the operator F ′(x̂) (See Assumptions
4.3.1). Furthermore, our analysis is simpler than the analysis in Ramlau
(2003). One of the main differences of our approach to that of Ramlau
(2003) is that we fix the scaling and regularization parameters during the
iteration.

The rest of the chapter is organized as follows: Section 4.2 deals with the
convergence analysis of TGTM. In Section 4.3 we provide error bounds under
certain general source conditions by choosing the regularization parameter
by an a priori manner as well as by using an adaptive choice of the parameter
proposed by Pereverzev and Schock (2005). Finally the chapter ends with a
conclusion in Section 4.4.

4.2 CONVERGENCE ANALYSIS OF TGTM

We present local convergence analysis of method (4.1.3) in this section. Let
δ0 > 0, a0 > 0, r0 > 0 and r > 0 be some constants with Lδ0 < a0, ‖u0−x̂‖ ≤
r0 with r0 <

√
α
L
− δ√

α
and

2(r0 + 1) ≤ r. (4.2.1)

Let M > 0 be such that

‖F ′(x)‖ ≤M, ∀x ∈ B(u0, r), (4.2.2)
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δ ∈ (0, δ0] and α ∈ [max{Lδ, δ2}, a0]. Further, let β, qα,β be parameters such
that

β =
1

M2 + a0

(4.2.3)

and
qα,β = 1− αβ + βL(δ +

√
αr0) +

βML

2
r. (4.2.4)

Hereafter for simplicity we use the notation un := uδn,α. We will be using
the following well known results.

LEMMA 4.2.1 (Tautenhahn and Jin (2003)(Proposition 2.1)). Let uδα be
the minimizer of (4.1.1). Then,

‖uδα − u0‖ ≤
δ√
α

+ ‖u0 − x̂‖.

LEMMA 4.2.2 (Kaltenbacher (1997)(Lemma 2.3)). Let an be the sequence
satisfying 0 ≤ an ≤ a and limn→0 an ≤ a. Moreover, we assume that γn be
the sequence satisfying

0 ≤ γn+1 ≤ an + bγn + cγ2
n (4.2.5)

with n ∈ N and γ0 ≥ 0 that holds for some b, c ≥ 0. Let γ′ and γ̄ be defined as

γ′ = 2a

1−b+
√

(1−b)2−4ac
and γ̄ =

1−b+
√

(1−b)2−4ac

2c
. If b+ 2

√
ac < 1 and if γ0 ≤ γ̄,

then
γn ≤ max{γ0, γ

′}.

THEOREM 4.2.3. Let un be as in (4.1.3) and let r < 2(α−L(δ+
√
αr0))

ML
. Then

for each δ ∈ (0, δ0], α ∈ [max{Lδ, δ2}, a0], the sequence {un} is in B(u0, r)

and converges to uδα as n→∞. Further

‖un+1 − uδα‖ ≤ qn+1
α,β ‖u0 − uδα‖, (4.2.6)

where qα,β is as in (4.2.4).

Proof. Clearly, u0 ∈ B(u0, r). Let An :=
∫ 1

0
F ′(uδα+ t(un−uδα))dt. By Lemma

4.2.1, we have uδα ∈ B(u0, r), hence A0 is well defined and ‖A0‖ ≤M. Assume
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that for some n > 0, un ∈ B(u0, r) and An is well defined. Then, since uδα
satisfies the Euler equation

F ′(uδα)∗(F (uδα)− yδ) + α(uδα − u0) = 0 (4.2.7)

we have,

un+1 − uδα = un − uδα − β[F ′(un)∗(F (un)− F (uδα)) + α(un − uδα)]

+β[F ′(uδα)∗ − F ′(un)∗](F (uδα)− yδ)

= un − uδα − β[F ′(un)∗An + αI](un − uδα)

+β[F ′(uδα)∗ − F ′(un)∗](F (uδα)− yδ)

= un − uδα − β[F ′(un)∗(An − F ′(un))](un − uδα)

−β[F ′(un)∗F ′(un) + αI](un − uδα)

+β[F ′(uδα)∗ − F ′(un)∗](F (uδα)− yδ)

= [I − β(F ′(un)∗F ′(un) + αI)](un − uδα)

−β[F ′(un)∗(An − F ′(un))](un − uδα)

+β[F ′(uδα)∗ − F ′(un)∗](F (uδα)− yδ). (4.2.8)

Now since I − β(F ′(un)∗F ′(un) + αI) is a positive self-adjoint operator,

‖I − β(F ′(un)∗F ′(un) + αI)‖ = sup
‖x‖=1

|〈(I − β(F ′(un)∗F ′(un) + αI))x, x〉|

= sup
‖x‖=1

|(1− βα)〈x, x〉 − β〈F ′(un)∗F ′(un)x, x〉|

≤ 1− αβ. (4.2.9)

The last step follows from relation

β|〈F ′(un)∗F ′(un)x, x〉| ≤ β‖F ′(un)‖2 ≤ βM2 ≤ 1

M2 + α
M2

= 1− α

M2 + α
≤ 1− βα.
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Using (A2), we have

‖βF ′(un)∗(An − F ′(un))(un − uδα)‖

≤ ‖βF ′(un)∗
(∫ 1

0

F ′(uδα + t(un − uδα))− F ′(un)

)
dt(un − uδα)‖

≤ β
ML

2
‖un − uδα‖2

and

‖β[F ′(uδα)∗ − F ′(un)∗](F (uδα)− yδ)‖

≤ β‖F ′(uδα)∗ − F ′(un)∗‖‖F (uδα)− yδ‖

= β‖F ′(uδα)− F ′(un)‖‖F (uδα)− yδ‖

≤ βL‖un − uδα‖‖F (uδα)− yδ‖.

Now using (4.1.1), we have

‖F (uδα)− yδ‖ ≤ δ +
√
αr0. (4.2.10)

Hence,

‖un+1 − uδα‖ ≤ (1− αβ + βL(δ +
√
αr0))‖un − uδα‖+

βML

2
‖un − uδα‖2.

The above expression is of the form (4.2.5), where an = 0, b = 1 − αβ +

βL(δ +
√
αr0), γn = ‖un − uδα‖ and c = βML

2
. We have by the condition on

r0, b+ 2
√
ac = b < 1 and

γ0 = ‖u0 − uδα‖ ≤
1− b
c

= γ̄.

Hence by Lemma 4.2.2, we have

‖un+1 − uδα‖ ≤ (1− αβ + βL(δ +
√
αr0))‖un − uδα‖+

βML

2
‖u0 − uδα‖‖un − uδα‖

≤ (1− αβ + βL(δ +
√
αr0))‖un − uδα‖+

βML

2
r‖un − uδα‖

≤ qα,β‖un − uδα‖. (4.2.11)
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Thus, since r < 2(α−L(δ+
√
αr0))

ML
, we have qα,β < 1 and

‖un+1 − uδα‖ < ‖u0 − uδα‖ ≤ r

and
‖un+1 − u0‖ < 2‖u0 − uδα‖ ≤ 2(r0 + 1) ≤ r

i.e., un+1 ∈ B(u0, r). Also, for 0 ≤ t ≤ 1,

‖uδα + t(un+1 − uδα)− u0‖ = ‖uδα − u0 + t(un+1 − uδα)‖ < 2(r0 + 1) ≤ r.

Hence, uδα + t(un+1− uδα) ∈ B(u0, r) and An+1 is well defined with ‖An+1‖ ≤
M. Thus, by induction un is well defined and remains in B(u0, r) for each
n = 0, 1, 2, · · · . By letting n → ∞ in (4.1.3), we obtain the convergence of
un to uδα. The estimate (4.2.6) now follows from (4.2.11).

REMARK 4.2.4. Note that the condition r0 <
√
α
L
− δ√

α
is too restrictive.

We can avoid this restriction by imposing some additional assumptions (see
Assumptions 2.1.5 and 4.2.5). We also prove the convergence of (4.1.3) using
the assumptions below.

ASSUMPTION 4.2.5 (Scherzer et al. (1993)). There exists K1 such that
for every x, y ∈ B(u0, r) ⊆ D(F ) and h ∈ X, there exists element φ1(x, y, h) ∈
X such that [F ′(x)∗−F ′(y)∗]h = φ1(x, y, F ′(y)∗h) with ‖φ1(x, y, F ′(y)∗h)‖ ≤
K1‖x− y‖‖F ′(y)∗h‖.

Next, we shall give an example satisfying Assumptions 2.1.5 and 4.2.5.

EXAMPLE 4.2.6 ( Engl et al. (1989), Scherzer et al. (1993)). Consider
the nonlinear Hammerstein operator

(Fx)(t) =

∫ 1

0

k(t, τ)g(τ, x(τ))dτ,

with k continuous and g sufficiently smooth so that F : H1((0, 1))→ L2((0, 1))

is Frec̀het differentiable with respect to x and

F ′(x)h(t) =

∫ 1

0

k(t, τ)gx(τ, x(τ))h(τ)dτ.

51



Then F satisfies Assumptions 2.1.5 and 4.2.5 (see, Scherzer et al. (1993),
Lemma 2.8).

Let δ1 > 0, b0 > 0 and r̄ > 0 be some constants with δ2
1 < b0 and

2(r0 + 1) ≤ r̄. (4.2.12)

Let δ ∈ (0, δ1] and α ∈ [δ2, b0]. Further, let β, q̄α,β be parameters such that

β =
1

M2 + b0

(4.2.13)

and
q̄α,β = 1− αβ + αβK2r̄ +

βM2K1

2
r̄. (4.2.14)

THEOREM 4.2.7. Let un be as in (4.1.3) and let r̄ < 2α
2αK1+M2K0

. Then for
each δ ∈ (0, δ1], α ∈ [δ2, b0], the sequence {un} is in B(u0, r̄) and converges
to uδα as n→∞. Further

‖un+1 − uδα‖ ≤ q̄n+1
α,β ‖u0 − uδα‖ (4.2.15)

where q̄α,β is as in (4.2.14).

Proof. Clearly, u0 ∈ B(u0, r̄). Let An :=
∫ 1

0
F ′(uδα+ t(un−uδα))dt. By Lemma

4.2.1, we have uδα ∈ B(u0, r̄), hence A0 is well defined and ‖A0‖ ≤M. Assume
that for some n > 0, un ∈ B(u0, r̄) and An is well defined. Using (4.2.8),
Assumptions 2.1.5 and 4.2.5 we have

un+1 − uδα = [I − β(F ′(un)∗F ′(un) + αI)](un − uδα)

−β[F ′(un)∗
∫ 1

0

F ′(un)φ(uδα + t(un − uδα), un, un − uδα)]dt

−βφ1(un, u
δ
α, F

′(uδα)∗(F (uδα)− yδ))

= [I − β(F ′(un)∗F ′(un) + αI)](un − uδα)

−β[F ′(un)∗F ′(un)

∫ 1

0

φ(uδα + t(un − uδα), un, un − uδα)dt

−βφ1(un, u
δ
α,−α(uδα − u0)).

52



Hence, using (4.2.9) we have

‖un+1 − uδα‖ ≤ (1− αβ)‖un − uδα‖+ βM2K0‖un − uδα‖2

∫ 1

0

(1− t)dt

+βK1α‖un − uδα‖‖uδα − u0‖

≤ (1− αβ + αβK1‖uδα − u0‖)‖un − uδα‖+
βM2K0

2
‖un − uδα‖2

≤ (1− αβ + αβK1r̄)‖un − uδα‖+
βM2K0

2
‖un − uδα‖2.

The above expression is of the form (4.2.5), where an = 0, b = 1 − αβ +

αβK1r̄, γn = ‖un − uδα‖ and c = βM2K0

2
. We have by the condition on r̄,

b+ 2
√
ac = b < 1 and

γ0 = ‖u0 − uδα‖ ≤
1− b
c

= γ̄.

Hence by Lemma 4.2.2, we have

‖un+1 − uδα‖ ≤ (1− αβ + αβK1‖u0 − uδα‖+
βM2K0

2
‖u0 − uδα‖)‖un − uδα‖

≤ (1− αβ + αβK1r̄ +
βM2K0

2
r̄)‖un − uδα‖

≤ q̄α,β‖un − uδα‖. (4.2.16)

Thus, since q̄α,β < 1, we have

‖un+1 − uδα‖ < ‖u0 − uδα‖ ≤ r̄

and
‖un+1 − u0‖ < 2‖u0 − uδα‖ ≤ 2(r0 + 1) ≤ r̄

i.e., un+1 ∈ B(u0, r̄). Also, for 0 ≤ t ≤ 1,

‖uδα + t(un+1 − uδα)− u0‖ = ‖uδα − u0 + t(un+1 − uδα)‖ < 2(r0 + 1) ≤ r̄.

Hence, uδα + t(un+1− uδα) ∈ B(u0, r̄) and An+1 is well defined with ‖An+1‖ ≤
M. Thus, by induction un is well defined and remains in B(u0, r̄) for each
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n = 0, 1, 2, · · · . By letting n → ∞ in (4.1.3), we obtain the convergence of
un to uδα. The estimate (4.2.15) now follows from (4.2.16).

4.3 ERROR BOUNDS UNDER SOURCE CONDITIONS

Hereafter, we use the estimate in Theorem 4.2.7 to obtain error estimate for
‖uδn,α − x̂‖. Similar result can be obtained using the estimate in Theorem
4.2.3. For the convenience of the convergence analysis that follows, we use
the following well known assumption from Semenova (2010).

ASSUMPTION 4.3.1. There exists a continuous, strictly monotonically
increasing function Φ : (0, ā]→ (0,∞) with ā ≥ ‖F ′(x̂)‖2 satisfying

(i) limλ→0 Φ(λ) = 0.

(ii) supλ≥0
αΦ(λ)
λ+α

≤ Φ(α), ∀α ∈ (0, ā].

(iii) There exists v ∈ X with ‖v‖ ≤ 1 such that

u0 − x̂ = Φ(F ′(x̂)∗F ′(x̂))v.

THEOREM 4.3.2. Let uδα be the minimizer of (4.1.1) and let

r̄ < min{ 2α

2αK1 +M2K0

,
1

2K0 +K1

}.

Then
‖uδα − x̂‖ ≤

1

1 +K0 +K1 − r̄
2
(2K0 +K1)

[
δ√
α

+ Φ(α)].

Proof. Let M̂ =
∫ 1

0
F ′(x̂ + t(uδα − x̂))dt and A = F ′(uδα). Then from (4.2.7)

we have

(A∗M̂ + αI)(uδα − x̂) = A∗(yδ − y) + α(u0 − x̂)

and

uδα − x̂ = (A∗A+ αI)−1A∗(A− M̂)(uδα − x̂) + (A∗A+ αI)−1A∗(yδ − y)

+(A∗A+ αI)−1α(u0 − x̂).
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Therefore

‖uδα − x̂‖ ≤ ‖Γ1‖+
δ√
α

+ ‖Γ2‖ (4.3.1)

where Γ1 = (A∗A+αI)−1A∗(A−M̂)(uδα−x̂) and Γ2 = (A∗A+αI)−1α(u0−x̂).

Using definition of M̂ and Assumption 2.1.5, we have in turn

Γ1 = (A∗A+ αI)−1A∗[F ′(uδα)−
∫ 1

0

F ′(x̂+ t(uδα − x̂))dt](uδα − x̂)

= (A∗A+ αI)−1A∗[

∫ 1

0

F ′(uδα)

−F ′(x̂+ t(uδα − x̂))dt](uδα − x̂) (4.3.2)

= −(A∗A+ αI)−1A∗
∫ 1

0

Aφ(x̂+ t(uδα − x̂), uδα, u
δ
α − x̂)dt.

Now, by using triangle inequality, Lemma 4.2.1 and the definition of r̄, we
have

‖Γ1‖ ≤
K0

2
‖uδα − x̂‖2

≤ K0r̄

2
‖uδα − x̂‖. (4.3.3)

Let Â := F ′(x̂). Then using Assumptions 2.1.5, 4.2.5 and 4.3.1, we have in
turn

‖Γ2‖ = ‖[(A∗A+ αI)−1 − (Â∗Â+ αI)−1]α(u0 − x̂)

+(Â∗Â+ αI)−1α(u0 − x̂)‖

≤ ‖[(A∗A+ αI)−1(Â∗Â− A∗A)(Â∗Â+ αI)−1]α(u0 − x̂)‖

+‖Â∗Â+ αI)−1α(u0 − x̂)‖

≤ ‖[(A∗A+ αI)−1((Â∗ − A∗)Â− A∗(A− Â))(Â∗Â+ αI)−1]α(u0 − x̂)‖

+‖(Â∗Â+ αI)−1α(u0 − x̂)‖
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≤ ‖(A∗A+ αI)−1((Â∗ − A∗)Â(Â∗Â+ αI)−1α(u0 − x̂)‖

+‖(A∗A+ αI)−1A∗(A− Â))(Â∗Â+ αI)−1α(u0 − x̂)‖

+‖(Â∗Â+ αI)−1α(u0 − x̂)‖ (4.3.4)

≤ ‖(A∗A+ αI)−1‖‖φ1(uδα, x̂, Â
∗Â(Â∗Â+ αI)−1α(u0 − x̂))‖

+‖(A∗A+ αI)−1A∗A‖‖φ(uδα, x̂, (Â
∗Â+ αI)−1α(u0 − x̂))‖

+‖(Â∗Â+ αI)−1α(u0 − x̂)‖

≤ K1‖uδα − x̂‖‖u0 − x̂‖+K0‖uδα − x̂‖‖u0 − x̂‖+ Φ(α)‖v‖

≤ (K0 +K1)r0‖uδα − x̂‖+ Φ(α)‖v‖

≤ (K0 +K1)(
r̄

2
− 1)‖uδα − x̂‖+ Φ(α)‖v‖. (4.3.5)

The result now follows from (4.3.1), (4.3.3) and (4.3.5).

REMARK 4.3.3. If we use (A2), instead of Assumptions 2.1.5 and 4.2.5,
then by (4.3.2) we have ‖Γ1‖ ≤ Lr

2
√
α
‖uδα − x̂‖ and by (4.3.4) we have ‖Γ2‖ ≤

2Lr0√
α
‖uδα − x̂‖+ φ(α). Hence in this case we have

‖uδα − x̂‖ ≤
1

1− 4Lr0+Lr
2
√
α

Φ(α)

provided 4Lr0 + Lr < 2
√
α.

Combining the estimates in Theorems 4.2.7 and 4.3.2 we have the follow-
ing theorem.

THEOREM 4.3.4. Let un be as in (4.1.3) and let the assumptions in The-
orems 4.2.7 and 4.3.2 be satisfied. Then we have

‖uδn+1,α − x̂‖ ≤ q̄n+1
α,β r̄ +

1

1 +K0 +K1 − r̄
2
(2K0 +K1)

(
δ√
α

+ Φ(α)).

Let
nδ = min{n : q̄nα,β ≤

δ√
α
}. (4.3.6)

THEOREM 4.3.5. Let un be as in (4.1.3) and let the assumptions in The-
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orem 4.3.4 be satisfied. Let nδ be as in (4.3.6). Then

‖uδnδ,α − x̂‖ ≤ C̄(
δ√
α

+ Φ(α)) (4.3.7)

where C̄ = r̄ + 1
1+K0+K1− r̄2 (2K0+K1)

.

4.3.1 A priori choice of the parameter

Note that the estimate δ√
α

+ Φ(α) in (4.3.7) is of optimal order for the
choice α := αδ which satisfies, δ√

α
= Φ(α). Now using the function ψ(λ) :=

λ
√

Φ−1(λ), 0 < λ ≤ ‖F ′(x̂)‖2, we have δ =
√
αδΦ(αδ) = ψ(Φ(αδ)) so that

αδ = Φ−1(ψ−1(δ)). Hence by Theorem 4.3.5 we have the following.

THEOREM 4.3.6. Let ψ(λ) := λ
√

Φ−1(λ) for 0 < λ ≤ ‖F ′(x̂)‖2, and
let the assumptions in Theorem 4.3.5 holds. For δ ∈ (0, δ0], let α := αδ =

Φ−1(ψ−1(δ)) and let nδ be as in (4.3.6). Then

‖uδnδ,α − x̂‖ = O(ψ−1(δ)).

4.3.2 Balancing Principle

Observe that the a priori choice of the parameter could be achieved only in
the ideal situation when the function ψ is known. The point is that the best
function ψ measuring the rate of convergence in Theorem 4.3.5 is usually
unknown. Therefore in practical applications different parameters α = αi

are often selected from the finite set

DN := {αi = µiα0 < 1, i = 1, 2, ..., N},

where α0 = δ2 (see Semenova (2010)) and µ > 1 and corresponding elements
uδn,αi , i = 1, 2, ..., N are studied. Let

ni := min{n : q̄nα,β ≤
δ
√
αi
}
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and let uδαi := uδni,αi . Then from Theorem 4.3.5, we have

‖uδαi − x̂‖ ≤ C̄(
δ
√
αi

+ Φ(αi)),∀i = 1, 2, ..., N.

The main result of this section is the following theorem, proof of which
is analogous to the proof of Theorem 4.4 in George and Nair (2008).

THEOREM 4.3.7. Assume that there exists i ∈ {0, 1, ...N} such that
Φ(αi) ≤ δ√

αi
. Let assumptions of Theorem 4.3.4 be satisfied and let

l := max

{
i : Φ(αi) ≤

δ
√
αi

}
< N,

k := max

{
i : ∀j = 1, 2, ..., i− 1; ‖uδαi − u

δ
αj
‖ ≤ 4C̄

δ
√
αj

}
where C̄ is as in Theorem 4.3.5. Then l ≤ k and

‖uδαi − x̂‖ ≤ 6C̄µψ−1(δ).

4.4 CONCLUSION

In this chapter we considered a modified Tikhonov gradient type-method for
approximately solving the nonlinear ill-posed operator equation F (x) = y

where F : D(F ) ⊆ X → Y is a nonlinear operator between the Hilbert spaces
X and Y. The method is a modified form of the Tikhonov Gradient method
considered in Ramlau (2003). The assumptions used for the convergence
analysis in Theorem 4.2.3 (we used only (A2) with an additional assumption
on the initial guess) is weaker than that of Ramlau (2003). We use the
adaptive method considered by in Pereverzev and Schock (2005) for choosing
the regularization parameter.

In the next chapter we consider the finite dimensional realization and the
implementation of the method considered in this chapter.
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Chapter 5

FINITE DIMENSIONAL
REALIZATION OF A TIKHONOV
GRADIENT TYPE-METHOD UNDER
WEAK CONDITIONS

In Chapter 4 we considered a Tikhonov gradient type iterative method for
obtaining approximate solution to operator equation of the form F (x) = y

where F : D(F ) ∈ X → Y is a non linear operator between Hilbert space X
and Y. In this chapter we consider projection techniques to obtain the finite
dimensional realization of a Tikhonov gradient type-method considered in
Chapter 4 for approximating a solution x̂ of the nonlinear ill-posed operator
equation F (x) = y. The regularization parameter is chosen according to
the adaptive method considered by Pereverzev and Schock (2005). We also
derive optimal stopping conditions on the number of iterations necessary for
obtaining the optimal order of convergence. Using two numerical examples
we compare our results with an existing method to justify the theoretical
results.

5.1 INTRODUCTION

For practical problems, we need to find an approximate solution in a finite
dimensional subspace of X. Let {Xi}∞i=1 be a sequence of finite dimensional
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subspace of X and let

Jα,i(x) = min
x∈Xi
{‖F (x)− yδ‖2 + α‖x− Phu0‖2} (5.1.1)

where α > 0, and Ph(h = 1
i
) is the projection onto Xi. Then Jα,i(x) has a

unique solution uh,δα in Xi given by

PhF
′(uh,δα )∗Ph(F (uh,δα )− yδ) + α(uh,δα − u

h,δ
0 ) = 0 (5.1.2)

where uh,δ0 := Phu0. Regularization of ill-posed problems by projection meth-
ods can be found in literature, for e.g in Groetsch and Neubauer (1988),
Kaltenbacher et al. (2008), Kirsch (2011). Our aim in this chapter is to ob-
tain an approximation for uδα, in the finite dimensional space R(Ph) of X.
Here {Ph}h>0 is a family of orthogonal projections of X onto R(Ph), the
range of Ph i.e., Xi. We need the following conditions to prove our results.
Let

εh := ‖F ′(.)(I − Ph)‖,

bh := ‖(I − Ph)x̂‖,

and
ch := ‖(I − Ph)u0‖.

We assume that limh→0 εh = 0, limh→0 bh = 0 and limh→0 ch = 0. The above
assumptions are satisfied if Ph → I point wise and if F ′(.) is compact oper-
ator. Further we assume that there exist ε0 > 0, b0 > 0, c0 > 0 and δ0 > 0

such that εh < ε0, bh < b0, ch < c0 and δ < δ0.

Finite dimensional version of Tikhonov Gradient Type method(FDTGTM)
is defined for each n = 1, 2, 3, · · · by

uh,δn+1,α = uh,δn,α − βPh[F ′(uh,δn,α)∗Ph(F (uh,δn,α)− yδ) + α(uh,δn,α − u
h,δ
0 )] (5.1.3)

where uh,δ0,α = Phu0 is an approximation for uh,δα . Note that no inversion of
the operator is involved in the method (5.1.3). This is the main advantage
of our method over the existing iterative regularization methods, studied
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extensively in literature, Argyros and George (2013), Argyros et al. (2014),
Bakushinskii (1992), Bauer et al. (2009), Blaschke et al. (1997), George and
Nair (2008), Kaltenbacher et al. (2008), Vasin (2013), Vasin and George
(2014).

The rest of the chapter is organized as follows: The convergence anal-
ysis of the method is given in Section 5.2. In Section 5.3 we provide error
bounds under certain general source conditions by choosing the regulariza-
tion parameter by an a priori manner as well as by using an adaptive choice
of the parameter proposed by Pereverzev and Schock (2005). In Chapter 3,
we considered the iterative method defined for n = 1, 2, 3, · · · by (3.2.1). In
section 5.4 we compare the numerical results of method (5.1.3) and (3.2.1).

5.2 CONVERGENCE ANALYSIS OF FDTGTM

Let r > 0 be some constant such that

2
(

max{1, ‖x̂‖}+ r0

)
+ c0 ≤ r

where ‖x̂−u0‖ ≤ r0 and (δ0+ε0)2 < α. Let δ ∈ (0, δ0] , α ∈ [(δ+εh)
2, a0), (δ0+

ε0)2 ≤ a0 and ‖F ′(x)‖ ≤M, ∀x ∈ D(F ). Further, let β, qhα,β be parameters
such that

β =
1

M2 + a0

and
qhα,β = 1− αβ + αβK1r +

βM2K0

2
r. (5.2.1)

We need the following lemma to prove our results:

LEMMA 5.2.1. Let uh,δα be the minimizer of (5.1.1). Then,

‖uh,δα − Phu0‖ ≤
εh‖x̂‖+ δ√

α
+ ‖u0 − x̂‖.
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Proof. Since uh,δα is the minimizer of (5.1.1), we have

‖F (uh,δα )− yδ‖2 + α‖uh,δα − Phu0‖2

≤ ‖F (Phx̂)− yδ‖2 + α‖Ph(x̂− u0)‖2

≤ ‖F (Phx̂)− F (x̂) + F (x̂)− yδ‖2 + α‖x̂− u0‖2

≤
(
‖
∫ 1

0

F ′(x̂+ t(Phx̂− x̂))dt(Phx̂− x̂)‖+ δ

)2

+α‖x̂− u0‖2

≤
(
‖
∫ 1

0

F ′(x̂+ t(Phx̂− x̂))(Ph − I)x̂dt‖+ δ

)2

+ α‖x̂− u0‖2

≤ (εh‖x̂‖+ δ)2 + α‖x̂− u0‖2.

Hence,

‖uh,δα − Phu0‖ ≤
εh‖x̂‖+ δ√

α
+ ‖x̂− u0‖.

THEOREM 5.2.2. Let uh,δn,α be as in (5.1.3) and let r < 2α
2αK1+M2K0

. Then
for each δ ∈ (0, δ0], α ∈ ((δ + εh)

2, a0], εh ≤ ε0 the sequence {uh,δn,α} is in
B(u0, r) ∩R(Ph) and converges to uh,δα as n→∞. Further

‖uh,δn+1,α − uh,δα ‖ ≤ (qhα,β)n+1‖Phu0 − uh,δα ‖ (5.2.2)

where qhα,β is as in (5.2.1).

Proof. Let Ahn :=
∫ 1

0
F ′(uh,δα + t(uh,δn,α − uh,δα ))dt. Since uh,δα satisfies (5.1.2) we

have,

uh,δn+1,α − uh,δα = uh,δn,α − uh,δα − β[PhF
′(uh,δn,α)∗Ph(F (uh,δn,α)− F (uh,δα ))

+αPh(u
h,δ
n,α − uh,δα )]

+βPh[F
′(uh,δα )∗ − F ′(uh,δn,α)∗]Ph(F (uh,δα )− yδ)

= uh,δn,α − uh,δα − βPh[F ′(uh,δn,α)∗Ahn + αPh](u
h,δ
n,α − uh,δα )

+βPh[F
′(uh,δα )∗ − F ′(uh,δn,α)∗]Ph(F (uh,δα )− yδ)
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= uh,δn,α − uh,δα − βPh[F ′(uδn,α)∗(Ahn − F ′(uh,δn,α))](uh,δn,α − uh,δα )

−βPh[F ′(uh,δn,α)∗F ′(uh,δn,α) + αPh]Ph(u
h,δ
n,α − uh,δα )

+βPh[F
′(uh,δα )∗ − F ′(uh,δn,α)∗](F (uh,δα )− yδ)

= [I − β(PhF
′(uh,δn,α)∗F ′(uh,δn,α)Ph + αI)](uh,δn,α − uh,δα )

−βPh[F ′(uh,δn,α)∗(Ahn − F ′(uh,δn,α))](uh,δn,α − uh,δα )

+βPh[F
′(uh,δα )∗ − F ′(uh,δn,α)∗]Ph(F (uh,δα )− yδ). (5.2.3)

Now since I − β(PhF
′(uh,δn,α)∗F ′(uh,δn,α)Ph + αI) is a positive self-adjoint oper-

ator,

‖I − β(PhF
′(uh,δn,α)∗F ′(uh,δn,α)Ph + αI)‖

= sup
‖x‖=1

|〈(I − β(PhF
′(uh,δn,α)∗F ′(uh,δn,α)Ph + αI))x, x〉|

= sup
‖x‖=1

|(1− βα)〈x, x〉 − β〈PhF ′(uh,δn,α)∗F ′(uh,δn,α)Phx, x〉|

≤ 1− αβ. (5.2.4)

The last step follows from relation

β|〈PhF ′(uh,δn,α)∗F ′(uh,δn,α)Phx, x〉| ≤ β‖PhF ′(uh,δn,α)‖2

≤ βM2 ≤ 1

M2 + α
M2

= 1− α

M2 + α
≤ 1− βα.

Using (5.2.3), Assumptions 2.1.5 and 4.2.5 we have

uh,δn+1,α − uh,δα = [I − βPh(F ′(uh,δn,α)∗F ′(uh,δn,α) + αI](uh,δn,α − uh,δα )

−β[F ′(uh,δn,α)∗
∫ 1

0

F ′(uh,δn,α)φ(uh,δα + t(uh,δn,α − uh,δα ), uh,δn,α, u
h,δ
n,α − uh,δα )]dt

−βφ1(uh,δn,α, u
h,δ
α , F ′(uh,δα )∗(F (uh,δα )− yδ))

= [I − β(F ′(uh,δn,α)∗F ′(uh,δn,α) + αI)](uh,δn,α − uh,δα )

−β[F ′(uh,δn,α)∗F ′(uh,δn,α)

∫ 1

0

φ(uh,δα + t(uh,δn,α − uh,δα ), uh,δn,α, u
h,δ
n,α − uh,δα )dt]

−βφ1(uh,δn,α, u
h,δ
α ,−α(uh,δα − u

h,δ
0 )).
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Hence, using (5.2.4) we have

‖uh,δn+1,α − uh,δα ‖ ≤ (1− αβ)‖uh,δn,α − uh,δα ‖+ βM2K0‖uh,δn,α − uh,δα ‖2

∫ 1

0

(1− t)dt

+βK1α‖uh,δn,α − uh,δα ‖‖uh,δα − u
h,δ
0 ‖

≤ (1− αβ + αβK1‖uh,δα − u
h,δ
0 ‖)‖uh,δn,α − uh,δα ‖+

βM2K0

2
‖uh,δn,α − uh,δα ‖2

≤ (1− αβ + αβK1r)‖uh,δn,α − uh,δα ‖+
βM2K0

2
‖uh,δn,α − uh,δα ‖2.

The above expression is of the form (4.2.5), where an = 0, b = 1 − αβ +

αβK1r, γn = ‖xh,δn,α − xh,δα ‖ and c = βM2K0

2
. We have by the condition on r,

b+ 2
√
ac = b < 1 and

γ0 = ‖uh,δ0 − uh,δα ‖ ≤
1− b
c

= γ̄.

Hence by Lemma 4.2.2, we have

‖uh,δn+1,α − uh,δα ‖ ≤ (1− αβ + αβK1‖uh,δ0 − uh,δα ‖+
βM2K0

2
‖uh,δ0 − uh,δα ‖)‖uh,δn,α − uh,δα ‖

≤ (1− αβ + αβK1r +
βM2K0

2
r)‖uh,δn,α − uh,δα ‖

≤ qhα,β‖uh,δn,α − uh,δα ‖. (5.2.5)

Thus, since r < 2α
2αK1+M2K0

, we have qhα,β < 1, and hence

‖uh,δn+1,α − uh,δα ‖ < ‖u
h,δ
0 − uh,δα ‖ ≤ r

and

‖uh,δn+1,α − u0‖ ≤ ‖uh,δn+1,α − uh,δα ‖+ ‖uh,δα − Phu0‖+ ‖(I − Ph)u0‖

≤ 2‖uh,δα − Phu0‖+ ‖(I − Ph)u0‖

≤ 2
[εh‖x̂‖+ δ√

α
+ r0

]
+ c0 < r.
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i.e., uh,δn+1,α ∈ B(u0, r). Also, for 0 ≤ t ≤ 1,

‖uh,δα + t(uh,δn+1,α − uh,δα )− u0‖ ≤ ‖uh,δα − u0‖+ ‖uh,δn+1,α − uh,δα ‖

< ‖uh,δα − Phu0‖+ ‖(I − Ph)u0‖+ ‖Phu0 − uh,δα ‖

≤ 2‖uh,δα − Phu0‖+ ‖(I − Ph)u0‖ ≤ r.

Hence, uh,δα + t(uh,δn+1,α − uh,δα ) ∈ B(u0, r) and Ahn+1 is well defined with
‖Ahn+1‖ ≤M. Thus, by induction uh,δn,α is well defined and remains in B(u0, r)

for each n = 0, 1, 2, · · · . By letting n→∞ in (5.1.3), we obtain the conver-
gence of uh,δn,α to uh,δα . The estimate (5.2.2) now follows from (5.2.5).

For practical purpose we use the assumption (A2) to prove the conver-
gence of {uh,δn,α} in (5.1.3) to uh,δα .

THEOREM 5.2.3. Let uh,δn,α be as in (5.1.3) and let r < 2α
L(2
√
a0+M)

. Then
for each δ ∈ (0, δ0], α ∈ ((δ + εh)

2, a0], εh ≤ ε0 the sequence {uh,δn,α} is in
B(u0, r) ∩R(Ph) and converges to uh,δα as n→∞. Further

‖uh,δn+1,α − uh,δα ‖ ≤ (q̄hα,β)n+1‖Phu0 − uh,δα ‖ (5.2.6)

where
q̄hα,β = 1− αβ + βLr

√
a0 +

βML

2
r.

Proof. From (5.2.3) and using Assumption (A2),

‖uh,δn+1,α − uh,δα ‖ ≤ ‖[I − β(PhF
′(uh,δn,α)∗F ′(uh,δn,α)Ph + αI)]‖‖(uh,δn,α − uh,δα )‖

+β‖Ph[F ′(uh,δn,α)∗(Ahn − F ′(uh,δn,α))]‖‖(uh,δn,α − uh,δα )‖

+β‖Ph[F ′(uh,δα )∗ − F ′(uh,δn,α)∗]‖‖(F (uh,δα )− yδ)‖

≤ (1− αβ)‖uh,δn,α − uh,δα ‖+
βML

2
‖uh,δn,α − uh,δα ‖2

+βL‖uh,δn,α − uh,δα ‖‖F (uh,δα )− yδ‖

≤ (1− αβ)‖uh,δn,α − uh,δα ‖+
βML

2
‖uh,δn,α − uh,δα ‖2 + βLr

√
a0‖uh,δn,α − uh,δα ‖

≤ (1− αβ + βL
√
a0r)‖uh,δn,α − uh,δα ‖+

βML

2
‖uh,δn,α − uh,δα ‖2.

The rest of the proof is analogous to the proof of Theorem 5.2.2.
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5.3 ERROR BOUNDS UNDER SOURCE CONDITIONS

We use estimate in Theorem 5.2.2 for obtaining error estimate for ‖uh,δn,α− x̂‖.
Similar result can be obtained using the estimate in Theorem 5.2.3. Note
that we have

PhF
′(uh,δα )∗(F (uh,δα )− yδ) + αPh(u

h,δ
α − u0) = 0 (5.3.1)

and
PhF

′(uδα)∗(F (uδα)− yδ) + αPh(u
δ
α − u0) = 0. (5.3.2)

So by (5.3.1) and (5.3.2) we obtain

PhF
′(uh,δα )∗F (uh,δα )− PhF ′(uδα)∗F (uδα)− [PhF

′(uh,δα )∗ − PhF ′(uδα)∗]yδ

+αPh(u
h,δ
α − uδα) = 0.

That is

(PhF
′(uh,δα )∗F ′(uh,δα )Ph + αI)(uh,δα − Phuδα)

= PhF
′(uh,δα )∗[F ′(uh,δα )− T ](uh,δα − uδα)

+PhF
′(uh,δα )∗F ′(uh,δα )(I − Ph)uδα

+(PhF
′(uδα)∗ − PhF ′(uh,δα )∗)(F (uδα)− yδ)

where T =
∫ 1

0
F ′(uδα + t(uh,δα − uδα))dt. So by Assumption 2.1.5 and 4.2.5 we

have

‖uh,δα − Phuδα‖

= ‖[PhF ′(uh,δα )∗F ′(uh,δα )Ph + αI]−1 × [PhF
′(uh,δα )∗[T − F ′(uh,δα )](uh,δα − uδα))

+PhF
′(uh,δα )∗F ′(uh,δα )(I − Ph)uδα + Ph(F

′(uδα)∗ − F ′(uh,δα )∗)(F (uδα)− yδ)]‖

≤ ‖(PhF ′(uh,δα )∗F ′(uh,δα )Ph + αI)−1PhF
′(uh,δα )∗F ′(uh,δα )[Ph + I − Ph]

×
∫ 1

0

φ(uδα + t(uh,δα − uδα), uh,δα , uh,δα − uδα)dt‖+
εh√
α
‖uδα‖

+
1

α
‖φ1(uδα, u

h,δ
α , F ′(uδα)∗(F (uδα)− yδ))‖
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≤ K0

(
1 +

εh√
α

) ∫ 1

0

(1− t)dt‖uh,δα − uδα‖‖uh,δα − uδα‖+
εh√
α
‖uδα‖

+
K1

α
‖uhα − uh,δα ‖‖α(uδα − u0)‖

≤ K0

2

(
1 +

εh√
α

)
2r‖uh,δα − uδα‖+

εh√
α
‖uδα‖+K1r‖uδα − uh,δα ‖

≤ 2(K0 +K1)r(‖uh,δα − Phuδα‖+ ‖Phuδα − uδα‖) +
εh√
α
‖uδα‖

hence

‖uh,δα − Phuδα‖ ≤
1

1− 2(K0 +K1)r

[
2(K0 +K1)r‖(I − Ph)uδα‖

+
εh√
α

(r + ‖u0‖)
]
. (5.3.3)

THEOREM 5.3.1. Let the assumptions in Theorem 5.2.2 holds and let uh,δn,α
be as in (5.1.3). Then

‖uh,δn,α − x̂‖ ≤ (qhα,β)nr +
1

1− 2(K0 +K1)r

(
bh +

εh√
α

(r + ‖u0‖)
)

+K̄(
δ√
α

+ Φ(α))

where K̄ = 2(1−(K0+K1)r)
1−2(K0+K1)r

× 1
1+K0+K1− r2 (2K0+K1)

.

Proof. By triangle inequality, we have ‖uh,δn,α − x̂‖ ≤ ‖uh,δn,α − uh,δα ‖ + ‖uh,δα −
uδα‖+ ‖uδα− x̂‖. Therefore by (5.3.3), Theorem 4.3.2 and Theorem 5.2.2 , we
obtain that

‖uh,δn,α − x̂‖ ≤ (qhα,β)nr + ‖uh,δα − Phuδα‖+ ‖(I − Ph)uδα‖+ ‖uδα − x̂‖

≤ (qhα,β)nr +
1

1− 2(K0 +K1)r
[2(K0 +K1)r‖(I − Ph)uδα‖+

εh√
α

(r + ‖u0‖)]

‖(I − Ph)uδα‖+ ‖uδα − x̂‖

≤ (qhα,β)nr +
1

1− 2(K0 +K1)r
‖(I − Ph)uδα‖
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+
1

1− 2(K0 +K1)r

εh√
α

(r + ‖u0‖) + ‖uδα − x̂‖

≤ (qhαβ)nr +
1

1− 2(K0 +K1)r
[‖(I − Ph)(uδα − x̂)‖+ ‖(I − Ph)x̂‖]

+
1

1− 2(K0 +K1)r

εh√
α

(r + ‖u0‖) + ‖uδα − x̂‖

≤ (qhα,β)nr +
1

1− 2(K0 +K1)r
[bh +

εh√
α

(r + ‖u0‖)]

+
( 1

1− 2(K0 +K1)r
+ 1
)
‖uδα − x̂‖

≤ (qhα,β)nr +
1

1− 2(K0 +K1)r

[
bh +

εh√
α

(r + ‖u0‖)
]

+
2(1− (K0 +K1)r)

1− 2(K0 +K1)r
‖uδα − x̂‖.

The result now follows from Theorem 4.3.2.

Let
nhδ = min{n : qnα,β ≤

δ + εh√
α
} and bh ≤

δ + εh√
α
. (5.3.4)

Then by Theorem 5.3.1, we have

‖uh,δ
nhδ ,α
− x̂‖ ≤ C

(δ + εh√
α

+ Φ(α)
)

(5.3.5)

where C = r + 1+r+‖x0‖
1−2(K0+K1)r

+ K̄.

5.3.1 A priori choice of the parameter

Let ψ : (0, ‖F ′(x̂)‖2] → [0,∞) be defined by ψ(λ) := λ
√

Φ−1(λ). Then as
in the Chapter 4, one can see that for αδ = Φ−1(ψ−1(δ + εh)) we obtain the
optimal order error estimate. In fact we have the following theorem.

THEOREM 5.3.2. Let ψ(λ) := λ
√

Φ−1(λ) for 0 < λ ≤ ‖F ′(x̂)‖2, and
let the assumptions in Theorem 5.3.1 holds. For δ ∈ (0, δ0], let α := αδ =

68



Φ−1(ψ−1(δ + εh)) and let nδ be as in (5.3.4). Then

‖xδnhδ ,α − x̂‖ = O(ψ−1(δ + εh)).

5.3.2 Balancing Principle: for FDTGTM

Let
ni := min{n : qhα,β ≤

δ + εh√
αi
}

and let uh,δαi := uh,δni,αi . Then from (5.3.5), we have

‖uh,δαi − x̂‖ ≤ C(
δ + εh√
αi

+ Φ(αi)),∀i = 1, 2, ..., N.

As in the Section 4.3.2 we consider the balancing principle suggested by
Pereverzev and Schock (2005), for choosing the regularization parameter α
from the set DN defined by

DN := {αi = µ2iα0 < 1, i = 1, 2, ..., N},

where α0 = (δ + εh)
2 (see Semenova (2010)) and µ > 1.

The main result of this section is the following theorem, proof of which
is analogous to the proof of Theorem 4.4 in George and Nair (2008).

THEOREM 5.3.3. Assume that there exists i ∈ {0, 1, ..., N} such that
Φ(αi) ≤ δ+εh√

αi
. Let assumptions of Theorem 5.3.1 be satisfied and let

l := max

{
i : Φ(αi) ≤

δ + εh√
αi

}
< N,

k := max

{
i : ∀j = 1, 2, ..., i− 1; ‖uδαi − u

h,δ
αj
‖ ≤ 4C

δ + εh√
αj

}
where C is as in (5.3.5). Then l ≤ k and

‖uh,δαi − x̂‖ ≤ 6Cµψ−1(δ + εh).

As per Theorem 5.3.3, the choice of the regularization parameter involves
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the following steps:

• Choose α0 = (δ + εh)
2

• Choose αi := µ2iα0, i = 0, 1, 2, · · · , N with and µ > 1.

Algorithm

1. Set i = 0.

2. Choose ni := min
{
n : qhαi,β ≤

δ+εh√
αi

}
.

3. Solve uh,δi := uh,δni,αi by using the iteration (5.1.3).

4. If ‖uh,δi − u
h,δ
j ‖ > 4C 1

µj
, j < i, then take k = i− 1 and return uk.

5. Else set i = i+ 1 and go to 2.

5.4 IMPLEMENTATION OF THE METHOD

Let XM be a sequence of finite dimensional subspaces of X and let Ph, (h =
1
M

) denote the orthogonal projection onX withR(Ph) = XM . Let {Φ1,Φ2, . . . ,ΦM}
be a basis for XM . We assume that ‖Phx− x‖ → 0 as h→ 0 ∀x ∈ X.

Since uh,δn,α ∈ XM , u
h,δ
n,α =

∑M
i=1 λ

n
i Φi for some λn1 , λn2 , ..., λnM ∈ R. Then

from (5.1.3) we have,

M∑
i=1

(λn+1
i − λni )Φi = βPhF

′(uh,δn,α)∗
( M∑
i=1

(ηi − Fi)Φi

)
+αβ

M∑
i=1

(X0,i − λni )Φi,

where Ph[yδ−F (uh,δn,α)] =
∑M

i=1(ηi−Fi)Φi and Ph(uh,δ0 −uh,δn,α) =
∑M

i=1(X0,i−
λni )Φi, i = 1, 2, · · ·M. Then uh,δn+1,α− uh,δn,α is a solution of (5.1.3) if and only if
[λn+1− λn] = [λn+1

1 − λn1 , λn+1
2 − λn2 , ..., λn+1

M − λnM ]T is the unique solution of

BM [λn+1 − λn] = βMM [η − FM ] + αβBM [X0 − λM ],
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where MM = (〈Φi, F
′(xh,δn,α)Φj〉), BM = (〈Φi,Φj〉) i, j = 1, 2, ...,M,

FM = [F1, F2, · · · , FM ]T , η = [η1, η2, · · · , ηM ]T ,

X0 = [X0,1, X0,2, · · · , X0,M ]T and λM = [λn1 , λ
n
2 , · · · , λnM ]T .

5.5 NUMERICAL EXAMPLES

In this section first we consider Example 3.6.1 considered in Chapter 3 and
we compare the experimental results of the proposed method with that of
method (3.2.1).

EXAMPLE 5.5.1. Returning back to Example 3.6.1. We use the same
basis used in Example 3.6.1. The results of numerical experiments for method
(5.1.3) and (3.2.1) for different values of δ and m are presented in Table 5.1

Table 5.1: Comparison table for relative and residual error of the example
3.6.1

Methods Method (5.1.3) Method (3.2.1)
m δ + εh αk ∆1 ∆2 αk ∆1 ∆2

0.1 0.0506 1.8577× 10−4 3.7391× 10−5 0.3240 0.2281 1.9605
35 0.02 0.0020 1.8576× 10−4 3.7982× 10−5 0.0648 0.2280 1.9606

0.01 0.0005 1.8576× 10−4 3.8057× 10−5 0.0324 0.2277 1.9606
0.1 0.0506 1.5491× 10−4 2.8882× 10−5 0.3240 0.2468 1.9598

40 0.02 0.0020 1.5491× 10−4 2.9269× 10−5 0.0648 0.2484 1.9598
0.01 0.0005 1.5490× 10−4 2.9317× 10−5 0.0324 0.2481 1.9599

Comparison Table 5.1 shows that the relative and residual error for method
(5.1.3) is smaller than that of method (3.2.1).

The plots in the Figure 5.1 to 5.8 gives the exact and approximate solution
for different values of m and δ by using the method (5.1.3).

Next, example we consider an integral equation considered in Semenova
(2010).
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Figure 5.1: Exact solution for m = 35
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Figure 5.2: Approximate solution for m = 35 and δ = 0.1
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Figure 5.3: Approximate solution for m = 35 and δ = 0.02
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Figure 5.4: Approximate solution for m = 35 and δ = 0.01
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Figure 5.5: Exact solution for m = 40

40

30

20

10

00

10

20

30

5

4

3

2

1

40

Figure 5.6: Approximate solution for m = 40 and δ = 0.1
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Figure 5.7: Approximate solution for m = 40 and δ = 0.02
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Figure 5.8: Approximate solution for m = 40 and δ = 0.01
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EXAMPLE 5.5.2. (Semenova (2010), section 4.3) Let F : D(F ) ⊆ H1(0, 1)→
L2(0, 1) defined by

F (u) =

∫ 1

0

k(s, t)u3(s)ds,

where

k(s, t) =

{
(1− t)s, 0 ≤ s ≤ t ≤ 1

(1− s)t, 0 ≤ t ≤ s ≤ 1
.

The Fréchet derivative of F is given by

F ′(u)w = 3

∫ 1

0

k(s, t)u2(s)w(s)ds.
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We take

f(t) =
6 sin(πt) + sin3(πt)

9π2

and f δ = f + δ. Then the exact solution

x̂(t) = sin(πt).

We use

x0(t) = sin(πt) +
3[tπ2 − t2π2 + sin2(πt)]

4π2

as our initial guess.

We apply algorithm by choosing a sequence of finite dimensional subspace
(XM) of X with dim XM = M + 1. Precisely we choose XM as the linear
span of {Φ1,Φ2,Φ3, ...,ΦM+1} where Φi, i = 1, 2, ...,M + 1 are linear splines
in a uniform grid of M + 1 points in [0, 1].

In Table 5.2 the results of numerical experiments for different values of δ
and M are presented. Here ∆1 and ∆2 are as in Example 3.6.1.

Table 5.2: Comparison table for relative and residual error of the example
5.5.2

Methods Method (5.1.3) Method (3.2.1)
M δ + εh αk ∆1 ∆2 αk ∆1 ∆2

32 0.0133 0.2561 0.0106 0.0027 0.0178 0.0286 0.2420
64 0.0133 0.2560 0.0076 0.0012 0.0177 0.0239 0.1365
128 0.0133 0.2559 0.0054 0.0006 0.0177 0.0122 0.0730
256 0.0133 0.2559 0.0038 0.0003 0.2559 0.0366 0.0378
512 0.0133 0.2559 0.0027 0.0001 0.2559 0.0262 0.0192
1024 0.0133 0.2559 0.0019 0.00006 0.2559 0.0187 0.0097

Comparison Table 5.2 shows that the relative and residual error for method
(5.1.3) is smaller than that of method (3.2.1).

The plots in the Figure 5.9 to 5.14 gives the exact and approximate solu-
tion for different values of m and by using the method (5.1.3).
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Figure 5.9: Curves of the exact and approximate solutions when M = 32
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Figure 5.10: Curves of the exact and approximate solutions when M = 64
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Figure 5.11: Curves of the exact and approximate solutions when M = 128
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Figure 5.12: Curves of the exact and approximate solutions when M = 256
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Figure 5.13: Curves of the exact and approximate solutions when M = 512
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Figure 5.14: Curves of the exact and approximate solutions when M = 1024

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

Exact Solution

Approx Solution

77



5.6 CONCLUSION

In this chapter, we considered the finite dimensional realization of the method
considered in Chapter 4. The convergence of the method in finite dimensional
space is provided in this chapter. We provided two numerical examples and
compared the numerical results with that of the method considered in Chap-
ter 3.
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Chapter 6

CONCLUSION

In this thesis we have considered the problem of approximately solving non-
linear ill-posed equation

F (x) = y. (6.0.1)

We have used iterative Lavrentiev regularization method when F : D(F ) ⊆
X → X is monotone and iterative Thikhnov type regularization is used
when F : D(F ) ⊆ X → Y where X and Y are Hilbert spaces. Regulariza-
tion parameter α is chosen according to the adaptive method considered by
Pereverzev and Schock (2005) for the linear operator equations.

Throughout this thesis we assume that the available data is yδ with ‖y−
yδ‖ ≤ δ.

In Chapter 1 we considered some basic definitions and results.
In Chapter 2 we considered the problem of approximately solving (6.0.1)

when F : D(F ) ⊆ X → X is monotone operator. Here we used iterative
Lavrentiev regularization method to obtain the approximate solution for the
operator equation (6.0.1).

The finite dimensional realization of the method considered in Chapter 2
is considered in Chapter 3.

In Chapter 4 we considered (6.0.1) when F : D(F ) ⊆ X → Y is weakly
closed, continuous and convex in the domain of F.We used iterative Thikhnov
type regularization to get approximate solution.

Chapter 5 gives the finite dimensional realization of the method con-
sidered in Chapter 4 and numerical example provides the efficiency of the
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method considered.
The theory of non-linear ill-posed problems are well developed and can

be considered as almost complete in Hilbert space. Hence in future we deal
with non linear ill-posed problems in Banach space.
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