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ABSTRACT 

 

 This work investigates the ground state structure and properties of Boron Carbides 

(B12C3 and B13C2 stoichiometries) and Ruthenium Carbides (RuC, Ru2C and Ru3C 

stoichiometries), each belonging to a class of hard materials. Exhaustive crystal structure 

search using evolutionary algorithm and density functional theory is performed in each of 

these stoichiometries. The lowest energy structures emerging from the structure search 

are further relaxed and their ground properties are computed using DFT. The work in 

B12C3 stoichiometry provides the first independent confirmation using structure search 

that B11C
p
(CBC) is the ground state structure of this stoichiometry. It is established that 

mechanically and dynamically stable structures with base-centered monoclinic symmetry 

can be at thermodynamical equilibrium at temperatures up to 660 K in B12C3, raising the 

possibility of identifying the monoclinic symmetry in experimental measurements. A 

demonstration of experimentally identifiable signatures of monoclinic symmetry is 

provided through the computed cumulative infrared spectrum of some of the systems. 

The work in B13C2 stoichiometry has conclusively solved the long standing problem of 

the discrepancy between the DFT calculations and the experimental observations over the 

semiconducting nature of B13C2. The remarkable success of a newly identified 30-atom-

cell structure in explaining many of the experimental data on B12C3 and B13C2 provides 

the first definitive evidence that structures with larger unit cells, are associated with 

crystals of these stoichiometries even at the ground state. The work in Ruthenium 

Carbide stoichiometries has gathered into a coherent perspective the widely varying 

structures proposed from experimental reports of synthesis, computational modeling and 

crystal structure search and provided conclusive structural candidates to be pursued in 

experiments. The study of the pressure-induced variation of their stability and properties 

has set indicators and benchmarks for future experimental investigations. The estimation 

of hardness of all the systems has underlined their importance in many applications, with 

nearly superhard values for some of them.  

KEYWORDS : Evolutionary Algorithm, Density Functional Theory, Hardness. 
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Chapter 1 

 

 

 

INTRODUCTION 

 

 One system each from two classes of hard materials will be studied in this work. 

The first one to be identified as such a class consists of insulators or semiconductors of 

light elements B, C, N and O, having covalent bonds of short bond lengths and high 

cohesive energies (Gilan,2009; Veprek et al., 2000). Diamond with the highest measured 

Vickers hardness (HV ~ 96 GPa, Field, 1992), cubic Boron Nitride (c–BN; HV ~ 50 GPa) 

and Boron Carbide (B12C3; HV ~ 30 GPa, Werheit et al., 2004) are some of the familiar 

superhard (HV > 40 GPa, Gilan, 2009) and hard materials belonging to this class. The 

study of Boron Carbide from this class forms the first half of this work. Compounds of 

transition metal atoms with atoms of B, C or N constitute the more recently recognized 

second class of hard materials (Kaner et al., 2005; Gilman  et al., 2006; Levine et al., 

2009). A high charge density of valence electrons supplied by the transition metal atom 

and p–d hybridized strong covalent bonds formed between B, C or N atom and transition 

metal atom can make borides, carbides and nitrides of transition metals potentially very 

hard materials. Borides of transition metals like Ru, Re, Os etc. have recently been found 

to be superhard materials (Levine et al., 2009). For example, microindentation 

measurements on rhenium diboride (ReB2) indicated a hardness of about 48 GPa (Chung 

et al., 2007). Carbides and nitrides of 4d- and 5d-metals such as PtC, PtNx, IrNx and RuN 

(Gregoryanz  et al., 2004;  Ono et al., 2005; Crowhurst et al., 2006; Young  et al., 2006) 

are recently synthesized, and high hardness is predicted for some of them (Ivanovskii, 

2009). The study of Ruthenium Carbide from this latter class constitutes the other half of 

this work. 
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1.1. BORON CARBIDES 

 Boron Carbide is a fascinating material, both in terms of the variety of its 

technological and industrial applications based on its peculiar properties and the elusive 

nature of its structure over an unusually wide homogeneity range. It’s very high hardness 

and low density have led to its use as an armour material and cutting tool material; high 

melting point, thermal stability and high degree of chemical inertness have made it 

suitable for refractory applications and wear resistant coatings; it is considered as a 

potential material for electronic and thermoelectric devices designed for high temperature 

applications; its large reaction cross-section for thermal neutron absorption has prompted 

its role as shielding material in nuclear reactors (Thevenot, 1990; Hosmane et al., 2006; 

Vast et al., 2009; Suri et al., 2010; Shirai, 2010; Domnich et al., 2011). It has been 

established that the stable phase of Boron Carbide extends over a range of 8–20 atomic 

percent of carbon though both limits of the range have not been conclusively fixed 

(Thevenot, 1990). Despite its early synthesis, investigation of properties and successful 

applications, the crystal structure of Boron Carbide across different stoichiometries is still 

being debated in the literature (Thevenot, 1990; Hosmane et al., 2006; Vast et al., 2009; 

Suri et al., 2010; Shirai, 2010; Domnich et al., 2011). Two of its stoichiometries studied 

most extensively are those corresponding to 20 at.% C, with a formula unit of B12C3 or 

B4C, and 13.3 at.% C, with a formula unit of B13C2. This work will focus on these two 

stoichiometries of Boron Carbides. 

 

1.1.1. B12C3 Stoichiometry 

 The basic structural unit of B12C3 has been identified as 12-atom icosahedra 

located at the vertices of a rhombohedral lattice of      (166) space group and the 3-

atom linear chain linking the icosahedra along the (111) axis of the rhombohedral unit 

cell (Thevenot, 1990).      symmetry is preserved only if all the icosahedral atoms are 

identical. So the idealized structure is composed of icosahedral cage of 12 boron atoms 

and the chain of 3 carbon atoms, labeled as B12(CCC). Here we adopt the labeling of the 

formula unit such that the atoms constituting the 12-atom cage are specified outside the 
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brackets while those constituting the 3-atom chain are within the brackets. Two views of 

B12(CCC) structure are shown in figure 1.1. The blue coloured boron atoms occupy the 

polar sites and the green coloured boron atoms occupy the equatorial sites within the 

icosahedron. Carbon atoms are shown in brown. All the figures of the structures are 

generated using the crystal visualization program VESTA (Momma and Izumi, 2011).             

 
Fig.1.1 : The idealized B12(CCC) structure (a) the icosahedral cage and the  

 linear chain. (b) the projection on a plane perpendicular to the chain-axis.  

 

 Within the icosahedron, the atoms that are linked to other icosahedra directly, 

forming intericosahedral bonds, are called polar atoms. There are six polar atoms in an 

icosahedron, constituting the two triangular caps at the opposite ends of the icosahedral 

cage. (In figure 1.1, boron atoms shown in blue and labeled B2, B5, B11, B4, B8 and B9 

are polar atoms.) The other six atoms of the icosahedron are linked to the end atoms of 

the 3-atom chain and they are called equatorial atoms. (In figure 1.1, boron atoms shown 

in green and labeled B7, B6, B10, B3, B1 and B12 are equatorial atoms.) They form a 

puckered hexagonal loop at the middle region of the icosahedron when viewed along the 

(111) rhombohedral axis or the chain-axis (figure1.1 (b)). Polar and equatorial atomic 

sites can be topographically distinguished by the projection perpendicular to the chain-

axis (figure1.1 (b)). Polar atoms occupy the vertices of the two inner triangles while the 

equatorial atoms occupy the vertices of the two distorted outer triangles whose outlines 

form the puckered hexagonal loop. A comparison between figures 1.1(a) and 1.1(b) 

shows that this topographical marker is valid only for the projection perpendicular to the 

chain-axis. Each icosahedron is directly linked to six other icosahedra through 
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intericosahedral bonds between polar atoms and it is also linked to six 3-atom chains 

through bonds between the equatorial atoms and the chain end atoms. Thus each chain is 

linked to three icosahedra at one end and three at the other end. The 15 atoms in the unit 

cell occupy four distinct Wyckoff positions :  polar (6h) sites, equatorial (6h) sites, chain 

end (2c) sites and chain center (1b). 

 The ground state structure of B12C3 has been widely accepted as B11C
p
(CBC), 

with one carbon atom occupying a polar site (C
p
) in the icosahedral cage and one boron 

atom occupying the chain center. The structure B11C
p
(CBC) is supported by experimental 

evidence from nuclear magnetic resonance (NMR) data (Hynes and Alexander, 1971), X-

ray diffraction data (Morosin et al., 1986), Raman spectrum measurement (Tallant et al., 

1989), infrared (IR) spectrum measurement (Kuhlmann et al., 1992), neutron diffraction 

data (Kwei and Morosin, 1996), X-ray absorption measurement (Jiménez et al., 1998) 

and X-ray scattering measurement (Feng et al., 2004) and by theoretical modeling 

(Armstrong et al.,1983; Emin, 1988; Bylander et al.,1990; Lazzari et al., 1999; Mauri et 

al., 2001; Fanchini et al., 2006; Saal et al., 2007; Aydin and Simsek, 2009; Ivashchenko 

et al., 2009;  Vast et al., 2009). Establishing this result has not been easy or 

straightforward. As boron and carbon atoms have nearby atomic and mass numbers, their 

electronic and nuclear scattering cross-sections are quite similar (Kwei and Morosin, 

1996; Jiménez et al., 1998). Hence most characterization techniques cannot distinguish 

between these two atoms. For example, though some of the early evidences for 

B11C
p
(CBC) structure have been obtained from NMR studies, subsequent NMR 

measurements have proposed CCC chains and CBB chains, among other combinations. 

Starting from a few structural models, the density functional theory (DFT) based 

simulations of IR and Raman spectra (Lazzari et al., 1999) and NMR spectra (Mauri et 

al.,  2001) and their good correspondence with experimental spectra have been decisive 

in establishing B11C
p
(CBC) as the ground state structure of B12C3 stoichiometry. 

Pinpointing the ground state structure of B12C3 from among the contrasting models 

suggested by experiments and theoretical works has led to another impasse with the 

experimental results.  
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 In B11C
p
(CBC) structure the occupation of an icosahedral site by a carbon atom 

breaks the rhombohedral symmetry to base-centered monoclinic Cm (8). However a 

structure with monoclinic symmetry in B12C3 stoichiometry has never been detected in 

experimental measurements. On the one hand this has revived the proposals of other 

types of ground state structures preserving rhombohedral symmetry (Wang et al., 2014); 

on the other hand this has led to attempts to explain possible high temperature phase 

transitions of the structure from monoclinic symmetry to rhombohedral symmetry in 

terms of the random distribution of configurational disorder of the carbon atom within the 

icosahedra (Widom and Huhn, 2012; Ektarawong et al., 2014). The latter statistical 

models propose that a random occupation of all the six polar sites of the icosahedra in 

equal probability by a carbon atom can cause such phase transitions from monoclinic to 

rhombohedral symmetry. Some works (Fanchini et al., 2006) have proposed that at any 

given composition of Boron Carbide different structural entities with energies lying 

within a narrow band can coexist. This brings to focus the need to address the issue of the 

ground state structure of B12C3 stoichiometry in a conclusive way. It should be stressed 

that the structures proposed by early experimental works and their different variations 

constitute the initial structural models on which the majority of computational modeling 

works on B12C3 are based. Not many attempts have been made to study this system using 

structure searching techniques, instead of analyzing a few chosen structures. A recent 

effort using particle swarm optimization algorithm (Wang et al., 2014) has not yielded 

the B11C
p
(CBC) structure as a possible ground state structure. The present work proposes 

to address the problem of the ground state structure of B12C3 stoichiometry by an 

exhaustive structure search using evolutionary algorithm and by the subsequent study of 

the ground state properties using density functional theory. 

 

1.1.2. B13C2 Stoichiometry 

 B13C2 corresponds to 13.3 at.% C in Boron Carbide. In the homogeneity range of 

Boron Carbide 20 at.% C is generally considered to be the carbon-rich stoichiometry. 

Though the boron-rich limit of Boron Carbide is generally accepted to be ~8 at.% C 



 

 

6 

 

B13C2 is the most interesting boron-rich stoichiometry for the still unsolved problems 

related to its crystal structure and electronic structure. Unlike B12C3 there is no consensus 

so far on the ground state crystal structure of B13C2. Two major candidate structures have 

been proposed : B11C(CBB) and B12(CBC). It has been discussed in chapter 3 that the 

most accepted structure of B12C3 stoichiometry is B11C
p
(CBC). According to one group, 

when carbon concentration decreases from B12C3 carbon is substituted by boron in the 

chain, resulting in B11C(CBB) structure at 13.3 at.% C (Emin, 1988). When carbon 

concentration further decreases the substitution will be in the icosahedron, leading to 

B12(CBB) structure at 6.7 at.% C. This model explains the experimentally observed 

trends in structural and elastic properties, thermal and electrical transport properties, and 

IR and Raman spectra with the variation of carbon concentration (Wood et al., 1985; 

Tallant et al., 1989; Gieske et al., 1991; Stein et al., 1991; Aselage and Tissot, 1992;  

Aselage et al., 2000). The other group interprets the available XRD data to propose that 

with the decrease in carbon concentration from 20 to 13.3 at.% C the substitution of 

carbon by boron takes place in the icosahedron, resulting in B12(CBC) structure at 13.3 

at.% C (Kirfel et al., 1979; Yakel, 1986).  

 DFT calculations have consistently supported the latter model. It has been 

computationally shown that B12(CBC) structure is energetically more stable than the 

B11C(CBB) and it has better agreement with experimental lattice parameters (Bylander 

and Kleinman, 1991; Saal et al., 2007). However the DFT calculations have not been able 

to reproduce the semiconducting nature of B13C2. Boron carbide is observed to be a 

semiconductor over its entire homogeneity range (Werheit and de Groot, 1980; Wood 

and Emin, 1984; Samara et al., 1993; Schmechel and Werheit, 1997). At 20 at.% C the 

DFT calculations agree with this observation because the unit cell of B12C3 contains 48 

valence electrons, resulting in a filled valence band and empty conduction band. At 13.3 

at.% C the unit cell of B13C2 contains only 47 valence electrons, equivalent to one hole 

per unit cell. As a consequence the DFT calculations predict metallic behaviour for 

B13C2, contrary to experimental observation of semiconducting nature. Though the 

valence band overlaps with the Fermi level in DFT calculations, indicating metallic 
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nature, there appears an apparent band gap between the valence band edge and the 

conduction band in the calculated band structure. Some have interpreted this as indicating 

the semiconducting nature and proposed that B13C2 is a Mott-Hubbard insulator 

(Bylander and Kleinman, 1991). Others have treated B13C2 as a metal and proposed that it 

has superconducting properties (Calandra et al., 2004). This long standing impasse 

between the DFT calculations and the experimental observations on the semiconducting 

nature of B13C2 has cast its shadow of doubt over the structural models supported by the 

DFT calculations.  

 On the part of experimentalists, attempts have been made to explain the observed 

dc conductivity of B13C2 based on different structural models. The bipolaron hopping 

mechanism (Aselage et al., 2000) depends on B11C(CBB) structure. Structural disorder 

leading to mid gap states has been proposed as an explanation for transforming the 

metallic nature of B12(CBC) structure into semiconducting nature (Schmechel and 

Werheit, 1997, 1999). Thus the problem of crystal structure of B12C3 is invariably linked 

to the problem of its electronic structure.  

 In a few recent efforts to explain these two problems deviation from stoichiometry 

and the presence of super lattices in B13C2 have been proposed as the possible approaches 

to the solution. Shirai et al. (2014) has proposed a nonstoichiometric supercell of 

3[B11C(CBC)] + 4[B12(CBC)] + B12(B4), which corresponds to 14 at.% C, as a structural 

candidate. They propose that the presence of  B12(B4) units can reduce the hole density 

from 1 hole/unit cell to 0.25 hole/unit cell, signifying less metallic nature. However they 

have not obtained semiconducting nature in the electronic band structure. Ektarawong et 

al. (2015) has proposed a supercell of B12(CBC) + B11C
e
(BBC), formed by 

configurational disorder at higher temperatures. The splitting of valence states in 

B11C
e
(BBC) units can compensate for the electron deficiency in B12(CBC) units, leading 

to semiconducting nature. They have also obtained semiconducting electronic structure 

for this supercell. However they maintain that the ground state structure of B13C2 is the 

metallic B12(CBC) and the semiconducting super lattice emerges only at sufficiently 

higher temperatures due to substitutional disorder. As an explanation for the absence  of 
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experimental observation of the metallic structure of B12C3 even at low temperatures they 

have argued that the disordered semiconducting structure, though it can only be formed at 

higher temperatures, must have somehow been frozen into intermediate temperatures. 

The mechanism for this freezing has not been explained in their work. 

 The very fact that the experiments at different temperatures have recorded only 

the semiconducting nature of B13C2 suggests that B13C2 must be semiconducting even at 

0 K. If there are disordered structures causing semiconducting nature they must show up 

not at high temperatures alone, but they must be intrinsically present in the composition 

at 0 K. Balakrishnarajan et al. (2007) have shown that configurational disorders can be 

intrinsically present in the ground state structure of Boron Carbide and are not 

exclusively by higher temperature entropic effects. What is needed is a structural solution 

that explains both the ground state crystal structure and the electronic structure of B13C2.  

These twin problems are addressed in the present work by performing the evolutionary 

algorithm based structure search to investigate the possible crystal structures and by the 

DFT based computation of the electronic structure and other ground state properties of 

B13C2 stoichiometry.   

 

1.2. RUTHENIUM CARBIDES 

 Due to their high melting point, high hardness, good thermal conductivity and 

high resistance to wear and corrosion (Toth, 1971), transition metal carbides and nitrides 

have many industrial applications such as cutting and polishing tools, wear-resistant 

coatings etc. They are potential economically viable substitutes for diamond and cubic 

Boron Nitride in many applications. The wide ranging applications of these systems had 

led to various electronic structure studies to investigate their stability and structural 

properties (Guillermet and Grimvall, 1989; Haguland et al., 1991, 1993; Grossman et al., 

1999; Hugosson et al., 2001; Zheng, 2005; X. Guo et al., 2008). Ruthenium Carbide 

shares many of the general properties of transition metal carbides and hence it is a 

potential candidate for a range of industrial applications. 
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 Ruthenium Carbide has been synthesized in 1960 at ambient pressure and high 

temperature (Kempter and Nadler, 1960, Kempter, 1964). They have reported RuC 

stoichiometry in tungsten carbide (WC) type hexagonal structure with the space group 

      (187). No further experimental study has been available since then. Recently in 

2012, Ruthenium Carbide is synthesized in a high pressure–high temperature 

environment by laser–heated diamond anvil technique (Sanjay Kumar et al., 2012). They 

have reported synthesis of Ru2C stoichiometry in Fe2N type hexagonal structure with the 

space group       (164). As only a small amount of the sample is synthesized by this 

method, there are inherent difficulties in the estimation of the stoichiometry and structure 

and hence further confirmation of these results would be desirable.  

 The computational studies on Ruthenium Carbide have been concentrating mostly 

on RuC stoichiometry. Fan et al. (2006) have studied using DFT the rock salt structure of 

RuC and evaluated its elastic properties and electronic partial density of states. RuC in 

rock salt system is found to be mechanically stable and with the highest bulk modulus 

among the noble metal carbides (~347 GPa). In another DFT work E. Zhao et al. (2010), 

using the Perdew–Burke–Ernzerhof (PBE) generalized gradient approximation (GGA) to 

the exchange–correlation functional, have studied nine different structures of RuC 

including tungsten carbide structure, rock salt structure and zinc blende structure among 

others. Though they have obtained five distinct mechanically stable structures their 

dynamical stability has not been investigated in this work. Among these five structures 

zinc blende structure of RuC is energetically the most stable one. Abidri et al. (2010), 

using the local density approximation (LDA) to the exchange–correlation functional, 

have studied the mechanical stability of four structures of RuC, but they too have not 

attempted to check for dynamical stability. They have reported RuC–zinc blende system 

as energetically the most stable one with a hardness estimate of 36.94 GPa.  Z. Zhao et al. 

(2010), using GGA–PBE functional, have studied ten different structures of RuC, 

investigating mechanical stability through elastic constants and dynamical stability 

through phonon dispersions. Only the zinc blende structure of RuC has been found to be 

dynamically as well as mechanically stable among the ten structures considered. Though 
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tungsten carbide structure and rock salt structure are mechanically stable, they lack 

dynamical stability. From the electronic energy band calculation, RuC–zinc blende 

system has been found to be a semiconductor and it has been estimated to have a Vickers 

hardness of 42.8 GPa. H. R. Soni et al. (2011), using GGA–PBE functional, have studied 

the dynamical stability of zinc blende structure and rock salt structure of RuC and found 

only the former to be dynamically stable. They too have noted the semiconducting nature 

of the RuC–Zinc blende system. From the phonon data, using the harmonic 

approximation, they have estimated the variation of different thermodynamic functions of 

RuC–Zinc blende system over a range of temperatures. Guang et al. (2012) have 

conducted a structure search for RuC stoichiometry using particle swarm optimization 

algorithm and they have reported      structure as the lowest energy one. Using GGA–

PBE, they have found that the      structure has mechanical and dynamical stability and 

that it is metallic. Only a few computational studies have so far investigated 

stoichiometries other than RuC. A recent structure search using particle swarm 

optimization algorithm has yielded       and         as two possible stable 

structures in Ru2C stoichiometry in the pressure range 0-50 GPa (Lu et al., 2015). A 

study of the dynamical stability of       structure in Ru2C stoichiometry has been done 

in the pressure range 30-110 GPa (Sun et al., 2013). The present work aims to arrive at a 

conclusive result among the varying opinions regarding the structure of Ruthenium 

Carbides over its different stoichiometries by performing a structure search using 

evolutionary algorithm and by computing the ground state properties of the emerging 

structures using DFT. 

 The fact that many of their industrial applications are in extreme conditions has 

motivated a growing body of computational work in recent years on the variation of 

properties of transition metal carbides at high pressures (Fu et al., 2009; Yin et al., 2010; 

Zaoui  and Ferhat, 2011; Hao et al., 2011; P. Soni et al., 2011; Chauhan and Gupta, 2013; 

Varshney and Shriya, 2013; Mishra and Chaturvedi, 2013; Rathod et al., 2013; Li et al., 

2014; Kavitha et al., 2015). Hao et al. (2014) has reported in RuC stoichiometry the 

phase transition of the Zinc blende structure to tetrahedral structure at ~9.3 GPa, which, 
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in turns, transforms to WC type hexagonal structure at ~26 GPa. After studying the 

ground state properties of Ruthenium Carbide systems we will be investigating the 

variation of their stability and properties with pressure, with the aim of providing helpful 

indicators for their experimental manipulation to effect new technological applications. 

 

1.3. SCOPE AND OBJECTIVES 

 The problem of the ground state crystal structure has not been conclusively settled 

for Boron Carbide systems in B12C3 stoichiometry by means of an exhaustive structure 

search. For B13C2 stoichiometry the problem of crystal structure is intimately tied up with 

the unsolved problem of the discrepancy between theoretical models and experimental 

measurements of its electronic structure. The different reports of the structure of 

Ruthenium Carbides in its various stoichiometries have not resulted in a consensus on the 

specific systems to be pursued with the optimum utilization of experimental resources. 

The present work proposes to address these problems and aims to provide valuable 

indicators and benchmarks for the future theoretical and experimental works on these two 

systems. As crystal structure search has been performed only a few times in these two 

systems, a new structure search will have the potential for discovering quite interesting 

structural candidates. With this motivation the following specific objectives have been 

outlined for the present work : 

1) Exhaustive structure search using evolutionary algorithm and density functional 

theory will be performed in the Boron Carbide stoichiometries B12C3 and B13C2 

and in the Ruthenium Carbide stoichiometries RuC, Ru2C and Ru3C.  

2) Using density functional theory the ground state properties of the lowest energy 

structures yielded by the structure search will be investigated. The mechanical 

stability of the structures will be studied by the computation of elastic constants 

and their dynamical stability, that of phonons. For the stable systems electronic 

structure will be generated and thermodynamic properties within the harmonic 

approximation will be calculated from phonons. The computed properties will be 

compared with the experimental results wherever possible. 
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3) For the stable semiconducting systems infrared spectra will be generated from 

Born effective charges and phonon polarizations, as easily verifiable experimental 

signatures of these systems. 

4) Hardness of the stable systems will be estimated using different semi-empirical 

models. 

5) The variation of the stability and properties of Ruthenium Carbide systems with 

pressure would be investigated, as many of their industrial applications are in 

extreme conditions. 

 

1.4. ORGANIZATION OF THE THESIS 

 Chapter one provides the introduction to the background and current status in the 

study of Boron Carbides and Ruthenium Carbides through the analysis of the 

literature. The problems related to these systems to be addressed in the present 

work are specified clearly. 

 Chapter two presents in detail the computational methods being employed in this 

work. The evolutionary algorithm used for the structure search as well as the 

density functional theory used for the optimization of the structure and the 

calculation of the properties are discussed. 

 Chapter three consists of the results of the structure search and the computation of 

the ground state properties of Boron Carbide systems in B12C3 stoichiometry. 

 Chapter four contains the results of the structure search and the computation of 

the ground state properties of Boron Carbide systems in B13C2 stoichiometry. 

 Chapter five furnishes the results of the structure search and the computation of 

the ground state properties of Ruthenium Carbide systems in RuC, Ru2C and 

Ru3C stoichiometries. 

 Chapter six sets forth the study of the variation of the stability and properties of 

the Ruthenium Carbide systems with pressure. 

 Chapter seven lists out the conclusions of this work and specifies the scope for the 

future work in the two areas being investigated here. 
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Chapter 2 

 

 

  

COMPUTATIONAL DETAILS 

 

2.1. INTRODUCTION 

 This work employs crystal structure search to address the unsolved problems 

related to the crystal structure in the different stoichiometries of Boron Carbides and 

Ruthenium Carbides. Evolutionary algorithm based code Universal Structure Predictor: 

Evolutionary Xtallography (USPEX) is used for this. For the energy calculation and 

structure optimization during the structure search density functional theory (DFT) is 

employed. DFT is subsequently used to calculate the different properties of the lowest 

energy structures yielded by the structure search. DFT code Vienna Ab initio Simulation 

Package (VASP) is used as part of the structure search as well as for the computation of 

the properties. The hardness of the stable systems are estimated by three different semi-

empirical models.  

 

2.2. CRYSTAL STRUCTURE PREDICTION  

 As the crystal structure of a material determines all of its properties, identifying 

the correct structure has central role in the study of materials. Out of the infinitely large 

number of possible atomic configurations there can, in principle, be a finite number of 

distinct structures at each set of thermodynamic conditions. These correspond to the 

extremum value of a specific property like energy, hardness, transition temperature etc. 

The most general approaches to the prediction of such structures are based on 

computational optimization. In the case of the determination of the ground state, it 

involves calculation of the free energy of the system, and the unbiased exploration of its 

energy landscape for identifying the most stable atomic configuration corresponding to 
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the global minimum of energy. The number of distinct points on the landscape can be 

estimated (Oganov, 2010) in terms of the binomial coefficients as, :  

        
 
   

 
    

  
          (2.1) 

where N is the number of atoms in the unit cell of volume V, δ is a discretization 

parameter and ni is the number of atoms of i
th

 type in the unit cell. For even a small 

system (N ~ 10-20 atoms), C ~10
N
 for δ = 1 Å and V = 10 Å

3
. 

 The dimensionality of the energy landscape is: 

     d = 3N +3                                                           (2.2) 

where 3N-3 degrees of freedom correspond to the atomic positions, and the remaining 

six, to the lattice parameters. Then, Eq.(2.1) can be expressed as: 

     C ~ exp(αd)         (2.3) 

where α is a system-specific constant. It is clear that the number of possible structural 

combinations increases exponentially with the system size or landscape dimensionality. 

As the scaling of the number of combinations with the system size is faster than any 

polynomial, this is an NP-hard problem (non-deterministic polynomial-time hard). If 

intermediate structure relaxation is performed, this problem can be simplified. The 

relaxation process results in realistic correlations being evolved between atomic positions 

and the intrinsic dimensionality is reduced : 

     d
*
 = 3N + 3 − κ                                  (2.4) 

where κ is the (non-integer) number of correlated degrees of freedom. This reformulates 

Eq.(2.3): 

     C
*
 ~ exp(βd*)            (2.5) 

This analysis shows that any structure search method, when incorporated with structure 

relaxation or local optimization, becomes effective in the prediction of possible structural 

candidates. Evolutionary algorithm is one such structure search method which is robust 

enough for predicting structures of complex systems. In the present work, evolutionary 

algorithm is used for the crystal structure prediction of Boron Carbides and Ruthenium 

Carbides. The complexity of the structure of Boron Carbide has been the motivation for  
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choosing this method. 

 

2.2.1. Universal Structure Predictor: Evolutionary Xtallography (USPEX) 

  A recently developed evolutionary algorithm based code, Universal 

Structure Predictor: Evolutionary Xtallography (USPEX) (Glass et al., 2006; Oganov and 

Glass, 2006) is used in this work for the crystal structure search. Evolutionary algorithm 

emulates biological evolution in its basic mechanisms : reproduction, mutation, 

recombination and selection. The candidate structures are individuals in a population that 

undergo evolution under the cyclic application of these mechanisms. The survival of 

specific structures is determined by a fitness function. The following diagram (figure 2.1) 

represents the evolutionary algorithm (Lyakhov, 2011): 

 

 
Fig.2.1: Scheme of evolutionary algorithm 



 

 

16 

 

 In USPEX, the structures are represented by floating-point numbers, with the 

fractional coordinates for the atoms and the matrix of lattice vectors for the lattice. The 

first generation is populated by random structures. Each structure is relaxed and the 

negative of its enthalpy, which acts as the fitness parameter, is evaluated. A few lowest–

enthalpy structures are selected as parent structures. Three variation operators are 

employed in USPEX that mediate between the parent and offspring structures : 

(i) Heredity operator : It combines spatially coherent slabs of two parent structures in 

terms of fractional coordinates with the matrices of lattice translation vectors as weighted 

averages of the lattice vectors matrices of the two parent structures.  

(ii) Mutation operator : It changes the cell shape by random deformation. 

(iii) Permutation operator : It interchanges chemical identities of randomly selected atom 

pairs in the case of systems containing more than one chemical species.   

A new candidate structure is generated from the parent structures by applying one of the 

three variation operators. At least one structure in the new generation will be the lowest 

enthalpy structure of the parent generation, called the best individual (figure 2.1), without 

the variation operators acting on it. Through these steps it is ensured that the best 

structure obtained in any generation is better than or equal to the best structure obtained 

in the previous generations. 

 The search for the ground state of the energy landscape is a complex problem and 

proper constraints have to be introduced for directing the search towards physically 

meaningful candidate structures and for optimizing the computational resources. Three 

constraints are imposed on the generated candidate structures for this : 

(i) All interatomic distances must be above the specified sum of the covalent radii of the 

corresponding atom pair. 

(ii) All cell lengths must be larger than the specified diameter of the largest atom. 

(iii) The angle between any two lattice vectors must be in the 60
0
–120

0
 range.  

As these constraints remove only the redundant regions of configuration space, the search 

for new structures remains unconstrained. If any of these constraints is violated, the 

candidate structure is discarded; otherwise, it is relaxed. The locally optimal structure is 
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recorded and used for producing structures for the next generation. This procedure 

continues until all the specified generations are exhausted or a particular structure turns 

up repeatedly as the fittest one over a given number of generations.  

 USPEX also provides the option of doing a more guided structure search using 

seed structures. If the user is certain that the structure search can be focused on a specific 

region of the energy landscape where the probability of finding the candidate structures is 

large. The coordinates of the user-specified structures can be provided for the code to 

refer to during the implementation stage. This feature of USPEX is utilized in this work 

during the second phase of the structure search in Boron Carbide stoichiometries.  

 In USPEX external DFT codes or molecular dynamics (MD) codes are used for 

the local optimization and energy calculation. In the present work Vienna Ab initio 

Simulation Package (VASP) which implements electronic density functional theory, is 

used for this link with USPEX. Four advancing stages of energy calculations and 

relaxations are done with increasing plane-wave energy cutoff and finer k-grid resolution 

of 0.14, 0.10, 0.08 and 0.06. The significance of these parameters will be discussed in 

section 2.3.4 of this chapter. USPEX automatically generates k-grid for the structures and 

the inputs for the calculation of the fitness parameter. For the fittest structures obtained 

from USPEX the atomic coordinates are slightly varied using PHONOPY code (Togo et 

al., 2008) within a tolerance of 5% to identify the highest symmetry structure in the 

structural vicinity of the original one, the procedure yielding the corresponding Bravais 

cells. Further relaxation and properties calculation are done using these Bravais cells.  

 

2.3. DENSITY FUNCTIONAL THEORY 

2.3.1. Many-body Problem 

 To calculate the properties of a many-body system like a solid, in terms of its 

quantum mechanical description in the non-relativistic approximation, the many-body 

Schrödinger equation should be solved. The corresponding wave function will involve 

the electron coordinates as well as the nuclear coordinates. In the case of solids the 

nuclear motion is sluggish compared to the electron motion by virtue of the  large 
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disparity of their masses.  This motivates the idealization in which electrons follow the 

instantaneous position of the ions. Thus in this approximation, called the Born-

Oppenheimer approximation, the nuclei are treated as immobile compared to the 

electrons. Then, the kinetic energy of the nuclei can be neglected and the Coulomb 

repulsion between them can be treated as constant depending only on the ionic 

configuration. This allows the many-body Schrödinger equation to be formulated in terms 

of only the coordinates of electrons. In Hartree atomic units, for a system containing N 

electrons, the 3N-dimensional many-electron Schrödinger equation is : 

      
  
 

            
 

 
 

 

       
                          (2.5) 

where Vn(r) is the Coulomb potential of the nuclei as experienced by the electrons : 

             
  

      
                    (2.6) 

 Because of the presence of the coupled coordinates in the third term, representing 

Coulomb interaction between the electrons, Eq.(2.5) cannot be exactly solved even for a 

two-particle system and it cannot be numerically solved accurately when the total number 

of electrons is ~20 or more. The question is whether we can have an approximate 

description of the many-body problem based on wavefunction approach. Different 

approximation techniques were developed subsequently.  

 The first and simplest approximation in this perspective is the Hartree 

approximation. This is motivated by the fact that the effective Coulomb interaction 

experienced by any electron due to the consolidated effect of all the other electrons is 

very small compared to the Coulomb interaction between any pair of electrons, especially 

when the number of electrons is large.  It is then plausible that each electron moves 

independent of the others, and the residual interaction with all the other electrons can be 

incorporated in terms of a mean potential. In this independent particle approximation,  

each particle resides in a different orbital, so that we can write the wavefunction in a 

product form:      . In this mean-field approximation, the electrons are assumed to 

move in a mean electrostatic potential created by the whole system of electrons. With the 

help of this electrostatic potential called the Hartree potential energy VH(r), the 
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interaction term can be reinstated in an average manner while maintaining the single-

particle description. In the mean-field approximation the set of N three-dimensional 

single-particle equations corresponding to Eq.(2.5) are : 

     
  

 
                                 (2.7) 

    where           
     

      
         (2.8) 

     and                
     

        (2.9) 

      satisfies the Poisson's equation : 

                                 (2.10) 

Eqns.(2.7), (2.9) and (2.10) need to be solved together by iterative method called the self-

consistent field method and the set of single-particle equations (2.7) are called Hartree 

equations (Hartree, 1928). 

 However, the Hartree approximation is not an acceptable wavefunction for 

Fermions since it lacks the anti-symmetry property of Fermions. In the Hartree-Fock 

approximation, the consequences of the Pauli exclusion principle are incorporated by 

ensuring the antisymmetric nature of the many-electron wavefunction by expressing it as 

a Slater determinant of the single-particle wavefunctions. This gives rise to a nonlocal 

Fock exchange interaction potential           in Eq.(2.7) : 

    
  

 
                                               (2.11) 

 where                      stands for         
  
           

                           (2.12) 

The set of single-particle equations (2.11) are called Hartree-Fock equations (Fock, 

1930). 

 In the configuration interaction method the quantum correlation effect between 

the electrons, arising from their Coulomb interaction, is incorporated. This is done by 

expressing the many-electron wavefunction as a linear combination of a finite number of 

Slater determinant wavefunctions, called configuration state functions, each one resulting 

from a different way of occupying the vacant single particle states by the electrons. It 

gives rise to, in Eq.(2.11), a nonlocal correlation interaction term           in addition to 



 

 

20 

 

the exchange interaction           that arises due to correlation between the electrons 

demanded by Pauli principle. These two nonlocal potentials are clubbed together into a 

nonlocal exchange-correlation potential           . The corresponding set of single-

particle equations can be expressed as : 

     
  

 
                                         (2.13) 

 Some of the other wavefunction based post Hartree-Fock methods are Møller–

Plesset perturbation method, Coupled Cluster method etc. Even when the insurmountable 

problem of solving the many-electron Schrodinger equation (2.5) is now greatly 

simplified, the computational complexity of solving single-particle equations of the type 

(2.13) still remains large. Solving the Slater determinant of the single-particle 

wavefunctions demands huge computational cost. If N represents the number of 

electrons, which is a measure of the system size, the computational cost scales as N
4
 for 

Hartree-Fock method, N
6 

for configuration interaction method, N
4
 or N

5
 for second order 

Møller–Plesset perturbation method, N
6
 for Coupled Cluster method and so on. What is 

required is an approach that retains the single-particle description, incorporates the 

exchange and correlation effects and strikes a balance between the computational cost 

and accuracy of the calculation. 

 

2.3.2. Hohenberg-Kohn Theorems 

 In Density Functional Theory the many-body problem is reformulated in terms of 

the ground state electron density, instead of the wavefunction. The simplification of this 

approach is that the total wavefunction Ψ(r1,....rn) depends on 3N spatial coordinates 

whereas the electron density n(r) depends only on three spatial coordinates. Going back 

to the many-electron equation (2.5), the total energy of the system is : 

  E =                    
                        (2.14) 

where the Hamiltonian       
  
 

            
 

 
 

 

       
       (2.15) 

The sum of the kinetic energy and the exchange-correlation resulting from the electron-

electron interaction term is universal. Hence the Hamiltonian    depends on the system 

https://en.wikipedia.org/wiki/M%C3%B8ller%E2%80%93Plesset_perturbation_theory
https://en.wikipedia.org/wiki/M%C3%B8ller%E2%80%93Plesset_perturbation_theory
https://en.wikipedia.org/wiki/M%C3%B8ller%E2%80%93Plesset_perturbation_theory
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via the so called external potential Vn(r) which depends upon the ionic coordinates. This 

means that Vn(r) uniquely determines the ground state wavefunction Ψ and, through it, 

the ground state electron density n(r). Conversely, it can be proved that every n(r) 

corresponds to a unique Vn(r) up to a constant, if the ground state is nondegenerate. If 

this is so, the Hamiltonian, and hence the ground state wavefunction and ground state 

energy, can be determined from the ground state electron density n(r). 

 The first Hohenberg-Kohn theorem (Hohenberg and Kohn, 1964) states that if E 

is the ground state energy of the system, which is the lowest possible energy, the external 

potential Vn(r) , and hence E is a functional of the electron density n(r) only.  

                     (2.16) 

Since n(r) uniquely determines Vn(r) and hence the Hamiltonian, all the properties of the 

ground state and the excited states can be determined, in principle, in terms of n(r). This 

theorem greatly simplifies the problem of finding the ground state energy : While the 

energy of any general state depends on 3N spatial coordinates through the total 

wavefunction Ψ(r1,....rn), the ground sate energy depends only on three spatial 

coordinates through the electron density n(r).  

 Dependence of of the kinetic energy and exchange-correlation energy functionals 

on n(r) is also unknown. The exact functional form of E[n(r)] of a general many-electron 

system is unknown.    Hence various approximation methods are evolved to estimate it. 

Though the first Hohenberg-Kohn theorem states the existence of this functional, it does 

not give a prescription to determine it. This is provided by the second Hohenberg-Kohn 

theorem (Hohenberg and Kohn, 1964). It  states that the ground state electron density (n0)

 is exactly the function that minimizes the total energy E :  

           
  

 
  

                    (2.17) 

 In the Kohn-Sham method, under the independent electron approximation, the 

problem of N interacting electrons is mapped into one of N noninteracting electrons 

moving in an effective potential. If we go back to Eq.(2.13), the presence of the coupled 

coordinates in the nonlocal potential term            make it difficult for the set of 

equations to be solved. In the Kohn-Sham method the nonlocal exchange-correlation 
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potential is replaced by a local potential Vxc(r) depending on only one space coordinate 

and yet supposed to make the same effect. The noninteracting electrons are supposed to 

occupy certain pseudo orbitals called Kohn-Sham orbitals       . The ground state 

electron density is               
  where the summation is over the occupied KS 

orbitals. 

The total energy can be expressed using (2.14) and (2.15) as : 

           
    

  

 
                     

 

 
        

          

      
           (2.18) 

where Exc[n(r)] is called the exchange-correlation energy. Minimizing the energy using 

Eq.(2.17) leads from Eq.(2.18) to a set of single-particle equations : 

   
  

 
                                              (2.19a) 

The set of equations (2.19a) are called Kohn-Sham equations (Kohn and Sham, 1965). 

These are the fundamental equations of density functional theory. The exchange-

correlation potential is given by,                
  

 
  

. The ground state energy is,   

             
 

 
             

   
         .              (2.19b) 

 As in the case of Hartree equations, the Kohn-Sham equations (2.19a) need to be 

solved self-consistently. For this Vxc(r) should be calculated from Exc[n(r)]. The two 

main approximation methods to estimate Exc[n(r)] are local density approximation (LDA) 

and generalized gradient approximation (GGA). In LDA, the exchange-correlation 

energy of a real system due to the electron density n(r) is approximated to that of a 

homogeneous electron gas having the same electron density, provided n(r) is varying 

sufficiently slowly for the real system (Ceperley and Alder, 1980; Perdew and Zunger, 

1981). In the case of the homogeneous electron gas the exact functional form of the 

exchange energy in terms of the electron density is known and standard parametrization 

schemes are available for its correlation energy (Ceperley and Alder, 1980; Perdew and 

Zunger, 1981). In GGA, in addition to n(r), Exc[n(r)] depends on grad(n(r)) also. 

          
                              (2.20) 

          
                                    (2.21) 



 

 

23 

 

where         represents the exchange-correlation energy per unit volume. 

 

2.3.3. Self-consistent Cycle 

 To summarize, the set of equations to be solved together in density functional 

theory are : 

Kohn-Sham equations  :   
  

  
                            (2.22) 

Kohn-Sham effective potential :                                   (2.23) 

             
  

      
       (2.24) 

                                 (2.25) 

            
          

     
      (2.26)  

                     
 

       (2.27) 

The self-consistent calculations involve the following steps : 

(i) Assume an initial value for the electron density n(r)  

(ii) Substitute n(r) in the Poisson's equation (2.25) and solve it to get the Hartree energy 

VH(r). Using LDA or GGA scheme, evaluate the exchange-correlation energy from n(r), 

and then use Eq.(2.26) to get the exchange-correlation potential Vxc(r). 

(iii) Substitute Vn(r), VH(r) and Vxc(r) in the single-particle Kohn-Sham equation (2.22) 

and solve it to get      . 

(iv) Substitute       in (2.27) to get the new value of n(r) 

(v) The new value of n(r) is mixed with the old value to get a modified n(r) and the cycle 

is repeated until the difference between the new and old values of n(r) reaches the 

specified accuracy. 

  

2.3.4. Pseudopotentials and Computational Parameters 

 In the present work, DFT as implemented in Vienna Ab initio Simulation Package 

(VASP) (Kresse, and Hafner, 1993; Kresse, and Furthmüller, 1996) is used. To solve the 



 

 

24 

 

Kohn-Sham equations, the Kohn-Sham wavefunctions       are expanded in terms of a 

basis set which transforms problem of solving the differential equation (2.22) into an 

eigenvalue problem. For a periodic solid, the Kohn- Sham orbital is expanded in terms of 

plane waves. As the ground state electron density n(r) is expressed in terms of the Kohn- 

Sham orbitals (Eq.2.27), n(r) is expanded in terms of plane wave basis and the number of 

basis functions can be increased by using higher values of the plane wave energy cut off, 

ENCUT. Charge density and other quantities are evaluated by integrating over the 

Brillouin Zone (BZ) and the integrals are approximated by sums over a suitable discrete 

k–grid. 

 As the core electrons of the atoms are hardly affected when the atoms are brought 

together to form a solid, it can be assumed that only the valence electrons take part in 

atomic interactions. This provides the motivation for dividing the electrons in an atom 

into core electrons and valence electrons, in terms of their contribution in atomic 

interactions, and removing the nucleus and core electrons together from the calculations. 

This is called frozen core approximation. The remaining valence electron wavefunctions 

are replaced by a pseudo wavefunction, designed to reproduce the effects of the actual 

wavefunctions (Heine, 1970). Reduction in the number of electrons to be incorporated for 

the calculation saves computational cost. Employing a smoothly varying pseudo 

wavefunction helps to avoid the problem of the rapid oscillations of the valence electron 

wavefunctions as they approach the core region of highly localized electrons. 

Pseudopotential is the potential generated from the pseudo wavefunctions and the valence 

electron density. In this approach the number of plane waves needed for the expansion of 

a pseudo wavefunction is significantly reduced, resulting in faster computations. In the 

present work Projector augmented wave (PAW) pseudopotentials (Blochl, 1994; Kresse 

and Joubert, 1999)  as supplied with VASP are used, with 4p, 4d and 5s as the valence 

states for Ruthenium, and 2s and 2p for both boron and carbon. Solution of Kohn-Sham 

equations result in the pseudo energies Ԑi for the i
th

 Kohn-Sham orbital. The total energy 

of the system is obtained by Eq.(2.19b). Usually the KS equations are solved in the 

reciprocal space and hence total energy is to be determined by integrating the energy 
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eigenvalues in the first Brillouin zone. The integration is usually replaced by discrete 

sum. Thus it is important have an efficient way of discretizing the Brillouin zone. We 

have used Monkhorst-Pack k-meshes (Monkhorst and Pack, 1976) for our calculations 

except for hexagonal systems for which Gamma centered k-meshes are used.  

 For Boron Carbides local density approximation (LDA) scheme is used for the 

exchange–correlation functional while for Ruthenium Carbides Perdew–Burke–Ernzerhof 

(PBE) (Perdew et al., 1996, 1997) generalized gradient approximation (GGA) is used. 

The states are smeared using Methfessel–Paxton scheme (Methfessel and Paxton, 1989) 

with a smearing parameter of 0.1 eV. The convergence of plane wave energy cutoff and 

that of k–points are achieved to a precision of 0.1 meV/atom. Both the lattice parameters 

and the atomic coordinates of all the structures are relaxed until energies converge to a 

precision of less than 10
-10

 eV/atom and Hellmann–Feynman forces to less than 10
-5

 

eV/A
0
.   

 

2.3.5. Elastic Properties and Mechanical Stability 

 Elastic properties provide the measure of the resistance of a system to elastic 

deformation and hence the validation of its structural stability. The more the resistance to 

elastic deformation, the more would be the magnitude of the elastic constant. To study 

the mechanical stability of Boron Carbides and Ruthenium Carbides emerging from the 

structure search, the elastic stiffness constants Cij at the equilibrium lattice parameters are 

calculated. Stress and strain tensors are related by the elastic stiffness constants (Page and 

Saxe, 2001, 2002). In generalized form, the elastic stiffness constants        and stress 

tensor     can be defined as 

            
 

  

   

        
         (2.28) 

   and             
 

  

  

    
         (2.29) 

where V0 is the volume of the unstrained crystal,     are elements of the strain tensor and 

E is the energy of a deformed crystal. Using these expressions, the energy can be 

expanded s a Taylor series (Wallace, 1972)
 
: 
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                      (2.30) 

 

where E (V0, 0) is the corresponding ground state energy. In Voigt notation scheme (Nye, 

1985) the subscripts (ij,kl) of strain tensors are expressed as : 11 → 1, 22 → 2, 33 → 3, 

23 → 4, 13 → 5 and 12 → 6. Then Eq.(2.30) becomes : 

 

                                        
 
    

  

 
           
 
                         (2.31) 

 

In (3),      
 

 for α = 1, 2 and 3 and     for α = 4, 5 and 6. As the elastic constants 

tensor is symmetric, there are at most 21 independent elements for the 6 x 6 matrix    , 

for the triclinic crystal. As the symmetry of the crystal increases, some of the matrix 

elements would be connected by symmetry relations and the number of independent 

matrix elements would be further reduced. Thus, monoclinic system has 13 independent 

elements, rhombohedral has 6 elements, hexagonal has 5 and cubic has only 3. By 

applying small specific elastic strains   (α = 1–6) to the equilibrium unit cell, a set of 

elastic constants     can be obtained from the corresponding change in energy. VASP 

uses a finite difference scheme for generating the force constants matrix – Hessian matrix 

– employed in the computation of elastic constants. An illustration of the calculation of 

elastic constants of a cubic crystal is described here. From Eq.(2.31), the change in 

energy per unit volume due to small deformations from the equilibrium configuration is, 

    
 

 
                         

 

 
 
 

         
         
         

    

         
         
         

         
         
         

    

         
         
          

 
 
 

 

 
 
 

   
   
   
   
   
    

 
 
 

        (2.31a) 

For cubic geometry, there are only 3 independent elastic constants C11, C12 and C44. C11 = 

C22 = C33, C12 = C13 = C23, C44 = C55 = C66 and Cαβ = 0 for all other α and β. Also, 

incorporating the symmetric nature of the elastic constants tensor, Eq.(2.31a) becomes, 
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          (2.31b) 

If a small longitudinal elastic strain       is applied, the equation can be reduced to 

     
 

 
             

 

 
 
 

 

   
   
   

  

   
   
   

    

   
   
   

     

 

 

 

       

 

 

 

      

 

 

 

 

       

 

 

 

        

 

 

 

       

 

 

 

     
   
 

 

  

   

   
   

   

 

 

   

   
 

 
 
 

 

  
 

 

 
 
 
 
  

  
 

        (2.31c) 

     
 

 
             

 

 
 
 

    
    
    
 
 
  

 
 
 
 

 

 
    

                (2.31d) 

Plotting the values of ∆E against the applied strain  , the graph will be parabolic near the 

equilibrium point of    . The curvature of the curve near the equilibrium gives the 

value of C11. More precisely, the strain energy can be fitted to a polynomial in  , and 

twice the coefficient of    gives C11. Other elastic constants can be determined in similar 

way. 

 Calculation of elastic constants of a crystal pre-strained by subjecting it to large 

applied stresses     is more involved.  The usual linear strain in Eq.(2.30) is, 

          
 

 
  

   

   
 

   

   
        (2.32)  

where        is the displacement of the material point at     in the i
th

 direction. This has to 

be replaced by the Lagrangian strain, 

          
 

 
  

   

   
 

   

   
  

   

   

 
   

   

   
      (2.33) 

When a uniform pressure P is applied to the crystal (         ), the energy of the 

strained crystal will have additional terms and the total energy can be expressed in the 

form of Eq.(2.30) in terms of modified elastic constants         in place of        (Wallace, 
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1972; Sin'ko and Smirnov, 2002). The relationships between the modified elastic 

constants and the conventional ones are (in Voigt notation) : 

                         for α =1,6                (2.34) 

              ,              ,                             (2.35) 

                               for all other values of α and β              (2.36) 

These modified elastic constants are used in the case of the analysis of the pressure-

induced variation of the elastic constants of Ruthenium Carbides (section 6.2.2). 

 For mechanical stability the elastic energy should always be positive. This is 

equivalent to the Born stability criterion (Born and Huang, 1956; Wallace, 1972; Nye, 

1985; Mouhat and Coudert, 2014) that all the eigenvalues of the matrix C of elastic 

stiffness constants should be positive. For symmetric systems, the condition of positive 

elastic energy can be expressed in terms of closed form relationships between different 

elastic constants. For the relevant crystal classes of Ruthenium Carbides these 

relationships are given below : 

Cubic :                   

                                                              (2.37) 

Rhombohedral I : 

                                             
                    

        (2.38)  

Hexagonal :      

                                                        
                   (2.39) 

The monoclinic and triclinic systems of Boron Carbides have, respectively, 13 and 21 

independent elastic constants and such simple closed form expressions are not possible 

for them. For such less symmetric systems the easier formulation of the stability criterion 

is by verifying that all the eigenvalues of the matrix of elastic constants are positive.      

 From the independent elastic constants of a system, bulk modulus (B) and shear 

modulus (G) are calculated. Two approximation methods are used for the calculation of 

the polycrystalline elastic moduli — the Voigt method (Voigt, 1928) and the Reuss 

(Reuss, 1929) method. Using the standard formulae for the relevant crystal classes (Watt, 

1980; Watt and Peselnick, 1980; Dieter, 1988; Mehl et al., 1994; Golesorkhtabar et al., 
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2013), bulk and shear moduli are calculated in Voigt and Reuss approximations. The 

required formulae are :  

 

Cubic [Independent elastic constants : C11, C12, C44] : 

                                                              (2.40)           

                                                               (2.41)      

       
             

               
                                                    (2.42) 

 

Hexagonal [Independent elastic constants : C11, C12, C13, C33, C44] : 

                                         (2.43) 

                                                (2.44)                                                   

                                             (2.45)                                                                                                        

       
                  

  

                   
                                              (2.46)                                                                      

       
 

 
                   

         

                            
           

                (2.47)      

          

Trigonal/ Rhombohedral [Independent elastic constants : C11, C12, C13, C14, C33, C44] : 

  ,    and    are the same as those of Hexagonal symmetry. 

       
 

 
                   

             
   

              
                     

           
       (2.48)                                                                    

where     is given by Eq.(2.43) and    , by Eq.(2.45). 

 

Monoclinic [Independent elastic constants : C11, C22, C33, C44, C55, C66, C12, C13, C23, C15, 

C25, C35 and C46] : 

    Bv = [C11+C22+C33+2(C12+C13+C23)]/9    (2.49) 

  Gv = [C11+C22+C33+3(C44+C55+C66) – (C12+C13+C23)]/15    (2.50) 

  BR = Ω / [a(C11+C22–2C12)+b(2C12–2C11–C23)+c(C15–2C25)+ 

   d(2C12+2C23–C13–2C22)+2e(C25–C15)+f]     (2.51) 

 GR = 15{4[a(C11+C22+C12)+b(C11–C12–C23)+c(C15+C25)+d(C22–C12–C13–C23) 



 

 

30 

 

  +e(C15–C25)+f]/Ω +3[g/Ω +(C44+C66)/(C44C66–C46
2
)]}

-1
    (2.52) 

where     a = C33C55–C35
2
          (2.53) 

    b = C23C55–C25C35          (2.54) 

      c = C13C35–C15C33          (2.55) 

    d = C13C55–C15C35          (2.56) 

    e = C13C25–C15C23          (2.57) 

    f = C11(C22C55–C25
2
)–C12(C12C55–C15C25)+C15(C12C25–C15C22) 

         +C25(C23C35–C25C33)         (2.58) 

   g = C11C22C33–C11C23
2
–C22C13

2
–C33C12

2
+2C12C13C23      (2.59) 

and  Ω = 2[C15C25(C33C12–C13C23)+C15C35(C22C13–C12C23)+C25C35(C11C23–C12C13)] 

  – [C15
2
(C22C33–C23

2
)+C25

2
(C11C33–C13

2
)+C35

2
(C11C22–C12

2
)]+C55g    (2.60) 

 

Triclinic [all 21 elastic constants are independent] : 

BV and GV are the same as those of Monoclinic symmetry.  

  BR = [(S11+S22+S33) + 2(S12+S13+S23)]
-1 

     (2.61) 

  GR = 15[4(S11+S22+S33) – (S12+S13+S23) + 3(S44+S55+S66)]
-1

    (2.62) 

 

 Voigt approximation corresponds to the upper bound and Reuss approximation 

corresponds to the lower bound of the elastic modulus. Hill approximation (Hill, 1952) 

gives the average of the two : 

                                                                                           (2.63) 

From B and G values, Young's modulus Y and Poisson's ratio ν are calculated (Hill, 

1952) : 

                                                                                     (2.64)                                                  

                                                            ν                                          (2.65)                        

 

2.3.6. Density Functional Perturbation Theory 

 In density functional perturbation theory (DFPT), perturbation theory is applied to 

calculate various response functions of condensed matter system from first-principles. A 



 

 

31 

 

response function of a system is studied by subjecting the system to an appropriate small 

perturbation and measuring the consequent change in system. Suppose the system is 

perturbed by applying an external force. Then the external potential Vn(r) gets modified 

to Vn(r,λ), where λ is a parameter that describes the strength of the perturbation. Then 

the energy of the perturbed system can be expanded as a power series in lambda, the 

strength of perturbation.     

          
  

  
 

 

 
  

   

   
          (2.66) 

According to Hellmann-Feynman theorem, the first order derivative 
  

  
 does not depend 

on any derivative of electron density n(r). 

    
  

  
      

     

  
           (2.67) 

This leads to the remarkable result that to calculate the second order change in energy, it 

is sufficient to know the first order change in the electron density due to the perturbation. 

   
   

   
  

     

  

     

  
        

      

   
           (2.68) 

Continuing the analysis of the various orders of change in the energy it can be shown that 

it is sufficient to know nth order change in the electron density to calculate (2n+1)st order 

change in energy. This is known as the (2n+1) theorem which is extremely useful for 

calculating nonlinear response of materials.  

 Interatomic force constants are calculated using DFPT. By diagonalizing the 

dynamical matrix obtained from the interatomic force constant the phonon frequencies 

can be determined. Dynamical stability of the systems is determined by calculating the 

phonons for which force constants are generated on supercells using density functional 

perturbation theory (Baroni et al., 1987, 2001). The phonon dispersion curves for the 

relevant systems are calculated by using PHONOPY code (Togo et al., 2008), which is 

an interface for setting up phonon calculations and then using the generated data to 

calculate thermodynamic properties. Only linear response is studied in the present thesis., 

which can be calculated by knowing the electron density, and its first derivative with 

respect to the perturbation. In density functional perturbation theory, Kohn-Sham 

equations are supplemented with equation for the first derivative of the electron density 
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with respect to the perturbation. These equations are simultaneously solved in a self-

consistent manner. 

 

2.3.7. Thermodynamic Properties 

 From the phonon data, through the harmonic approximation, thermal properties 

due to phonons, such as internal energy, constant–volume heat capacity, Helmholtz free 

energy and entropy, are evaluated over a range of temperatures from the standard 

equations of statistical mechanics using the PHONOPY code.  

Partition Function, 

                
             

                                                                 (2.69) 

Helmholtz Free Energy,  

               
 

 
                                              (2.70)  

Entropy, 

       
  

  
 
 
  

 

  
                                                (2.71)    

Internal energy,  

           

  
     

 

 
      

   

                                                           (2.72) 

Heat Capacity, 

               
  

  
 
 
     

   

  
 
            

                                                                         (2.73) 

where k is Boltzmann constant,   is Planck's constant divided by 2π, T is the temperature 

and  i is the i
th 

phonon frequency. The term   represents the non-vibrational 

contributions to the Helmholtz free energy. It can be electronic contribution, if the system 

is metal; magnetic contribution, if the system is magnetic, and so on. It consists of two 

parts :   =     T  where   is internal energy and S is the entropy due to all the 

nonvibrational excitations. U is negative for a bound system and, at T = 0K, U is the 

cohesive energy of the system. As its both parts are negative,   is negative and larger in 

magnitude than the total zero–point energy 
 

 
     , and together they form the binding 

energy of the crystal lattice. 
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2.3.8. Infrared Spectrum 

 Born effective charge (BEC) describes the effect of the long range Coulomb part 

of the force constants. For this reason it is of fundamental importance in the discussion of 

lattice dynamics. For insulators and semiconductors, the Born effective charge    
     of 

the atom l can be defined in one of the following ways (Baroni et al., 2001) :  

(i) The change in induced macroscopic polarization    along the direction α caused by 

the periodic displacement       of the atom l along the direction β under the condition of 

zero macroscopic electric field : 

        
          

      
 
   

      (2.74) 

where V is the volume of the unit cell.  

(ii) The change in induced force on the atom l along the direction β caused by the electric 

field    along the direction α under the condition of no atomic displacement : 

        
            

   
 
      

       (2.75) 

(iii) The second partial derivative of the total energy with respect to the applied electric 

field along the direction α and to the displacement of the atom l along the direction β 

during a vibrational distortion : 

        
      

   

          
        (2.76) 

The intensity of the infrared (IR) active modes are calculated in terms of the BECs and the 

phonon polarization vectors (Baroni et al., 2001) : 

                     
         

 
     

  
                    (2.77) 

where       is the normalized eigenvector of the dynamical matrix with frequency  , α and β are 

Cartesian directions, l represent atoms of the system and    
     is the BEC tensor of the l-th 

atom. 

 

 

 



 

 

34 

 

2.3.9. Hardness 

 In order to estimate the hardness of the stable systems of Boron Carbides and 

Ruthenium Carbides three different semi-empirical models of hardness are used : (1) the 

model based on bond strength by Šimůnek and Vackář (2006) and Šimůnek (2007, 2009), 

(2) the model based on elastic constants by Chen et al. (2011) and Tian et al. (2012) and 

(3) the model based on Debye temperature by Abrahams and Hsu (1975) and Deus and 

Schneider (1983). 

 

2.3.9.1. Model Based on Bond Strength 

  According to the hardness model based on the strength of different bonds in the 

system, proposed by Šimůnek and Vackář (2006) and Šimůnek (2007, 2009), the 

hardness H of the multi-bond ideal single crystal, neglecting the anisotropy effect, has the 

form (Šimůnek, 2009): 

                 
 

 
                                                            (2.78) 

where b(ij) is the number of bonds between atoms i and j in the unit cell of volume Ω and 

s(ij) is their bond strength given by, 

                                         
        

       
                                                        (2.79) 

                         and               
     

     
 
 

                                                           (2.80) 

Here ni and nj are coordination numbers, respectively, of atoms i and j and dij is their 

interatomic distance. ei = Zi/Ri is the reference potential of atom i where Zi is its valence 

electron number and Ri, its atomic radius. In the semi–empirical model (Šimůnek, 2009), 

the parameters chosen to fit known data are C = 1450 and σ = 2.8. Substituting the atomic 

radii and distances in Å, the above formula gives the hardness in GPa. 

 

2.3.9.2. Model Based on Elastic Constants 

 Using the Pugh's ratio (k = G/B) and the shear modulus (G), Chen et al. (2011) 

have derived a semi-empirical formula of hardness, 
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                           (2.81)  

However, as this formula sometimes yields negative values of hardness, Tian et al. 

(2012) have modified it with new fitting parameters: 

                                                                                                         (2.82) 

Substituting G in GPa yields the hardness in GPa from this formula. The relative 

effectiveness of these two models for different systems is studied extensively (table 2 in 

Chen et al. (2011) and table 1 in Tian et al. (2012)). In general, the two models give the 

same order of hardness for different systems. 

 

2.3.9.3. Model based on Debye temperature 

 The Madelung–Einstein formula for Debye temperature has been modified by 

incorporating hardness by Abrahams and Hsu (1975) and further improved for fitting 

with the data by Deus and Schneider (1983) into the form : 

                                                                                                            (2.83) 

where ΘD is Debye temperature in K, H is Vickers hardness in GPa, ρ is the density of 

the system in kg/m
3
, M is the molar mass of the system in g and a and b are the fitting 

parameters. The parameter b should be of the order of ΘD. The fitting parameters a = 

2500 and b = 200 are used in the case of Ruthenium Carbides. The Debye temperature 

can be calculated from the average sound velocity vm (Anderson, 1963), which, in turn, is 

obtained from the elastic constant data.  

                                                
 

  
 
   

    
 
   

                                                        (2.84) 

where h is Planck's constant, kB is Boltzmann constant,    is the unit cell volume and    

is the number of atoms in the unit cell. The average wave velocity vm in the 

polycrystalline material is given by Anderson (1963), 

                                                 
 

 
 
 

  
  

 

  
   

    

                                                    (2.85) 

where νt and νl are the mean transverse and longitudinal elastic wave velocities in the 

material, respectively. They can be deduced from the Navier's equations in terms of the 
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Voigt-Reuss-Hill-averaged values of polycrystalline bulk and shear moduli as follows 

(Anderson, 1963; Schreiber et al., 1973) :  

                                                                                                                         (2.86) 

                                                                                                               (2.87) 
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Chapter 3 

 

 

 

GROUND STATE STRUCTURE AND PROPERTIES OF B12C3 

 

3.1. INTRODUCTION 

 The ground state structure of Boron Carbide in B12C3 stoichiometry has been an 

active problem because of the absence of experimental detection of monoclinic symmetry 

as predicted by calculations based on density functional theory. This has called into 

question the structural models deduced from different experiments and theoretical 

calculations. The difficulty in determining the structure of Boron Carbide from X-ray or 

neutron diffraction experiments because of the nearly identical form factors of boron and 

carbon has further complicated the prospects. The present work tries to address the 

problem of the ground state structure of Boron Carbide in B12C3 stoichiometry. In this 

work an exhaustive structure search has been performed in B12C3 stoichiometry using 

evolutionary algorithm and density functional theory. We have successfully obtained 

B11C
p
(CBC) as the ground state structure of this stoichiometry. To our knowledge, this is 

the first independent confirmation of this structure using a structure searching technique, 

with no preconceived notions about the possible outcomes. In addition, the structure 

search has yielded a hierarchy of possible structures at different higher energies, one of 

them not previously reported in the literature. We have also investigated the possibility of 

the existence of structures with larger unit cells in B12C3 stoichiometry by performing a 

second series of guided structure search using supercells of the basic B12C3 unit cell. This 

has yielded an interesting 30-atom supercell in B12C3 which has not been reported before. 

We have subsequently studied using density functional theory the mechanical and 

dynamical stability of the structures obtained from the structure search, their electronic 

structure, hardness and thermodynamic properties. We have also computationally 

generated their IR spectra and contrasted them against the experimental measurements. It 
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is hoped that this exhaustive analysis will provide independent corroboration of the 

results of many of the previous experimental and theoretical works and also put forward 

some new possible structural models for the ground state of B12C3, in an effort to extend 

the prior studies.   

 

3.2. RESULTS AND DISCUSSION 

3.2.1. Structures 

 The various input variables in USPEX have been studied in detail with reference 

to simple systems of known structures like Cu, NaCl etc. and then with systems of more 

complex structures like the perovskites BaTiO3 and SrTiO3. Having achieved the optimal 

tuning of the variables to accurately reproduce these known structures, we have 

attempted the structure search of B12C3 stoichiometry using USPEX input cell consisting 

of 12 boron atoms and 3 carbon atoms. A list of input variables used in USPEX is given 

in Appendix I. DFT as implemented in VASP is used in combination with USPEX for the 

structure relaxation and energy calculation required in the structure search. The local 

density approximation (LDA) to the exchange–correlation functional is used here. In each 

trial the number of generations is fixed as 25. In USPEX the default choice for the 

population per generation is twice the number of atoms per input cell, rounded off to 

nearest multiple of 10. We have chosen the corresponding USPEX variable 

populationSize as 30 and the also the variable initialPopSize, representing the number of 

individuals in the first generation, as 30. A total number of 12 such trials are done by 

changing the input variables slightly in each successive trial. The lowest energy structure 

obtained is B11C
p
(CBC), shown in figure 3.1, independently confirming a significant 

body of experimental measurements and theoretical modeling. The next higher energy 

structure emerging from the structure search is B11C
e
(CBC) (figure 3.2), which has been 

reported in the literature, where one carbon atom occupies an equatorial site in the 

icosahedral cage. We have obtained a previously unreported structure, named 14-atom-

cage (figure 3.3), having the next higher energy. Instead of the icosahedron and 3-atom 
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chain, this structure consists of a cage of 14 atoms and one interstitial carbon atom 

connecting four such cages. The cages are also directly bonded together.  

 
     Fig.3.1: B11C

p
(CBC) structure. Panel (a) gives the view  

     of the cage and the chain. Panel (b) gives the projection  

     on a plane perpendicular to the chain-axis  

 

       
  Fig 3.2: B11C

e
(CBC) structure.      Fig.3.3: 14-atom-cage structure. 

 

The next two higher energy structures are B10C
pe

2(CBB) (figure3.4), where one carbon 

occupies the polar site and another carbon occupies the equatorial site in the icosahedron, 

and B11C
e
(BCC) (figure3.5), where the chain center is occupied by a carbon instead of 

boron.  

 All these five lowest energy structures yielded by the structure search have base-

centered monoclinic symmetry Cm. The 30-atom Bravais cells of these five structures are 

further relaxed using a plane wave energy cutoff of 900 eV which is 2.82 times the 

default value as per the POTCAR file of boron and 2.25 times the default value for 



 

 

40 

 

       
 Fig.3.4: B10C

pe
2(CBB) structure.     Fig.3.5: B11C

e
(BCC) structure. 

 

carbon. A finer k-grid of 3x5x5 is used for relaxing the Bravais cells of the structures 

with chain and 3x4x5 for the Bravais cell of the 14-atom-cage structure. The energy 

values and lattice parameters of the primitive cells are presented in table 3.1 with the 

results from other works quoted in square brackets. In VASP the total energy is computed 

with respect to the energies of the constituent atoms and hence the total energy reported 

here is the negative of the cohesive energy. The total energy is negative for these five 

systems, implying energetically stable nature. To determine the thermodynamical 

stability of these Boron Carbide systems their formation energy values are calculated 

with reference to Alpha-boron and Graphite, which are the ground states of elemental 

boron and carbon, respectively. Convergence of k-grid is done for both Alpha-boron and 

Graphite using plane wave energy cutoff of 900 eV and the structures are fully relaxed. 

For Alpha-boron, using a k-grid of 6x6x6, a total energy/atom of -7.4723 eV is obtained. 

For Graphite, using a k-grid of 19x19x7, a total energy/atom of -10.1263 eV is obtained. 

The formation energy Ef  is calculated as : 

Ef  = Total energy of B12C3 – 12 × Total energy per atom of Alpha-Boron 

                                     – 3 × Total energy per atom of Graphite            (3.1)      

 The energy values and lattice parameters obtained in this work for B11C
p
(CBC) 

and B11C
e
(CBC) systems have good agreement with the ones reported in previous 

computational and experimental works. The difference in total energy between these two 

systems is 0.5352 eV/f.u.=35.7 meV/atom, which is exactly the value previously reported 

in the literature (Vast, 2009). These two systems have negative formation energy, 



 

 

41 

 

   Table 3.1: Structural data of Boron Carbide systems. Lengths are in Å and angles are in    

   degrees.  
 B11C

p
(CBC) B11C

e 

(CBC) 

14-atom-

cage 

B10C
pe

2 

(CBB) 

B11C
e 

(BCC) 

Total 

energy/f.u.(eV) 

-121.7026 

[-108.885
i
] 

-121.1674 -119.6473 -119.3652 -119.2185 

Formation 

energy/atom 

(meV) 

-110.41 

[-111.73
ii
, -121.33

iii
,  

-109.00
iv
, -117.40

v
,  

-119.00
vi
] 

-74.73 

[-84.00
iii

,  

-74.00
iv
] 

26.61 

 

45.42 55.20 

a 4.9905  

[5.01
vii

, 5.10
viii

, 5.155
ix

] 

5.1040 

[5.13
viii

] 

4.9765 4.9389 5.0399 

b = c 5.1476 [5.143
vii

] 5.1448 5.1655 5.1672 5.1542 

α 65.13  

[65.57
vii

, 65.8
viii

, 65.68
ix

] 

64.72 

[64.9
viii

] 

78.89 64.91 65.04 

β = γ 66.12 [66.39
vii

] 64.91 62.56 66.84 66.94 
i
Bylander et al., 1990(LDA)  

ii
Saal et al., 2007(GGA)  

iii
Vast et al., 2009(LDA; Ef with respect to alpha-

boron and diamond) 
iv

Widom and Mihalkovi  , 2009(GGA; Ef with respect to alpha-boron and diamond) 
v
Widom and Huhn, 2012(GGA; Ef with respect to beta-boron and graphite) 

vi
Smith et al.,1955(Expt.) 

vii
Ivashchenko et al., 2009(LDA)  

viii
Lazzari et al., 1999(LDA) 

ix
Morosin et al.,1995(Neutron Diffraction) 

 

which implies that they can be synthesized if sufficient energy can be supplied to 

overcome the reaction barrier. For the other three systems also the synthesis can be 

achieved at sufficiently high temperature. Thermal energy kT corresponding to formation 

energy per atom gives an estimate of the order of the temperature of synthesis. For the 

14-atom-cage system Ef/atom is 26.61 meV, which corresponds to the temperature of 

319K. Once the synthesis of this system is achieved by providing sufficient energy to 

cross the reaction barrier, it can be maintained in thermodynamical stability at 

approximately room temperature. For B10C
pe

(CBB) and B11C
e
(BCC), the temperatures 

corresponding to Ef/atom are, respectively, 545 K and 662 K. Once their synthesis is 

achieved by overcoming the reaction barrier, they can be thermodynamically stable 

around these temperatures. Formation energies of the five systems presented in table 3.1 

lie within a band of 166 meV/atom, so they can be formed together in any optimal high 

temperature synthesis of B12C3. There has been a recent proposal (Huhn and Widom, 

2013) of a new phase diagram of Boron Carbide where B12C3 exists in monoclinic 

structure up to 600K. The results of our work support this finding. It has been established 

here that structures with monoclinic symmetry can be thermodynamically stable up to 

660 K. The values of the lattice parameters clearly show the distortion from 
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rhombohedral symmetry to base-centered monoclinic symmetry due to the occupation of 

icosahedral sites by one or two carbon atoms.  

 The atomic positions of these systems are given in table A II.1 in Appendix II. 

The atoms occupying specific sites are indicated against each Wyckoff position. For the 

systems with chain in table A II.1 the last three positions represent the chain sites with 

the middle one corresponding to the chain center. In Cm symmetry the Wyckoff positions 

of the lattice are modified to four 2b sites of the icosahedra and seven 1a sites. Four of 

the seven 1a sites belong to the icosahedra and the remaining three belong to the 3-atom 

chain (table A II.1). In the 14-atom-cage system, there are five 2b sites and four 1a sites 

in the cage, the carbon atom attached to the cage occupies 1a site (table A II.1).  

 Modifying the scheme given in Lazzari et al.(1999) and Ivashchenko et al. 

(2009), the 41 different bonds in each of the structures with chain can be classified into 

six types of generally increasing bond lengths : intrachain bond (b
(1)

), chain-icosahedron 

bond (b
(2)

), intericosahedron bond (b
(3)

), equatorial hexagon bond (b
(4)

), polar-equatorial 

bond (b
(5)

) and polar triangle bond (b
(6)

). The last three together constitute 30 

intraicosahedral bonds. Among the 45 bonds in the 14-atom-cage structure 36 are 

intracage bonds. Ten atoms in the 14-atom-cage are directly bonded to atoms in the 

neighbouring cages, forming 5 intercage bonds (b
(3)

 type). The remaining four atoms in 

the cage are bonded to other cages through the carbon atom attached to the cage (b
(2)

 

type). In the case of the five Boron Carbide systems under study the average bond lengths 

of these six types of bonds are presented in table 3.2. Bonds between different atomic 

species are considered separately. Values from other works, treating the bonds of 

different atomic species together, are quoted in square brackets. The bond lengths 

obtained in this work for B11C
p
(CBC) and B11C

e
(CBC) systems are in excellent 

agreement with the previously reported values from computational and experimental 

works. This lends validity to the computational data on the other systems considered in 

this work. There is, in general, a significant reduction in bond lengths when atoms 

forming the bond occupy the 1a site in the icosahedra. This implies that charge density 
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concentration may be higher in the icosahedral a-sites resulting in the formation of 

stronger bonds. 

Table 3.2: Average bond lengths in Å for the Boron Carbide systems 

  b
(1)

 b
(2)

 b
(3)

 b
(4)

 b
(5)

 b
(6)

 

B11C
p
 

(CBC) 

B-C 1.4239 

[1.42
i, ii

, 

1.438
iii

, 

1.434
iv
] 

1.5896 

[1.58
i
,1.59

ii
, 

1.669
iii

, 

1.675
iv
] 

1.6392 

[1.66
i
,1.71

ii
, 

1.699
iii

,1.716
iv
] 

 1.7328 

[1.72
i
] 

1.7398 

[1.74
i
] 

B-B   1.7228 1.7366 

[1.73
i, ii

, 

1.687
iii

, 

1.693
iv
] 

1.7800 

[1.77
i, ii

, 

1.76
iii, iv

] 

1.8007 

[1.80
i
, 

1.78
ii
, 

1.81
iii, iv

] 

B11C
e
 

(CBC) 

C-C  1.5385     

B-C 1.4361 

[1.43
ii
] 

1.5966 

[1.59
ii
] 

 1.6942 1.7457  

B-B   1.7122 

[1.69
ii
] 

1.7362 

[1.72
ii
] 

1.7804 

[1.78
ii
] 

1.7769 

[1.78
ii
] 

14-atom 

cage 

B-C  1.5565 1.6159 1.7142 (1.6176 - 1.8349) 

B-B   1.6957 1.8171 (1.6779 - 2.1598) 

B10C
pe

2 

(CBB) 

B-C 1.4373 1.5869 1.6248 1.6764 1.7251 1.7242 

B-B 1.5092 1.6756 1.7348 1.7409 1.7851 1.8025 

B11C
e 

(BCC) 

C-C 1.3548      

B-C 1.3922 1.6245  1.6777 1.7147  

B-B  1.7350 1.7037 1.7443 1.7686 1.7981 
i
Ivashchenko et al., 2009(LDA)    

ii
Lazzari et al.,1999(LDA)  

iii
Morosin et al.,1995(Neutron Diffraction) 

iv
Morosin et al.,1987(X-ray Diffraction) 

 

 As boron has the tendency to form structures with larger unit cells (Hoard and 

Hughes, 1967; Shirai, 2010),  We have also considered the possibility of the existence of 

structures with larger unit cells in B12C3 stoichiometry by performing a guided structure 

search. Here we have used USPEX input cells of 24 boron atoms and 6 carbon atoms. We 

have also used seed structures to confine the structure search within certain regions of the 

energy landscape where there is an increased probability of finding the potential 

structures with larger unit cells. The seed structures used are the different combinations 

of the 15-atom unit cells of B12C3 stoichiometry. We have used some of the structures 

with chains obtained in our structure search and also their variants with substitutional 

disorder. The number of generations is fixed as 50 and both populationSize and 

initialPopSize are chosen as 60. Increasing the number of generations is quite important 

in an evolutionary algorithm based structure search, as new candidate structures may 
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emerge after fairly large number of generations. It also ensures that the repeated 

appearance of the same offspring structure over many generations is due to the 

occurrence of the ground state and not due to the search getting stuck in a plateau in the 

energy landscape. The lowest energy structure obtained is composed of (B11C
p
) and 

(B10C
pe

2) icosahedra and (CBC) and (CBB) chains (figure3.6). Its symmetry is triclinic 

(space group: P1) and each atom of the unit cell occupies a Wyckoff 1a site. The 

structure is further relaxed using the plane wave energy cutoff of 900 eV and a finer k-

grid of 6x6x4. The structural data are given in table 3.3 and the atomic positions in table 

A II.2 in Appendix II. The bond lengths are comparable to those of the individual units. 

The labeling used for this 30-atom unit cell is such that each distinct structural unit is 

given in separate brackets.  

 
Fig.3.6: (B11C

p
)(B10C

pe
2)(CBC)(CBB) structure 

Table 3.3: Structural data of (B11C
p
)(B10C

pe
2)(CBC)(CBB). Lengths are in Å and angles 

are in degrees. 
a b c α β γ Total 

energy/f.u. (eV) 

Formation 

energy/atom (meV) 

 

4.9929 

 

5.5600 

 

7.6581 

 

90.25 

 

96.43 

 

90.62 

 

-120.3716 

 

-21.67 
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The remarkable feature about this structure is that its formation energy is negative and 

within 89 meV/atom of that of the ground state structure B11C
p
(CBC). This implies that 

within the normal synthesis condition of Boron Carbide, this 30-atom structure is likely 

to be formed along with the two lower energy structures B11C
p
(CBC) and B11C

e
(CBC). 

The possibility of structures with the configuration of supercells acting as disorders in the 

homogeneous composition of B12C3 stoichiometry has been discussed in the literature 

(Vast et al., 2009; Ektarawong et al., 2014). Our structure search using 30-atom 

supercells confirm that supercells of this type have a potential presence in B12C3 

stoichiometry. The structure search has yielded a structure of larger unit cell which 

cannot be reduced to representation in terms of smaller unit cells. 

 

3.2.2. Elastic constants 

 The elastic constants are crucial for the determination of the mechanical 

properties of materials, providing important information on their stability, stiffness and 

brittle/ductile character. In order to analyze the mechanical stability of the six Boron 

Carbide systems we have computed their elastic stiffness constants Cij at the equilibrium 

lattice parameters. From the independent elastic constants of a system, bulk modulus (B) 

and shear modulus (G) are calculated using the standard formulae for monoclinic lattice, 

as given by Eqns.(2.49)–(2.60) (Watt,1980; Dieter,1988)
 
and triclinic lattice, as given by 

Eqns.(2.49)–(2.50) and (2.60)–(2.61) (Golesorkhtabar et al., 2013) in Voigt (Voigt, 1928) 

and Reuss (Reuss, 1929) approximation schemes. Voigt approximation corresponds to 

the upper bound and Reuss approximation corresponds to the lower bound of the elastic 

modulus. Hill approximation (Hill, 1952) gives the average of the two.  From B and G 

values, Young's modulus Y and Poisson's ratio ν are calculated using Eqns.(2.64)–(2.65). 

The elastic constants and the average values of B, G, Y (in GPa) and ν are tabulated in 

table 3.4 with the experimental data from other works given in square brackets.  

 The calculated values of elastic moduli are in excellent agreement with the 

experimental data. The remarkable correspondence between the elastic moduli of the 30-

atom supercell with the experimental data is to be emphasized. There are 13 independent  
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Table 3.4: Elastic Properties of Boron Carbides 

 B11C
p
 

(CBC) 

B11C
e
 

(CBC) 

14-atom 

cage 

B10C
pe

2 

(CBB) 

B11C
e
 

(BCC) 

(B11C
p
)(B10C

pe
2) 

(CBC)(CBB) 

C11 481.455 482.011 531.368 515.685 487.898 563.244   

C12 158.166 152.150 163.682 154.915 162.087 52.609   

C13 154.638 166.801 116.878 154.193 190.419 157.555 C14 26.699 

C15 17.408 18.448 4.836 17.295 -5.424 -0.6710 C16 1.549 

C22 565.310 550.471 550.973 520.249 447.154 495.891   

C23 55.645 65.271 98.971 45.598 38.555 158.698 C24 10.612 

C25 26.769 18.832 -0.605 34.685 36.110 -2.555 C26 7.793 

C33 512.124 497.142 468.310 485.980 418.462 451.380 C34 18.726 

C35 9.498 12.489 -3.684 19.079 16.306 6.134 C36 17.995 

C44 170.526 165.548 254.663 178.517 172.019 241.487 C45 3.995 

C46 26.988 28.555 -9.109 32.996 31.277 1.865   

C55 246.506 244.990 268.264 244.193 225.636 218.324 C56 28.736 

C66 224.715 231.027 233.107 221.410 198.501 155.532   

B 254.036 254.344 255.114 244.917 230.703 248.487 [247
i
, 235

ii
, 

199
iii

] 

G 203.015 199.684 226.779 202.254 176.477 198.339 [200
i
, 197

ii
, 

188
iv
] 

Y 480.932 474.799 524.826 475.791 421.863 469.975 [472
i
, 462

ii
, 

448
v
] 

ν 0.1845 0.1899 0.1571 0.1762 0.1952 0.1848 [0.18
i
, 0.17

ii
, 

0.21
v
] 

B/G 1.2513 1.2737 1.1249 1.2109 1.3073 1.253  

 i
Gieske et al.,1991     

ii
Manghnani et al., 2000   

iii
Nelmes et al., 1995  

 
iv
Schwetz and Grellner, 1981 

v
Murthy, 1985 

 

elastic constants for monoclinic geometry and 21 for triclinic geometry. For mechanical 

stability the elastic energy should always be positive. This is equivalent to the Born 

stability criterion (Mouhat and Coudert, 2014)
 
that all the eigenvalues of the matrix C of 

elastic stiffness constants should be positive. For the six systems presented here this 

stability condition has been verified and all of them are found to be mechanically stable. 

The high value of Bulk modulus (~ 250 GPa) indicates high hardness for these systems. 

The calculated values of B/G ratio for the given systems (table 3.4) are smaller than 1.75, 

the critical value to separate brittleness and ductility, according to Pugh's criterion (Pugh, 

1954). This indicates that these systems are all brittle.  
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3.2.3. Phonons 

 A system is dynamically stable only if all the phonon modes of the system have 

real frequencies for all the wave vectors. Phonon dispersions can be used to compute 

many dynamical properties of materials. Quantities like free energy, entropy, internal 

energy, specific heat and electron–phonon interaction can be calculated from phonon data 

within harmonic approximation. Using the self consistent density functional perturbation 

theory (DFPT) the phonon modes of Boron Carbide systems are calculated with 1x2x2 

supercells (120 atoms) of the Bravais cells. PHONOPY code is used for the post-

processing. The ACONVASP online utility (Setyawan and Curtarolo, 2010) is used for 

selecting the high symmetry points in the Brillouin zone for each system. The phonon 

dispersion curves and density of states (DOS) of these systems are presented in figures 

3.7–3.12. The DOS values are normalized to formula units. The absence of imaginary 

frequencies at all wave vectors confirms that these systems are dynamically stable. The 

higher the maximum frequency of acoustic phonon modes higher is the stability of the 

material against elastic deformation. The maximum frequency of acoustic phonon modes 

of these six systems are above 30 THz, indicating high stability against elastic 

deformation. 

 

              
       Fig.3.7: Phonon dispersions & density          Fig.3.8: Phonon dispersions & density  

                    of states of B11C
p
(CBC)                      of states of B11C

e
(CBC) 
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Fig.3.9: Phonon dispersions & density              Fig.3.10: Phonon dispersions & density 

                of states of 14-atom-cage                                 of states of B10C
pe

2(CBB) 

         
Fig.3.11: Phonon dispersions & density               Fig.3.12: Phonon dispersions & density 

                of states of B11C
e
(BCC)      of states of (B11C

p
)(B10C

pe
2)(CBC)(CBB) 

 

3.2.4. Electronic Structure 

 The electronic energy bands along the high symmetry directions of the Brillouin 

zone and the partial density of states are presented in figures 3.13–3.18 for Boron Carbide 

systems. The Fermi level is set to 0 eV. All the six Boron Carbide systems studied here 

are found to be semiconductors with indirect band gaps. The calculated energy band gap 

values of Boron Carbide systems are presented in table 3.5. 
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         Fig.3.13: Electronic bands & partial                Fig.3.14: Electronic bands & partial   

        density of states of B11C
p
(CBC)                      density of states of B11C

e
(CBC) 

 

          
     Fig.3.15: Electronic bands & partial         Fig.3.16: Electronic bands & partial  

         density of states of 14-atom-cage               density of states of B10C
pe

2(CBB) 

 

        
      Fig3.17: Electronic bands & partial    Fig.3.18: Electronic bands & partial density         

          density of states of B11C
e
(BCC)         of states of (B11C

p
)(B10C

pe
2)(CBC)(CBB) 
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Table 3.5: Energy band gaps (in eV) of Boron Carbides 
B11C

p
(CBC) B11C

e
 

(CBC) 

14-atom 

cage 

B10C
pe

2 

(CBB) 

B11C
e
 

(BCC) 

(B11C
p
)(B10C

pe
2) 

(CBC)(CBB) 

2.885 

[2.781
i
, 2.95

ii
, 

3.00
iii

, 2.09
iv
] 

2.547 1.283 2.220 1.248 2.186 

 
i
Bylander  et al., 1990(LDA) 

ii
Ivashchenko et al., 2009 (LDA)   

 iii
Ektarawong et al., 2014(GGA) 

iv
Werheit, 2006(Expt.) 

 

The electronic bands and dos are calculated using the primitive cell of 15 atoms except 

for the larger system whose primitive cell contains 30 atoms. All the experimental and 

computational works confirm that Boron Carbide in B12C3 stoichiometry is a 

semiconductor. The band gap obtained here for B11C
p
(CBC) is in fair agreement with the 

results from other computational works. The band gap values could be larger than these, 

as DFT based calculations generally underestimate the energy band gap. It is to be noted 

that the correspondence with the experimental estimate of 2.09 eV is the best for the 

system with 30-atom unit cell. There is a significant reduction in the band gap when the 

structure does not contain the (CBC) chain (Ivashchenko et al., 2009). In the case of 14-

atom-cage system and B11C
e
(BCC) the band gap is reduced to less than half of the lowest 

energy system, B11C
p
(CBC). The possibility of tuning the band gap by controlling the 

structural unit may have significance in electrical, electronic and optical applications of 

Boron Carbides. The band gaps deduced by different experimental measurements vary 

over a range of values. If the composition of B12C3 stoichiometry consists of different 

structural entities or polytypes, a correspondence between computational and 

experimental values can be attempted by considering the relative contribution of different 

polytypes. In this context it is significant that two of the systems under investigation in 

this work have relatively lower values of band gap. The predominant contribution to the 

partial density of states is from the 2p orbital of boron. 

 

3.2.5. Infrared Spectra 

 As form factors of boron and carbon atoms are nearly identical, it is rather 

difficult to get unique signatures of the Boron Carbide systems from X-ray diffraction 

pattern. Infrared spectra, on the other hand, provide a convenient signature for 
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experimental verification. We have computationally generated the infrared spectra of the 

six Boron Carbide systems considered here. For insulators and semiconductors the 

intensity of the infrared (IR) active modes are calculated in terms of the Born effective 

charges and the phonon polarization vectors using Eq.(2.77) (Baroni et al., 2001). The 

computed IR spectra of Boron Carbide systems are presented in figures 3.19–3.24. A 

measurement of IR spectra (Kuhlmann et al., 1992), quoted in many of the previous 

works (Lazzari et al., 1999; Vast et al., 2009; Shirai, 2010), is given against each for 

comparison. A broadening of 10 cm
-1

 is applied to the computed peaks. The background 

is not accounted for in these individual computed spectra. 

 

        

          Fig.3.19: IR spectra of B11C
p
(CBC)  Fig.3.20: IR spectra of B11C

e
(CBC) 

            

         

       Fig.3.21: IR spectra of 14-atom-cage              Fig.3.22: IR spectra of B10C
pe

2(CBB) 
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        Fig.3.23: IR spectra of B11C

e
(BCC)   Fig.3.24: IR spectra of  

              (B11C
p
)(B10C

pe
2)(CBC)(CBB) 

 

Except for the 14-atom-cage and B11C
e
(BCC) systems IR spectra of the Boron Carbide 

systems exhibit most of the features of the experimental spectrum. The frequencies of IR 

active modes of the four systems exhibiting good correlation to the seven major peaks in 

the experimental spectrum are tabulated in table 3.6.  

                                                                                    

     Table. 3.6: Frequencies (in cm
-1

) of the major peaks  

             in the IR spectra of Boron Carbides 
Experimental 

peaks 

B11C
p
 

(CBC) 

B11C
e
 

(CBC) 

B10C
pe

2 

(CBB) 

(B11C
p
)(B10C

pe
2) 

(CBC)(CBB) 

1590 1616.93 1585.03 1539.72 1613.63 

1110 1128.89 1122.50 1130.05 1109.93 

964 970.84 979.36 949.79 958.28 

890 889.32 898.84 884.68 882.66 

860 846.20 865.40 851.20 846.96 

730 729.29 704.77 733.64 727.57 

430 393.04 355.47 392.06 396.87 

% weighting 

factor in the 

fitted 

spectrum 

11.09 46.55 27.37 15.00 

 

In the case of more than one computed peak in the vicinity the one with more 

resemblance to the experimental peak in terms of both frequency and intensity is 
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specified. Using the computed spectra of these four systems we have done a curve fitting 

by minimizing the mean square errors with the experimental spectrum and assuming a 

linear background. The result of the curve fitting is given in figure 3.25. The relative 

weighting factors of the four systems in the fitted spectrum are given in table 3.6. The 

lowest weighting factor of 11.09% in the case of B11C
p
(CBC) is a surprising result as this 

is generally considered to be the predominant structure in the composition of B12C3.  

 

Fig.3.25: The fitted IR spectrum of Boron Carbides 

We have also done a fitting using the spectra of B11C
p
(CBC), B11C

e
(CBC) and the 

supercell (B11C
p
)(B10C

pe
2)(CBC)(CBB) and then the relative weighting factor is only 

1.25% for B11C
p
(CBC) while it is 53.22% for B11C

e
(CBC) and 45.53% for the 30-atom 

unit cell. B11C
p
(CBC) forms part of the 30-atom unit cell (B11C

p
)(B10C

pe
2)(CBC)(CBB). 

This raises the possibility that the presence of B11C
p
(CBC) in the composition of B12C3 

could mostly be as part of structures with larger unit cells rather than as independent 15-

atom structural units. In the pioneering work of Lazzari et al. (1999) the comparison 

between computational and experimental IR spectra has shown maximum 

correspondence in the case of B11C
p
(CBC). They have considered only three different 

structures in that work and two of them are included in the present work. If we compare 
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the spectra of B11C
p
(CBC) and B11C

e
(CBC) against experimental spectrum it is clear that 

the spectrum of the former shows more correspondence with the experimental spectrum 

(figure 3.19, table 3.6). However, if we consider the possibility that the composition of 

B12C3 may consist of different structural entities whose energies are accessible within the 

normal synthesis conditions of Boron Carbide, the experimental IR spectrum could be 

due to the relative contribution from all these entities. The approach of considering the 

cumulative spectrum of potential structural entities may be more realistic when 

comparing with the experimental spectrum. 

 

3.2.6. Hardness 

 The semi-empirical model based on the bond strength, proposed by Šimůnek and 

Vackář (2006) and Šimůnek (2007, 2009), is considered here to calculate the hardness of 

Boron Carbide systems. According to this model, the hardness H of the multi-bond ideal 

single crystal can be evaluated using Eqns.(2.78)–(2.80). For boron Z1 = 3 and R1 = 0.98 

Å (Kittel, 1996), so e1=3.0612; for carbon Z2 = 4 and R2 = 0.92 Å (Kittel, 1996), so e2 = 

4.3478. 

 The bond strength depends on both the number of atoms to which a given atom is 

bonded and the bond length (Eq.3.2). In Boron Carbides the coordination number 

depends on the specific atomic site occupied by boron or carbon. For an atom occupying 

polar or equatorial site the coordination number is 6, for an atom at the chain-end it is 4 

and for one at the chain-center it is 2. Bond length varies for the six types of bonds as 

listed in table 3.2 and it further varies among B-B, B-C and C-C bonds. Thus, the bond 

strength in Boron Carbides changes with the atomic site, the type of the bond and the pair 

of bonding atoms. To classify the bonds based on these three factors we use the following 

labeling scheme: subscript 1 is for boron and 2 is for carbon; superscript in brackets 

represents the type of the bond as classified in table 3.2. In this labeling b11
(1)

 represents 

intrachain B-B bond, b12
(3)

 represents intericosahedron B-C bond, and so on. Each bond 

of the type bij
(α)

 has a distinct bond strength and hence its contribution should be 

considered separately while determining the hardness. All the 41 bonds in each of the 

four systems with chain are classified according to this scheme and their calculated bond 
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strengths are listed in table A III.1 in Appendix III. In order to avoid counting the bonds 

twice, we have grouped bonds of the type 3-6 while accounting the bonds formed by 

boron or carbon atom occupying a polar or equatorial site. Among them only B-B bonds 

are grouped in the account of B atoms occupying polar and equatorial sites and only B-C 

bonds in the account of C atoms occupying these sites. Bonds of the type 1 and 2 are 

grouped while accounting the bonds formed by boron or carbon atom occupying the 

chain-end site. There is no need to separately count the bonds formed by the chain-center 

atoms as these bonds are accounted for while considering the bonds formed by the chain-

end atoms. The average bond lengths for each type of the bonds 1-6 are taken from table 

3.2 except in the case of the chain-icosahedron B-C bonds formed by the chain-end atoms 

in B10C
pe

2(CBB) and B11C
e
(BCC). For these the contributions of boron atom and carbon 

atom at the chain-end are computed separately, instead of taking the average B-C bond 

lengths, and the bond lengths are specified in table A III.1 against the corresponding bond 

types. Among the 45 bonds in 14-atom-cage the 36 intracage bonds take up the place of 

bonds of type 4-6 in the other four structures. In table A III.1 they are given against type 

4 bonds for convenience. The 5 intercage bonds are given against type 3 bonds. A single 

carbon atom takes up the place of the chain and the 4 carbon-cage bonds are given 

against type 2 bonds. In this structure each of the twelve cage atoms are bonded to six 

atoms and each of the other two cage atoms are bonded seven atoms. Since 12 out of 14 

cage atoms have the same number of neighbours the coordination number of each cage 

atom is taken as 6. The coordination number of the external carbon atom is 4, like that of 

the chain-end atom in the other four structures. The values of hardness (Hb) calculated 

using these parameters are also given in table 3.7. (B11C
p
)(B10C

pe
2)(CBC)(CBB) is not 

considered for this analysis. It can be reasonably argued that its hardness value can be of 

the order of that of the two 15-atom systems constituting it. The experimental reports of 

the Vickers hardness (HV) and Knoop hardness (HK) values of Boron Carbides vary over 

a wide range. Some relatively recent experimental data are given in table 3.7. There is 

excellent agreement between the hardness values calculated using the model based on 



 

 

56 

 

bond strength and the experimental values. The four structures with chain have hardness 

values close to the superhard regime (> 40 GPa).  

 

     Table 3.7: Hardness values (in GPa) of Boron Carbides from models  

      based on bond strength (Hb) and Pugh's ratio (HP) 
 Hb HP Experimental Values 

B11C
p
(CBC) 37.74 30.68  

 

HV = 32±2
i
  

HK = 33.8–36.7
ii
  

HV = 31.31±0.79–38.86±2.13
iii

 

HV = 40.5
iv
 

B11C
e
(CBC) 37.84 29.71 

14-atom cage 33.07 31.76 

B10C
pe

2(CBB) 37.10 26.43 

B11C
e
(BCC) 38.00 37.45 

(B11C
p
)(B10C

pe
2) 

(CBC)(CBB) 

 30.13 

     i
Hayun et al., 2009   

ii
Werheit et al., 2004   

iii
Grasso et al., 2011  

iv
Domnich et al., 2002 

 

 Some of the semi-empirical models of hardness attempt to correlate hardness with 

different combinations of elastic properties. Using the Chen-Tian modified formula 

(Eq.2.82) and the values of elastic moduli from table 3.4, the hardness of the Boron 

Carbide systems are estimated and the values (HP) are given in table 3.7. The hardness 

values from the two models are of the same order. For (B11C
p
)(B10C

pe
2)(CBC)(CBB) the 

model based on Pugh's ratio gives a hardness value of 30.13 GPa which is close to that of 

B11C
p
(CBC). 

 

3.2.7. Thermodynamic Properties 

 From the phonon data, through the harmonic approximation, thermal properties 

due to phonons, such as internal energy (E), constant–volume heat capacity (Cv), 

Helmholtz free energy (F) and entropy (S), are evaluated over a range of temperatures 

from the standard equations of statistical mechanics (Eqns.(2.69)–(2.73)) using the 

PHONOPY code. The results of the calculations are presented in figures 3.26–3.31. The 

values are normalized to formula units. The six systems exhibit almost identical 

variations of F, S, E and Cv. The entropy S and the constant–volume heat capacity Cv 

show the expected pattern in their temperature variation. Cv obeys Dulong–Petit law at 

very high temperatures and Debye–T
3
 law at very low temperatures.  
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         Fig.3.26: Thermal properties of                        Fig.3.27: Thermal properties of  

                         B11C
p
(CBC)                                                       B11C

e
(CBC) 

 

               
           Fig.3.28: Thermal properties of                   Fig.3.29: Thermal properties of  

                           14-atom cage                                                B10C
pe

2(CBB)  

                                                                                                                  

          
          Fig.3.30: Thermal properties of                          Fig.3.31: Thermal properties of  

               B11C
e
(BCC)                       (B11C

p
)(B10C

pe
2)(CBC)(CBB) 
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3.3. SUMMARY 

 Exhaustive structure search based on evolutionary algorithm is carried out for 

Boron Carbides in B12C3 stoichiometry. Six unique structures are obtained whose 

energies are accessible in the normal synthesis conditions of Boron Carbides. The 

structure obtained with lowest energy is B11C
p
(CBC), which has been widely reported in 

experimental and theoretical studies. Some new structures like 14-atom-cage have also 

emerged in the structure search. Five structures have base-centered monoclinic symmetry 

and the structure with 30-ato unit cell has triclinic symmetry. Three of these structures 

have negative formation energies. One such structure is (B11C
p
)(B10C

pe
2)(CBC)(CBB) 

consisting of 30 atoms, indicating that structures with larger unit cells can be part of 

B12C3 composition. For each of these six systems the matrix of elastic stiffness constants 

has only positive eigenvalues, confirming that these systems have mechanical stability. 

The calculated elastic moduli are in excellent agreement with the experimentally 

measured values. The high value of Bulk modulus (~ 250 GPa) indicates high hardness 

for these systems and the B/G ratio shows that all of them are brittle. As all the phonon 

modes of each of these systems have real frequencies for all the wave vectors, these 

systems are dynamically stable. The electronic structures of these systems show that they 

are semiconductors. There is a significant reduction in the band gap when the structure 

does not contain the (CBC) chain. The computed IR spectra of the systems are compared 

against experimental spectrum. For four of the systems whose individual spectra exhibit 

maximum correspondence with the experimental spectrum a curve fitting of the 

cumulative spectrum is done. The relative weighting factors of the contribution of 

different systems imply that the presence of B11C
p
(CBC) in the ground state composition 

could mostly be through structures of larger unit cells. Two semi-empirical models, one 

based on bond strength and the other on elastic moduli, are used to estimate the hardness 

of these Boron Carbide systems. In the case of the model based on bond strength there is 

excellent agreement between the calculated and experimental values of hardness. For the 

four structures with chain the hardness values are close to the superhard regime (> 40 
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GPa). The variation of thermodynamic properties with temperature is deduced from the 

phonon data and it is found to be identical for the six systems.  
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Chapter 4 

 

 

 

GROUND STATE STRUCTURE AND PROPERTIES OF B13C2 

 

4.1. INTRODUCTION 

 B13C2 stoichiometry of Boron Carbide has been plagued by the lack of consensus 

on the ground state structure as well as the contradictory results of its metallic nature 

predicted by the DFT calculations and the semiconducting nature recorded by the 

experiments. Since the computation of the electronic structure of any system depends on 

its crystal structure, these two problems are invariably connected. The present work tries 

to address these two problems in B13C2 stoichiometry. The work done in B12C3 

stoichiometry using larger unit cells has indicated that structures with larger unit cells 

could be the key to solving these twin problems. The structure search employing 

evolutionary algorithm and density functional theory under local density approximation is 

performed in B13C2 stoichiometry using 30-atom unit cells to investigate the possible 

crystal structures. A unique 30-atom unit cell has emerged as the lowest energy structure 

in the structure search. Its mechanical stability is investigated by DFT based calculation 

of the elastic constants and dynamical stability by the DFPT based calculation of the 

phonon dispersions. Once it is established that the structure is mechanically and 

dynamically stable, its electronic structure is generated. Born effective charges (BEC) are 

calculated using DFPT and using the BEC tensor and the phonon data, IR spectrum is 

generated and contrasted with the experimental measurement. Two semi-empirical 

hardness models, one
 
based on bond strength and the other on elastic constants, are 

employed in this work for the estimation of hardness of the B13C2 system. Within the 

harmonic approximation, thermal properties over a range of temperatures are calculated 

from the phonon data. With the exhaustive structure search and the calculation of a range 
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of properties this work aims to solve the fundamental problems related to the crystal 

structure and electronic structure of B13C2. 

 

4.2. RESULTS AND DISCUSSION 

4.2.1. Structure 

 At first different trials of the structure search have been done using the 15-atom 

unit cells of B13C2. In these trials the USPEX input cells consisting of 13 boron atoms 

and 2 carbon atoms are used. None of the lowest energy structures obtained has exhibited 

dynamical stability. At the next stage the seeded structure search using 30-atom unit cells 

of B13C2 is performed. The different combinations of 15-atom unit cells are given as 

seeds, including some configurationally disordered variants, by maintaining the 

stoichiometry. The previous experience with the seeded structure search performed on the 

30-atom unit cells of B12C3 has shown that the final structures that emerge out of the 

structure search can be distinctly different from the seeds provided. The sole purpose of 

the seeding is to perform a guided structure search where the search is confined to certain 

regions of the energy landscape that have potential for hosting the lowest energy 

structures. This also ensures computational economy. In the second stage we have used 

USPEX input cells of 26 boron atoms and 4 carbon atoms. The number of generations is 

fixed as 50 and both populationSize and initialPopSize are chosen as 60.  

 The lowest energy structure obtained is composed of B12 and B11C
p
 icosahedral 

units, CBC chain, and one carbon and two boron atoms as interstitial atoms that serve as 

the links connecting different icosahedra. The structure is shown in figures 4.1 and 4.2. 

From figure 4.2, using the topographical marker scheme described in section 1.1, the 

polar and equatorial atoms of the (B11C
p
) cage (panel (a)) and B12 cage (panel (b)) can be 

identified. A scheme of (B12)(B11C
p
)(CBC)-C-B-B is used to label this structure, the 

atoms within the brackets representing single units and the three atoms outside the 

brackets as three separate units, with no chain between them. The 30-atom primitive cell 

has triclinic symmetry, but the 60-atom Bravais cell formed from the primitive cell has 

base-centered monoclinic symmetry   . The Bravais cell is further relaxed using a plane 
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Fig.4.1: The structure of (B12)(B11C

p
)(CBC)-C-B-B 

 

 
Fig.4.2: Two projections on a plane perpendicular to the chain 

 

wave energy cutoff of 900 eV and a Gamma centered finer k-grid of 3x6x4. The lattice 

parameters of the primitive cell and energy values are presented in table 4.1. The atomic 

positions of the 60-atom Bravais cell having Cm symmetry, with the atoms occupying 4b 

sites and 2a sites, are given in table A II.3 in Appendix II. The total energy reported here 

is the negative of the cohesive energy. The total energy is negative for this system, 

implying energetically stable nature. To determine the thermodynamical stability of the 

system its formation energy value is calculated with reference to Alpha-boron and 

Graphite, which are the ground states of elemental boron and carbon, respectively. 

Convergence of k-grid is done for both Alpha-boron and Graphite using plane wave 

energy cutoff of 900 eV and the structures are fully relaxed. For Alpha-boron, using a k-
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grid of 6x6x6, a total energy/atom of -7.4723 eV is obtained. For Graphite, using a k-grid 

of 19x19x7, a total energy/atom of -10.1263 eV is obtained. The formation energy Ef  is 

calculated as : 

 Ef  = Total energy of B13C2 – 13 × Total energy per atom of Alpha-Boron 

                              – 2 × Total energy per atom of Graphite         (4.1) 

 

  Table 4.1: Structural data of (B12)(B11C
p
)(CBC)-C-B-B.  

   Lengths are in Å and angles are in degrees. 
a = b c α = β γ Total 

energy/f.u. 

(eV) 

Formation 

energy/atom 

(meV) 

 

5.61357 

 

8.11073 

 

83.70 

 

60.25 

 

-117.1007 

 

19.45 

 

Saal et al. (2007) using DFT-GGA has reported -81 meV/atom and 45 meV/atom for the 

formation energies of B12(CBC) and B11C(CBB) respectively, with reference to Alpha-

born and Graphite. The formation energy of the structure with larger unit cell obtained 

here is in between the two. Though it is positive the formation energy per atom 

corresponds to a temperature of only 233 K, which means that the system can be formed 

under the normal synthesis conditions of Boron Carbides.   

 

 

   Fig.4.3: The structure of (B12)(B11C
p
)(CBC)-C-B-B with  

   additional atoms belonging to other unit cells (as specified  

   by the repeated numerals) to indicate the bonding pattern of  

   chain-end and interstitial atoms.  
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 There are 88 bonds in the 30-atom unit cell of (B12)(B11C
p
)(CBC)-C-B-B. Each 

icosahedron has 30 bonds as described in chapter 3 in the case of B12C3 systems. The 

CBC chain and the three interstitial atoms form different bonds between B12 cage and 

B11C
p
 cage as shown in fig.4.3. One end of the CBC chain (C1 in fig.4.3) is bonded to 

three different B12 cages (B3, B16 and B20 atoms) and the other end (C4 in fig.4.3) is 

bonded to three different B11C
p
 cages (B6, B11 and B24 atoms), forming 6 chain-

icosahedron bonds. The interstitial atoms B7 and C3 have complementary bonding 

pattern between the two types of icosahedra. B7 is bonded to three different B12 cages 

(B4, B5 and B25 atoms; all equatorial) and one B11C
p
 cage (B14 atom; polar), as shown 

in fig.4.3. C3 is bonded to three different B11C
p
 cages (B8, B9 and B10 atoms; all 

equatorial) and one B12 cage (B17 atom; polar). B22 forms a mesh between B12 and 

B11C
p
 cages. It is bonded to the three atoms in a polar cap of a B11C

p
 cage (B1, B12 and 

B14 atoms) and to three atoms in a B12 cage (B18 and B19 are polar; B4 is equatorial). In 

addition to these 14 interstitial-icosahedron bonds, B7 and B22 are bonded to each other, 

making a total of 15 bonds involving interstitial atoms. There are 5 intericosahedron 

direct bonds between B12 and B11C
p
 cages (B2-B23, B13-B15, B18-B12, B19-B1 and 

B21-C2). Considering the two intrachain bonds the total number of bonds in the unit cell 

adds up to 88. The average bond lengths are given in table 4.2 in the generally increasing 

order with the experimental values given in square brackets. A classification scheme 

based on the lengths of the bonds is adopted here, with the type of the bond indicated by 

a superscript in brackets. The difference between the bonds in the B12C3 systems (table 

3.2) is that equatorial hexagon bonds are, on the average, longer than polar-equatorial 

bonds. The intrachain bond length is almost the same for B11C
p
(CBC) system of B12C3 

stoichiometry (table 3.2) and the system obtained here for B13C2 stoichiometry. The bond 

lengths are in fair agreement with the experimental data from X-ray diffraction and 

neutron diffraction. 
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Table 4.2: Average bond lengths in Å in (B12)(B11C
p
)(CBC)-C-B-B. 

Type of Bond     B-B    B-C 

intrachain b
(1)

  1.42412 

[1.431
i
, 1.436

ii
] 

chain-icosahedron b
(2)

  1.60482 

[1.617
i
, 1.610

ii
] 

interstitial (B22)-icosahedron  b
(3)

 1.62391  

interstitial (C3)- icosahedron b
(4)

  1.63848 

interstitial (B7)-icosahedron b
(5)

 1.76531  

intericosahedron b
(6)

 1.77516 

[1.735
i
, 1.721

ii
] 

1.61909 

polar-equatorial B12 cage b
(7a)

 1.78746 

[1.793
i
, 1.795

ii
] 

 

B11C
p
 cage b

(7b)
 1.76752 1.72658 

equatorial hexagon B12 cage b
(8a)

 1.75615 

[1.773
i
, 1.767

ii
] 

 

B11C
p
 cage b

(8b)
 1.81632  

polar triangle B12 cage b
(9a)

 1.81050 

[1.824
i
, 1.814

ii
] 

 

B11C
p
 cage b

(9b)
 1.84846 1.82788 

        iKirfel et al., 1979 (XRD)  
ii
Morosin et al.,1986 (Neutron Diffraction) 

 

4.2.2. Elastic Constants 

 In order to analyze the mechanical stability of (B12)(B11C
p
)(CBC)-C-B-B its 

elastic stiffness constants Cij at the equilibrium lattice parameters are computed from the 

change in energy caused by small specific elastic strains applied to the to the equilibrium 

unit cell. As the 30-atom cell has only triclinic symmetry it has 21 independent elastic 

constants. From the independent elastic constants of the system, bulk modulus (B) and 

shear modulus (G) are calculated using the standard formulae for triclinic lattice 

(Eqns.(2.49)–(2.50) and (2.60)–(2.61)) in Voigt and Reuss approximation schemes and 

Hill approximation gives the average of the two. The elastic constants and the average 

values of B, G, Young's modulus (Y) (in GPa) and Poisson's ratio ν are tabulated in table 

4.3 with the experimental data from other works given in square brackets. The computed 

elastic moduli of this structure are in excellent agreement with the experimental data. The 

values of elastic moduli are found to decrease from B12C3 stoichiometry to B13C2 

stoichiometry (tables 3.4 and 4.3) in accordance with 
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Table 4.3: Elastic Properties of (B12)(B11C
p
)(CBC)-C-B-B. 

Elastic Constants and Elastic Moduli (in GPa) 

C11 495.651 C23 63.720 C36 12.465 B 223.21 [231
i
] 

C12 104.320 C24 4.642 C44 152.812 G 186.73 [189
i
] 

C13 77.991 C25 -9.372 C45 19.604 Y 438.04 [446
i
] 

C14 -7.798 C26 16.513 C46 6.626 ν 0.1729 [0.18
i
] 

C15 3.932 C33 549.160 C55 175.254 B/G 1.195 

C16 -3.594 C34 -20.596 C56 1.479   

C22 480.862 C35 -35.523 C66 180.158   

i
Gieske et al., 1991(Expt.) 

 

the experimental measurements (Gieske et al., 1991). For mechanical stability the elastic 

energy should always be positive. This is equivalent to the Born stability criterion that all 

the eigenvalues of the matrix C of elastic stiffness constants should be positive. This 

stability condition has been verified for the matrix of elastic constants and this shows that 

(B12)(B11C
p
)(CBC)-C-B-B is mechanically stable. The calculated value of B/G ratio for 

this systems is smaller than 1.75, the critical value to separate brittleness and ductility, 

according to Pugh's criterion. This indicates that the system is brittle. 

 

4.2.3. Phonons 

 In order to determine the dynamical stability of (B12)(B11C
p
)(CBC)-C-B-B its 

phonon modes of are calculated using the self consistent DFPT method and with 1x2x1 

supercells (120 atoms) of Bravais cell. PHONOPY code is used for the post-processing. 

The ACONVASP online utility (Setyawan and Curtarolo, 2010) is used for selecting the 

high symmetry points in the Brillouin zone for each system. The phonon dispersion 

curves and density of states (DOS) are presented in figure 4.4. The DOS values are 

normalized to primitive unit cell. A system is dynamically stable only if all the phonon 

modes of the system have positive frequencies for all the wave vectors. The absence of 

imaginary frequencies at all wave vectors confirms that this system is dynamically stable. 
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       Fig.4.4: Phonon bands and dos of (B12)(B11C

p
)(CBC)-C-B-B. 

 

4.2.4. Electronic Structure 

 The electronic energy bands along the high symmetry directions of the Brillouin 

zone and the partial density of states of (B12)(B11C
p
)(CBC)-C-B-B are presented in figure 

4.5. The Fermi level is set to 0 eV. 

 

 
    Fig.4.5: Electronic bands and dos of (B12)(B11C

p
)(CBC)-C-B-B. 
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The system is a semiconductor, as there is a clear separation between valence band and 

conduction band with no overlaps over the Fermi level. The indirect band gap is 1.964eV. 

The predominant contribution to the density of states is from B(p) orbital. But, unlike in 

the case of B12C3 systems, the contribution of B(s) orbital is slightly greater than that of 

C(p) nearer to the Fermi level. The result of a semiconducting system with larger unit cell 

is similar to the one reported by Ektarawong et al. (2015) for the supercell of B12(CBC) + 

B11C
e
(BBC).  Using GGA-PBE96 functional they have got a band gap of 1.36 eV and 

using MBJ-GGA functional, a value of 2.09 eV. But, there are two significant differences 

between the two results. Firstly, the supercell structure they have proposed can be formed 

only at higher temperatures due to substitutional disorder among the ordered unit cells of 

B12(CBC); it is not a ground state structure to be formed at the normal synthesis 

conditions of B13C2. The structure proposed here, on the other hand, can be 

thermodynamically stable at around 233 K. Secondly, there are both CBC and BBC 

chains in their supercell structure whereas in the structure proposed in this work there are 

only CBC chains. It must be emphasized that the comparisons between the bond lengths 

from DFT calculations and the experimental data have consistently supported B12(CBC) 

structure over  B11C(BBC) structure (Bylander and Kleinman, 1991; Saal et al., 2007; 

Vast et al., 2009) as the experimental data have not given any conclusive evidence for 

(BBC) chains in B13C2 stoichiometry. In the same work Ektarawong et al. (2015) have 

reported that according to their calculations using MBJ-GGA functional a supercell of 

B12(CBC) + (B11C
p
)CBB is also semiconducting, with a band gap of 1.8 eV. The 

structural unit proposed in our work is distinctly different from this latter supercell in 

their work in the absence of the (CBB) chain and in the way the two icosahedra are 

bonded through CBC chain and interstitial atoms. However the closeness of the two band 

gap values suggests an independent validation of our approach.  

 The experimental data on the exact band gap in B13C2 stoichiometry widely vary. 

But the dc conductivity measurements over the entire homogeneity range of Boron 

Carbide (Werheit and de Groot, 1980; Wood and Emin, 1984; Samara et al., 1993; 

Schmechel and Werheit, 1997) clearly record that the conductivity is maximum at 13.3 
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at.% C. This means that the band gap of B13C2 must be smaller than that in B12C3. For 

B11C
p
(CBC) system of B12C3 stoichiometry our DFT calculations have estimated a band 

gap of 2.885 eV which is in fair agreement with other DFT calculations (table 3.5). 

Werheit et al. (1991) and Werheit (2006) have experimentally estimated a band gap of 

2.09 eV for B12C3. These results clearly show that the band gap calculated in this work 

for the B13C2 system corresponds to the experimental data. Here we have conclusively 

demonstrated that the given 30-atom structure with larger unit cell can solve the long 

standing problem of the discrepancy between the DFT models and the experimental 

observations over the semiconducting nature of B13C2. 

 

4.2.5. Infrared Spectrum 

 The Born effective charges of (B12)(B11C
p
)(CBC)-C-B-B are computed using 

DFPT (Eq.(2.76)) and infrared spectrum is generated using BEC tensors and phonon 

polarization (Eq.(2.77)). The computed spectrum is compared with the experimental 

measurement by Werheit et al. (1999) on 
11

B6.5C sample in figure 4.6. The frequencies of 

the main peaks are given in table 4.4. The experimental values of frequencies are from 

Werheit et al. (1999). A broadening of 15 cm
-1

 is applied to the computed peaks. The 

background is not accounted for and no fitting is done. 
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         Fig.4.6: IR spectrum of (B12)(B11C

p
)(CBC)-C-B-B. 

 

Table 4.4: Frequencies (in cm
-1

) of the major peaks 

        in the IR spectra of (B12)(B11C
p
)(CBC)-C-B-B. 

Experimental Values Calculated Values 

 

1558 1636.50 

1411 1437.55 

1074 1025.98 

947 961.72 

834 884.37 

739
*
 803.67 

692 760.69 

600 585.74 

508
*
 475.92 

407 362.90 

 

The starred values are the frequencies corresponding to small humps appearing in the 

experimental spectrum. The computed peak at 1286.90 cm
-1

 is not present in the 

measured spectrum. In all other major features the computed IR spectrum is in agreement 
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with the experimental spectrum. This implies that (B12)(B11C
p
)(CBC)-C-B-B is a good 

structural candidate for B13C2 stoichiometry. 

 

4.2.6. Hardness 

 The hardness model based on bond strength, described in detail in section 2.3.9, is 

used here to estimate the hardness of (B12)(B11C
p
)(CBC)-C-B-B. Compared to the B12C3 

systems discussed in chapter 3, (B12)(B11C
p
)(CBC)-C-B-B has more types of bonds with 

varying bond lengths as listed in table 4.2. The bond length further varies for B-B and B-

C bonds. The labeling scheme used to represent a bond is the same as discussed in 

section 3.2.6, with only one variation. As the three types of intraicosahedral bonds differ 

in bond lengths between B12 and B11C
p
 cages, an additional superscript is used to 

distinguish between them, with superscript 'a' for B12 cage and 'b' for B11C
p
 cage. The 

numeral assigned to each type of bond differs between B12C3 systems and the B13C2 

system because of the increase in the number of bonds and the variation in bond lengths. 

In the labeling scheme adopted here b11
(7a)

 represents polar-equatorial B-B bond in B12 

cage, b12
(9b)

 represents polar triangle B-C bond in B11C
p
 cage, and so on. There are 15 

bonds of the type bij
(α)

 listed in table 4.2. Each of them has a distinct bond strength and 

hence its contribution should be considered separately while determining the hardness. 

All the 88 bonds in (B12)(B11C
p
)(CBC)-C-B-B are classified according to this scheme and 

their calculated bond strengths are listed in table A III.2. The grouping of the bonds for 

the purpose of counting are as discussed in section 3.2.6. All the average bond lengths are 

taken from table 4.2. The calculated hardness from the model based on bond strength 

(Hb) is given in table 4.5. Hardness of (B12)(B11C
p
)(CBC)-C-B-B is also estimated using 

       

Table 4.5: Hardness values of (B12)(B11C
p
)(CBC)-C-B-B 

Hb HP Experimental values 

33.76 30.46 HV = 43.8
i
, 45

ii
 

i
Werheit et al., 1999      

ii
Amberger and Stumpf, 1981 
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Chen's model based on elastic constants and Pugh's ratio and the value (HP) is given in 

table 4.5. The experimental reports of the hardness of B13C2 are also given. The 

calculated values are less than the experimental values though both are of the same order. 

Instead of taking merely the average bond lengths if all the variations within the same 

types of bonds are taken into account and the contributions of these deviant bonds are 

separately evaluated, the model based on bond strength can give an improved estimate of 

the hardness.  

 

4.2.7. Thermodynamic Properties 

 From the phonon data, within the harmonic approximation, thermal properties due 

to phonons, such as internal energy (E), constant-volume heat capacity (Cv), Helmholtz 

free energy (F) and entropy (S) are evaluated over a range of temperatures (Eqns.(2.69)-

(2.73)). The variations of these quantities with temperature are plotted in figure 4.7. The 

values are normalized to the primitive unit cell. 

 

 
             Fig.4.7: Thermal properties of (B12)(B11C

p
)(CBC)-C-B-B. 

 

The entropy S and the constant–volume heat capacity Cv show the expected pattern in 

their temperature variation. Cv obeys Dulong–Petit law at very high temperatures and 

Debye–T
3
 law at very low temperatures.  
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4.3. SUMMARY 

 Exhaustive structure search based on evolutionary algorithm and density 

functional theory is carried out for the Boron Carbide in B13C2 stoichiometry using 30-

atom unit cells. A structure consisting of B12 cage, B11C
p
 cage, CBC chain and three 

interstitial atoms emerges as the lowest energy structure. The formation energy of 

(B12)(B11C
p
)(CBC)-C-B-B is 19.45 meV/atom which is accessible within the synthesis 

conditions of B13C2. The 30-atom cell has triclinic symmetry, but its 60-atom Bravais cell 

exhibits base-centered monoclinic symmetry. The bond lengths of the system are in good 

agreement with the results from X-ray diffraction and neutron diffraction measurements. 

The matrix of elastic constants of the system has only positive eigenvalues, confirming 

mechanical stability of the system. The computed elastic moduli are in excellent 

agreement with the experimental measurements. The phonon dispersions have no 

imaginary frequencies, establishing the dynamical stability. The electronic bands and dos 

exhibit a clearly defined indirect band gap of 1.964 eV, solving the problem of the 

discrepancy between the DFT calculations and the experimental observations over the 

semiconducting nature of B13C2. The computed band gap is in accordance with the trends 

in the measurements of dc conductivity of Boron Carbide over its entire homogeneity 

range and the optical measurements of band gap. The IR spectrum generated from BEC 

tensor and phonon polarizations corresponds to the experimental spectrum in all the 

major features. A hardness of 33.76 GPa is estimated for this system using the semi-

empirical model based on bond strength and the value is of the same order of the 

experimental measurements.  
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Chapter 5  

 

 

 

GROUND STATE STRUCTURE AND PROPERTIES OF  

RUTHENIUM CARBIDES 

 

5.1. INTRODUCTION 

 The first experimental synthesis of Ruthenium Carbide has reported hexagonal 

structure (     ) in RuC stoichiometry. Most of the computational works in this 

stoichiometry have been focusing on zinc blende structure whereas the only structure 

search performed in this stoichiometry has yielded neither zinc blende structure nor 

hexagonal structure, but only rhombohedral structure. In Ru2C stoichiometry also the 

only structure search carried out has not addressed the absence of the reported hexagonal 

structure (     ) from the experimental synthesis of Ruthenium Carbide in this 

stoichiometry. The two experimental reports indicate high pressure and/or high 

temperature for the synthesis of Ruthenium Carbide and hence a proper knowledge of its 

ground state structure and properties would be necessary for planning the optimum 

utilization of the experimental resources. The present work aims to address the problem 

of the ground state structure of Ruthenium Carbides. In this work an exhaustive structure 

search of Ruthenium Carbides has been undertaken using evolutionary algorithm with no 

assumptions about the possible outcomes. We have investigated the possible structures of 

three stoichiometries, RuC, Ru2C and Ru3C. The mechanical stability is analyzed through 

the computation of elastic constants and the dynamical stability through the phonon 

spectra for the five distinct Ruthenium Carbide systems yielded by this structure search. 

For the three dynamically stable systems electronic band structure, hardness and 

thermodynamic properties are also computed. Infrared spectrum is generated for the 

semiconducting system as a convenient signature for experimental verification. 
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5.2. RESULTS AND DISCUSSION 

5.2.1. Structures 

 The optimal tuning of the various input variables in USPEX has been achieved by 

accurately reproducing known structures of simple systems like Cu, NaCl etc. and then 

more complex structures of perovskites like BaTiO3 and SrTiO3. Having completed the 

structure search for Boron Carbides, the study of the structures of Ruthenium Carbides is 

attempted, starting with the simplest stoichiometry RuC. DFT as implemented in VASP 

is used in combination with USPEX for the structure relaxation and energy calculation 

required in the structure search. The Perdew–Burke–Ernzerhof (PBE) generalized 

gradient approximation (GGA) to the exchange–correlation functional is used here. 

Projector augmented wave (PAW) pseudopotentials as supplied with VASP are used, 

with 4p, 4d and 5s as the valence states for Ru, and 2s and 2p for C. The number of atoms 

in the input cell in USPEX is systematically increased in each trial from 2 to 8 with the 

expectation that the evolutionary mechanism involving more atoms will result in the 

emergence of structures of increasing complexity. In each case the number of generations 

is fixed as 25. The default choice for the population per generation in USPEX is twice the 

number of atoms per input cell, rounded to closest multiple of 10. For the choices of 2 

atoms per USPEX input cell (one Ru atom and one C atom) and 4 atoms per input cell 

(two Ru atoms and two C atoms) the variable populationSize is taken as 12. As the 

number of atoms in the input cell is raised in subsequent trials, populationSize is also 

increased to 24. For RuC stoichiometry, for 2 atoms per USPEX input cell, zinc blende 

structure         is obtained as the fittest structure. For 4 atoms per input cell, 

rhombohedral  structure        and for 8 atoms per input cell, trigonal structure          

emerge as two additional fittest structures for RuC stoichiometry. Trigonal systems 

(space group : 143–167) can be of P-centered types and R-centered types. Following the 

convention in the literature, the two R-centered trigonal structures obtained here are 

named with the tag "rhombohedral" and the P-centered one, with "trigonal". Cartesian 

components of the conventional lattice vectors are specified identically for P-centered 

trigonal systems and hexagonal systems : (a, 0, 0), (-a/2, √3a/2, 0), (0, 0, c) while they are 



 

 

77 

 

different for R-centered trigonal (rhombohedral) systems : (ã, -ã/√3, h), (0, 2ã/√3, h), (-ã, 

-ã/√3, h). Trials with up to 10 atoms per input cell are attempted, but, beyond 8 atoms per 

input cell, an increase in the number of atoms per input cell yields as fittest structures 

only those that have previously emerged with lower number of atoms per input cell. The 

procedure is repeated for the stoichiometries Ru2C and Ru3C. Only the rhombohedral 

structure        emerges as the fittest structure for Ru2C stoichiometry and only the 

hexagonal structure         for Ru3C stoichiometry. 

 Each structure is further relaxed using an ENCUT of 900 eV, which is 2.25 times 

the default value as per the POTCAR files of Ru and C, and the improved k-grid. The 

structures are tabulated in table 5.1 along with their lattice parameters and formation 

energies. Lattice parameter of RuC-Zinc blende structure from other computational 

works is given in brackets. VASP gives total energy with respect to the free atom energy 

and its value is negative for these five structures, implying energetically stable nature. 

However, thermodynamical stability has to be determined with respect to the formation 

energy. If it is negative, it means that the system can be spontaneously formed from its 

constituent elements. The formation energies of these Ruthenium Carbide systems are 

calculated with reference to crystalline Ruthenium and Graphite. To get the total energy 

per atom of Ruthenium and Graphite, convergence of k–grid is done for both using 

ENCUT of 900 eV and the structures are fully relaxed. For Ruthenium, using a k–grid of 

31x31x20, a total energy/atom of -9.2751 eV is obtained. For Graphite, using a k–grid of 

19x19x7, a total energy/atom of -9.2320 eV is obtained. For a structure with unit cell 

stoichiometry of RuaCb, the formation energy Ef is calculated by the following formula :  

Ef  = Total energy of RuaCb – a × Total energy per atom of Ru in its stable form 

                      – b × Total energy per atom of Graphite                    (5.1) 

 For RuC stoichiometry, different structures have been computationally modeled in 

previous studies (Abidri et al., 2010; E. Zhao et al., 2010; Z. Zhao et al., 2010; H.R. Soni 

et al., 2011). The present structure search has yielded zinc blende structure, considered in 

these previous works, thus confirming its status as a stable structure of this stoichiometry. 

The lattice parameter obtained for zinc blende structure in the present work is in very 
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good agreement with the values from the previous studies (table 5.1). It must be 

emphasized that no exhaustive structure search was employed in these earlier studies 

(Abidri et al., 2010; E. Zhao et al., 2010; Z. Zhao et al., 2010; H.R. Soni et al., 2011), 

only certain specific structures were proposed and their properties calculated.  

 

Table 5.1: Structural Data of Ruthenium Carbides. 
 

Stoichio

-metry 

 

Structure 

(space group) 

 

k-grid 

Lattice 

parameters 

(lengths in Å) 

 

Atomic positions 

Formation 

energy/ 

f.u. (eV) 

 

RuC 

 

 

 

RuC 

 

 

 

 

RuC 

 

Zinc blende 

(      /216) 

 

9x9x9 

 

a = 4.565 

(4.566
a
,4.59

b
, 

4.545
c
,4.608

d
) 

 

Ru: 4a (0, 0, 0) 

C  : 4d (3/4, 3/4, 3/4) 

 

 

0.9127 

(0.91
a
) 

 

Rhombohedral 

(     /166) 

 

11x11x11 

 

 

 

a = 6.499,  

α = 24.75
o
 

Ru: 2c (z, z, z) (-z, -z, -z) 

              z = 0.270863 

C  : 2c (z, z, z) (-z, -z, -z) 

              z = 0.462960 

 

0.7239 

 

Trigonal 

(      /164) 

 

11x11x4 

 

a = b = 2.774,  

c = 6.385 

Ru: 2d (1/3,2/3,z)(2/3,1/3,-z) 

              z = 0.191183 

C  : 2c (0, 0, z) (0, 0, -z) 

              z = 0.390430 

 

0.8009 

Ru2C Rhombohedral 

(    /160) 

21x21x21 a = 5.302,  

α = 30.46
o
 

Ru: 1a (z, z, z)  z = 0.703773 

Ru: 1a (z, z, z)  z = 0.520810 

C  : 1a (z, z, z)  z = 0.281030 

 

1.0951 

 

Ru3C 

 

Hexagonal 

(      /187) 

 

25x25x10 

 

a = b = 2.783,  

c = 7.126 

Ru:1a (0, 0, 0) 

Ru: 2i (2/3,1/3,z) (2/3,1/3,-z)  

              z = 0.307465 

C  : 1b (0, 0, 1/2) 

0.9265 

a
E. Zhao et al. 2010 (GGA)  

b
Abidri et al. 2010 (LDA)   

c
Z. Zhao et al. 2010 (GGA)            

d
H.R. Soni et al., 2011(GGA) 

 

 Using evolutionary algorithm based structure search, the present work has shown the 

emergence of, in addition to the previously proposed zinc blende structure, two other 

lower energy structures for RuC stoichiometry. Among the three structures of RuC 

stoichiometry, it is clear from the formation energy values (table 5.1) that rhombohedral 

structure is the most stable one, the next being trigonal and zinc blende structures, in that 

order of stability. Figure 5.1 presents the variation of energy with unit cell volume for 
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these three systems. The symbols represent the energy values from DFT calculation and 

the solid lines correspond to the fits with Murnaghan equation of state (Murnaghan, 

1944). The values of energy and volume are normalized to formula units. 

 

 
          Fig. 5.1: Variation in energy with unit cell volume 

            for the three structures of RuC. 

Figure 5.2 shows the variation of energy with pressure values calculated from the 

Murnaghan equation of state. The minimum of each of the energy–volume graphs in 

figure 5.1 corresponds to the zero pressure point of the respective energy–pressure graph 

in figure 5.2. Figure 5.3 shows the variation in enthalpy with pressure.  

 

        
Fig. 5.2: Variation in energy with pressure    Fig.5.3: Variation in enthalpy with pressure  

                for the three structures of RuC.                        for the three structures of RuC.  
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 Figures 5.1–5.3 further confirm that rhombohedral system is the most stable 

among these three as it has the minimum energy and enthalpy in the given volume and 

pressure range. The apparent transition of the trigonal system to zinc blende system at 

volumes well above the equilibrium volume corresponds to negative pressure on the 

trigonal unit cell and is not physically realizable. While this cross over in figure 5.1 takes 

place at negative pressure side for trigonal system it is at positive pressure side for zinc 

blende system and hence it is absent in the energy–pressure graphs in figure 5.2. In figure 

5.3, for all positive pressure values, the rhombohedral system has the lowest enthalpy.  

 One previous study employing structure search by particle swarm optimization 

algorithm has reported the structure of      symmetry as the most stable one (Guang  et 

al., 2012). Though it has been called hexagonal structure in that study, it is actually the 

hexagonal representation of rhombohedral structure with thrice the number of atoms in 

the unit cell. The lattice parameters of the hexagonal unit cell reported in this work are aH 

= 2.785 Å and cH = 18.886 Å. The relationship between the lattice parameters of the 

rhombohedral cell and the hexagonal supercell of the same structure are :    

            and              . Using aR and α values obtained for the 

Rhombohedral structure (table 5.1), we get aH = 2.7856 Å and cH = 18.891 Å, which are 

in excellent agreement with the values obtained by Guang et al. (2012). Thus, the present 

work independently confirms the previous report that rhombohedral structure (    ) is 

the lowest energy structure of RuC stoichiometry. While only the lowest energy structure 

of RuC stoichiometry has been reported in the previous work employing structure search 

(Guang  et al., 2012), here three structures emerge within a narrow formation energy 

band for RuC stoichiometry and also structures of Ru2C and Ru3C stoichiometries are 

identified for the first time.  

 All the structures have positive formation energies that show that they are not 

thermodynamically stable, i.e. they cannot be spontaneously formed under ambient 

conditions. In order to synthesize them, sufficient energy should be supplied and possibly 

high temperature and pressure. The synthesis of Ruthenium Carbide (Kempter and 

Nadler, 1960; Kempter, 1964; Sanjay Kumar et al., 2012) under high pressure and high 
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temperature testifies to this result. Among the three structures of RuC stoichiometry, the 

rhombohedral structure has the minimum formation energy indicating that it is more 

likely to be formed during synthesis under suitable high energy conditions. The 

maximum difference in formation energy between the three structures is 94.4 meV/atom, 

corresponding to a temperature of 1133 K. This clearly shows that at the typical high 

temperatures (~2000 K) during the synthesis of Ruthenium Carbides, the formation of 

any of these three structures is possible for RuC stoichiometry at proper conditions. 

Though it is not possible to compare the formation energies between different 

stoichiometries it can be noted that the formation energy values of systems of Ru2C and 

Ru3C stoichiometries are close to those of RuC systems. The formation energies of  these 

five systems lie within an energy band of width 225 meV/atom, corresponding to a 

temperature of 2700 K. This implies that the formation of Ru2C and Ru3C stoichiometries 

are also possible at high temperatures.  

 In the recent high pressure–high temperature synthesis of Ruthenium Carbides 

(Sanjay Kumar et al., 2012) it has been analyzed that the synthesized structure has the 

stoichiometry of Ru2C with Fe2N-type hexagonal         structure. In the present work, 

for Ru2C stoichiometry only one fittest structure, rhombohedral, is obtained (table 5.1). 

The difference could be due to the fact that in the present work the structures are being 

determined in the ground state whereas the synthesis of Ruthenium Carbide has been 

carried out at high pressure and temperature. However, it is interesting to note that the 

trigonal structure obtained from the structure search done here in RuC stoichiometry is of 

the same space group as the structure deduced in this experiment. The inherent 

difficulties involved in the determination of stoichiometry and structure of the 

synthesised material in high pressure–high temperature experiments (Sanjay Kumar et 

al., 2012) suggest the possibility that the stoichiometry of the synthesised structure could 

be RuC. Similarly, in the first reported synthesis of Ruthenium Carbide (Kempter and 

Nadler, 1960; Kempter, 1964), the stoichiometry has been estimated as RuC and the 

structure as WC-type hexagonal (     ). It has been proved in previous computational 

work (Z. Zhao et al., 2010) that this structure lacks dynamical stability in RuC 
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stoichiometry. Interestingly, the same structure emerges in the present structure search in 

Ru3C stoichiometry and it is shown here (section 5.2.3.) that the structure is dynamically 

stable in this stoichiometry. It is significant that the present structure search has yielded 

the two reported structures from the synthesis of Ruthenium Carbides (      and      ) 

though in stoichiometries different from the reported ones. The reason for the mixing up 

of stoichiometries could be the possibility of any of these systems to be formed at the 

extreme experimental conditions of the synthesis. Therefore more detailed experimental 

analysis is required to carefully pinpoint both the stoichiometry and the structure. The 

results of an exhaustive structure search as in the present work provide possible candidate 

structures to be looked for in any synthesis at extreme conditions.  

 

5.2.2. Elastic Constants 

 To study the mechanical stability of the Ruthenium Carbide systems, the elastic 

stiffness constants Cij at the equilibrium lattice parameters are calculated. Then, using the 

equations (2.40)-(2.48) for elastic moduli for cubic, rhombohedral and hexagonal crystal 

classes the bulk moduli and rigidity moduli are calculated in Voigt and Reuss 

approximations and their average values are taken, according to Hill approximation. The 

elastic constants and the average values of B, G, Y (in GPa) and ν are tabulated in table 

5.2. The data for zinc blende and rhombohedral systems of RuC stoichiometry, available 

from other computational works, are also tabulated for comparison. All the five systems 

obtained here satisfy the Born-Huang stability criteria (Born and Huang, 1956; Wallace, 

1972; Nye, 1985; Mouhat and Coudert, 2014), given by Eqns.(2.37)-(2.39), and hence all 

of them are mechanically stable. Crystals in the rhombohedral class can be divided into 

two : Rhombohedral I with space groups 149 to 167 and Rhombohedral II with space 

groups 143 to 148. RuC–Rhombohedral and Ru2C–Rhombohedral belong to the class 

Rhombohedral I (table 5.1) which has 6 independent elastic constants C11, C12, C13, C14, 

C33 and C44. The other nonzero elastic constants in this class are C24 = –C14, C56 = C14 and 

C66 = (C11–C12)/2. The pair of elastic constants (C24, C14) has to be of opposite sign for 

crystals belonging to the class Rhombohedral I. However, the mechanical stability of the 



 

 

83 

 

crystal depends on C
2

14 and C
2

13 which are positive. Hence negative sign of     (table 

5.2) does not imply mechanical instability. The same situation arises for Rhombohedral II 

as well. It has 7 independent elastic constants C11, C12, C13, C14, C15, C33 and C44. The 

other nonzero elastic constants in this class are C24 = –C14, C25 = –C15, C46 = –C15, C56 = 

C14 and C66 = (C11–C12)/2 (Mouhat and Coudert, 2014). The pair of elastic constants (C24, 

C14), (C25, C15) and (C46, C15) have to be of opposite sign for crystals belonging to the 

class Rhombohedral II. However, the mechanical stability of the crystal depends on C
2
14 

and C
2
15 (Mouhat and Coudert, 2014) which are positive. Thus, for both the 

rhombohedral systems, some of the elastic constants have to be negative, but that would 

not violate mechanical stability provided the Born–Huang elastic stability criteria are 

satisfied.  

Table 5.2: Elastic Properties of Ruthenium Carbides. 
 RuC-Zinc blende RuC-

Rhombohedral 

RuC-

Trigonal 

Ru2C- 

Rhombohedral 

Ru3C- 

Hexagonal 
This 

work 

Other works 

C11 342.46 355
a
, 373.1

b
, 

345.31
c 

522.51    (539
e
)   529.34 546.37 547.47 

C12 220.93 221
a
, 250.6

b
, 216

c
 158.10    (152

e
) 132.53 147.85 162.37 

C13   158.07    (178
e
) 135.55 215.83 210.54 

C14   -38.99      23.95 3.14  

C33   598.14    (581
e
) 586.78 577.27 600.63 

C44 62.40 70
a
, 58.1

b
, 66.32

c
 138.37    (176

e
) 86.88 120.42 121.37 

B 261.44 266
a
, 263

b
, 

259.11
c
, 253

d
 

287.45    (296
e
) 272.21 313.23 316.99 

G 61.74 69
a
, 60.7

b
, 65.65

c
 163.23    (186

e
) 144.83 156.61 157.48 

Y 171.70 190
a
, 166.8

b
 411.75    (462

e
) 369.05 402.71 405.32 

Ν 0.391 0.38
a
, 0.404

b
 0.261   (0.241

e
) 0.274 0.286 0.287 

B/G 4.24 3.95
c
 1.76       (1.59

e
) 1.88 2.00 2.01 

      a
E. Zhao et al. 2010 (GGA)    

b
Abidri et al. 2010 (LDA)   

c
 Z. Zhao et al. 2010 (GGA)   

    
d
H.R. Soni et al. 2011 (GGA)     

e 
Guang et al. 2012 (GGA) 

 

 Let's further consider the origin of the sign of C14 as far as the two Ruthenium 

Carbide systems belonging to the Rhombohedral I group are concerned. For any given 

system elastic constants are computed as linear combinations of force constants of the 

system, with the force constants depending upon the material as well as the specific 
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structure. The coefficients of these linear combinations depend, in addition, on the choice 

of the directions of the axes of the Cartesian reference frame. So the sign of C14 can 

depend on both the structure and the choice of the Cartesian reference frame. A System 

with rhombohedral symmetry can also be represented by a supercell with hexagonal 

symmetry. There is no unique setting of the hexagonal supercell with respect to the 

rhombohedral unit cell and this allows for various ways of choosing the Cartesian 

reference frame. Depending upon this choice of the relative orientation of the axes and 

the specific structure, the sign of C14 can be positive or negative for rhombohedral 

systems (for a detailed discussion, see Golesorkhtabar et al., 2013).  So it is possible that 

C14 is negative for RuC–Rhombohedral (space group : 166) while it is positive for Ru2C–

Rhombohedral (space group : 160). They are different structures though both of them 

belong to the class Rhombohedral I. However, as pointed out above, it is to be noted that 

the sign of C14 does in no way affect the mechanical stability.  

 The calculated values of B/G ratio for the given systems (table 5.2) are larger than 

1.75, the critical value to separate brittleness and ductility, according to Pugh's criterion 

(Pugh, 1954). This indicates that these systems are all ductile.   

  

5.2.3. Phonons  

 Phonon dispersions provide significant information about the dynamical 

properties of materials. Within harmonic approximation the phonon data is used for the 

calculation of free energy, entropy, specific heat and electron–phonon interaction. Within 

quasiharmonic approximation it is used for the calculation of thermal expansion, heat 

conduction etc. The presence of imaginary frequencies in the phonon spectrum indicates 

that the structure is dynamically unstable. Phonon data can also provide information 

about structural phase transformations, mainly arising from soft modes. The lattice 

dynamical properties of the five ruthenium carbide systems are calculated using the self 

consistent DFPT method (Baroni et al., 1987, 2001) with 2x2x2 supercells. Here the 

dynamical matrix, that contains the details of the lattice dynamics of the system, can be 

calculated from the ground state electron charge density and its first derivative with 
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respect to ionic coordinates for any given geometry. The post-processing of the data has 

been done by PHONOPY code. The phonon dispersion curves and phonon density of 

states of these systems have been calculated and the results are presented in figures 5.4–

5.8. The high symmetry points in the Brillouin zone for each system are selected using 

the ACONVASP online utility (Setyawan and Curtarolo, 2010). The negative side of the 

plots represents imaginary frequencies.  

 

                
  Fig. 5.4: Phonon dispersions & density                Fig. 5.5: Phonon dispersions & density 

               of states of  RuC–Zinc blende.                        of  states of RuC–Rhombohedral  

 

                                                                                                       

 
      Fig. 5.6: Phonon dispersions & density 

                                                           of states of Ru3C–Hexagonal.  



 

 

86 

 

For RuC–Zincblende (figure 5.4), RuC–Rhombohedral (figure 5.5) and Ru3C–Hexagonal 

(figure 5.6) systems there are no imaginary frequencies in phonon dispersions confirming 

that these systems are dynamically stable. Phonon dispersion curves of RuC–Zinc blende 

structure at ambient pressure have been studied in two previous works (Z. Zhao et al., 

2010; H.R. Soni et al., 2011). They have also predicted dynamical stability for this 

structure. The phonon dispersion curves obtained in the present work exactly correspond 

to those reported before. The phonon dispersion curves of RuC–Rhombohedral system at 

ambient pressure as obtained here agree well with the results obtained in Guang et al. 

(2012). For the Ru3C–Hexagonal system phonon dispersions are being computed for the 

first time in the present work. There is a significant gap between the optic and acoustic 

phonon modes for all these systems.  

 For RuC–Trigonal and Ru2C–Rhombohedral systems there are some imaginary 

frequencies near the Γ–point in phonon dispersions, implying that these systems are 

dynamically unstable. A recent computational work on the Ru2C system reported from 

the high pressure-high temperature synthesis (Sanjay Kumar et al., 2012) has established 

that it is dynamically unstable at ambient pressure and temperature (Sun et al., 2013). 

However, it has been shown to be stabilized under pressure by means of Lifshitz 

transition mechanism (Sun et al., 2013). The possibility has already been pointed out that 

this particular system reported from the recent experimental synthesis could be RuC–

Trigonal identified here. In the present work the dynamical stability of RuC–Trigonal and 

Ru2C–Rhombohedral systems is investigated at different higher pressures. The results are 

presented in figures 5.7-5.8.  

 In the case of RuC–Trigonal the imaginary frequencies disappear at 50 GPa 

(figure 5.7). As no attempt has been made here for increasing the pressure at regular 

stages, it is possible that the stabilization of this system can be achieved at a lower 

pressure. In Sun et al. (2013), under the same computational environment, the 

stabilization of Ru2C system has been observed in the pressure range 30–110 GPa. It is 

significant that the phonon dispersion curves reported in Sun et al. (2013) for Ru2C 
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system look remarkably similar to those of RuC–Trigonal system presented here, 

indicating the possibility that the two systems could be the same.  

 

 
Fig. 5.7: Phonon dispersions & density of states of RuC–Trigonal. 

   

 
Fig. 5.8: Phonon dispersions & density of states of Ru2C–Rhombohedral. 
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 In the case of Ru2C–Rhombohedral, the imaginary frequencies do not completely 

disappear, but they systematically decrease with pressure and become negligibly small at 

200 GPa (figure 5.8). For some of the systems that may be synthesized only at high 

pressures, the instability at ambient pressure and stabilization under pressure can be a 

possibility, as in the case of RuC–Trigonal and Ru2C–Rhombohedral. 

 Only the three systems established as stable ones at ambient pressure have been 

considered for the determination of the electronic structure and hardness in the 

subsequent sections of this work. Spin-polarized calculation is attempted and it is 

concluded that no significant magnetism is present in Ruthenium Carbides. 

 

5.2.4. Electronic structure 

 The electronic energy bands along the high symmetry directions of the Brillouin 

zone and the partial density of states are presented in figures 5.9–5.11 for stable 

Ruthenium Carbide systems. The Fermi level is set to 0 eV.  

 
Fig.5.9: Electronic bands and partial density 

       of states of RuC–Zinc blende. 
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        Fig. 5.10: Electronic bands and partial             Fig. 5.11: Electronic bands and partial  

       density of states of RuC–Rhombohedral.           density of states of Ru3C–Hexagonal.        
 

                            

 It is evident from the electronic band structure that RuC–Zinc blende is 

semiconducting as there is a distinct gap between the valence and conduction bands 

(figure 5.9). It has an indirect band gap of 0.618 eV. Two previous works (Z. Zhao et al., 

2010; H.R. Soni et al., 2011) had computed the electronic energy bands of RuC–Zinc 

blende system. Both had concluded that this structure was semiconducting with an 

indirect band gap of 0.6 eV (Z. Zhao et al., 2010) or 0.71 eV (H.R. Soni et al., 2011). It 

can be emphasized that density functional theory generally underestimates the band gap, 

so the experimental value of the band gap for this system could be higher than the present 

estimate. RuC–Zinc blende system is further interesting as it also exhibits ductile nature 

from the B/G value (table 5.2), but at the same time being a semiconductor. This is 

contrary to the general expectation that a ductile material could be conducting.  

 For the other two stable systems the valence and conduction bands overlap 

(figures 5.10, 5.11), which is the characteristic behaviour of metallic systems. According 

to the B/G values (table 5.2), these two systems are ductile, which is a metallic 

characteristic.  Guang et al. (2012) has reported metallic nature for RuC–Rhombohedral 

system. In all the three systems, the major contributions to the electronic partial density 

of states are from Ru(d) states and C(p) states, the former being significantly higher. For 

the two stable systems in RuC stoichiometry, the variation in density of states is identical 

for Ru(d) states and C(p) states implying strong hybridization between them. It may be 
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interesting to investigate the possible phase transitions from conducting to 

semiconducting band structure among these two, particularly so since such structural 

transitions are energetically possible among them (table 5.1) during the synthesis. There 

is a pseudo–gap at the Fermi level for RuC–Rhombohedral (figure 5.10) system, 

indicating high stability. This is in agreement with the computed value of the lowest 

formation energy of this system in Ru1C1 stoichiometry (table 5.1). 

5.2.5. Infrared Spectrum 

 Given the very small amount of the material produced in the two synthesis of 

Ruthenium Carbides, the determination of the stoichiometry has been a very delicate 

exercise. Therefore more detailed experimental analysis is required to carefully pinpoint 

both the stoichiometry and the structure. In the case of the semiconducting Zinc blende 

system in RuC stoichiometry the computation the dynamical quantity Born effective 

charge tensor and the generation of infrared (IR) spectrum can help in the structure 

determination in future experimental attempts. Counter intuitively, the principal 

(diagonal) elements of the BEC tensor are often not close to the formal charges of the 

atoms of the compound. The diagonal elements of the BEC tensor computed for RuC-

Zinc blende system are presented in table 5.3 along with the formal charges on the ions.  

 

Table 5.3: Born effective charge tensor for RuC-Zinc blende system (in |e|). 

Ions    
      

     
          

Ru -5.4684 -5.4684 -5.4681  -4 

C 5.4712 5.4712 5.4709 +4 

  

For systems with cubic symmetry BEC tensor is diagonal and there are only two 

independent elements. According to the sum rule ensuring the charge neutrality, for every 

direction α and β,     
       . i.e., for every matrix element, the sum of the Born 

effective charges of all the ions in the cell must vanish (Gonze and Lee, 1997). The sum 

rule can be broken because of the finiteness of the number of plane waves or the 

discretization of the real-space integral (Gonze and Lee, 1997). For example, in the case 
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of CuInS2 (Łażewski et al., 2002), which is a semiconductor, the sum rule is broken for 

both diagonal and off-diagonal matrix elements. The sum rule is obeyed here for RuC-

Zinc blende. For this system both the in-plane and perpendicular BEC values for Ru and 

C differ significantly from their formal charges. This indicates that the bonding is 

different from ionic. The corresponding BEC values of Ru and C atoms have almost the 

same numerical values and opposite signs. Taken together, these factors signify strong 

covalent bonding between Ru and C atoms.  

 The intensity of the IR active modes are calculated (Eq.2.77) in terms of the BECs 

and the phonon polarization vectors (Baroni et al., 2001). The computed IR spectrum of 

RuC-Zinc blende system is given in figure 5.12. There are no experimental measurements 

of IR spectrum available for the Ruthenium Carbide systems for comparison. The present 

work is the first effort to compute the IR spectra of these systems. 

   

 
        Fig.5.12: IR spectrum of RuC-Zinc blende. 

RuC-Zinc blende system gives one peak at 572.8 cm
-1

. It corresponds to a 3-fold 

degenerate mode T2. Of these three modes, one corresponds to vibrations of both Ru and 

C atoms along z-direction alone and the other two correspond to vibrations of both atoms 

in the xy-plane. The amplitude of vibrations of C atom is one order of magnitude higher 

than that of Ru atom. C atom being lighter, it is expected to vibrate with higher amplitude 

and this is exhibited in the computed phonon amplitudes.  
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5.2.6. Hardness   

 With the growth of interest on novel superhard materials over the past several 

decades, it has become necessary to understand the microscopic features that control the 

hardness of materials. Many empirical models have been developed that aim to correlate 

hardness with different properties of materials. The hardness values of these Ruthenium 

Carbide systems are estimated here with three different models, one microscopic model 

and two macroscopic models. 

5.2.6.1. Model Based on Bond Strength 

 Different models, that can be classified as microscopic models, have been 

proposed to estimate the intrinsic hardness of ideal crystals in terms of input parameters 

like structural data or properties of constituent elements (Šimůnek and Vackář, 2006;  

Šimůnek, 2007, 2009; X. J. Guo  et al., 2008) . The model based on the bond strength, 

proposed by Šimůnek and Vackář (2006) and  Šimůnek (2007, 2009), is considered here. 

The theory is discussed in detail in section 2.3.9.1. Substituting the atomic radii (Kittel, 

1996) and distances in Å, Eqs. (2.78–2.80) give the hardness in GPa.  

 For Ru, Z1=8 and R1=1.34 Å, so e1=5.9702. For C, Z2=4 and R2=0.92 Å, so e2 = 

4.3478. The counting scheme of the number of bonds in the unit cell is as follows: If a 

bond is shared by two atoms within the unit cell, it is counted as one; if a bond is shared 

between one atom within the unit cell and another atom outside the unit cell, its 

contribution is counted as half. For each structure, the number of neighbours of Ru (n1) 

and C (n2), the bond lengths of Ru–Ru bond (d11), Ru–C bond (d12) and C–C bond (d22), 

and the number of these bonds in the unit cell (b11, b12 and b22, respectively), the volume 

of the unit cell (Ω) and the calculated value of hardness from different models are 

presented in table 5.4. In figures 5.13–5.15, the grey larger spheres represent Ru atoms 

and the brown smaller ones represent C atoms. The atoms identical to each other in their 

bonding environment are given the same label. The crystal visualization program VESTA 

(Momma  and Izumi, 2011) is used to generate the images. 

 

http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Momma,%20K.
http://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Izumi,%20F.
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Fig. 5.13: RuC–Zinc blende structure. 

 Figure 5.13 represents RuC–Zinc blende structure. There are four Ru and four C 

atoms in the unit cell. The estimated hardness is 36.66 GPa (table 5.4). Estimation of 

hardness using the above semi–empirical formula has been previously done for this 

particular system (Abidri, 2010) yielding a value of 36.94 GPa. The estimate based on the 

semi–empirical model of X.J. Guo et al. (2008)
 
has yielded a value of 42.8 GPa in 

another earlier computational work (Z. Zhao et al., 2010)
 
on this system.  

    Table 5.4: Computational parameters for the bond strength model and  

    the hardness values of Ruthenium Carbides from models based on bond  

    strength (Hb), Pugh's ratio (HP) and Debye temperature (HD) 
  RuC- 

Zinc blende 

RuC-

Rhombohedral 

Ru3C- 

Hexagonal 

Ru n1 4 12 13, 12 

C n2 4 4 6 

Ru-Ru 

bond 

d11 (Å)  2.8208 2.7482, 2.7502 

b11  9 16 

Ru-C 

bond 

d12 (Å) 1.9765 2.0484 2.1130 

b12 16 6 6 

C-C  

bond 

d22 (Å)  1.3995  

b22  1  

Volume Ω (Å3
) 95.1273 42.2808 47.81 

 

Hardness  

Hb (GPa) 36.66 

(36.94
a
, 42.8

b
) 

21.15 

(28
c
) 

  12.42 

HP (GPa) 3.30 17.82 14.93 

HD (GPa) 3.36 15.45 20.24 

  a
Abidri et al. 2010     

b
Z. Zhao et al. 2010 

c
Guang et al. 2012 
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 Figure 5.14 represents RuC–Rhombohedral structure. There are two Ru and two 

C atoms in the unit cell. Each Ru atom is surrounded by six Ru atoms in the same plane, 

three Ru atoms above (below) and three C atoms below (above), so n1 = 12. All these 12 

neighbours lie outside the unit cell. Each C atom is bonded to three Ru atoms, either 

above or below (all lying outside the unit cell), and one C atom (lying within the unit 

cell), so n2 = 4. Each Ru atom forms 9 Ru–Ru bonds, with atoms lying outside the unit 

cell. Taking half the contribution of these 18 Ru–Ru bonds, b11 = 9. Each of the four 

atoms in the unit cell forms 3 Ru–C bonds, with atoms lying outside. Taking half the 

contribution of these 12 Ru–C bonds, b12 = 6. As there is only one C–C bond, shared by 

C atoms within the unit cell, b22 = 1. There are two slightly different Ru–Ru bond lengths, 

hence the average value is taken for d11 (table 5.4). The estimated hardness is 21.15 GPa 

(table 5.4).  The estimate based on linear correlations between the elastic moduli and 

hardness has given a value of 28 GPa for this system in a previous work (Guang, 2012). 

 

                                                                            
   Fig.5.14: RuC–Rhombohedral structure.            Fig. 5.15: Ru3C–Hexagonal structure. 
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 Figure 5.15 represents Ru3C structure with three Ru atoms and one C atom in the 

unit cell. All the neighbours are not explicitly shown for every atom in the unit cell. The 

three Ru atoms in the unit cell belong to two types, one is labeled Ru1 and the other two 

are labeled Ru2. For Ru2 the orientation of the neighbours is similar to that described for 

Ru atoms in RuC–Rhombohedral structure (figure 5.14). In addition, there is an extra 

Ru–Ru bond between the two Ru2 atoms in the unit cell, so n1 = 13 for these two Ru2 

atoms with the average Ru–Ru bond length d11 = 2.7482   . For Ru1, as it is surrounded 

only by other Ru atoms in the close–packing scheme, n1' = 12, with the average bond 

length d11' = 2.7502   . Therefore the strength of Ru–Ru bond is estimated with the 

separate contributions from these two types of Ru–Ru neighbourhood and their average 

value is taken. The C atom is bonded to three Ru atoms both above and below, so n2 = 6. 

Among the 12 Ru–Ru bonds formed by Ru1 atom, only one is shared by an atom within 

the unit cell; among the 10 Ru–Ru bonds formed by one Ru2 atom, two are shared by 

atoms within the unit cell; among the 10 Ru–Ru bonds formed by the other Ru2 atom, 

only one is shared by atoms within the unit cell. Not counting the bonds twice, b11 = 16. 

Among the 6 Ru–C bonds formed by the two Ru2 atoms together, two are shared by 

atoms within the unit cell; among the 6 Ru–C bonds formed by the C atom, two are 

shared by atoms within the unit cell. Not counting the bonds twice, b12 = 6. The estimated 

hardness is 12.42 GPa (table 5.4). 

 Thus, the two systems of RuC stoichiometry exhibit significantly high Vickers 

hardness (HV) values, with that of RuC–Zinc blende approaching the superhard category 

(HV > 40 GPa). As the metal to carbon ratio increases hardness decreases for Ru3C, as 

expected from the nature of metallic bonds.  

5.2.6.2. Model Based on Elastic Constants 

 Using Chen-Tian formula (Eq.2.82) based on elastic constants (Chen et al., 2011; 

Tian et al., 2012) and the data from table 5.2, the hardness of the Ruthenium Carbide 

systems are estimated and the values (HP) are given in table 5.4. Except for the RuC–Zinc 

blende system, the hardness values obtained from the microscopic model based on bond 

strength and the macroscopic model based on Pugh's ratio are of the same order. As 
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RuC–Zinc blende system is a semiconductor (Fig.5.9), and since the model based on 

bond strength by Šimůnek and Vackář (2006) and  Šimůnek (2007, 2009)  is better suited 

for covalent crystals, the value of hardness from that model could be a better estimate of 

hardness for this system, compared to the value from the model based on Pugh's ratio. It 

can also be noted that another microscopic model based on the valence electron density 

(X. J. Guo et al., 2008) has yielded a value (Z. Zhao et al., 2010) close to the one from 

the model based on bond strength (table 5.4).  

 

5.2.6.3. Model based on Debye temperature 

 The model is described in detail in section 2.3.9.3. In order to calculate the elastic 

wave velocities the elastic moduli from table 5.2 are used. The results of the calculations 

using Eqns.(2.83)-(2.87) are tabulated in table 5.5. Calculated values of Debye 

temperature from previous computational works have also been given for comparison. 

The values of  D are consistent with the observed trends in bulk, shear and Young's 

moduli for the two systems of RuC stoichiometry. Together these values imply that 

rhombohedral system could be mechanically more stable among the three. 

 

Table 5.5: Volumic density (in kg/m
3
), transverse, longitudinal and  

average sound velocities (in m/s), and Debye temperature (in Kelvin). 
   νt νl νm ΘD 

RuC–Zinc blende 7896  2796 6598 3161 412.36 (407.02
a
) 

RuC–Rhombohedral 8883 4287 7541 4765 646.46 (688
b
) 

Ru3C–Hexagonal 10,948 3793 6938 4229 550.72 

 
a
Abidri

 
et al., 2010 (LDA)  

b
Guang et al., 2012 (GGA)  

 

 As Debye temperature is derived from the elastic constants (Eqns.5.3–5.6), the 

hardness values obtained from this model can be expected to correspond to those from 

the model based on Pugh's ratio. With the fitting parameters a=2500 and b=200 and data 

from table 5.5, the hardness values (HD) obtained from Eqn. (5.2) are given in table 5.4. 

As the Debye temperature of RuC–Zinc blende system is significantly smaller than the 
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values of other systems, any level of fitting based on this model will yield only a 

relatively small value of hardness for it. System of Ru3C stoichiometry has higher molar 

mass and higher density compared to those of RuC stoichiometry (table 5.5). This causes 

an increase in hardness as given by the above formula for Ru3C–Hexagonal. However, 

this trend is against the expectation that an increase in metallic component should result 

in a decrease in hardness, and such a variation is observed in the case of the hardness 

values obtained from the model based on bond strength (table 5.4).   

 It is concluded that the semi–empirical microscopic model based on bond strength 

by Šimůnek and Vackář (2006) and Šimůnek (2007, 2009) gives better estimates of 

hardness for Ruthenium Carbide systems compared to the two macroscopic models 

derived from elastic constants.  

 

5.2.7. Thermodynamic Properties 

 From the phonon data, through the harmonic approximation, thermal properties 

due to phonons, such as internal energy, constant–volume heat capacity, Helmholtz free 

energy and entropy, are evaluated over a range of temperatures from the standard 

equations of statistical mechanics (Eqns.(2.69)-(2.73)) using the PHONOPY code. The 

results of the calculations are presented in figures 5.16–5.18.  

 
Fig. 5.16: Thermal properties of RuC–Zinc blende. 
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 Fig 5.17: Thermal properties of    Fig. 5.18: Thermal properties of  

      RuC–Rhombohedral.              Ru3C–Hexagonal. 

The variations of F, S, E and Cv with temperature are similar for these three systems. The 

entropy S and the constant–volume heat capacity Cv exhibit only the expected pattern in 

their temperature variation. Cv obeys Debye–T
3
 law at very low temperatures and 

Dulong–Petit law at very high temperatures. The results in the case of RuC–Zinc blende 

system are similar to those obtained in a previous work (H.R. Soni et al., 2011) while for 

RuC-Rhombohedral and Ru3C-Hexagonal systems the thermodynamic properties are 

being computed for the first time here. 

 

5.3. SUMMARY 

 Exhaustive structure search employing evolutionary algorithm is carried out for 

three stoichiometries of Ruthenium Carbides, RuC, Ru2C and Ru3C. Three lowest energy 

structures are obtained for RuC stoichiometry and one each for Ru2C and Ru3C 

stoichiometries. These include the two reported structures from the synthesis of 

Ruthenium Carbides (      and      ) and their emergence in stoichiometries different 

from the reported ones is plausible in the light of the high pressure and high temperature 

required for their synthesis. These five structures are fully relaxed and it is established 

that rhombohedral structure is energetically the most stable one in RuC stoichiometry. 

The mechanical stability of these five systems is confirmed by the elastic constants 

satisfying the corresponding stability criteria. Standard elastic properties are calculated 

for each system. From the Pugh's criterion, all these systems are found to be ductile. The 
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dynamical stability of three of the systems, RuC–Zinc blende, RuC–Rhombohedral and 

Ru3C–Hexagonal, is clearly established from the phonon data. RuC–Trigonal system and 

Ru2C–Rhombohedral system are dynamically unstable at ambient pressure, but both 

these systems can be stabilized under pressure. The electronic bands and DOS show that 

RuC–Zinc blende system is semiconducting with a band gap of 0.618 eV while the other 

two stable systems are metallic. The BEC tensor elements of RuC-Zinc blende system 

being discussed here give valuable information about the nature and strength of the 

bonding between different atoms. The computed IR spectrum can serve as bench mark 

for the experimental spectral analysis to be carried out on this system. Computations of 

dynamical quantities like Born effective charges and IR spectra from first principles can 

guide in the unambiguous determination of the stoichiometry and the structure by the 

comparison of the experimental measurements with the computational predictions. Using 

the semi–empirical model based on the bond strength, the hardness of the stable systems 

are estimated. The hardness of RuC–Zinc blende has a significantly large value of 36.66 

GPa, very close to the superhard barrier of 40 GPa. The other stable system of RuC 

stoichiometry, i.e., RuC-Rhombohedral, also has fairly large value of hardness (21.15 

GPa). As the metal to carbon ratio increases, hardness decreases for Ru3C. Two other 

semi-empirical models of hardness, based on the elastic properties, are also employed for 

hardness estimation, but they are found to be inadequate for these systems. Standard 

thermodynamic properties of these systems are calculated from the phonon data, within 

the harmonic approximation. The positive formation energies of these systems show that 

they are not thermodynamically stable, i.e. high pressure and possibly high temperature 

are necessary for their synthesis.  

 

 

 

  



 

 

100 

 

 

  



 

 

101 

 

Chapter 6 

 

 

 

PRESSURE-INDUCED VARIATION OF THE STABILITY AND  

PROPERTIES OF RUTHENIUM CARBIDES 

 

 6.1. INTRODUCTION  

 In the study of the ground state properties of Ruthenium Carbides (Harikrishnan 

et al., 2015a) it has been noted that the formation energies of all the Ruthenium Carbide 

systems obtained by the structure search are positive at ambient pressure (table 5.1), 

which suggest that high pressure and possibly high temperature would be required for 

their synthesis.  Of the two reports of the synthesis of Ruthenium Carbide, the first has 

been at high temperature (Kempter and Nadler, 1960; Kempter, 1964) and the second, at 

high temperature and pressure (Sanjay Kumar et al., 2012). Our result that       

structure of RuC stoichiometry (RuC-Trigonal) is not dynamically stable at ambient 

pressure, but becomes stable at around 50 GPa (figure 5.7), clearly shows that the 

stability and properties of these systems can significantly change with pressure. 

Similarly,     structure of Ru2C stoichiometry (Ru2C-Rhombohedral) is also shown to 

have dynamical instability at ambient pressure and stability at around 200 GPa (figure 

5.8). Subsequently we have investigated using DFT how the structural, elastic, 

dynamical, electronic, thermodynamic properties and hardness of the three stable 

Ruthenium Carbide systems vary with pressure. As many of their potential industrial 

applications would be in extreme conditions, such a study would provide helpful 

indicators for the experimental works on these systems at high pressures. 

 

6.2. RESULTS AND DISCUSSION 

6.2.1. Formation Enthalpies and Structural Properties 

 In order to make an estimate of optimal synthesis conditions the enthalpies of 
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formation of the five Ruthenium Carbide systems have been calculated at different 

pressures, ranging from 0 to 300 GPa. Since enthalpies of Graphite and Ruthenium are 

also required for this purpose,  they are also calculated accurately at each pressure using 

19x19x7 and 31x31x20 k-grids, respectively, for Graphite and Ruthenium. The values of 

enthalpy per atom of Graphite and Ruthenium at different pressures are given in table 6.1.  

Table 6.1: Enthalpy per atom of Ruthenium and Graphite (in eV) at different pressures 
Pressure 

(GPa) 

0 50 

 

100 

 

150 

 

200 

 

250 300 

Graphite -9.2320 -6.9551 -5.1170 -3.4643 -1.9348 -0.5005 0.8581 

Ruthenium -9.2751 -5.2001 -1.4999 1.9556 5.2296 8.3598 11.3712 

 

Enthalpy of formation of Ruthenium Carbides at each pressure is calculated by the 

formula,  

 ∆Hf  = Enthalpy of RuaCb  – a  × (Enthalpy per atom of Ruthenium)  

           – b × (Enthalpy per atom of Graphite)                 (6.1)   

Enthalpies of formation ∆Hf  of Ruthenium Carbides are calculated at different pressures 

and the results are given in table 6.2.  

 

Table 6.2: Enthalpy of formation of Ruthenium Carbides (in eV) at different pressures 
Pressure 

(GPa) 

RuC-

Zincblende 

RuC-

Rhombohedral 

RuC-

Trigonal 

Ru2C-

Rhombohedral 

Ru3C-

Hexagonal 

0 0.9126 0.7240 0.8010 1.0950 0.9266 

50 1.4346 0.5323 0.6293 0.5939 0.4153 

100 2.0392 0.5599 0.6679 0.3707 0.1886 

150 2.6089 0.6346 0.7497 0.2282 0.0438 

200 3.1443 0.7307 0.8511 0.1305 -0.0558 

250    0.0657  

300    0.0250  

 

Variation in enthalpy of formation with pressure is plotted in figure 6.1. For Ru3C system 

the enthalpy of formation is negative at around 175 GPa. This implies that if sufficient 
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energy can be supplied to overcome the reaction barrier, Ru3C-Hexagonal can be formed 

at 175 GPa. Though the enthalpies of formation of the other systems remain positive over 

the range of pressures considered here, some conclusions can be drawn from the trend in 

their variation with pressure 

 

 
Fig.6.1: Variation in Enthalpies of Formation with Pressure 

 

  Since the enthalpy of formation of RuC-Zinc blende only increases with pressure, 

its synthesis would become increasingly difficult with increase in pressure. Hence RuC-

Zinc blende cannot be synthesized by the increase of pressure. Its synthesis can be 

attempted at ambient pressure and high temperature. Thermal energy kT corresponding to 

enthalpy of formation per atom gives an estimate of the order of the temperature of 

synthesis. For RuC-Zinc blende ∆Hf  per atom is 0.4564 eV which corresponds to a 

temperature of 5477 K. The melting temperature of Ruthenium is 2607 K. Though no 

data is available for the melting temperature of Ruthenium Carbides, it is quite unlikely 

to be as high as 5500 K. This implies that the synthesis of RuC-Zinc blende may not be 

possible at ambient pressure or at higher pressures. The enthalpy of formation of  RuC-

Rhombohedral is a minimum at around 50 GPa, with ∆Hf  per atom of 0.2662 eV, which 

corresponds to a temperature of 3194 K. It can be concluded that the synthesis of RuC-

Rhombohedral is most probable close to 50 GPa and 3200K. The formation enthalpy of 
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RuC-Trigonal follows the same trend as that of RuC-Rhombohedral. For Ru2C-

Rhombohedral ∆Hf is close to zero at 300 GPa, hence its synthesis is possible at this 

pressure if sufficient energy is supplied to overcome the reaction barrier. Though 

synthesis of Ru3C-Hexagonal is possible at 175 GPa it may also be achieved at pressures 

as low as 50 GPa with the increase in temperature. At 50 GPa ∆Hf  per atom of Ru3C-

Hexagonal is 0.1038 eV, which corresponds to 1246 K. This implies that Ru3C-

Hexagonal may be synthesized at 50 GPa when the temperature is about 1250 K. The 

above data at higher pressures have been generated using DFT under the condition of 

zero temperature. Accurate  values of the temperature and pressure for synthesis would 

be governed by the Gibbs free energy G = H-TS, which depends on the entropy as well. 

Though the entropy is not calculated, it can be safely assumed that the change in the TS 

term with pressure would be small compared to that of the PV term. Hence it may be 

concluded that it is possible to synthesize these systems, with the exception of RuC-Zinc 

blende, at pressures lower than 50 GPa.  

 The first experimental synthesis of Ruthenium Carbides has been done at ambient 

pressure and at a temperature of 2873 K (Kempter and Nadler, 1960; Kempter, 1964). It 

is to be noted that the temperature is very close to the value of 2779 K, corresponding to 

∆Hf  per atom of  Ru3C system at ambient pressure. As pointed out before, the synthesis 

of Ru3C system is possible at lower pressures or even ambient pressure provided the 

temperature is sufficiently high. It has been suggested earlier in our work (section 5.2.1) 

that       structure reported in the first synthesis can be of Ru3C stoichiometry, instead 

of the reported RuC stoichiometry. The second reported synthesis has been conducted at 

5 GPa pressure and 2000 K (Sanjay Kumar et al., 2012). The proposed structure is       

in Ru2C stoichiometry, and in a previous computational work (Sun et al., 2013) it has 

been shown to be dynamically unstable at ambient pressure while attaining stability in the 

pressure range 30-110 GPa. In the structure search undertaken in the present work, the 

same structure has emerged in RuC stoichiometry and the subsequent phonon analysis 

has shown that it is dynamically unstable at ambient pressure and attains stability at 50 

GPa. The similarities in the phonon curves of the two systems suggest the possibility that 
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      structure can be of RuC stoichiometry (figure 5.7). The trend in the variation of 

the formation enthalpies of RuC-Trigonal and Ru2C-Rhombohedral correspond to the 

way they become dynamically stable on applying pressure (section 5.3). Only the other 

three systems dynamically stable at ambient pressure are considered for further 

investigation here.  

 
 Fig. 6.2: Variation of normalized volume and lattice constants with pressure of  

       (a) RuC-Zinc blende, (b) RuC-Rhombohedral and (c) Ru3C-Hexagonal 
 

 Figure 6.2 shows the way the normalized volume (V/V0, where V0 is the volume 

at ambient pressure) and normalized lattice constants of the three stable systems of 

Ruthenium Carbides vary with pressure, when analyzed after the structure optimization at 

different pressures. The curve of the variation of volume with pressure is steeper for 

RuC-Zinc blende, indicating that it is more compressible than the other two systems. The 

variation of different bond lengths with pressure is given in Figure 6.3. The lattice 

constants and bond lengths monotonously decrease with pressure implying the absence of 

any structural phase transition in this pressure range.  
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Fig. 6.3:Variation of Ru-C, Ru-Ru and C-C bond lengths with pressure of 

(a) RuC-Zinc blende, (b) RuC-Rhombohedral and (c) Ru3C-Hexagonal 

 

6.2.2. Elastic Constants 

 The elastic constants of RuC-Zinc blende, RuC-Rhombohedral and Ru3C-

Hexagonal are calculated at different pressures in the range 0-200 GPa using equations 

(2.34)-(2.36) and the variation of their independent elastic constants with pressure are 

presented in figures 6.4-6.6. We have retained the symbol     for the modified elastic 

constants in the figure legends, the subsequent equations and the discussion. 

 

 
Fig. 6.4: Elastic constants vs. pressure 

 for RuC-Zinc blende 
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     Fig. 6.5: Elastic constant vs. pressure                  Fig. 6.6: Elastic constant vs. pressure 

         for  RuC-Rhombohedral                 for  Ru3C-Hexagonal 

Most of the elastic constants exhibit a nonlinear variation with pressure. This is markedly 

different from the linear variation predicted by elasticity theory that uses the linear strain 

    in place of Lagrangian strain    . C11 and C33 are more sensitive to the change of 

pressure as compared to, say, C12 and C44. This is because C11 and C33 represent 

resistance of the crystal to longitudinal strain by applying a longitudinal stress, and hence 

a pre-existing longitudinal strain which causes a change in volume of the crystal can 

easily produce a change in C11 or C33. Elastic constants C12 and C44 are shear constants. 

Since a transverse strain can cause a change in shape without a change in volume, C12 

and C44 can be less affected by pressure.  

 For mechanical stability, the elastic constants should satisfy the Born–Huang 

elastic stability criteria, as given by Eqns.(2.37)-(2.39). For RuC-Zinc blende C44 is 

negative at around 30 GPa (figure 6.4.), clearly indicating mechanical instability. Also, at 

50 GPa, C11 < C12 for this system, which is another indicator of mechanical instability. 

Along with our result of the steady increase of its enthalpy of formation (figure 6.1) this 

further proves that synthesis of RuC-Zinc blende cannot be achieved with increase of 

pressure. The elastic constants of RuC-Rhombohedral and Ru3C-Hexagonal obtained 

here at different pressures satisfy Born–Huang stability criteria and hence they are 

mechanically stable in the pressure range 0-200 GPa.  
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 RuC-Rhombohedral belongs to Rhombohedral I (table 5.1) group, with space 

groups 149 to 167, which has 6 independent elastic constants C11, C12, C13, C14, C33 and 

C44. The other nonzero elastic constants are related to the above independent elastic 

constants as C24 = –C14 and C56 = C14. The pair of elastic constants (C24, C14) has to be of 

opposite sign. However, the mechanical stability of the crystal depends on    
  and    

  

which are positive. Hence negative sign of     (figure 6.5) does not imply mechanical 

instability. However, for RuC-Rhombohedral C44 first increases up to 50 GPa and then 

steadily decreases, and the trend shows that it would be negative at 250 GPa, making the 

system mechanically unstable at this higher pressure. This is consistent with the variation 

in formation enthalpy for this system, which becomes minimum at 50 GPa and then 

increases steadily with pressure (figure 6.1). 

 Bulk modulus (B) and shear modulus (G) are calculated from     with the 

standard formulae for the relevant crystal classes using the Voigt-Reuss-Hill 

approximation (Eqns.(2.40)-(2.48)). From B and G values, Young's modulus Y and 

Poisson's ratio ν are calculated. For different pressures (in GPa) the average values of B, 

G, Y (in GPa), ν and the Pugh's ratio B/G are tabulated in table 6.3. As RuC-Zinc blende 

becomes mechanically unstable at around 30 GPa, its elastic moduli at higher pressures 

are not considered here. The data for Zinc blende and Rhombohedral systems of RuC 

stoichiometry, available from other computational works at ambient pressure, are also 

tabulated for comparison. For RuC-Rhombohedral and Ru3C-Hexagonal bulk modulus 

consistently increases with pressure whereas rigidity modulus first increases and beyond 

some pressure it decreases. This has resulted in quite high values of B/G for these two 

systems at higher pressures. The calculated values of B/G ratio for the three systems are 

larger than 1.75, which is the critical value to separate brittleness and ductility, according 

to Pugh's criterion. This indicates that these systems are all ductile. For RuC-

Rhombohedral the decrease in both G and Y from 100 GPa onwards could be indicative 

of the trend towards mechanical instability. This is in correspondence with the variation 

of the elastic constant C44 of this system (figure 6.5), implying mechanical instability 

beyond 200 GPa. 
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 Table 6.3: Elastic moduli of Ruthenium Carbides at different pressures.  

 Pressure, B, G and Y are in GPa. 
 Pressure B G Y ν B/G 

RuC-Zinc 

blende 

0 

 

261.44 61.74 171.70 0.391 4.24 

RuC-

Rhombohedral 

0 287.45    163.23     411.75     0.261   1.76 

 50 482.24 180.19 480.71 0.3339 2.676 

100 648.55 180.23 494.86 0.3728 3.598 

150 799.77 158.28 445.46 0.4072 5.053 

200 944.35 111.82 322.73 0.4430 8.445 

Ru3C-

Hexagonal 

0 316.99 157.48 405.32 0.2870 2.010 

50 509.19 189.08 504.76 0.3348 2.693 

100 680.25 203.77 555.82 0.3638 3.338 

150 837.90 207.44 574.89 0.3856 4.039 

200 988.04 206.06 577.99 0.4025 4.795 
 

 

 

6.2.3. Phonons 

 Using the self consistent DFPT method the phonon modes of Ruthenium Carbide 

systems are calculated with supercells. PHONOPY code has been used for the post-

processing. The phonon dispersion curves of these Ruthenium Carbide systems are 

calculated at different pressures and, to highlight the differences, only the results at well 

separated pressures are presented along with those at ambient pressure in figures 6.7–6.9. 

The ACONVASP online utility (Setyawan and Curtarolo, 2010) has been used for 

selecting the high symmetry points in the Brillouin zone for each system. It is clear from 

figure 6.7 that RuC-Zinc blende becomes dynamically unstable at 100 GPa. This further 

proves that along with its mechanical instability (figure 6.4) RuC-Zinc blende is 

dynamically unstable at 100 GPa. It is feasible that the system is dynamically stable at a 

pressure where it is mechanically unstable. Figures 6.8 and 6.9 show that RuC-

Rhombohedral and Ru3C-Hexagonal are dynamically stable in the pressure range 0-200 

GPa, as there are no imaginary frequencies in their phonon dispersion curves. The 

frequencies of the bands increase with pressure, but the pronounced gap between the 

optic and acoustic phonon modes is consistently present at higher pressures for all these 

systems. 
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         Fig.6.7: Phonon dispersions of RuC-Zinc blende 

 

 
       Fig.6.8: Phonon dispersions of RuC-Rhombohedral 
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Fig.6.9:Phonon dispersions of Ru3C-Hexagonal 

 

6.2.4. Electronic Structure 

 The electronic energy band structure along the high symmetry directions of the 

Brillouin zone and the partial density of states at different pressures of stable Ruthenium 

Carbide systems are presented in figures 6.10–6.12. The Fermi level is set to 0 eV, 

represented by a dashed line in the plots. In these figures The black solid lines represent 

the total density of states (DOS), the red dashed lines represent the partial DOS due to 

Ru(d) states and the blue dotted lines represent the partial DOS due to C(p) states. The 

partial DOS due to other orbitals have been represented in distinct styles in black, but 

their contributions are too small to be distinguishable.  

 RuC–Zinc blende is semiconducting and it has an indirect band gap of 0.618 eV 

at ambient pressure (Harikrishnan et al., 2015a). With higher pressure the valence bands 

are shifted to lower energy values while the conduction bands are shifted to higher energy 

values, resulting in an increase in the band gap (figure 6.10). At 50 GPa band gap 

becomes 0.84 eV and at 100 GPa it is 0.92 GPa. Though RuC-Zinc blende is 

mechanically unstable at these pressures these computations provide the trend in the  
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 Fig. 6.10: Electronic bands and partial density of states of RuC-Zinc blende 

 
 Fig.6.11: Electronic bands and partial density of states of RuC-Rhombohedral 
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 Figure 6.12: Electronic bands and partial density of states of Ru3C-Hexagonal 

variation of its band gap with pressure up to 30 GPa, beyond which it can be 

mechanically unstable. The other two stable systems are metallic as the valence and 

conduction bands overlap (figures 6.11, 6.12) at the Fermi level.  

 In all the three systems, Ru(d) state has the predominant contribution to the 

electronic partial density of states and C(p) state has the next higher share. This is a 

common feature of transition metal carbides in general. The identical variation in density 

of states between Ru(d) states and C(p) states of RuC-Zinc blende and RuC-

Rhombohedral systems imply strong hybridization between these states, which is another 

common characteristic of transition metal carbides (Chauhan and Gupta, 2013). Even 

when the overlapping of the bands reveals the metallic nature of two of these systems, the 

presence of strongly hybridized p-d orbitals indicates the covalent character of the 

bonding between the atoms. For RuC–Rhombohedral and Ru3C-Hexagonal the metallic 

nature is preserved up to 200 GPa. Here also as pressure-induced broadening of the bands 

takes place with conduction bands shifted to higher energy values and valence bands to 
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lower energy values. This causes the a reduction in the overlap between Ru(d) states and 

C(p) states, leading to a decreased hybridization. For RuC-Rhombohedral system a local 

valley in the DOS called the pseudo-gap, which is present at the Fermi level at ambient 

pressure, is shifted away to higher energy values as pressure increases (figure 6.11) and 

the DOS value becomes larger at the Fermi level. This implies a decreased stability for 

RuC-Rhombohedral as pressure increases to 200 GPa. This trend corresponds to earlier 

finding that the formation enthalpy of RuC-Rhombohedral increases beyond 50 GPa 

(figure 6.1). For Ru3C-Hexagonal the shifting of the bands with pressure results in a 

pseudo-gap being formed at the Fermi level (figure 6.12), implying increased stability. 

This exactly corresponds to the fact that the formation enthalpy of this system becomes 

negative as pressure increases to 200 GPa (figure 6.1). 

 

6.2.5. Infrared Spectra  

 We have computationally generated the infrared spectrum of RuC-Zinc blende 

system (Harikrishnan et al., 2015b) to provide a signature convenient for experimental 

verification. Here we study how the spectrum varies with pressure. The diagonal 

elements of the Born effective charge (BEC) tensor computed for RuC-Zinc blende 

system at ambient pressure and 50 GPa are presented in table 6.4 along with the formal 

charges on the ions. 

 

Table 6.4: BEC tensor for RuC-Zinc blende system (in |e|) at different pressures 

Pressure 

(GPa) 

Ions    
      

     
          

0 Ru -5.4684 -5.4684 -5.4681  -4 

C 5.4712 5.4712 5.4709 +4 

50 Ru -5.4325 -5.4325 -5.4322 -4 

C 5.4363 5.4363 5.4363 +4 

   

The significant deviation of the in-plane and perpendicular BEC values from their formal 

charges together with their opposite signs and equal magnitudes for R and C atoms 
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indicate strong covalent bonding between Ru and C atoms at ambient and higher 

pressures. The intensity of the infrared (IR) active modes is calculated (Eq.2.77) in terms 

of the BECs and the phonon polarization vectors (Baroni et al., 2001). The computed IR 

spectra of RuC-Zinc blende system at ambient pressure and 50 GPa are given in figure 

6.13. No experimental measurements of IR spectra are available for the Ruthenium 

Carbide systems for comparison. The single peak, corresponding to a 3-fold degenerate 

mode T2, at 572.8 cm
-1

 at ambient pressure shifts to 713.45 cm-1 as pressure increases to 

50 GPa. This is expected as the phonon frequencies have increased with pressure. This 

computation provides the trend in the variation of IR spectrum of RuC-Zinc blende up to 

the limiting pressure of its mechanical stability. 

 
        Fig. 6.13: IR spectrum of RuC-Zinc blende. 

 

6.2.6. Hardness 

 Using the semi-empirical microscopic model of hardness based on the bond 

strength of a crystal proposed by Šimůnek and Vackář (2006) and  Šimůnek (2007, 

2009), we have estimated the hardness of the stable Ruthenium Carbide systems at 

ambient pressure (section 5.2.6.1). Here we further analyze how the hardness values of 
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these systems changes with pressure. For Ru3C-Hexagonal system, we have slightly 

deviated here from the procedure adopted at ambient pressure of separately estimating 

their contributions to bond strength. Here we take the average of all Ru-Ru bond lengths 

in the unit cell and specify n1=13. As two out of the three Ru atoms in the unit cell belong 

to this type and the difference in Ru-Ru bond lengths between the two types is very 

small, only an insignificant error is introduced by this approximation. As no structural 

transition is brought about by the pressure on these systems, the values of neighbours and 

the number of bonds per unit cell remain the same for all the pressures in the range 0-200 

GPa. The only changes are in the bond lengths and the volume. For each pressure the 

average bond lengths of Ru–Ru bond (d11), Ru–C bond (d12) and C–C bond (d22), the 

volume of the unit cell (Ω) and the calculated value of hardness are presented in table 6.5. 

 

 Table 6.5: The average bond lengths (in Å), unit cell volume (in Å
3
) and the 

 hardness (in GPa) at different pressures 
 Pressure 

 

(GPa) 

Ru-Ru 

bond 

d11 

Ru-C 

bond 

d12 

C-C 

bond 

d22 

Volume 

 

Ω 

Hardness 

 

 

RuC- 

Zinc blende 

0  1.9765  95.127 36.66 

50  1.8856  82.576 44.27 

RuC-

Rhombohedral 

0 2.8208 2.0484 1.3995 42.281 21.15 

50 2.6751 1.9839 1.3600 37.239 24.88 

100 2.5916 1.9412 1.3302 34.302 27.66 

150 2.5318 1.9087 1.3062 32.228 30.00 

200 2.4849 1.8823 1.2862 30.632 32.05 

Ru3C-

Hexagonal 

0 2.7482 2.1130  47.809 11.49 

50 2.6560 2.0462  42.439 13.38 

100 2.5959 2.0018  39.241 14.80 

150 2.5506 1.9680  36.968 15.98 

200 2.5139 1.9406  35.210 17.02 
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 The bond lengths and volume decrease with pressure and this leads to consistent increase 

in hardness with pressure as predicted by this model. Hardness is maximum for RuC-Zinc 

blende at 50 GPa, where its value reaches the superhard region (HV > 40 GPa). However, 

it has been shown in the previous sections that the synthesis of RuC-Zinc blende at 

ambient pressure or around 50 GPa may not be experimentally achievable and it is 

mechanically unstable around this pressure. The higher value only shows that the 

hardness of RuC-Zinc blende increases up to a pressure of around 30 GPa, the possible 

limiting pressure of its mechanical stability. RuC-Rhombohedral, which is the ground 

state structure of RuC stoichiometry, seems to be the suitable candidate for a superhard 

material among Ruthenium Carbide systems. Its hardness reaches a significantly high 

value of 30 GPa at the pressure of 150 GPa, where its synthesis can be achieved with 

sufficiently high temperature. The increased metallic component causes the hardness to 

decrease for Ru3C stoichiometry, as expected. 

 

6.2.7. Thermodynamic Properties 

 Within the harmonic approximation thermal properties due to phonons, such as 

internal energy (E), constant–volume heat capacity (Cv), Helmholtz free energy (F) and 

entropy (S) are evaluated from phonon data over a range of temperatures from the 

standard equations of statistical mechanics (Eqns.(2.69)-(2.73)) using the PHONOPY 

code. These properties are calculated for different pressures in the range 0-200 GPa and 

the results at well separated pressures are presented along with those at ambient pressure 

in figures 6.14–6.16. The Helmholtz free energy (F) and the internal energy (E) increase 

with pressure while the entropy (S) and the specific heat at constant volume Cv decrease. 

As entropy is derived as the negative of the temperature derivative of free energy, the 

pronounced variation of the free energy with pressure is reflected in entropy. Similarly, 

as specific heat is derived as the temperature derivative of internal energy, both are 

influenced to a lesser degree by the application of pressure. These three systems exhibit 

similar variations of F, S, E and Cv with temperature. Both the entropy and the specific 

heat follow the expected pattern in their temperature variation, both becoming zero as  
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Fig.6.14: Thermal properties of RuC-Zinc blende. 

 

 
Fig. 6.15: Thermal properties of RuC-Rhombohedral. 
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Fig.6.16: Thermal properties of Ru3C-Hexagonal. 

temperature approaches zero value. In the given pressure range specific heat at constant 

volume obeys Dulong–Petit law at very high temperatures and Debye–T
3
 law at very low 

temperatures. 

 

6.3. SUMMARY 

 The five structures obtained from the evolutionary algorithm based structure 

search of Ruthenium Carbide systems in the stoichiometries RuC, Ru2C and Ru3C are 

relaxed at different pressures in the range 0-300 GPa. The trend in the variation of 

formation enthalpies with pressure and the thermal energy corresponding to formation 

enthalpy per atom imply that the synthesis of RuC-Zinc blende may not be achievable at 

ambient pressure and higher pressures. The other four systems can be synthesized at 

different pressures and sufficiently high temperatures. In particular, Ru2C-Rhombohedral 

can be synthesized at around 300 GPa and Ru3C-Hexagonal at around 175 GPa. The 

monotonous decrease in the normalized unit cell volume and the lattice constants with 
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pressure show that no structural transition is present for these up to a pressure of 200 

GPa. The variation of properties with pressure in the range 0-200 GPa is further 

investigated for three of these systems that are dynamically stable at ambient pressure. 

From the computed values of elastic constants at different pressures, it is established that 

RuC-Zinc blende system does not satisfy the Born-Huang criteria for mechanical stability 

close to 30 GPa whereas RuC-Rhombohedral and Ru3C-Hexagonal systems are 

mechanically stable and ductile in the range 0-200 GPa. The analysis of phonons proves 

that RuC-Zinc blende is dynamically unstable at 100 GPa while the other two systems 

retain dynamical stability up to 200 GPa. The spreading of electronic bands and partial 

density of states with pressure show that the band gap increases with pressure for the 

semiconducting RuC-Zinc blende system. The pressure-induced shift in the pseudo-gap 

at the Fermi level of the density of states is unfavourable for RuC-Rhombohedral while it 

is advantageous for Ru3C-Hexagonal. The IR spectrum of RuC-Zinc blende system is 

generated using the phonon data and the computed Born effective charge tensor of this 

system at 50 GPa and it is noted that the IR frequency increases with pressure. The 

hardness values of the three systems are estimated using a semi-empirical model based on 

bond strength and it is observed that hardness of all these systems consistently increases 

with pressure. Hardness of RuC-Zinc blende increases towards the superhard regime up 

to the limiting pressure of 30 GPa beyond which it can be mechanically unstable while 

hardness of RuC-Rhombohedral becomes a high value of 30 GPa at the pressure of 150 

GPa. The variation with pressure in Helmholtz free energy, internal energy, entropy and 

specific heat at constant volume of the three systems is estimated from the phonon data 

within the harmonic approximation.  
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Chapter 7    

 

 

 

CONCLUSIONS AND FUTURE WORK 

 

7.1. CONCLUSIONS 

7.1.1. B12C3 Stoichiometry 

 The ground state structure of B12C3 has been an active problem because of the 

absence of experimental detection of structure with Cm symmetry as predicted by DFT 

calculations. In an attempt to settle this issue an exhaustive structure search is done in 

B12C3 and six distinct structures are obtained. Their ground state properties are 

investigated by DFT calculations. The conclusions derived from this work are the 

following : 

 The first independent confirmation using structure search is obtained that 

B11C
p
(CBC) is the ground state structure of B12C3 stoichiometry.  

 It is established that mechanically and dynamically stable structures with base-

centered monoclinic symmetry can be at thermodynamical equilibrium at 

temperatures up to 660 K. This provides direction and motivation for the 

experimentalists for further attempting the search for monoclinic symmetry in the 

ground state of B12C3 in experimental measurements. 

 The very good correlation between the experimental IR spectrum and the 

cumulative spectrum of four of the systems with Cm symmetry obtained from 

structure search implies that signatures of Cm symmetry can be detected among 

the experimental data. 

 The negative formation energy and the good correlation with the experimental 

data of elastic moduli, band gap and IR spectrum for the structure with 30-atom 

unit cell yielded by the structure search raises the possibility of such structures 

with larger cells in the ground state structure of B12C3. It may even be possible 
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that a significant mode of the existence of even B11C
p
(CBC), the established 

ground state structure of this stoichiometry, could be through its presence as a 

structural component in such larger unit cells. 

 The hardness of four of the B12C3 systems are close to the superhard regime, 

underlying their technological importance. 

 

7.1.2. B13C2 Stoichiometry 

 There has been no consensus on the ground state structure of B13C2 stoichiometry. 

Also the discrepancy between the metallic nature of B13C2 predicted by the DFT 

calculations and its semiconducting nature recorded by the experiments has been a long 

standing problem in this stoichiometry. The two problems are intertwined, as the 

computation of electronic structure is based on the crystal structure of the system. The 

work done in B12C3 stoichiometry using supercells has indicated that superlattice 

ordering could be the key to solving these twin problems in B13C2 as well. To settle these 

two problems a structure search using supercells is done in B13C2 and for the lowest 

energy structure obtained the ground state properties are calculated using DFT. The 

conclusions from this work are the following : 

 The 30-atom-cell structure (B12)(B11C
p
)(CBC)-C-B-B has many of the features of 

the two major structural candidates proposed in the literature for B13C2. It has 

both B12 cage and the CBC chain from the B12(CBC) structure supported by DFT 

calculations; it has (B11C
p
) cage from B11C

p
(CBB) structure supported by a group 

of experimentalists for its capacity to explain some of the trends in the transport 

properties. The major difference is the absence of (CBB) chain and the 

configuration of the different structural units. The formation energy of this 

structure, though positive, is easily accessible in the normal synthesis conditions 

of B13C2. These features make it a good candidate for the ground state structure of 

B13C2.   

 The semiconducting property of this structure convincingly establishes that this 

structure with larger unit cell could be the actual ground state structure of B13C2 
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or, at the least, one of the closest kin. Thus the present work has conclusively 

solved the problem of the discrepancy between the DFT calculations and the 

experimental observations over the semiconducting nature of B13C2. 

 The good correlation with the experimental data of bond lengths, elastic moduli, 

band gap and the IR spectrum for this system further strengthens its status as a 

potential ground state structure. 

 The remarkable success of this 30-atom-cell structure in explaining many of the 

experimental data on B13C2 provides the first definitive evidence that structures 

with  larger unit cells, that cannot be reduced to any smaller cells, are associated 

with crystals of B13C2 stoichiometry even at the ground state. 

 

7.1.3. Ruthenium Carbides at ambient pressure 

 The widely varying structures proposed for Ruthenium Carbides from 

experimental reports of synthesis, computational modeling and crystal structure search 

have not resulted in any conclusive structural candidates to be pursued in experiments. To 

arrive at definitive results about the structure and properties of Ruthenium Carbide over 

different stoichiometries structure search is performed in RuC, Ru2C and Ru3C 

stoichiometries and the ground state properties of the resulting structures are evaluated 

using DFT. The following are the conclusions from this work : 

 In RuC stoichiometry rhombohedral structure        is the ground state 

structure, with mechanical and dynamical stability. Zinc blende structure is 

also present in RuC stoichiometry as a higher energy possibility. Both 

structures reported from experimental synthesis (               ) have 

emerged from structure search at stoichiometries different from the reported 

ones. This is plausible in the light of the high pressure and/or high 

temperature required for their synthesis and the difficulty in identifying the 

structure with only a small amount of sample being synthesized. 
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 Though Trigonal system (     ) in RuC stoichiometry and Rhombohedral 

system (   ) in Ru2C stoichiometry are dynamically unstable at ambient 

pressure both can be stabilized under pressure. 

 RuC–Zinc blende system is semiconducting with a band gap of 0.618 eV 

while the other two stable systems, RuC-Rhombohedral and Ru3C-

Hexagonal are metallic. 

 RuC–Zinc blende has a significantly large hardness of 36.66 GPa, very close 

to the superhard regime. RuC-Rhombohedral has fairly large value of 

hardness of 21.15 GPa. As the metal to carbon ratio increases, hardness 

decreases for Ru3C. 

 

7.1.4. Ruthenium Carbides at High Pressures 

 The two experimental reports of the synthesis of Ruthenium Carbides have been 

at high temperature in the first case, and at high pressure and high temperature in the 

second case. Two of the systems obtained in the structure search in RuC and Ru2C 

stoichiometries have been stabilized at high pressure in our work (Harikrishnan et al., 

2015a) as well as in a previous computational work (Sun et al., 2013). Many of the 

industrial applications of transition metal carbides, in general, are in extreme conditions 

and this could very well be applicable for Ruthenium Carbides too. A study of the 

variation of stability and properties of Ruthenium Carbides with pressure would provide 

helpful indicators and benchmarks for future experimental investigations. It would also 

help in the optimum utilization of experimental resources. With this motivation we have 

conducted a detailed analysis of the pressure-induced variation of the structural, elastic, 

dynamical, electronic, thermodynamic properties and hardness of the three stable 

Ruthenium Carbide systems with pressure and deduced the following conclusions : 

 RuC-Zinc blende system cannot be synthesized by increasing the pressure. Even 

at ambient pressure it may not be synthesized by increasing the temperature. It is 

conclusively proved that this system is mechanically unstable at around 30 GPa 

and dynamically unstable at around 100 GPa. RuC-Zinc blende, one of the most 
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extensively studied system in the theoretical modeling of Ruthenium Carbides in 

RuC stoichiometry, can be dropped from the status of potential structural 

candidate in future experimental investigations. 

 RuC-Rhombohedral system is stable in the pressure range 0-200 GPa. Beyond 

200 GPa it could be mechanically unstable. The optimum pressure for its 

synthesis is 50 GPa, but it can be synthesized even at ambient pressure by 

providing sufficiently high temperature. 

 Ru3C-Hexagonal system is stable in the pressure range 0-200 GPa and even 

beyond that. Its formation energy is nearly zero at around 175 GPa. Even at lower 

values of pressure it can be synthesized by increasing the temperature to the 

required limit. Its stability is further indicated by the formation of a pseudo-gap in 

its electronic density of states at the Fermi level with the application of pressure. 

 No structural phase transition is possible for these three systems in the pressure 

range 0-200 GPa. 

 Hardness of RuC-Zinc blende increases to nearly superhard regime in the pressure 

range 0-30 GPa and the hardness of RuC-Rhombohedral increases to 30 GPa at 

the pressure of 150 GPa. For high pressure applications beyond 30 GPa RuC-

Rhombohedral is a better candidate than RuC-Zinc blende. 

 

7.2. FUTURE WORK 

 This work has shown the paths for extending the investigation in the case of both 

Boron Carbides and Ruthenium Carbides. The following are the main avenues to be 

pursued : 

 More experimental signatures like Raman spectrum, NMR spectrum etc. can be 

computed and compared with the experimental measurements to look for the 

presence of monoclinic symmetry in the ground state of B12C3. While computing 

these spectra the cumulative effect of different structural models should be taken 

into account, as shown in this work. 
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 The presence of structures with larger unit cells consisting of 30 atoms, 45 atoms, 

60 atoms etc. should be pursued at the ground state of B12C3 stoichiometry. The 

indication that even an established structural model like B11C
p
(CBC) could be 

mostly present in the composition of B12C3 as a structural unit of such larger-cell 

systems should be further investigated in detail. 

 With the convincing evidence of the existence of structures with larger unit cells 

in the ground state of B13C2 stoichiometry, more detailed investigation for such 

larger-cell systems should be carried out in this stoichiometry. 

 It has become clear that exhaustive crystal structure search is the sure route to the 

solutions of many of the problems identified in Boron Carbide systems. Structure 

search can be attempted in the entire homogeneity range of Boron Carbides 

addressing unsolved problems at both boron-rich and carbon-rich ends. A special 

emphasis should be on the structures with larger unit cells, instead of confining 

the search on the cells accommodating the minimum number of atoms in each 

stoichiometry.  

 Structure search can be attempted in RuC2 and RuC3 stoichiometries looking for 

harder variants of Ruthenium Carbides. It is expected that with the increase in 

carbon concentration, the hardness could be higher for these stoichiometries. 
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Appendix I 

 

 

  

PARAMETERS EVOLUTIONARY ALGORITHM 

 

% In this file the parameters of the evolutionary algorithm can be set. Please keep the 

format as it is - only change the values!!! 

 

USPEX  : calculationMethod (USPEX, VCNEB, META) 

 

****************************************** 

*      TYPE OF RUN AND SYSTEM            * 

****************************************** 

 

1     : calculationType (1 = bulk, 2 = clusters, 4 = varcomp bulk, 11 = molecular crystals) 

 

% Possible symmetry of the randomly created structures; space groups fo crystals, point 

groups for clusters 

% symmetries 

2-230 

% endSymmetries 

 

% optimisation criteria 
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enthalpy : optType (optimise by: enthalpy, volume, hardness, struc_order, aver_dist, 

mag_moment) 

 

% numbers of ions of each type 

% numIons 

12 3 

% EndNumIons 

 

% Here come the atomic numbers of the atoms involved 

% atomType 

5 6 

% EndAtomType 

 

% For hardness/softmutation, define the next few parameters (valence, etc) 

% valencies 

3 4 

% endValencies 

% bonds with valence strength above this value are always included into hardness 

formula. Need either matrix (like minDist) or a single value 

%%%%%%%%%%%%%%%% 

% goodBonds 

0.15  

% EndGoodBonds 

%%%%%%%%%%%%%%%% 
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1   : checkConnectivity     % 1 = default; 0 - use only for large systems, switches off 

hardness calculation and connectivity criteria in softmutation 

 

****************************************** 

*               POPULATION               * 

****************************************** 

30    : populationSize (how many individuals per generation) 

30    : initialPopSize (how many individuals in the first generation - if =0 then equal to 

the size specified above) 

25    : numGenerations (how many generations shall be calculated) 

25    : stopCrit (max number of generations with the same best structure before stoppage) 

 

****************************************** 

*  SURVIVAL OF THE FITTEST AND SELECTION * 

****************************************** 

3     : keepBestHM (how many structures should survive and compete in the next 

generation) 

1     : reoptOld (should the old structures be reoptimized? 1:yes, 0:no) 

0.6   : bestFrac (What fraction of current generation shall be used to produce the next 

generation) 

1     : dynamicalBestHM 

****************************************** 

*          VARIATION OPERATORS           * 

****************************************** 

0.50  : fracGene (fraction of generation produced by heredity) 
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0.10  : fracRand (fraction of generation produced randomly from space groups specified 

by user) 

1.0   : percSliceShift (fraction of heredity-produced structures with shifts in all 

dimensions) 

0.2   : fracPerm 

0.1   : fracAtomsMut (fraction of the generation produced by softmutation) 

% the following parameter describes the maximal atomic displacement amplitude in 

softmutation 

2.5   : mutationDegree 

% softMutOnly  (what generations are produced by softmutation only, format : 1-3 5 7-9 

15  etc) 

0 

% EndSoftOnly 

200   : softMutTill (starting from this generation we use coormutation as atom mutation  

 

%  percentage of structures produced by lattice mutation = 1.0-

(FracGene+FracPerm+FracRotMut) 

%  so don't need to specify explicitly 

0.50  : mutationRate (standard deviation of the epsilons in the strain matrix) 

1.00 : DisplaceInLatmutation 

 

**************************************** 

*             CONSTRAINTS              * 

**************************************** 

1.7   : minVectorLength ( minimal length of any lattice vector) 
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%%%%%%%%%%%%%%%% 

% IonDistances 

0.8 0.8 

0.8 0.8 

% EndDistances 

%%%%%%%%%%%%%%%% 

% Above is the inter-atomic distance matrix of the different ion types. IMPORTANT: If 

only 1 value present, this is taken as DISTANCE, NOT radius!!! 

%%%%%%%%%%%%%%%%% 

 

***************************************** 

*                 CELL                  * 

***************************************** 

% The following is what you know about the lattice. If you know the lattice vectors, 

% type them in as 3x3 matrix. If not, type the estimated volume. 

% Latticevalues (this word MUST stay here, type values below) 

110.00 

% Endvalues (this word MUST stay here) 

 

% splitInto (possible number of atoms per one subcell) 

1   

% EndSplitInto 
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***************************************** 

*               RESTART                 * 

***************************************** 

1    : pickUpYN (if pickUpYN~=0 , then a previous calculation will be continued ) 

7   : pickUpGen (at which generation shall the previous calculation be picked up? If = 0 , 

then a new calculation is started) 

0    : pickUpFolder (number of the results folder to be used. If = 0 , then the highest 

existing number is taken) 

 

***************************************** 

*   DETAILS OF AB INITIO CALCULATIONS   *  

***************************************** 

abinitioCode (which code from CommandExecutable shall be used for calculation? vasp 

(1), siesta (2), gulp (3), etc) 

1 1 1 1 

ENDabinit 

 

% numProcessors (how many processors per calculation) 

12 12 12 12  

% EndProcessors 

 

%Resolution for KPOINTS - one number per step or just one number in total) 

% KresolStart 

0.14 0.10 0.08 0.06 

%  Kresolend 
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200:00  : wallTime (max time for each calculation) 

30     : numParallelCalcs (how many parallel calculations shall be performed) 

%%%%%%%%%%%%%%%%% 

% What follows is the unix command to call optimizer - exactly as you would type it in 

the terminal, supported:  vasp, siesta, gulp, mol_gulp, mol_siesta, MD, NeuralNetworks, 

mol_dmacrys, cp2k, QuantumEspresso, mol_dlpoly, mol. VASP, ASE, ATK 

% commandExecutable 

mpirun -np 4 /home/msg/valsa/vasp-bin/vasp.5.2.12-col-acml-ifort >> log 

siesta 

./job3_gulpNP 

job2 

siesta<input.fdf 

./meam-lammps_han test.tcl 

timelimit -t 400 ./OptimizeNN.x > log 

timelimit -t 400 ./dmacrys <mol.res.dmain >output 

mpirun -np 4 cp2k.popt cg.inp > cp2k_output  

mpirun -np 4 pw.x < qe.in > output 

reserved for DL POLY executable 

molecular VASP 

ASE executable 

atkpython < ATK.in > ATK.out 

% EndExecutable 

%%%%%%%%%%%%%%%%%% 
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1      : doSpaceGroup (0 - no space group, 1 - calculate space groups) 

 

***************************************** 

*           HARDWARE-RELATED            * 

***************************************** 

2         : remoteRegime (0 - no remote, 1 - from Talc, 2 - remote using specially prepared 

file, see manual) 

igc_neha  : whichCluster (on which cluster are calculations performed? E.g. 

SIESTAlocal, xcom, MVS50k, BJremote, Skif, ABAX, CFN, nonParallel, neolith) 

24         : maxErrors (how many errors is one individual allowed to produce before he is 

killed) 

 

****************************************** 

%   REMOTE SETTINGS (only if REMOTE>1)   * 

****************************************** 

valsa    : username (user name to login to remote supercomputer) 

/home/msg/valsa/ : remotePath (user home folder at supercomputer) 

22        : portNumber 

USPEX-9.1.0/Hari/B4C-15-ns2   : localFolder (TALC folder) 

30r  : remoteFolder (remote folder) 

 

****************************************** 

%         FINGERPRINTS SETTINGS          * 

****************************************** 

0.05  : sigmaFing 
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0.10  : deltaFing 

10.0  : RmaxFing 

0.080 : toleranceFing (if distance is less than tolerance - structures are identical) 

0.080 : toleranceBestHM 

0.2   : maxDistHeredity 

************************************************************************

* 

*                         END OF INPUT                                  * 

************************************************************************

* 
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Appendix II 

 

 

 

ATOMIC POSITIONS 

 

Table A II.1: Atomic positions of Boron Carbide systems with 15-atom unit cell in 

B12C3 stoichiometry. 
 B11C

p
(CBC) B11C

e
(CBC) 14-atom-cage B10C

pe
2(CBB) B11C

e
(BCC) 

2b B1, B12  

(0.3265, 0.3377, 

0.1565) 

B2, B11  

(-0.3732, 

0.3373,  

-0.0526) 

B4, B8 

(-0.2306, 

0.2851, 

0.3674) 

B1, B11 

(0.4050, 0.2549, 

0.3452) 

B1, B2 

(-0.1480, 

0.2474, 

-0.4595) 

2b B2, B11 

(-0.3424,0.3392, 

0.1350) 

B3, B12 

(0.0207, 

0.2566, 

0.1504) 

B5, B10 

(-0.4553, 

0.1365, 

-0.4658) 

B2, B3 

(-0.3745, 

0.1618, 

-0.4692) 

B3, B10 

(0.4626, 0.2554, 

-0.0677) 

2b B3, B6  

(0.0520, 0.2543, 

0.3460)  

B4, B9 

(-0.2047, 

0.1624, 

-0.0359) 

B6, B12 

(0.1343, 

0.2818, 

-0.2282) 

B4, B5 

(-0.2022, 

0.3363, -

0.4395) 

B5, B11 

(0.0715, 0.3369, 

-0.2735) 

2b B7, B8  

(-0.0658,0.2566, 

-0.0501) 

B7, B10 

(0.3978, 

0.2435, 

-0.2462) 

B7, B11 

(-0.0148, 

0.1295, 

0.1041) 

B8, B9 

(-0.4789, 

0.2562, 

-0.2553) 

B6, B8 

(0.2407, 0.1642, 

-0.2533) 

1a B4  

(-0.1981, 0, 

-0.1680) 

B5 

(-0.0332, 0, 

-0.3724) 

B1 

(-0.2359, 0, 

0.1559) 

B7 

(0.4539, 0, 

-0.1121) 

B4 

(0.3972, 0, 

0.0637) 

1a B5  

(0.1843, 0, 

0.4628) 

B6 

(-0.2330, 0, 

-0.3584) 

B2 

(0.4867, 0, 

-0.1232) 

B10 

(0.2749, 0, 

0.2334) 

B9 

(0.4151, 0, 

0.4095) 

1a B9  

(-0.0135, 0, 

0.4893) 

B8 

(0.0441, 0, 

0.2859) 

B3 

(-0.2340, 0, 

-0.1954) 

C1 

(-0.3635, 0, 

-0.1577) 

B12 

(0.2179, 0, 

0.4281) 

1a C1  

(-0.0018, 0, 

-0.1730) 

C2 

(0.1449, 0, 

0.2584) 

B9 

(0.0474, 0, 

0.3325) 

C3 

(0.4704, 0, 

0.2295) 

C3 

(-0.4204, 0, 

0.0253) 

1a C2  

(-0.3797, 0, 

-0.4677) 

C1 

(-0.4188, 0, 

0.3404) 

C2, C3 

2b 

(0.4000, 

0.2913, 

-0.4981) 

C2 

(0.0957, 0, 

-0.0635) 

B7 

(-0.2350, 0, 

0.3068) 

1a B10  

(0.4950, 0, 

-0.3614) 

B1 

(0.4571, 0, 

0.4454) 

B6 

(-0.0369, 0, 

0.0318) 

C1 

(-0.0997, 0, 

0.2320) 

1a C3  

(0.3733, 0, 

-0.2452) 

C3 

(0.3290, 0, 

-0.4526) 

C1 

0.2718, 0, 

0.2373) 

B12 

(-0.1782, 0, 

0.1268) 

C2 

(0.0245, 0, 

0.1410) 
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 Table A II.2: Atomic positions of the Bravais cell of (B11C
p
)(B10C

pe
2)(CBC)(CBB) in 

B12C3 stoichiometry. Each atom occupies 1a site. 

Atoms Wyckoff Positions Atoms Wyckoff Positions 

B1 -0.34318, 0.04598, 0.19888 B16 0.49497, 0.20614, 0.02361 

B2 -0.14530, 0.04827, -0.02557 B17 -0.00414, -0.29266, -0.47891 

B3 -0.02977, -0.45218, 0.22199 B18 0.10371, -0.19518, 0.20795 

B4 0.32552, 0.38216, 0.17112 B19 -0.39534, -0.20879, -0.28881 

B5 0.10155, 0.29262, 0.21158 B20 0.32721, -0.29702, 0.16488 

B6 -0.33774, -0.45144, 0.33744 B21 0.47247, 0.04293, -0.27515 

B7 0.35199, -0.45603, 0.46887 B22 0.48771, -0.11627, 0.02700 

B8 -0.16957, -0.11093, -0.32771 B23 0.16294, 0.05008, -0.15507 

B9 -0.27934, 0.30096, -0.01263 B24 -0.27748, -0.20692,  -0.01032 

B10 0.15385, -0.45620, -0.30833 C1 0.04125, 0.05052, 0.08490 

B11 0.21546, 0.29098, 0.49010 C2 -0.32932, 0.04813, -0.47581 

B12 0.28624, 0.02178, -0.40972 C3 -0.21102, -0.45411, 0.10643 

B13 -0.39748, 0.30199, -0.29191 C4 0.21963, -0.21798, 0.47074 

B14 -0.17297, 0.20997, -0.32820 C5 0.16729, -0.45083, 0.01884 

B15 -0.00612, 0.38713, -0.47795 C6 -0.45979, -0.45079, -0.42406 
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Table A II.3: Atomic positions of the 60-atom Bravais cell of (B12)(B11C
p
)(CBC)-C-B-B  

in B13C2 stoichiometry 
Atoms Wyckoff Positions Atoms Wyckoff Positions 

 

                      4b :  (x, y, z), (x+1/2, y+1/2, z), (x, -y, z), (x+1/2, -y+1/2, z) 

                      2a :  (x, 0, z), (x+1/2, 1/2, z) 

B1, B12, 

B27, B38 

4b 0.28381, 0.33583, 0.58648 B17, B43 2a 0.52946, 0, 0.42585 

B2, B13, 

B28, B39 

4b 0.01855, 0.33514, 0.07018 B18, B19, 

B44, B45 

4b 0.17724, 0.33968, 0.38851 

B3, B16, 

B29, B42 

4b 0.17628, 0.24061, 0.18598 B20, B46 2a 0.42822, 0, 0.21777 

B4, B30 2a 0.77404, 0, 0.23916 B21, B47 2a 0.67979, 0, 0.05047 

B5, B25, 

B31, B51 

4b 0.02401, 0.25005, 0.28412 B22, B48 2a 0.82225, 0, 0.42955 

B6, B11, 

B32, B37 

4b 0.27853, 0.23894, 0.78227 B24, B50 2a 0.03248, 0, 0.77359 

B7, B33 2a 0.95722, 0, 0.33823 B26, B52 2a 0.22820, 0, 0.99693 

B8, B9, 

B34, B35 

4b 0.94077, 0.26580, 0.69589 C1, C5 2a 0.26391, 0, 0.17075 

B10, B36 2a 0.67788, 0, 0.70553 C2, C6 2a 0.77075, 0, 0.89642 

B14, B40 2a 0.94659, 0, 0.57498 C3, C7 2a 0.51501, 0, 0.63435 

B15, B23, 

B41, B49 

4b 0.93381, 0.16465, 0.90701 C4, C8 2a 0.19723, 0, 0.81857 
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Appendix III 

 

 

 

HARDNESS MODEL 

 

Computational parameters of the hardness model based on bond strength for the Boron 

Carbide systems in B12C3 and B13C2 stoichiometries are given in two tables here.  
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Table A III.1: Computational parameters of the bond strength model for the hardness of 

Boron Carbide systems in B12C3 stoichiometry 
 Type of Bond B11C

p
 

(CBC) 

B11C
e
 

(CBC) 

B10C
pe

2 

(CBB) 

B11C
e
 

(BCC) 

14-

atom 

cage 

B
pol.

/B
eq. 

n1=6 

Intericosahedron b11
(3)

 2 3 2 3 3 

s11
(3)

 0.04936 0.04966 0.04902 0.04991 0.05015 

Equatorial 

hexagon 

b11
(4)

 6 4 4 4 26 

s11
(4)

 0.04897 0.04898 0.04884 0.04875 0.04680 

Polar-equatorial b11
(5)

 15 15 12 15  

s11
(5)

 0.04777 0.04776 0.04764 0.04808  

Polar triangle b11
(6)

 4 6 4 6  

s11
(6)

 0.04722 0.04785 0.04718 0.04729  

C
pol.

/C
eq. 

n2=6 

n1=6 

 

Intericosahedron b12
(3)

 1  1  2 

s12
(3)

 0.05682  0.05732  0.05764 

Equatorial 

hexagon 

b12
(4)

  2 2 2 10 

s12
(4)

  0.05497 0.05556 0.05551 0.05433 

Polar-equatorial b12
(5)

 3 3 6 3  

s12
(5)

 0.05375 0.05335 0.05399 0.05432  

Polar triangle b12
(6)

 2  2   

s12
(6)

 0.05353  0.05402   

B
end 

n1=4 

n1'=2,6 

n2=2,6 

 

 

Intrachain b11
(1)

   1   

s11
(1)

   0.25355 

(n1'=2) 

  

b12
(1)

    1  

s12
(1)

    

 

0.30104 

(n2=2) 

 

Chain-

icosahedron 

b11
(2)

   2 2  

s11
(2)

   0.07612 

(n1'=6) 

0.07352 

(n1'=6) 

 

b12
(2)

   1 1  

s12
(2)

   0.08890 

(n2=6, 

d12
(2)

=1.5714) 

0.08861 

(n2=6, 

d12
(2)

=1.5765) 

 

C
end 

n2=4 

n2'=2,6 

n1=2,6 

Intrachain  b12
(1)

 2 2 1   

s12
(1)

 0.29433 

(n1=2) 

0.29183 

(n1=2) 

0.29159 

(n1=2) 

 

  

 

b22
(1)

    1  

s22
(1)

    0.40115 

(n2'=2) 

 

Chain-

icosahedron 

b12
(2)

 6 5 3 3 4 

s12
(2)

 0.08788 

(n1=6) 

0.08750 

(n1=6) 

0.08775 

(n1=6, 

d12
(2)

=1.5921) 

0.08516 

 (n1=6, 

d12
(2)

=1.6406) 

0.08975 

(n1=6) 

b22
(2)

  1    

s22
(2)

  0.11775 

(n2'=6) 

   

Volume (Å
3
) Ω  105.23 105.66 105.66 107.49 104.55 

Hardness (GPa) H
b
 37.74 

 

37.84 37.10 38.00 33.07 
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      Table A III.2: Computational parameters of the bond strength model  

      for the hardness of (B12)(B11C
p
)(CBC)-C-B-B in B13C2 stoichiomtery 

 Type of Bond  

B
pol.

/B
eq. 

n1=6 

intericosahedron  b11
(6)

 4 

s11
(6)

 0.04790 

polar-equatorial B12 cage b11
(7a)

 18 

s11
(7a)

 0.04757 

B11C
p
 cage b11

(7b)
 15 

s11
(7b)

 0.04811 

equatorial hexagon B12 cage b11
(8a)

 6 

s11
(8a)

 0.04842 

B11C
p
 cage b11

(8b)
 6 

s11
(8b)

 0.04682 

polar triangle B12 cage b11
(9a)

 6 

s11
(9a)

 0.04697 

B11C
p
 cage b11

(9b)
 4 

s11
(9b)

 0.04600 

C
pol. 

n2=6, n1=6 

 

intericosahedron  b12
(6)

 1 

s12
(6)

 0.05752 

polar-equatorial B11C
p
 cage b12

(7b)
 3 

s12
(7b)

 0.05394 

polar triangle B11C
p
 cage b12

(9b)
 2 

s12
(9b)

 0.05095 

C
end 

n2=4, n1=2, 6 

Intra chain  b12
(1)

 2 

s12
(1)

 0.29429 (n1=2) 

Chain-icosahedron  b12
(2)

 6 

s12
(2)

 0.08705 (n1=6) 

B22
int.

 

n1=7, n1'=6 

interstitial-

icosahedron 

 b11
(3)

 7 

s11
(3)

 0.04488 

C3
int.

 

n2=4, n1=6 

interstitial-

icosahedron 

 b12
(4)

 4 

s12
(4)

 0.08526 

B7
int.

 

n1=5, n1'=6 

interstitial-

icosahedron 

 b11
(5)

 4 

s11
(5)

 0.05780 

Volume (Å
3
)   Ω  220.11 

Hardness(GPa)  H
b
  33.76 
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