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ABSTRACT  

 
Tranquility condition inside the port and harbor has to be maintained for loading cargo 

and passengers. In order to maintain calm condition inside the port and harbor, 

breakwater has to be constructed to dissipate wave energy that is coming inside.  The 

alignment of the breakwater must be carefully considered after examining the 

predominant direction of approach of waves and winds, degree of protection required, 

magnitude and direction of littoral drift and the possible effect of these breakwaters on the 

shoreline. In general these studies are invariably conducted in a physical model test where 

various alternatives are studied and the final selection will be based on performance 

consistent with cost. Considering the coastal boundary and depth variation, field analysis 

of wave structure interaction, determination of stability and damage level of berm 

breakwater structure is difficult. Mathematical modeling of these complex interactions is 

difficult while physical modeling will be costly and time consuming. Hence one has to 

depend on physical model studies which are expensive and time consuming.  

 

Soft computing techniques, such as, Artificial Neural Network (ANN), Support Vector 

Machine (SVM),Adaptive Neuro-Fuzzy Inference System (ANFIS) and Particle Swarm 

Optimization (PSO) have been efficiently proposed as a powerful tool for modeling and 

predictions in coastal/ocean engineering problems. For developing soft computing models 

in prediction of damage level of non-reshaped berm breakwater, data set are obtained 

from experimental damage level of non-reshaped berm breakwater using regular wave 

flume at Marine Structure Laboratory, National Institute of Technology, Karnataka, 

Surathkal, Mangalore, India. These data sets are divided into two groups, one for training 

and the other for testing. The input parameters that influence the damage level (S) of non-

reshaped berm breakwater, such as, relative wave steepness (H/L0), surf similarity (ζ), 

slope angle (cotα) relative berm position by water depth (hB/d), relative armour stone 

weight (W50/W50max), relative berm width (B/ L0) and relative berm location (hB/L0) are 

considered in developing soft computing models for prediction damage level.  

 

The ANN model is developed for the prediction of damage level of non-reshaped berm 

breakwater. Two network models, ANN1 and ANN2 are constructed based on the 

parameters which influence the damage level of non-reshaped berm breakwater. The 

seven input parameters that are initially considered for ANN1 model are (H/L0), (ζ), (cot 



ii 
 

α), (hB/d), (W50/W50max), (B/ L0) and (hB/L0). The ANN1 model is studied with different 

algorithm namely, Scaled Conjugate Gradient (SCG), Gradient Descent with Adaptive 

learning (GDA) and Levenberg-Marquardt Algorithm (LMA) with five numbers of 

hidden layer nodes and a constant 300 epochs. LMA showed good performance than the 

other algorithms. Also, influence of input parameters is evaluated using Principal 

Component Analysis (PCA). From PCA study, it is observed that cotα is the least 

influencing parameter on damage level. Based on the PCA study, least influencing 

parameter is discarded and ANN2 model is developed with remaining six input 

parameters. Training and testing of the ANN2 network models are carried out with LMA 

for different hidden layer nodes and epochs. The ANN2 with LMA 6-5-1 with 300 epochs 

gave good results. It is observed that the correlation of about 88% between predicted and 

observed damage level values by the ANN2 network models and measured values are in 

good agreement 

 

Furthermore, to improve the result of prediction of damage level of non-reshaped berm 

breakwater, SVM model was developed. This technique works on structural risk 

minimization principle that has greater generalization ability and is superior to the 

empirical risk minimization principle as adopted in conventional neural network models. 

This model was developed based on statistical learning theory. The basic idea of SVM is 

to map the original data x  into a feature space with high dimensionality through a non-

linear mapping function and construct an optimal hyper-plane in new space.  SVM 

models were constructed using different kernel functions.  In order to study the 

performance of each kernel in predicting damage level of non-reshaped berm breakwater, 

SVM is trained by applying these kernel functions. Performance of SVM is based on the 

best setting of SVM and kernel parameters.  Correlation Coefficient (CC) of SVM 

(polynomial) model (CC Train = 0.908 and CC Test = 0.888) is considerably better than 

other SVM models. 

 

To avoid over-fitting or under-fitting of the SVM model due to the improper selection of 

SVM and kernel parameters and also the performance of SVM, hybrid particle swarm 

optimization tuned support vector machine regression (PSO-SVM) model is developed to 

predict damage level of non-reshaped berm breakwater. The performance of the PSO-

SVM models in the prediction of damage level is compared with the measured values 

using statistical measures, such as, CC, Root mean Square Error (RMSE) and Scatter 
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Index (SI). PSO-SVM model with polynomial kernel function gives realistic prediction 

when compared with the observed values (CC Train = 0.932, CC Test = 0.921). It is 

observed that the PSO-SVM models yield higher CCs as compared to that of SVM 

models. 

 

However, it is noticed that ANN model in isolation cannot capture all data patterns easily. 

Adaptive Neuro-Fuzzy Inference System (ANFIS) uses hybrid learning algorithm, which 

is more effective than the pure gradient decent approach used in ANN. ANFIS models 

were developed with different membership namely Triangular-shaped built-in 

membership function (TRIMF), Trapezoidal-shaped built-in membership function 

(TRAPMF), Generalized bell-shaped built-in membership function (GBELLMF), and 

Gaussian curve built-in membership function (GAUSSMF) to predict damage level of 

non-reshaped berm breakwater. The performance of the ANFIS models in the prediction 

of damage level is compared with the measured values using statistical measures, such as, 

CC, RMSE and SI. ANFIS model with GAUSSMF gave realistic prediction when 

compared with the observed values (CC Train = 0.997, CC Test = 0.938). It is observed 

that the ANFIS models yield higher CCs as compared to that of ANN models. 

 

The different soft computing models namely, ANN, SVM, PSO-SVM and ANFIS results 

are compared in terms of CC, RMSE, SI and computational time. The hybrid models in 

both (ANFIS and PSO-SVM) cases showed better results compared to individual models 

(ANN and SVM). When the hybrid models are compared, ANFIS model gives higher CC 

and lower RMSE. But considering computational time, ANFIS has taken more time than 

PSO-SVM model. Hence PSO-SVM is computationally efficient as compared to ANFIS. 

ANFIS and PSO-SVM models perform better and similar to observed values. Hence, 

ANFIS or PSO-SVM can replace the ANN, SVM for damage level prediction of non-

reshaped berm breakwater. ANFIS or PSO-SVM can be utilized to provide a fast and 

reliable solution in prediction of the damage level prediction of non-reshaped berm 

breakwater, thereby making ANFIS or PSO-SVM as an alternate approach to map the 

wave structure interactions of berm breakwater. 

 

Keywords: Berm Breakwaters, Damage Level, Prediction, ANN, ANFIS, SVM, PSO-

SVM. 
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CHAPTER 1 

INTRODUCTION 

1.1 GENERAL 

India is one of the world‟s fast emerging new economies. The development of 

economy is mainly possible by new infrastructure to connect its huge hinterland, so 

goods, commodities and the final products can be transported from the coast to India‟s 

interior and vice versa. This implies that harborage and harbor facilities should be 

improved. Further, with the development in coastal regions, the environmental stress 

is rapidly growing on the coastal belt which has to be protected and it is a challenge 

for the coastal engineers to protect the environment. The coastal structures built to 

protect the harbor and shores such as seawalls, groins, offshore breakwaters, artificial 

nourishments are required to withstand the destructive forces of the sea waves. These 

structures have been tried to overcome the problem of erosion and also for 

maintaining tranquility condition inside port and harbor for loading cargo and 

passengers. Some of them have been successful while some others have failed to 

achieve the job assigned to them. The failure may be due to improper location and 

design or wrong choice of protective measures. The cause for the erosion is generally 

due to the concentration of wave energy at a specific location. Hence there is a need 

to dissipate the wave energy before it reaches coast. The use of breakwaters is one of 

the solutions to dissipate the wave energy. 

 

1.2 BREAKWATER 

Breakwaters are widely used throughout the world for protection from the wave 

action and to provide shelter to harbor and port. They are used to protect beaches, 

cultivation land, and valuable habitats from erosion. Breakwaters are also used for 

dual purposes like dissipating wave energy and providing loading facilities for cargo 

and passengers. The alignment of the breakwater must be carefully considered after 

examining the predominant direction of approach of waves and winds, degree of 

protection required, magnitude and direction of littoral drift and the possible effect of 

these breakwaters on the shoreline. In general these studies are invariably conducted 
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in a physical model test where various alternatives are studied and the final selection 

will be based on performance consistent with cost. From economic point of view 

breakwaters represent a significant portion of capital investment in the development 

of port and would require a regular maintenance to retain their effectiveness. 

Breakwaters are classified mainly as: 

• Rubble mound or heap breakwaters, 

• Upright or vertical wall breakwaters, 

• Mound with superstructure or composite breakwaters, 

• Special type of breakwaters. 

1.2.1 Rubble Mound Breakwaters 

These are trapezoidal shaped breakwaters and the oldest form of coastal protection 

work. A rubble mound breakwater dissipates the major part of the incoming wave 

energy by inducing wave breaking on the slope and partly by porous flow in the 

mound. The remaining energy is partly reflected back to the sea and partly transmitted 

into the harbour area by wave penetration and wave overtopping (if the breakwater is 

low crested). Various kinds of rubble mound breakwaters have been constructed 

depending on the purpose of the breakwater (Fig. 1.1). 

 

Fig. 1.1 Types of rubble mound breakwaters (Andersen, 2006) 

The most simple breakwater consist only of a mound of stones called as rubble mound 

breakwater (Fig. 1.1-a). However, this type of structure is very permeable, and may 



3 
 

cause significant wave and sediment penetration. In addition, large stones are 

expensive, because most quarries generate a lot of finer material and a relatively small 

number of large stones. Fig. 1.1-b and 1.1-c are the two most common types of rubble 

mound breakwaters known as conventional rubble mound breakwaters with and 

without a superstructure respectively. These consist of various layers with primary 

layer exposed to wave action. The primary armour layer consists of rock or concrete 

units which are large and heavy to remain in their position during wave conditions. 

This layer also protects the bottom layers namely secondary layer and core. The 

secondary layer prevents finer material being washed out through the primary armour 

layer acts as filter layer. The core consists of fine material which acts as barrier for the 

water to pass through it. A superstructure is provided when overtopping is not to be 

allowed. 

Since the 1980s a design based on natural reshaping of the front rock armour during 

wave action has gained more attention (Fig. 1.1-d) (Andersen, 2006). This type of 

breakwater is known as berm breakwaters or reshaping breakwaters. The main 

advantage of this structure is that simpler construction methods can be applied. The 

berm breakwater concept is described in detail in later sections. 

Lately, non-reshaping berm breakwaters have been considered, often with several 

stone classes to maximize the total stability and quarry utilization, as indicated in Fig. 

1.1-e. Especially in Iceland this structure is widely used, and is therefore also known 

as the Icelandic type of berm breakwater. Structures constructed with an S-shaped 

profile (Fig. 1.1-f) are typically used in large water depths to reduce the volume of 

material, but construction costs are in most cases significantly larger than for the 

reshaping berm breakwater, resulting in approximately the same profile. Fig. 1.1-g 

shows a reef breakwater which is a submerged breakwater mainly used for protecting 

beaches. 

1.2.2 Upright or Vertical Wall Breakwaters 

Vertical or upright wall breakwaters (Fig. 1.2) are of huge concrete blocks, gravity 

walls, concrete caissons, rock filled timber cribs and concrete or steel sheet pile walls. 

The selection of type of breakwater would be primarily based on the wave climate in 

that area, depth of water, availability of construction materials and local manpower, 
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geotechnical nature of seabed, function of breakwater, technical know-how and 

contractor potential available. 

 

Fig. 1.2 Vertical wall breakwater (Takahashi, 1996) 

1.2.3 Mound with Superstructure or Composite Breakwaters 

Composite breakwaters are combination of rubble mound and vertical wall. These are 

used in locations where either the depth of water is large or there is a large tidal range 

and in such situations, the quantity of rubble stone required to construct a breakwater 

to the full height would be too large. In such conditions, a composite breakwater is 

constructed which is a structure with rubble mound base and a super structure of 

vertical wall as shown in Fig 1.3. 

 

Fig. 1.3 Composite breakwater (Takahashi, 1996) 

1.2.4 Special Type of Breakwaters 

Special type breakwaters are those employing some kind of special features and are 

not commonly used. Special type breakwaters can be divided into two kinds. One is 

the non gravity type breakwaters such as a pile type, floating, pneumatic etc. The 

other is the conventional breakwater with special features conceived to improve the 

function and stability of breakwater. Fig. 1.4 shows some of the special types of 

breakwaters. Some special breakwaters are as follows; 

a) Curtain wall breakwater – commonly used as secondary breakwater to protect 

small craft harbours. 

b) Sheet pile walls – used to break relatively small waves. 
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c) Horizontal plate breakwater – can reflect and break waves and are supported 

by a steel jacket.  

d) Floating breakwater – very useful as breakwater in deep waters especially in 

places where the ground soil is poor for foundation. 

  

Fig. 1.4 Special breakwaters (Takahashi, 1996) 

1.3 BERM BREAKWATER 

A berm breakwater is a rubble mound breakwater with a horizontal berm above or at 

still water level (SWL) on the seaward side (Fig 1.5). During exposure to wave action 

of certain intensity, the berm reshapes until eventually an equilibrium profile of the 

stones on the seaward face is reached. The basic principle involved in the concept of 

berm breakwaters is the utilization of smaller stones available locally. The dimension 

of the horizontal berm at or around the water level is to be determined by model 

studies. The berm breakwater will not fail in a catastrophic manner because the 

permeable berm of smaller stones consolidates into a nested surface. The relatively 

high porosity of the berm allows the waves to propagate into the armor stones and 

dissipate the energy over a large area (Baird and Hall, 1984).  
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Fig. 1.5 Berm breakwater 

Berm breakwater has a main feature consisting of rather thick cover layer of stones, 

relatively much smaller than on a conventional breakwater which comprises of one or 

two layers of cover blocks. The berm breakwater has been adopted at several places 

as an economic solution when large cover blocks of natural stones are not available. It 

might also be an economical solution even when large cover blocks are available for 

conventional breakwater. The uncertainty in the wave climate favors a breakwater 

design that is not too sensitive to the wave height with respect to stability.  

 

Berm breakwaters are further classified by PIANC (2003) based on its reshaping as: 

 Statically Stable Non- Reshaped: These are similar to conventional breakwaters 

with only few stones allowed to move. The H/D (Stability number) value is less 

than 1.5 these structures. 

 Statically Stable Reshaped: The profile of the breakwater is allowed to reshape to 

an equilibrium profile after which the stones are also stable without any movement. 

For these structures, H/D value ranges from 1.5-2.7.  

 Dynamically Stable Reshaped: The profiles in these structures attain an 

equilibrium profile, but, the individual stones may move up and down the slope. 

The H/D value is more than 2.7 for dynamically stable reshaped berm 

breakwaters. 

 

The advantages of berm breakwater are: 

 Use of smaller stones that are easily available at the site 

 Weight of stones can be 20% to 30% of the armor units required in 

conventional design 
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 Optimum utilization of quarry yield 

 Simple design and construction method 

 Enhanced speed of construction 

 Though volume may be more compared to conventional breakwater, effective 

cost savings due to ease of construction utilizing smaller cranes etc. 

 

1.4 DAMAGE LEVEL 

The amount of displacement of rock to be expected in the structures life time and 

under design conditions, is an essential parameter in the design process of statically 

stable rubble mound breakwater. This amount of displacement is called damage. A 

meaningful definition for „damage‟ is essential for qualitative analysis of stability of 

rubble mound structures. The traditional method of quantifying damage was physical 

counting of displaced units caused by wave action. The damage parameter was 

defined by Hudson (1959) as the percentage of armor units displaced from the cover 

layer. The removal of up to 1% of the total number of armor units in the cover layer is 

considered as „no damage‟. 

According to Van der Meer (1988) the term “Damage” is defined as the displacement 

of armor units (Fig 1.6). Relation used to measure the damage level (S) is  

S =  A
𝐷𝑛50

2                                                                       (1.1) 

Dn50 =  
M50

ρ
a

  

1
3 

                                                              (1.2) 

where, A is the area of erosion and Dn50 is the nominal diameter of the stones M50= 

median stone mass, and  ρa=density of stone. A physical description of the damage S 

was given as the number of squares with side Dn50 that fitted into the erosion area. 

Another description was that the number of cubic stones with a side of Dn50 eroded 

within a width of one Dn50. The actual number of stones eroded within this width of 

one Dn50 could be more or less than S, depending on the porosity, the grading of the 

armor units and the shape of the stones. But generally, the actual number of stones 

eroded within a width of one Dn50 was equal to 0.7 to 1.0 times the damage S. 
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Fig.  1.6   Erosion area and damage level, S (Van der Meer 1988) 

CEM (2006) gives a conventional damage level classification and related values of 

the damage parameters, S as shown in Table 1.1. 

Table 1.1 Damage classification and related values of damage parameter 

No damage No unit displacement.  

Initial damage A few units are displaced. This damage level corresponds to the 

no-damage level used in Shore Protection Manual 1977 and 

1984 in relation to the Hudson formula stability coefficient, 

where the no-damage level is defined as 0-5% displaced units 

within the zone extending from the middle of the crest height 

down the seaward face to a depth below SWL equal to a Hs-

value which causes the damage 0-5% 

Intermediate 

damage ranging 

from moderate to 

severe damage 

Units are displaced, but without causing exposure of the under 

or filter layer to direct wave attack, S = 5-10% for rock slopes 

1:2 -1:3 

Failure The under layer  or filter layer is exposed to direct wave attack, 

S ≥ 20% 

  

1.5 SCOPE OF THE PRESENT INVESTIGATIONS 

In early decades, many researchers carried out experimental, theoretical and 

numerical investigations on breakwaters (Priest et al., 1964; Brunn et al., 1976; Baird 

and Hall, 1984; Ergin et al., 1989; Sigurdarson et al. 1998; Hall and Kao, 1991; Van 

der Meer, 1992 and 1996; Torum et al., 1999 and 2003; PIANC, 2003). Physical 

model studies on breakwaters involve several common assumptions applied in 

hydrodynamics which may not be accurate.  
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In physical modeling, there are number of uncertainties associated with many of the 

governing variables and their effects on the performance of breakwater. Engineering 

judgments based on experience, subjectivity, confidence on model, and other factors 

are frequently used to deal with this non-statistical uncertainty. Most of the problems 

need to consider a large number of parameters and dimension, which affect the 

response of the systems. Thus, complexity is also an inherent feature of these 

problems. Because of these characteristics, conventional mathematical modeling for 

predicting the performance of breakwaters tends to become very difficult and often 

the prediction is quite unreliable. Further, a simple mathematical model is not 

available to predict the damage of berm breakwaters because of these complexities. 

 

From the literature review (Chapter 2), it is found that, soft computing techniques, 

such as, Artificial Neural Network (ANN), Fuzzy Logic (FL), Adaptive Neuro Fuzzy 

Inference System (ANFIS), Support Vector Machine (SVM), Particle Swarm 

Optimization (PSO) etc., are successfully applied to coastal engineering problems 

which are complex in nature. However, it is observed that there are hardly any 

applications of soft computing techniques to predict damage level of non-reshaped 

berm breakwater. 

 

1.6 ORGANIZATION OF THE THESIS 

The thesis is presented in six chapters: 

Chapter 1 - Introduction: Introduction to breakwaters, classification of breakwaters 

and its damage level and scope of the present investigations has been discussed. 

Chapter 2 - Literature review: The literature review on theoretical and analytical 

studies specifically related to berm breakwaters, applications of soft computing 

techniques in coastal/ocean engineering, problem formulation and objectives of 

present work have been discussed. 

Chapter 3 – Experimental Data and Methodology:  Briefly explained features of 

experimental model setup, experimental investigations carried out in the wave flume 

and data used for developing soft computing models. Also, theoretical background of 

research methods used to developed soft computing models to predict damage level of 
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non-reshaped berm breakwater, such as, ANN, SVM, ANFIS and PSO has been 

discussed. 

Chapter 4 – Results and Discussion: The results obtained from the soft computing 

models, such as, ANN, SVM, PSO-SVM and ANFIS in prediction of damage level of 

non-reshaped berm breakwater are analyzed, interpreted and discussed. Also, the 

performance of these models is compared with each other. 

Chapter 5 – Summary and Conclusions: Brief summary of the research work and the 

conclusions drawn based on the results of soft computing models and suggestions for 

future work have been presented. 

Appendix I includes the MATLAB programs used to develop various soft computing 

models. 

The Appendix I is followed by references, list of publications based on the present 

work, and a brief resume of the researcher.  
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CHAPTER 2 

LITERATURE REVIEW 

2.1GENERAL 

Berm breakwaters were introduced in early 1980’s. At large water depths, where 

design waves are high, berm breakwater of two layer armor stone have proved to be 

economical. Layers can be constructed and designed using smaller stones to fit the 

available armor stone in quarry. The wave energy and hydrodynamic force is 

dissipated in the armor stone mass. Due to this force smaller stones get displaced 

within the layer and results in the formation of a stable layer. 

 

In order to understand the behavior of berm breakwater due to wave action a detailed 

study on berm breakwater is necessary. It is important to get safe and optimal 

structure. The studies can be carried out as a physical model study or analytical study. 

The advantage of analytical study over physical model study is explained in section 

1.2 of Chapter 1. The techniques such as artificial neural networks, fuzzy logic, 

particle swarm optimization, genetic algorithms, support vector machines or 

combinations of these soft computing techniques can be adopted to carry out studies 

on berm breakwaters. 

Use of soft computing techniques can be an effective alternative due to following 

reasons: 

1. Considering the coastal boundary and depth variation, field analysis of wave 

structure interaction, determination of stability and damage level of berm 

breakwater structure is difficult.  

2. Mathematical modeling of these complex interactions is difficult while 

physical modeling will be costly and time consuming. 

 

In this chapter, a detailed review of literature on berm breakwaters, soft computing 

tools used in coastal engineering field which is carried out to know the advancement 

in research and the advantages or drawbacks of the available methods. 
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2.2 REVIEW OF STUDIES ON BREAKWATER 

Many researchers have carried out experimental and numerical studies on breakwaters 

in the past and some of them are discussed below: 

Hudson (1959) conducted laboratory investigations to determine the criteria for the 

design and construction of rubble-mound breakwaters. A general stability equation 

was derived which was used to guide the experimental and test data.  A new 

breakwater stability formula was obtained after unknown function in the stability 

equation was determined for the selected breakwaters and test wave conditions by 

using the test data results. Also wave run-up studies were carried out. According to 

Hudson, the weight of the individual armor unit is given by 

  




cot
3

3




K

H
W

D

r                                                                  (2.1) 

Where,   r is the specific weight of armor units; H is the design wave height; ∆ is the 

relative mass density of armor and KD is the stability coefficient. In deriving the 

stability formula Hudson neglected the friction between the armor units.  It was also 

assumed that the dynamic effect of the waves was to lift and roll the armor units from 

their initial positions on the breakwater slope.  

 

A mathematical model was developed by Kobayashi and Jacobs (1985) to predict the 

flow characteristics in the down rush of regular waves and movement of armor units 

on the slope of a coastal structure. Stability analysis of armor units was performed 

including the drag, lift and inertia forces acting on an armor unit which vary along the 

slope. Then the comparison was made with the large scale test data based on their 

earlier study. Their model did not consider the effects of permeability, bottom friction 

and water depth, but, the model was able to predict the observed zero-damage 

stability number satisfactorily. 

 

A mixed numerical model was developed by Hannoura and McCorquodale (1985) to 

simulate wave motion in rubble-mound structures. Their model was applied to check 

the dynamic stability of the seaward slope under severe wave attack of the sines 

breakwater. The predicted internal water surface values were compared with a 
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physical model measurement which was found to be reasonable. But, the model 

showed a lower factor of safety than the traditional analysis. They provided additional 

terms to take into account the effect of added mass which improved the detection of 

internal wave breaking and the entrainment of air near the interface. 

 

Van der Meer (1988) established new stability formulae for rubble mound 

breakwaters under random wave attack with comprehensive model investigations at 

Delft Hydraulics, Netherlands.  The experiments were conducted to include variety of 

structures with differing core and under layer permeability for a wide range of wave 

conditions.  Considering type of wave breaking two formulae were derived, one for 

plunging waves and other for surging waves. These equations are now popularly 

known as the Van der Meer formulae.  All the test results showed a clear difference 

between plunging and surging waves.  The minimum stability of a structure was 

during the transition of waves from surging to plunging waves. Using curve-fitting 

technique, Van der Meer (1988, 1988a) specified two stability formulae, as follows. 

For plunging waves: 
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For surging waves: 
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where,   is the relative mass density of armor, S is the damage level, Hs is the 

significant wave height at the toe of the structure in meters,  is the angle of the 

breakwater slope with horizontal, P is the permeability coefficient, N is the number of 

waves, m is the surf similarity parameter using average wave period Tm, Dn50 is the 

nominal diameter of the armor unit in meters. 

Another equation to calculate the critical m during the transition from plunging to 

surging waves was given as, 

                  
  )5.0/(1

31.0 tan2.6



P

m P                                                     (2.4) 
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Depending on slope angle and permeability the transition lays between ξm = 2.5 to 4. 

For cot greater than or equal to 4.0 the transition from plunging to surging does not 

exist and for these slope angles equation (2.3) must be used. 

 

The wave structure interaction of berm breakwaters was studied by Van Gent (1995) 

with the help of physical as well as numerical models. Wave motion calculated by the 

numerical model was verified by physical model tests. The numerical study 

considering the finite-amplitude shallow-water wave equations was able to simulate 

the wave motion both on and inside the structure. He included a new morphological 

model for cross-structure transport into the initial model for incident waves which 

resulted in a new combined wave load-response model that was capable of simulating 

the reshaping process of coastal structures like berm breakwaters and gravel beaches. 

The combined numerical model was compared with physical model test data and also 

with prototype data. From the comparison he concluded that the developed numerical 

model was able to predict the influence of parameters such as wave height, wave 

period, and stone diameter on the reshaped seaward slopes fairly accurately.  

 

Tørum (1988) carried out laboratory tests on berm breakwaters in shallow water, e.g. 

in water depths where waves might break before they break on the breakwater. 

Analysis was made on test results for breakwaters in shallow and deep waters. 

Combined equations for the berm recession of berm breakwaters in shallow and deep 

water were presented. 

 

Melby and Kobayashi (1998) carried out an experiment on breakwater damage by 

considering long duration using irregular waves in a flume. By varying the parameters 

like wave height, wave period, water depth, storm duration, and stone gradation 

systematically, a new damage measurement technique was developed and damage 

development data was acquired for breaking wave conditions. Their experiment 

yielded relationships for both temporal and spatial damage development. The 

equations for predicting temporal variations of mean damage with wave height and 

period varying with time in steps, developed by Melby and Kobayashi (1998a, b), 

performed well in describing the damage of the breakwater. For new test series, the 
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damage initiation was consistently predicted by more than a standard deviation. The 

prediction was shown to improve significantly if the initial profile adjustment was 

accounted in the test series with relatively small cumulative damage. 

 

Experiments were conducted by Tørum et al. (2003) to study the stability of 

multilayer berm breakwaters. The multilayer was achieved by using two different 

mass densities of stone. An equation for berm recession was derived considering 

stone gradation and water depth. They also investigated the erosion in berm 

breakwaters and wave overtopping discharges. From their research they concluded 

that the stone size required for toe protection could be calculated using the existing 

formulae, but, only as a first approximation. They observed that overtopping was less 

in case of reshaped berm breakwaters when compared to conventional rubble mound 

breakwaters. They also noticed that scour was greatly affected by scale of the tests 

and it was found to be increasing with larger scales. 

  

Melby and Hughes (2003) developed an equation considering the wave momentum 

flux which was found to be proportional to the maximum wave forces on armor units. 

They also developed two equations, each, for surging and plunging waves as 

developed by Van der Meer (1988) considering his small scale test data. Their data 

was limited mostly for non-breaking waves, normally incident waves, and near-shore 

slope 1V:20H, non-overtopped structures and angular randomly-placed armor stone. 

Wave-structure interaction and near-shore nonlinear wave transformation were 

separated out to overcome a major limitation of pervious stability relations. The 

newly developed relations clearly illustrated the influence of water depth and wave 

period on stability.   

 

Rao et al. (2004) analyzed experimentally the stability of S-shaped breakwater with 

reduced armor unit weight and the influence of wave height, wave period, and berm 

width on the breakwater. The studies showed that 30% reduced armor weight model 

with 0.6 m berm was stable for the design wave height. Their results showed a large 

influence of wave period on the stability of berm breakwaters.  
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The influence of wave height, wave period, water depth and seaward slope on the 

stability, wave run-up, and wave run-down of statically stable rubble-mound berm 

breakwater was investigated by Rao et al. (2008) through physical model studies. 

They observed a greater influence of wave height and wave period on the stability of 

berm breakwaters. They found gentle slopes of breakwater prone to less damage 

compared to steeper slopes and even wave run-up and run-down were less on gentle 

slopes.   

 

Losada et al. (2008) described the results of a two-dimensional numerical modeling 

investigation conducted on rubble mound breakwaters mainly focusing wave 

overtopping process. They adopted a new model, COBRAS-UC, which was an 

updated model of COBRAS (Cornell Breaking Waves and Structures).They used 

Volume of Fluid Technique (VOF) to capture the free surface. Several phenomena 

like wave run-up, wave reflection, wave transmission through rubble mounds, wave 

overtopping and agitation at the lee side were simulated using the model. They also 

carried out two-dimensional experimental studies to verify the performance of model. 

Prediction by the model was in good agreement with the experimental results. 

 

A probabilistic hydrodynamic model for the prediction irregular wave action on the 

wet and dry zone of a permeable structure was developed by Kobayashi et al. (2010).  

The results of the four test series was used for comparison with the model. The 

comparison test results showed that water depth, velocity, and discharge exceeded by 

2% of 1000 wave incidents. Input from the hydrodynamic model was used to modify 

a formula for bed load on beaches for predicting the damage progression of a stone 

armor layer. The eroded area of the damage layer was predicted well by the modified 

model, but, the deposited area was over estimated. This was because of not 

considering the discrete stone units deposited at the toe of the structure. 

 

Van Gent (2013) developed an empirical equation for stability of rubble mound 

breakwaters with berm armored with rock through experimental study. The tests 

mainly focused on the slope above and below the berm, and also the stability of the 

rock at the berm. The influence of the level of the berm, slope angle, wave steepness 
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and width of the berm were also investigated. From the study, the rock size on the 

upper slope of the berm could be reduced significantly compared to straight slopes.  

 

Many researchers through their studies have proved that armor stability is a function 

of wave height, wave period, wave groupiness, wave breaking, water depth, structure 

slope, armor unit weight, armor gradation, storm duration and porosity. Each of them 

investigated structure stability with respect to different parameters (Hudson 1959; 

Ahrens 1970; Ergin and Pora 1971; Bruun and Gunbak 1976; Kondo et al. 1976; 

Johnson et al. 1978; Carver and Davidson 1982; Ahrens 1984; Timco et al. 1984; Van 

der Meer and Pilarczyk 1984; Gadre et al. 1985; Van der Meer 1988; Hall and Kao 

1991; Poonawala et al. 1994; Hegde and Samaga 1996; Rao 2000; Rao et al. 2004 and 

2008). 

 

But from the review literatures, it is found that the theoretical determination of 

stability and damage of breakwaters is difficult because of the difficulty in modeling 

the energy dissipation at the structure which is basically due to the turbulence caused 

at the structure. Moreover, there is no mathematical model to determine the damage 

level of breakwaters.  Therefore, it is necessary for researchers to adopt the physical 

model study to quantitatively determine the parameters that influence the 

phenomenon. However, there are some difficulties in physical modeling that makes it 

inconvenient to use. Firstly, physical modeling is a time consuming process and 

expensive. It requires costly set-up and continuous maintenance. The experimental 

facility and instruments needs to be calibrated regularly before usage, failing as such 

may cause experimental errors. Further, area required for setting up of the model 

study is large and needs skilled men for operating the instruments. Alternatively, soft 

computing techniques can overcome these disadvantages and also provide fast and 

reliable solution in predicting the damage level of berm breakwaters. The next few 

paragraphs highlight the usage of these soft computing techniques in coastal field. 
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2.3 REVIEW OF LITERATURE ON APPLICATIONS OF SOFT 

COMPUTING TECHNIQUES IN COASTAL / OCEAN ENGINEERING 

Several researchers have adopted soft computing techniques to solve complex 

associated with coastal/ocean engineering problems and some of them are discussed 

below: 

 

Neural networks technique was applied to predict the stability of rubble mound 

breakwater (Mase et al., 1995). They considered several parameters like stability 

number, permeability of breakwater, damage level, surf similarity parameter, number 

of attacking waves, spectral shape parameters and dimensionless water depth. The 

developed model predicted the damage level satisfactorily. 

 

Mase and Kitano (1999) applied Neural Network (NN) techniques to predict impact 

wave force which would act on the upright section of a composite breakwater. Four 

non-dimensional parameters were fed as input viz. h/L, H/h, d/h, and Bm/h where, h 

denotes the total water depth, H represents the wave height, L is the wavelength, Bm is 

the horizontal distance from the shoulder of mound to the caisson and d is the water 

depth above the mound. The parameters of the model were determined through self-

learning and the results were accurate.  

 

Deo and Kumar (2000) estimated the weekly mean significant wave heights using 

neural network, and model based statistical and numerical methods, from their 

monthly mean observations. They trained the network using error back propagation, 

conjugate gradient and cascade correlation algorithms. The training of the model 

using cascade correlation took minimum training time with better Correlation 

Coefficient (CC) between observations and network output. 

 

A model to estimate the significant wave heights and average wave period from the 

generating wind speed was developed by Deo et al. (2001) using 3-layered feed 

forward neural network. They trained the network with different algorithm and used 

three sets of data. The trained network provided satisfactory results in deep water, in 
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open wider areas and also when the sampling and prediction interval were large, such 

as a week. They also revealed that a proper choice of training patterns was found to be 

crucial in achieving adequate training.  

 

The back propagation neural network method was applied for accurate prediction of 

tides (Mandal et al., 2001). Their neural network model predicted the time series of 

hourly tides using quick learning process called quick prop. The CC between 

predicted tides and measured tides was found to be 0.998. It showed a good 

agreement between neural network prediction and measured data set. 

 

Large data requirement by the traditional method for prediction tidal level can be 

avoided by adopting NN with little dataset (Lee and Jeng, 2002). 

 

To predict long term water levels in a coastal inlet a Regional Neural Network–Water 

Level (RNN-WL) model using feed forward, back propagation neural network 

structure was developed by Huang et al. (2003). Hourly data of over one month period 

was used for training the network and another one month for validating the model. 

The model was then tested for prediction over year long periods. The model predicted 

the long term tidal as well as non-tidal water levels in the coastal inlets fairly accurate 

even though there were significant changes in the amplitude and phases of the water 

levels over the regional study area. The model was then updated to examine the effect 

of distance on the model performance. The results of the model indicated that RNN-

WL model could be used as a supplement for the long-term historical water level data. 

 

Deo and Jagdale (2003) developed NN model for prediction of breaking waves. They 

trained the network by using the existing deterministic relations with a random 

component. Fresh laboratory observations were used for validating the model. The 

results showed that the prediction of breaking height and water depth by the model 

were more accurate than the available traditional empirical formulae. 

 

An ANN model to improve wave short term forecasts was developed by 

Makarynskyy (2004). The model was trained and validated using hourly observations 
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of significant wave heights and zero-up-crossing wave periods from two offshore 

sites. Two approaches were adopted for the forecasting. One approach corrected the 

predictions using the initial simulations of the wave parameters with lead times from 

1h to 24h and the other approach was used for merging the measurements and initial 

forecast. Results showed satisfactory predictions at both locations. 

 

Lee (2004) developed a back propagation neural network model using short term on 

site tidal level data obtained from Taichung Harbor in Taiwan. Model predicted 

results were compared with conventional harmonic methods, indicates that the back 

propagation neural network efficiently predicted the long term tidal levels. 

 

The feed forward neural network was used to predict hourly sea level variations for 

1/2, 1, 5 and 10 days mean sea level (Makarynskyy et al., 2004). The results showed 

that the sea level prediction was good in terms of CC (0.7-0.9), Root Mean Square 

Error (RMSE) (about 10% of tidal range) and Scatter Index (SI) (0.1-0.2). 

 

Mandal et al. (2005) estimated various ocean wave parameters using theoretical 

Pierson-Morskowitz (PM) spectra as well as measured ocean wave spectra using back 

propagation neural network. According to them, very high CC for significant wave 

height (Hs), maximum spectral energy (Emax), zero crossing wave period (Tz) and time 

period for maximum spectral energy (Tp) in training the NN for PM spectra due to 

Gaussian distribution justified the use of NN. 

 

The ANN approach was used for estimating the wave parameters from cyclone 

generated wind fields (Rao et al., 2005). Estimation of Hs and periods was carried out 

using back propagation neural network with three updated algorithms, namely Rprop, 

Quick prop and superSAB. The predicted values using neural networks matched well 

with those estimated using Young’s model and a high CC of 0.99 was obtained. 

 

The feed forward back propagation neural network was used to predict the significant 

wave height (Hs) values sensed by a satellite at deeper locations (Karla et al., 2005). 
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The NNs provide a useful tool to predict deep-water waves sensed by satellite to 

coastal locations. 

 

The ANN technique was used to predict the significant wave height (Hs) and zero 

crossing wave periods (Tz) (Makarynskyy et al., 2005). They achieved a higher 

accuracy of simulating the Hs and forecasting Tz by using ANN. 

 

A NN was developed in order to estimate the wave surface density over a wide range 

of wave frequencies from average wave parameters of Hs, Tz, spectral width and 

peakedness parameters (Naithani and Deo, 2005). They compared the NN predicted 

values with the measured ones. The predictions were acceptable than those yielded by 

PM, JONSWAP and Scott’s spectra. 

 

The Adaptive Network based Fuzzy Inference System (ANFIS) and Coastal 

Engineering Manual (CEM) methods were used to predict the ocean wave parameters 

(Kazeminezhad et al., 2005). According to them, the results indicated that the ANFIS 

outperforms CEM method in terms of prediction capability. Here the CEM method 

overestimated the Hs and underestimated the peak spectral period, while ANFIS 

resulted in predictions that are more accurate. 

 

The functional and sequential learning neural networks were applied for accurate 

prediction of tides using very short-term observations (Rajasekaran et al., 2005 and 

2006). The comparison between the measured and predicted tidal levels for 3 days 

and 1 month’s prediction using 1 day observation showed the CCs, 0.981 and 0.999, 

which were higher than the values obtained by Tsai and Lee (1999). It showed that the 

functional and sequential learning neural networks predicted better values as 

compared to other conventional methods.  

 

Yagci et al. (2005) used NN technique to predict the damage ratio of breakwater. 

According to them, the accurate estimation of damage levels of breakwater was vital 

issue in design of breakwater. The network was constructed by considering input 

parameters like wave stiffness (Hs/Ls), significant wave period (Ts) and slope angle (α). 
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They have used fuzzy logy system for mapping the inputs and output. The fuzzy model 

estimations of damage ratios were close to the predicted values by NN methods. The 

employment of Artificial intelligence (AI) methods enables the consideration of wave 

period; wave stiffness, breakwater slope and wave height in estimating damage ratio. 

This application is useful especially when there is less number of laboratory data set. 

The experimental data set were plotted effectively using AI technique in order to 

generate more number of data set.    

 

The ANN was applied to design rubble mound breakwaters (Kim and Park, 2005). 

ANN technique yielded more accurate results compared to the conventional empirical 

model and also the accuracy of the results was influenced by NN structure. They 

showed that the solutions of Monte Carlo simulation technique could be improved by 

incorporating the trained neural network model into it. 

 

Chang and Lin (2006) developed a new tide generating neural network model (TGF-

NN) for simulation of tides at multi-points considering tide-generating forces. They 

compared the RMS and CC of many models for an input of three year mixed tides at a 

single point. They used with harmonic method, the NAO.99b model, response 

orthotide method and the TGF-NN model for the prediction. They found that the new 

TGF-NN model was more effective compared to the harmonic method. They also 

observed that the TGF-NN model could predict tides at some neighboring points more 

accurately compared to NAO.99b numerical model. 

 

Perceptrons were trained using Particle Swarm Optimization (PSO) model by Chau 

(2006). The model was used for prediction of water levels in ShingMun river of Hong 

Kong. Different lead times calculated on the basis of the stage/time history or 

upstream gauging stations was adopted at the specific station. It was observed that 

PSO can be an alternative technique to ANN.  

 

The recurrent neural network with updated algorithms was used to forecast ocean 

waves (Mandal and Prabaharan, 2006). The recurrent neural network of 3, 6 and 12 

hourly wave forecasting yielded the correlation coefficient (CC) of 0.95, 0.90 and 
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0.87 respectively. According to them, the wave forecasting using recurrent neural 

network yielded better results compared to previous NN applications. 

 

The marine structures in Taiwan suffer from typhoon attack every year. The earlier 

theoretical models were not properly predicting the typhoon waves. According to 

Chang and Chien, (2006), ANN-multi trend-simulating transfer function model 

accurately forecasted wave peak. 

 

Karla and Deo (2007) trained the data in an innovative manner to address the wind 

speeds modeling problems where the wind speeds have a very high variation in their 

magnitude. The wind speeds and wave data collected by TOPEX satellite was used in 

radial basis function neural network. They found that combined network involving all 

the three parameters namely, wave period, wave height and wind speed would work 

more flexibly than the individual models. They also found that network training based 

on statistical homogeneity of data set was essential to obtain accurate results. 

 

Browne et al. (2007) compared the traditional Spectral Wave Simulation Model 

(SWAN) and a model developed with two data driven approaches (linear and ANN) 

for estimating the waves near shore waves. They used the data collected from 17 near-

shore locations for the assessment of their performance. The data gathered had 

heterogeneous geography and bathymetry and was recorded over a 7 month period 

around the Australia continent. They found that ANN’s outperformed SWAN. 

Further, they also observed that the non-linear architecture consistently surpassed the 

linear model.  

 

Mandal et al. (2007) used neural network technique to predict the stability number 

and damage levels of rubble mound breakwater. It was seen that a good correlation 

was obtained between network predicted stability numbers and estimated ones with 

less computational time as compared to Mase et al. (1995) and Kim and Park (2005). 

 

Gent et al. (2007) developed a neural network model to estimate wave-overtopping 

discharges for wide range of coastal structures. 
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Bateni and Jeng (2007) developed ANFIS models for predicting scour depth as well 

as scour width for a group of piles supporting a pier. Two combinations of input data 

were used. One involved combination of non-dimensional parameters such as wave 

period, wave height, and water depth, while the other contained combinations of non-

dimensional numbers which comprised of Reynolds number, the shields parameter, 

the Keulegan-Carpenter number, and the sediment number. The test results showed 

that ANFIS performed better than the existing empirical formulae. They also found 

that the ANFIS performed well with original (dimensional) parameters rather than 

non-dimensional data. It was also noticed that the depth of scour was more accurately 

predicted than its width. 

 

Mandal et al., (2008) applied NN technique in predicting the stability number and 

compared it with the estimated stability number by Hudson and Van der Meer. The 

neural network was modeled with parameters, which affects the stability namely 

Permeability of breakwater, number of attacking waves, significant wave height, 

mean wave period, damage level, slope angle, berm width and reduced armor weight 

ratio. It was found that the network predicted lesser armor units as compared to 

empirical formulae which could make the design more economical and safe. The CC 

between the estimated stability number by empirical formulae and predicted stability 

number by neural networks were close to one. 

 

Zamani et al. (2008) developed ANN and Instance-Based Learning (IBL) models to 

forecast significant wave heights for several hours ahead using buoy measurements. 

Experiments showed that the ANN’s yielded slightly better agreement with the 

measured data than IBL. According to them, ANN’s could also predict extreme wave 

conditions better than the other existing methods. 

 

Gaur and Deo (2008) applied genetic programming (GP) to forecast ocean waves on 

real-time. They analyzed the wave rider buoy which was measurements at two 

locations in the Gulf of Mexico. The forecasts of significant wave height were made 

over lead times of 3,6,12 and 24h. They used a sample size belong to a period of 15 
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years and a testing period of 5 years. The forecast made by the approach of GP could 

be regarded as a promising tool for future applications to ocean predictions. 

 

Londhe (2008) presented ANN and GP for estimation of missing wave heights at a 

particular location on a real time basis using wave height at other locations. Both 

approaches performed well in terms of accuracy of estimation, whereas GP model 

worked better in case of extreme events. 

 

ANN and regression method was used by Gunaydin (2008) to predict the mean 

monthly significant wave height from meteorological data. Seven different ANN 

models were compared each comprising of various combinations of input. The inputs 

were monthly mean wind speeds, air temperature ratios and sea level pressures 

collected on hourly basis. Out of seven ANN models that the model with all the input 

parameters outperformed other models. 

 

Beltrami (2008) incorporated an ANN algorithm in bottom pressure recorders (BPRs) 

software to improve its real time automatic detection of a tsunami within recorded 

signals. The performance and efficiency of ANN algorithms was compared to the one 

developed under the Deep-ocean Assessment and Reporting of Tsunami (DART) 

program run by the U.S. National Oceanic and Atmospheric Administration (NOAA). 

Results indicated that ANN algorithm showed an improvement in tsunami detection. 

 

Liang et al., (2008) developed three back-propagation neural networks (BPNN) 

models viz; difference neural network model (DNN) for the supplementing of tidal 

record; minus-mean-value neural network (MMVNN) for corresponding prediction 

between tidal gauge station and weather-data based neural network model (WDNN) 

for set up and set down. They found that above models performed well in the 

prediction of tidal level or supplement of tidal record including strong meteorological 

effects. 

 

For forecasting of wave parameters considering the wind speed and its direction, and 

the lagged wave characteristics, Takagi- Sugeno rule based fuzzy inference system 
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was used by Sylaios et al. (2009). The initial and final antecedent fuzzy membership 

functions were identified using Subtractive clustering method. The developed model 

was verified by predicting the wind and wave dataset recorded in years 2000 to 2006 

(12,274 data points) in the Aegean Sea collected by an oceanographic buoy. For the 

training period, the model showed perfect fit and further was verified using the 2006 

data (1,044 data points). Significant wave height and zero up-crossing periods for a 

lead time of three hours were predicted well by the model. 

 

Support Vector Machine (SVM) was used by Mahjoobi and Mosabbeb (2009) for the 

prediction of significant wave height. The data was collected from deep water 

locations in Lake Michigan. They used current and previous six hours wind speed as 

input variables and significant wave height (Hs) as output parameter. The SVM results 

were compared with results of multilayer perceptron (MLP), ANN, and radial basis 

function (RBF) models. They found that SVM could be used successfully for the 

prediction of Hs. The error statistics of SVM model marginally outperforms ANN 

with less computational time. 

 

GP has nowadays attracted the attention of researchers in the predictions of hydraulic 

data (Guven et al., 2009).  They used field measurements to develop linear genetic 

programming (LGP) model for prediction of scour depth around a circular pile due to 

waves in medium dense silt and sand bed. The LGP model was compared with 

ANFIS model results. LGP model was observed to be in good agreement with 

measured data, and quite better than ANFIS and regression based equation of scour 

depth at circular piles. 

 

Seasonal beach profile evolution was predicted by Hashemi et al. (2010) using ANN 

at several locations along the Tremadoc Bay. The beach profile data collected in 19 

stations for a period of 7 years were studied using ANN. Principal Component 

Analysis and correlation analysis were used to develop a proper input dataset. The 

local wave climate, wind data, geometric properties of the beach, and the 

corresponding beach level changes were fed to a feed forward back propagation 
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ANN. The field data and the model results were compared. The model resulted 

predicted the beach surveys with a RMSE of less than 0.0007. 

 

Jian-sheng and Long (2009) proposed a hybrid Particle Swarm Optimization 

algorithm based on ANN (PSO-BP) to predict the mean monthly rainfall of the 

Guangxi area. Since, developing the structure of BPNN in meteorological application 

is difficult this hybrid was used. PSO was used for optimization of number of hidden 

nodes and connection weights of BP. From their results, it was observed that the 

hybrid model could effectively improve learning and also help in the generalization of 

the neural network. 

 

Aydogan et al. (2010) studied to predict vertical current profiles of a given point in a 

narrow strait, the Strait of Istanbul, using the Feed Forward Back Propagation ANN 

technique (FFBP-ANN). The model was built on 7039 hours of concurrent 

measurements of current profiles, meteorological conditions and surface elevations. 

The model predicted 12 outputs of East and North velocity components at different 

depths in a given location. Various alternative models with different inputs and 

neuron numbers were evaluated for attaining the best model by trial and error. 

Predictions from proposed ANN model were in accordance with the observations with 

average root mean square error of 0.16 m/s. The same input parameters were then 

used to build models that predicted current velocities 1–12 h into the future. Results 

of these predictions showed good overall agreement with observations and that FFBP 

ANN could be used as a reliable tool for forecasting current profiles in straits. 

 

Balas et al., (2010) applied hybrid model for the preliminary design of rubble mound 

breakwater and a better agreement between the predicted and measured was obtained 

as compared to stability equations of Vander Meer’s (1988) and ANN. 

 

Chen et al., (2010) proposed the application of Kernel Principal Component Analysis 

(KPCA) to SVM for feature extraction. They adopted PSO Algorithm to optimize 

SVM parameters. The novel time series analysis model integrates the advantage of 
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wavelet, PSO, KPCA and SVM. Compared with other predictors, their model showed 

greater generality ability and higher accuracy. 

 

Iglesias et al. (2010) developed an AI model to predict the draft required or the draft 

available if a floating boom would be provided in open waters. The dataset was 

obtained from laboratory investigations on seven model booms subjected to various 

wave and current combinations. The obtained dataset was divided into two random 

sets, one for training and other for testing. The model was further improved to find 

efficient network architecture using 640 NNs. The model was trained and then 

generalized them to other cases for validation. 

 

The determination for hyper-parameters including kernel parameters and the 

regularization is important to the performance of SVM. PSO is a method for finding a 

solution of stochastic global optimizer based on swarm intelligence. Using the 

interaction of particles, PSO searches the solution space intelligently and finds out the 

best one. Pan et al. (2010) built a model to forecast the hydrogen producing reactor 

temperature using global optimization of PSO and SVM’s local accurate searching. 

They found that the developed model to be feasible and effective. Comparison 

studies, by the authors, with other existing methods showed that the developed model 

was highly accurate and effective. 

 

Using ANN and SVM, two nonlinear time-series models were developed by Yoon et 

al. (2011) for predicting groundwater level (GWL) fluctuations. The models were 

tested for two coastal aquifer wells in Korea. During training and testing of the 

models, it was observed that ANN model showed better performance with low 

RMSE. But, during the prediction stage, SVM performed similar or even better than 

the ANN model. The input data was superior in SVM model due to its generalization 

ability. The uncertainty analysis of the two models showed higher uncertainty for 

ANN model. They concluded that ANN must be used carefully for GWL forecasting 

in coastal aquifer. 
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Kim et al., (2011) predicted the stability number of armor blocks of breakwaters using 

Support Vector Regression. The proposed method proved to be an effective tool for 

designers of rubble mound breakwaters to support their decision process and to 

improve design efficiency.  

 

Patil et al., (2011) used ANFIS model for predicting wave transmission coefficient of 

horizontally interlaced multilayer moored floating pipe breakwater (HIMFPB). It 

showed that the ANFIS model outperformed ANN model for predicting wave 

transmission coefficient. 

 

Shi and Dong (2011) used SVM to predict the 28 days strength of cement. The seven 

input variables used were the content of slag, cement fineness, SO3 content, 1-day 

compressive strength and folding strength, 3-day compressive strength and folding 

strength. The compressive strength predicted by ANN methods were compared with 

the results of SVM model. The results indicated that SVM has an ability to predict the 

28-day strength of cement with an acceptable degree of accuracy (R=0.979, 

RMSE=0.80, MAE=0.013). They concluded that proposed SVM model was better 

than the ANN model. 

 

Ahmadi et al. (2011) estimated gas-oil MMP using a model based on a feed-forward 

ANN optimized by Stochastic Particle Swarm Optimization (SPSO). Initial weights of 

the neural network were decided using SPSO. The performance of the SPSO-ANN 

model was compared with the field data and was found to be an effective model. 

 

Tripathy et al. (2011) applied ANN and PSO model for weather prediction based on 

time series data. The parameters considered were rainfall, maximum and minimum 

temperature, humidity etc. They tried ANN and PSO tools for the prediction of future 

weather condition. They developed different training and testing to obtain the accurate 

result. Their experimental results showed that the proposed model was useful for 

weather forecasting. 
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The traditional methods of determination of permeability were core analysis and well 

test techniques which were costlier and time consuming. Hence, to overcome this 

problem Gholami et al. (2012) utilized the SVM for predicting the permeability of 

three gas wells in the southern pars field. The SVM model produced good results with 

a correlation coefficient of 0.97 for testing dataset. Comparing the results of SVM 

with the neural network they concluded that SVM approach was faster and more 

accurate than neural network in prediction of permeability. 

 

Das et al. (2012) implemented Genetic Algorithm (GA) with Support Vector Machine 

(SVM) in region sampling for selection of local features in handwritten digit 

recognition. Seven sets of local regions were randomly generated and GA was used to 

select an optimal group of local regions which produces best recognition performance 

with SVM. Stimulated Annealing (SA) and Hill Climbing (HC) were also used to find 

the optimal group of local regions where the maximum accuracies were found to be 

97%, 96.7%, 96.7% for GA, SA, HC respectively. 

 

Xi et al. (2012) applied PSO-Neural Network model in prediction of groundwater 

level in Handan city based on the available old data and their influence factors. Their 

developed method was better than the grey method. The random characteristics of 

ground heads in Handan city were analyzed by using PSO-NN. Their results indicated 

that the method was reliable and reasonable.  

 

For the prediction of reflection coefficient for variety of coastal and harbor structures 

an ANN model was developed by Zanuttigh et al. (2013). They used 600 datasets for 

training and testing of the model. The datasets included smooth rock armor units, 

slopes, berm breakwaters, vertical walls, low crested structures and oblique wave 

attacks. They used 13 input elements to represent the various aspects of the reflection 

process. The algorithms and input elements were selected based on the sensitivity 

analysis. The network model developed was compared with the limited datasets 

selected from the literature and they found that the model could accurately predict the 

measured reflection coefficients than the available empirical formulae. 



31 

 

 

Reliability based risk analysis for rubble mound breakwaters was carried out by Koc 

and Balas (2013) using fuzzy Monte Carlo simulation approach. They applied fuzzy 

random variable in the simulation. The results of the study showed that the developed 

simulation model would prove to be a useful tool in handling both the randomness 

and fuzziness of the analysis. 

 

ANNs with different topologies were evaluated to predict hydrodynamic coefficients 

of permeable panelled breakwater (Hagras, 2013). Two neural network models were 

constructed to predict wave transmission coefficient (Kt) and wave reflection 

coefficient (Kr). Back propagation algorithm was used to train a multi-layer feed-

forward network (Levenberg Marquardt algorithm) and coefficients were evaluated 

using the Mean Squared Error (MSE). The results of the developed ANN models 

proved that this technique was reliable. A good match between the measured and 

predicted values was observed with correlation values varying in the range (0.9508-

0.9805) for the training set and (0.9159-0.9877) for the testing set. 

 

From the review of literatures on applications of soft computing  in coastal/ocean 

engineering it is observed that ANNs are commonly used by many researchers to 

evaluate or predict ocean wave parameters like wave height, wave period, wave 

direction, tidal levels and its timings, sea levels, water temperature, wind speeds, etc. 

Damages of coastal structures, stability of breakwaters, storm surges and wave 

transmission have also been predicted using ANNs. For calibration and verification of 

the neural network model, many researchers used in-situ data, experimental data, and 

data generated by numerical or mathematical analysis. It is also found that in most of 

the applications a three layered feed forward back propagation neural network was 

used. Some researchers trained the network with conjugate gradient and cascade 

correlation.  

 

Comparing to the traditional methods, the performance of ANN was improved in 

terms of computational effort and time needed for training and testing. It is also 

reported that ANN model can learn with much less data set. Sometimes single 
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network may not always fit the entire domain of the training sample and in such cases 

different networks are developed over different sub-domain of the training sample 

size. 

 

Many researchers have highlighted that hybrid models like ANN with fuzzy, genetic 

algorithm can be adopted when the performance of individual ANN model is poor in 

mapping input-output relation. Apart from ANNs, other new techniques like Support 

vector machines, Particle Swarm Optimization or combinations of these can be used 

to solve problems in coastal engineering.  

 

2.4 PROBLEM FORMULATION 

The literature review work carried on theoretical and experimental analysis on 

breakwater revealed that the researchers have carried out number of studies by 

considering simple form of berm breakwater and some common assumptions in 

hydrodynamics to derive mathematical model for stability and damage. But, these 

mathematical models showed very poor agreement with experimental or in-situ data. 

Waves in nature are random and hence, very complicated to perform physical model 

study on breakwaters. Also, the physical model studies are expensive and time 

consuming.  Further, there is no simple mathematical model to predict the damage 

level considering all the boundary conditions due to the complex nature of the 

problem which includes wave structure interaction, angle of wave attack, movement 

of the armor etc. 

 

From the literature review carried it was observed that soft computing techniques 

have been successfully used in coastal engineering solve complex problems. 

However, it was also observed that soft computing techniques for prediction of 

damage level of a non-reshaped berm breakwater have hardly been used. 

 

In view of the above aspects, a detailed study was taken up on developing soft 

computing techniques for the prediction of damage level of non-reshaped berm 

breakwater, thereby providing a new approach to solve the problem of damage level 
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prediction, which is highly complex and has huge non-linearity associated with its 

hydrodynamic performance. 

 

2.5 OBJECTIVES OF THE PRESENT INVESTIGATION 

The objectives of the present investigation involve the development of soft computing 

models to predict the damage of non-reshaped berm breakwater and are listed as 

follows: 

 To investigate the ability of soft computing approaches like Artificial Neural 

Networks (ANN) and support vector machines (SVM) to effectively address 

various hard-to-solve design tasks and issues associated with the berm breakwater. 

 To identify the most significant parameters as input to soft computing models by 

using principal component analysis. 

 To develop soft computing models for prediction of damage level of non-reshaped 

berm breakwater. 

 To integrate and hybridize the fuzzy logic, ANNs, SVMs and PSOs to improve 

the damage level predictions of non-reshaped berm breakwater. 

 To analyze and recommend the most reliable soft computing model in predicting 

damage level of non-reshaped berm breakwater. 

 

2.6 SUMMARY 

Detailed literature review on the experimental and theoretical works on breakwaters 

has been discussed in this chapter. It is observed that these theoretical studies fail to 

give a mathematical model to predict damage level of breakwater by considering all 

boundary conditions. This is because of complexity and non-linearity associated with 

wave-structure interaction. Also it is brought to the notice that physical model studies 

are time consuming. To overcome this problem, soft computing techniques is 

successfully used to solve the issue of complexity and non-linearity. A detailed 

literature review on applications of soft computing techniques in coastal/ocean 

engineering has been discussed including the latest available literature. However, it is 

observed that there are hardly any applications of soft computing techniques on 



34 

 

prediction of damage level of breakwater. Hence, there is a great scope for developing 

soft computing models in prediction damage level of breakwater. The objectives of 

the present investigation are also discussed in this chapter. 
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CHAPTER 3 

EXPERIMENTAL DATA AND METHODOLOGY  

3.1 GENERAL 

A physical model study on statically non-reshaped berm breakwater was carried out 

(Rao et al., 2004 and 2008; Balakrishna Rao, 2009) in a two-dimensional wave flume. 

The model was designed to suit the wave parameters off- Mangalore coast. The data 

obtained by them has been used in the present research work. 

 

In the present work, experimental data obtained from the physical model study was 

used for developing soft computing models to predict the damage level of non-

reshaped berm breakwater. Experimental data were collected and organized in a 

systematic data base. These data were divided into two sets, about 80% of the data for 

training and remaining data for testing models.    

 

In this chapter details of the experiments are explained along with the methodology 

adopted for the present study. Also, details about Artificial Neural Network (ANN), 

Support Vector Machines (SVM), Adaptive Neuro-Fuzzy Inference System (ANFIS) 

and Particle Swarm Optimization (PSO) are described in this chapter.  

 

3.2 EXPERIMENTAL SETUP 

3.2.1 Wave flume 

The physical model was tested for regular waves in a two dimensional wave flume 

facility available in the Marine Structures Laboratory of Department of Applied 

Mechanics and Hydraulics, National Institute of Technology Karnataka, Surathkal, 

India. The wave filter consists of a series of vertical asbestos cement sheets spaced at 

about 0.1m centre to centre parallel to length of the flume. The wave flume is 50m 

long, 0.71m wide and 1.1m deep. It has a 41.5m long smooth concrete bed. About 
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15m length of the flume is provided with glass panels on one side. It has a 6.3m long, 

1.5m wide and 1.4m deep chamber at one end where the bottom hinged flap generates 

the waves. The flap is controlled by an induction motor of 11kW power at 1450rpm. 

This motor is regulated by an inverter drive (0 – 50Htz) rotating in a speed range of 

0–155rpm. Fig. 3.1 gives a schematic diagram of experimental setup. Plate 3.1 and 

Plate 3.2 shows different view of wave flume. By changing the frequency through 

inverter one can generate the desired wave period. A fly-wheel and bar-chain link the 

motor with flap. By changing the eccentricity of bar chain on the fly-wheel one can 

vary the wave height for a particular wave period (Balakrishna Rao, 2009). 

 

Fig. 3.1: Wave Flume with Berm Breakwater 

 

 

Plate 3.1 View of wave flume with model and wave probe 
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Plate 3.2 View of wave flume from model end 

 

The data was collected using wave probes and data acquisition system, and the 

damage level was measured using profiler system. Plate 3.3 and 3.4 shows the wave 

probe system and the profiler system used in the experimental study. 

 

 

Plate 3.3 View of wave flume with wave probes 
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Plate 3.4 View of wave flume with profiler 

 

3.2.2 Experimental data collected 

The data is collected from the experiments conducted by Balakrishna Rao (2009). The 

details of physical study conducted and the model details are explained in following 

paragraphs.  

 

Totally four set of experiments (set no. I, II, III, and IV), were conducted (Rao et al. 

2004, 2008). First set of experiments were conducted on conventional breakwater 

model with armor stone weight W50 = 74 g, which was calculated using Hudson 

equation for a design wave height of 0.1 m (KD = 3.5, cot = 2, a = 2.74, w = 1.0, 

two layer and random placement). 

 

In the second set, statically stable non-reshaped berm breakwater models were tested. 

The weight of median armor stones (W50) in these models was kept at 52 g which is 

about 30% less than 74 g, the weight used in conventional breakwater. In this set of 

experiments the influence of berm width on the stability of the breakwater, wave run-

up and run-down was studied.  
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In the third set of experiments the influence of tidal effect on the stability of statically 

stable non-reshaped berm breakwater model was investigated. The depth of water in 

front of the breakwater model was varied and the stability was tested against different 

wave parameters. The weight of armor stones in these models was W50 = 58.6 g 

which is about 20% less than 74 g, the weight used in conventional breakwater. 

 

In the fourth set of experiments the influence of location of the berm on the stability 

of the statically stable non-reshaped berm breakwater model was studied. The location 

of the horizontal surface of berm was varied and the stability was tested against 

different wave parameters. The weight of armor stones in these models were W50 = 52 

g which is about 30% less than 74 g, the weight used in conventional breakwater. 

 

The various sea state and structural parameters considered by Balakrishna Rao (2009) 

for the experimental study is given in Table 3.1. He also performed non-dimensional 

analysis to arrive at some of the dimensionless parameters which is used in the present 

study. The dimensionless parameters obtained were deepwater wave steepness 

(Ho/Lo), surf similarity parameter (), relative berm position (hB/d), armor stone 

weight (W50/Wmax50), relative berm width (B/Lo) and relative berm location (hB/Lo). 

The variation of non-dimensional parameters obtained above is shown in Fig. 3.2. 

Table 3.1 Range of experimental variables 

Variable Range 

Wave height, H (m) 0.10, 0.12, 0.14, 0.16 

Wave period, T (s) 1.6, 2.0, 2.6 

Water depth above the bed level, d (m) 0.25, 0.30, 0.35, 0.40 

Water depth above or below the berm, dB (m) +0.08,+0.03, -0.02,-0.07 

Armor stone weight, W50 (g) 52 to 74 

Crest height above the seabed (m) 0.70 

Berm width, B (m) 0.60 

Berm position above seabed, hB (m) 0.32 
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Fig. 3.2 Experimental data on H/L0, , hB/d, W50/W50max, B/ L0, hB/L0 and S 
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3.4 ARTIFICIAL NEURAL NETWORK  

An artificial neural network is simplified model of the biological neuron system (Fig. 

3.3). It is a massively parallel distributed processing system made up of highly 

interconnected neural computing elements. They have the ability to learn from 

examples and acquire knowledge and make it use when it required. In other words, 

neural network function in a way similar to the human brain.  

 

Fig. 3.3 A biological nerve cell 

 

A biological neuron has three types of components namely dendrites, soma and axon. 

The dendrites receive signals from other neurons. The soma sums the incoming 

signals. When sufficient input is received, the cell fires. The output area of the neuron 

is a long fiber called axon. The impulse signal triggered by the cell is transmitted over 

the axon to other cells. The connecting point between a neuron‟s axon and another 

neuron‟s dendrite is called a terminal buttons or synapse. The impulse signals are then 

transmitted across a synaptic gap by means of a chemical process. 

The artificial neuron mimics the characteristics of the biological neuron. The artificial 

neuron basically consist inputs, each inputs represents the output of another neuron 

(Fig 3.4). The amount of information about the input that is required to solve a 

problem is stored in the form of weights. Each input is multiplied with an associated 

weight before it reaches to the summing node. In addition, the artificial neuron has a 

bias term, a threshold value that has to be reached or extended for the neuron to 
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produce a signal, a nonlinear function (F) that acts on the produced signal net and 

output (Y) after the nonlinearity function. 

    

Many research activities have been carried out based on this method in different fields 

(Mase, et al., 1995; Yagci, et al., 2005; Mandal et al, 2005; Kim and Park, 2005; 

Hashemi et al., 2010; Aydogan, et al., 2010; Iglesias, et al., 2010). The most 

significant features of neural networks are the extreme flexibility due to learning 

ability and the capability of nonlinear function approximations. This fact leads us to 

expect neural networks to be an excellent tool for solving the motion characteristics of 

the breakwater while overcoming complexity and non-linearity associated with wave-

structure interaction of berm breakwater. 

3.3.1 Architecture of an ANN 

The neurons are assumed to be arranged in layers, and the neurons in the same layer 

behave in the same manner. All the neurons in a layer usually have the same 

activation function. Within each layer, the neurons are either fully interconnected or 

not connected at all. The neurons in one layer can be connected to neuron in other 

layer. The arrangement of neurons into layers and the connection pattern within and 

between layers is known as network architecture. 

Input layer: The neurons in this layer receive the external input signals and perform 

no computation, but simply transfer the input signals to the neurons in another layer. 

Fig. 3.4 Basic Neuron Model 
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Output layer: The neuron in this layer receive signals from neurons either in the 

input layer or in the hidden layer 

Hidden layer: The layer of neurons that are connected in-between the input layer and 

the output layer is known as hidden layer. 

3.3.2 Feed Forward Back-Propagation Neural Network 

 

Fig.3.5 Architecture of Neural Network 

 

Fig.3.5 shows the architecture of neural network. The Feed Forward Network (FFN) 

commonly used for supervised learning which consists of three layers, namely I-

number of nodes in input layer, M-number of nodes in hidden layer and O- number of 

nodes in output layer. These three layers are highly interconnected by nodes and work 

together to solve specific problems. Once the data is received in input layer the 

processed values are sent to the hidden layer. The hidden layer and output layer 

process all incoming signals by applying some weights to them. The Feed Forward 

Network (FFN) uses back propagation for training network where the error at the 

output layer is moved back to the input-hidden layers for updating weights and 

decrease errors to yield best results. The main aim of the FFN process is to reduce the 

overall error (E) between the observed and predicted values by adjusting the weights. 

And these weights are combined and processed through an activation function and 

released to the output layer. 
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The activation functions used in hidden layer and output layer are Tansig and Purelin. 

Tansig: 

It is a hyperbolic tangent sigmoid function whose output y ranges between -1 and +1 

as input x varies from -∞ to +∞ as shown in Fig 3.6. This function allows negative 

values of output also. 

 
Fig. 3.6 Hyperbolic tangent sigmoid Activation Function 

Purelin: 

It is purely a linear function (𝑦 = 𝑚𝑥 + 𝑐) as shown in Fig 3.7. It does not limit the 

amplitude of the output and the output varies linearly with the amplitude of the input. 

 
Fig. 3.7 Purelin Activation Function 

The network is trained by using different algorithms namely, Scaled Conjugate 

Gradient (SCG), Gradient descent with adaptive learning rate backpropagation (GDA) 

and Levenberg-Marquardt (LM).  

3.3.3 Scaled Conjugate Gradient  

Conjugate gradient is the most popular iterative method for solving large systems of 

linear equations. Conjugate gradient algorithms start out by searching in the steepest 

descent direction (negative of the gradient) on the first iteration. SCG is a second 

order conjugate gradient algorithm that helps minimize goal function of several 
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variables. These theoretical foundations was proved by Moller (1993) which remains 

first order techniques in first derivatives like standard backbropagation and find the 

better way to a local minima in second order techniques in second derivatives. SCG 

use a step size scaling mechanism avoids a time consuming line-search per learning 

iteration, which makes the algorithm faster than other second order algorithms 

recently proposed. Based on the Moller (1993), SCG method shows super linear 

convergence on most problems.  

Conjugate gradient iteration is described as 

11   kkkk dXX 
                                                                                      (3.1)

 

K is iteration index, k is the length of the step performed at iteration, dk is the 

search direction, rk is residual vector and k is improvement. 

   1111  k

T

kk

T

kk Addrr
                                                                (3.2)

 

1 kkkk drd 
                                                    (3.3)

 

11   kkkk Adrr 
                                                                                         (3.4)

 

   11  k

T

kk

T

kk rrrr
                                                                                   (3.5)

 

Above Eqs. 3.2-3.5 shows the relative component of approximation solution for 

conjugate gradient. 

3.3.4 Gradient Descent with Adaptive Learning Rate Backpropagation  

The algorithm was used to updates weight and bias values according to gradient 

descent with adaptive learning rate. An adaptive learning rate tries to keep the 

learning step size as large as possible while keeping learning stable. The learning rate 

is made responsive to the complexity of the local error surface. 

An adaptive learning rate requires some changes in the training procedure used by 

traingd. First, the initial network output and error are calculated. At each epoch new 
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weights and biases are calculated using the current learning rate. New outputs and 

errors are then calculated. 

As with momentum, if the new error exceeds the old error by more than a predefined 

ratio, the new weights and biases are removed. In addition, the learning rate is 

decreased. Otherwise, the new weights and biases are kept. If the new error is less 

than the old error, the learning rate is increased. 

This procedure increases the learning rate, but only to the extent that the network can 

learn without large error increases. Thus, a near-optimal learning rate is obtained for 

the local terrain. When a larger learning rate could result in stable learning, the 

learning rate is increased. When the learning rate is too high to guarantee a decrease 

in error, it is decreased until stable learning resumes. 

3.3.5 Levenberg-Marquardt (LM) Algorithm 

The LM algorithm is a second-order method (Hagan and Menhaj, 1994; Masters, 

1995). Rather than finding the error minimum directly, it aims to locate the zero of the 

error gradient. The zero  of a univariate function f may be found using the Newton-

Raphson method according to the iterative formula of Eq 3.6 

 

 
 n

n

nn
f

f




 1                   (3.6) 

 

When extended to a multivariate function,  becomes a vector and the derivative of 

the function is now a vector derivative, as in Eq 3.7. 
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In the case of neural network optimization, we wish to find the zero of the error 

gradient g with respect to the network weights. Since g is a vector quantity and is 

itself a derivative, we have to work with the Hessian matrix H (Eq 3.8). 

 

wn+1 = wn – [g (wn) / H(wn)]                 (3.8) 
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Each element in the Hessian contains second derivatives of the error function, 

summed over all training patterns. However, the error measure E is related to the 

outputs and target outputs. The elements within the Hessian therefore contain values 

like that in Eq 3.9, summed across all training patterns. 
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One can calculate local values of the first derivatives. These are the   values used in 

the gradient descent method. The second derivatives in the above equation are 

disregarded when estimating the Hessian. This is a reasonable estimate since the error 

(y−t) is expected to be small. Further, we expect the values of (y − t) to have an 

approximately Gaussian distribution with mean zero. When summed over a large 

number of training patterns the second terms are therefore likely to cancel out to a 

large extent. Having obtained an approximation of the Hessian, the Newton-Raphson 

method may be used to find the nearest zero of the error gradient. Two problems may 

arise. Firstly, the local Hessian estimation may not be an adequate representation of 

the underlying function. Secondly, the second-order algorithm by itself may approach 

a maximum or saddle point on the error surface, rather than a minimum. In order to 

avoid these problems, the LM method includes an additional gradient descent term. 

The weight adjustment vector is then given by Eq 3.10. 

 

w = (H +  diag (H))
 −1

 g                (3.10) 

 

The parameter   adjusts the relative weighting given to Newton‟s method and to 

gradient descent. If the error falls after applying the weight adjustment,  is 

decreased. If, on the other hand, the error increases, the weight changes are reversed 

 is increased and the weight changes are re-calculated. 

 

In the present study the FFN (I-M-O) with seven inputs parameters (I=7), namely i1= 

W50/Wmax50, i2=Ho/Lo, i3=, i4=B/d, i5=B/ Lo, i6= hB/Lo,i7=cotα, M is the number of 
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hidden layer nodes, here M=5 and O is one output layer node, here O=damage level 

(S).The activation function used in the hidden layer is hyperbolic tangent sigmoid 

transfer function (tansig) and linear transfer function (purelin) in the output layer. 

This model is developed using different algorithms namely SCG, GDA and LMA. 

From PCA study it is observed that cotα is the least influential parameter on damage 

level. Based on the PCA study least influential parameter is discarded and ANN2 

model (I6-M5-O1) is developed with remaining input parameters. 

 

3.3.6 Principal Component Analysis   

Principal Component Analysis (PCA) is a statistical procedure that uses orthogonal 

transformation to convert a set of observations of possibly correlated variables into a 

set of values of linearly uncorrelated variables called principal components. It was 

adopted to find out the input variables with percentage of influences on damage level. 

The variables, which have less percentage of influences, were separated out. The 

network analysis was carried out for the reduced number of variables. 

 

The number of components extracted (created) in a principal component analysis is 

equal to the number of observed variables being analyzed. However, in most analyses 

only the first few components account for meaningful amounts of variance so only 

these first few components are interpreted and used in a subsequent analyses such as a 

multiple regression. The first principal component accounts for the most possible 

variance in the data. The second component accounts for the most variance not 

accounted for by the first component, and so on until all variables are accounted for. 

The first few components account for most of the total variation in the data, and can 

be used for subsequent analysis. 

 

The first principal component extracted in a principal component analysis accounts 

for a maximal amount of total variance in the observed variables. Under typical 

conditions, this means that the first component is correlated with at least some of the 

observed variables. In fact, it is often correlated with many of the variables.  
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The second principal component extracted has two important characteristics. 

 The second component accounts for a maximal amount of variance in the data not 

accounted for by the first component. Under typical conditions, this means that the 

second component is correlated with some of the observed variables that did not 

display strong correlations with the first component. 

 The second characteristic of the second component is that it is uncorrelated with 

the first component. If you compute the correlation between component 1 and 

component 2, that correlation is zero. 

The remaining components extracted in the analysis display these same two 

characteristics each component accounts for a maximal amount of variance in the 

observed variables that was not accounted for by the preceding components and is 

uncorrelated with all of the preceding components. A principal component analysis 

proceeds in this manner with each new component accounting for progressively 

smaller amounts of variance. This is why only the first few components are retained 

and interpreted. When the analysis is complete, the resulting components display 

varying degrees of correlation with the observed variables, but are completely 

uncorrelated with one another. 

 

3.5 SUPPORT VECTOR MACHINES 

The foundation of SVM has been developed by Vapnik (1995) and is gaining 

popularity due to many attractive features and promising empirical performance. The 

formulation represents the Structural Risk Minimization (SRM) principle (Gunn, 

1997) which has been shown to be superior to traditional Empirical Risk 

Minimization (ERM) principle as adopted by conventional neural networks. SRM 

principle minimizes an upper bound on the expected risk, as opposed to ERM 

principle that minimizes the error on the training data. This difference outfits SVM 

with a greater ability to generalize, which is the goal in statistical learning. SVMs 

were developed to solve the classification problem, but recently they have been 

extended to the domain of regression problems (Vapnik et al., 1996).         

 

Mathematics behind SVM algorithm for regression 
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Consider a training data set       pp yxyxyxg ,,......,,, 2211 , such that N

i vx    is a 

vector of input variables and vxi   is the corresponding scalar output (target) value. 

Here, the modeling objective is to find a regression function,  xfy  , such that it 

accurately predicts the outputs  y  corresponding to a new set of input-output 

examples,   yx, , which are drawn from the same underlying joint probability 

distribution as the training set. To fulfill the stated goal, support vector regression 

(SVR) considers the following linear estimation function Eq.3.11. 

                                      
    bxwxf                                                                 (3.11) 

Where, w  denotes the weight vector; b  refers to a constant known as “bias”;  xf  

denotes a function termed feature, and  xw   represents the dot product in the feature 

space, l  , such that  .,: lwlx   The basic concept of support vector regression is 

to map nonlinearly the original data x into a higher dimensional feature space and 

solve a linear regression problem in this feature space.  

 

The regression problem is equivalent to minimize the following regularized risk 

function: 
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Eq. 3.13 is also called -insensitive loss function. This function defines a  -tube. If 

the predicted value is within the  -tube, the loss is zero or else the loss is equal to the 

magnitude of the difference between the radius ε of the tube and the predicted value. 

The radius of the tube located around the regression function (Fig. 3.8) is represented 

by a precision parameter  and the “ -intensive zone” is the region enclosed by the 

tube. The SVM algorithm attempts to position the tube around the data as shown in 

Fig.3.8. By substituting the e-insensitive loss function into Eq. (3.12), the 

optimization object becomes: 
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                                 Minimize                 
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Where, the constant C > 0  stands for the penalty degree of the sample with error 

exceeding epsilon. 

 

Fig. 3.8 A schematic diagram of support vector regression using e-insensitive loss 

function 

The distance from actual values to the corresponding boundary values of  -tube is 

represented by the two positive slack variables.  

 The SVM fits  xf  to the data in a manner such that:  

(i) Minimizing the slack variables i.e., 

ii  ,  the training error is minimized 

and,  
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(ii) To increase the flatness of  xf  or to penalize over complexity of the 

fitting function 
2

w is minimized.  

A dual problem can then be derived by using the optimization method to maximize 

the function, 

Maximize: 

                 
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                           Subject to        0
1

 

n

i ii     and  Cii   ,0              (3.17) 

 

Where, *, ii   are Lagrange multipliers. Owing to the specific character of the above-

described quadratic programming problem, support vectors (SVs) are the non-zero 

coefficients,  *

ii    corresponding to input vectors ix . The SVs can be thought of as 

the most informative data points that compress the information content of the training 

set. The coefficients   and  *  have an intuitive interpretation as forces pushing and 

pulling the regression estimate  ixf  towards the measurements iy . 

The SVM for function fitting obtained by using the above mentioned maximization 

function is then given by, 
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 
n

i iii bxxxf
1

)(                                                                    (3.18) 

As for the nonlinear cases, the solution can be found by mapping the original 

problems to the linear ones in a characteristic space of high dimension, in which dot 

product manipulation can be substituted by a kernel function, i.e. 

     iiii yxyxK , . In this work, the SVM is used with different kernel function. 

Substituting      iiii yxyxK ,  in Eq.3.16 allows us to reformulate the SVM 

algorithm in a nonlinear paradigm. Finally, we have, 

    

 
n

i iii bxxKxf
1

)(                                                                   (3.19) 

In the present work, kernel functions, such as polynomial, radial basis function (rbf), 

exponential radial basis function (erbf), spline and b-spline are used for non-linear 

SVM models as shown in Table 3.2. Good setting of kernel parameters  ,d  and 
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SVM parameters  ,C  of SVM model are important in accuracy predicting, where, 

d  represents the degree of polynomial and b-spline kernel functions and  is the 

width of rbf and erbf kernel functions. Parameter C  determines the trade-off between 

the model complexity (flatness) and the degree to which deviations are larger than   

tube (Vapnik, 1995 and Smola and Schölkopf, 1998). Parameter   controls the width 

of the  -insensitive zone, which is used to fit the training data. The number of 

support vectors ( nsv ) used to construct regression function depends on  . For the 

higher , the fewer support vectors are selected and hence results in data compression 

(Kecman, 2001). The performance of SVM regression depends on the good setting of 

SVM and kernel parameters. In the present study, quadratic loss function is used. The 

main idea of using this loss function is to ignore the errors, which are situated within 

the certain distance of the true value. 

 

Table 3.2 Kernel Functions 

Kernels Functions 
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3.6 PARTICLE SWARM OPTIMIZATION  

PSO is a population-based stochastic optimization technique motivated by social 

behavior, such as bird flocking and fish schooling. PSO was first proposed by 

Kennedy and Eberhart (1995).  
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In PSO, each single candidate solution is an “individual bird of the flock", that is a 

particle in the search space. Each particle makes use of its individual memory and 

knowledge gained by the swarm as a whole to find the best solution. All the particles 

have fitness values, which are evaluated by fitness function to be optimized and have 

velocities which direct the movement of the particles. The best position of each 

particle is chosen from its own and neighboring particle experience in the process of 

movement of the particles. The particles move through the problem space by 

following a current of optimum particles. The initial swarm is generally created in 

such a way that the population of the particles is distributed randomly over the search 

space. Every iteration each particle is updated by following two "best" values called 

pbest and gbest. Each particle keeps track of its coordinates in the problem space, 

which are associated with the best solution (fitness) achieved so far. This fitness value 

is stored, and called pbest. When a particle takes the whole population as its 

topological neighbor, the best value is a global “best” value and is called gbest. 

 

The PSO algorithm is defined by the direction and movement of each particle through 

the search space, by updating its  

velocity: 

              i
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and position:        
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j
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j Velpospos 111                                                     (3.21) 

where  
i

jpos  is the current position of the particle 𝑖 with subscript 𝑗 representing 

iteration count, 
i

jVel the search velocity of the thi  particle, 1C   and 2C   the cognitive 

and social scaling parameters, 1rand  and 2rand  are the random numbers on the 

interval [0, 1] applied to the thi  particle, 
jW
  

is the particle inertia, 
jpbest is the best 

position found by the thi  particle (personal best), and 
jgbest  is the global best position 

found among all the particles in the swarm. The number of companions will affect the 
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convergence speed of the algorithm. The cognitive component represents learning 

achieved from an individual particle‟s search come across. In contrast, the social 

scaling parameter represents the cooperation among companions learning from search 

experience.  

   IterMaxMaxj iterwwwW max/min 
                                                         (3.22) 

where   Maxw = initial weight,  minw = final weight, 

  Itermax  = maximum iteration number,  iter = current iteration number.  

           

The particle inertia controls the balance of global and local search abilities, where a 

larger inertia weight (w) helps for global search while a small inertia weight helps for 

a local search. By decreasing the inertia weight linearly from larger value to a smaller 

value through the course of the PSO run gives the best PSO performance compared 

with fixed inertia weight settings. Particle i  flutters towards a new position using Eq. 

(3.20) and Eq. (3.21), which allow all particles in the swarm to update their 
jpbest  

and 
jgbest .  

 

The algorithm steps are as follows: 

Step1: Initialize PSO parameters particle positions and velocities; 

Step2: Objective function values are calculated using the initial particle positions and  

          velocities; 

Step3: Update the optimum particle positions and global optimum particle position    

           using fitness function; 

Step4: Update the position of each particle and the velocity vector by using Eq. (3.20)   

            and Eq. (3.21);  

Step5: Repeat step 2 to 4 until the stopping criteria are met. 

3.6.1 Proposed PSO-SVM model 

To avoid over-fitting or under-fitting of the SVM model due to the improper selection 

of SVM and kernel parameters PSO is used to select suitable parameters of SVM. 

PSO is an optimization method, which not only has strong global search capability, 

but also is very easy to implement. In the present study, MATLAB support vector 
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machine toolbox (Math Works 2011) is interfaced with particle swarm optimization to 

optimize the SVMs and kernel parameters simultaneously for better generalization of 

the proposed PSO-SVM model.  

 

PSO-SVM model was developed by using different kernel functions as shown in 

Table 3.2. To study the performance of each kernel, PSO-SVM models were 

developed to predict damage level of non-reshaped berm breakwater.  Experimental 

data set was divided into two groups one for training and other for testing. Fig.3.9 

illustrates the proposed PSO-SVM model. Initially, training input, training target, 

kernel function, and kernel and SVM parameters are given as input to the system. 

PSO generates initial particle position and velocities that would be used to find 

optimum factors of kernel and SVMs parameters. In the second step, typical SVM 

process performs using initial values and evaluates the objective function using initial 

particle position. Here, the fitness value for each particle position and velocities are 

called as pbest. When a particle takes the whole population as its topological 

neighbor, the best value is a global “best” value and is called gbest. The main 

objective of the present study is to find optimal parameters which give good results. 

 

In third step the fitness value are calculated and  is compared with pbest and gbest, if 

it satisfies the terminal condition in PSO, then these parameters are selected as 

optimal, otherwise, the Eq. (3.20) and Eq. (3.21) are used to update the position and 

velocities. After new position and velocities are updated, the training process is 

performed again. Step two and three are iterated again and again until the stopping 

conditions are satisfied. Once the stopping condition is satisfied, the population search 

ends, and the pbest and gbest that show the best performance in the last step3 are 

selected as the final result. Finally, optimized SVMs and kernel parameters obtained 

by PSO are tested using test data to check the performance of model. 
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Fig. 3.9 Flow chart of PSO-SVM for solving optimization problems 
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3.7 ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM 

Fuzzy logic has a great advantage of representing knowledge very precisely giving 

good explanation and reasoning in a understandable manner. ANN is fault tolerant 

and it has a great capability of learning on its own. But, the representation of 

knowledge stored is in the form of connection between the neurons which is difficult 

to understand. Hence if both the techniques are combined, a huge advantage of self 

learning and an understandable knowledge representation is possible. Further, ANN 

requires crisp data and preparation of such data is tedious and time consuming. This 

can be avoided by developing an interface that directly inputs the environmental fuzzy 

data which can be done by using fuzzy logic. This combination is the neuro-fuzzy 

approach popularly called as Adaptive Neuro Fuzzy Inference System (ANFIS) has 

been developed. 

 

ANFIS was first introduced by Jang (1993). It is a combination of least-squares and 

back-propagation gradient decent methods used for training Takagi-Sugeno type 

fuzzy inference system which is used for an effective search for the optimal 

parameters. It can provide a starting point for constructing a set of fuzzy „if-then‟ 

rules with appropriate membership functions to generate the fixed input-output pairs. 

ANFIS is a simple structure with effective learning algorithm and high speed 

(Vairappan, et al., 2009). The advantage of a hybrid approach is that it converges 

much faster, since it reduces the search space dimensions of the back-propagation 

method used in neural networks. 

 

3.7.1 Architecture of ANFIS 

A simple architecture of ANFIS with I-input variables namely i1=Ho/Lo, i2=ζ, i3=B/d, 

i4=W50/Wmax50, i5= B/ Lo and i6= hB/Lo and o is output variable i.e., o=damage level 

(S)as shown in Fig.3.10. It consists of five layers and each layer is explained below. 
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Fig.3.10 ANFIS structure 

 

Layer 1 

Every node in this layer is an adaptive node with a node function 

𝑂𝑙,𝑖 = 𝜇𝐴𝑖 𝑥 ,      𝑓𝑜𝑟𝑖 = 1,2                                                                        (3.23) 

𝑂𝑙,𝑖 = 𝜇𝐵𝑖−2 𝑥 , 𝑓𝑜𝑟𝑖 = 3,4                                                                         (3.24) 

x (or y) is the input node and Ai (or Bi−2) is a linguistic variables associated with the 

membership function of a fuzzy set (A1,A2,B1,B2).Typical membership function: 

𝜇𝐴 𝑥 =
1

1+ 
𝑐𝑖
𝑎𝑖

 
2𝑏𝑖

                                                                                            (3.25) 

where 𝑎𝑖 , 𝑏𝑖  and 𝑐𝑖  is the parameter set. Parameters are called as premise parameters. 

 

Layer 2 

Each node in this layer is a fixed node, indicated by Π Norm. The output is the 

product of all the incoming signals. 

𝑂2,𝑖 = 𝑤𝑖 = 𝜇𝐴𝑖 𝑥 ∙ 𝜇𝐵𝑖 𝑦 ,    𝑖 = 1,2                                                          (3.26) 

output signal 𝑤𝑖  represents the fire strength of a rule.  

 

Layer 3 
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Each node in this layer is a fixed node N Norm. The i
th

 node calculates the ratio of the 

firing strength to the sum of the firing strength. 

𝑂3,𝑖 = 𝑤 𝑖 =
𝑤 𝑖

𝑤1+𝑤2
,    𝑖 = 1,2                                                                            (3.27) 

Output signal  𝑤 𝑖 is called normalized firing strengths. 

 

Layer 4 

Each node in this layer is an adaptive node, indicated by square node with a node 

function:  

𝑂4,𝑖 = 𝑤𝑖𝑓𝑖 = 𝑤𝑖 𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑟𝑖                                                                     (3.28) 

where𝑤𝑖  is the normalized firing strength from layer 3. {pi, qi, ri} is the parameter set 

which are called as consequent parameters. 

 

Layer 5 

Each node in this layer is a fixed node, indicated by circle node which computes the 

overall output as the summation of all incoming signals: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙𝑜𝑢𝑡𝑝𝑢𝑡, 𝑆 = 𝑂5,1 =  𝑤 𝑖𝑓𝑖 =
 𝑤 𝑖𝑓𝑖𝑖

𝑤 𝑖
𝑖                                                (3.29) 

 

The different membership functions assigned for input parameters are: 

Gauss membership function: 

       f x, σ, c = e
− x−c 2

2σ2                                                                                      (3.30) 

        where x is input parameters, c and  are mean and variance respectively.  

 

Triangular membership function: 

         f x, a, b, c = max  min  
x−a

b−a
,

c−x

c−b
 , 0                                                   (3.31) 

 where, x is input parameter, a & c locate the feet of the triangle and b locate the peak.  

 

Generalized bell-shaped membership function: 

                f x, a, b, c =
1

1+ 
x−c

a
 
2b                                                                        (3.32) 

   where, x is input parameter, c locate the centre of the curve.  
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3.8 SUMMARY 

A detailed physical model study on non-reshaped berm breakwater carried out by 

(Rao, 2009) is described in this chapter. The wave flume, experimental setup, and 

experimental procedure of non-reshaped berm breakwater are also discussed. Non-

dimensional input parameters that influence the damage level (S) of non-reshaped 

berm breakwater, such as, deep-water wave steepness (Ho/Lo), surf similarity 

parameter (), relative berm position (hB/d), relative armor stone weight (W50/Wmax50), 

relative berm width (B/Lo) and relative berm location (hB/Lo) which are used for the 

soft computing techniques are discussed. And also the research methodology to 

develop soft computing tools such as, ANN, SVM, PSO and ANFIS to predict 

damage level (S). A basic concept of PCA, ANN and SVM which is used in present 

techniques are explained. Details of proposed PSO based SVM model along with 

ANFIS are explained in detail. 
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CHAPTER 4 

RESULTS AND DISCUSSION  

4.1 GENERAL 

For the present study, data was collected from the physical model study on non-

reshaped berm breakwater which was carried out in wave flume in marine structures 

laboratory NITK, Surathkal, India (Balakrishna Rao, 2009). They carried out 

experiment to study the stability of non-reshaped berm breakwater by taking stone as 

armor unit. The wave parameters considered for their study was to represent the 

Mangalore coast. Waves were generated with height varying from 3 m to 4.8 m and 

period varying from 8 s to 12 s. The depth of water in front of structure was also 

varied from 9 m to 13. 5 m. The dimensional analysis was carried out on the 

parameters considered, using Buckingham’s-Π theorem. The results thus obtained in 

dimensionless form was used in the present work to study the performance of soft 

computing techniques like ANN, SVM and hybrid model ANFIS, PSO-SVM. 

Methodologies of these techniques were briefly explained in the Chapter 3. Using 

PCA, influence of input parameters on damage level were carried out. Further the 

collected data was randomly divided into two set, training about 80% and remaining 

for testing. 

 

Soft computing techniques such as ANN, ANFIS, SVM and PSO-SVM approach 

have been used to predict the damage level of the non-reshaped berm breakwater. The 

capability of the approach was checked by using statistical measures like Correlation 

Coefficient (CC), Root Mean Square Error (RMSE) and Scatter Index (SI), which are 

defined as:  

 𝐶𝐶 =
  𝑂𝑖−𝑂 𝑖  𝑃𝑖−𝑃 𝑖 

𝑛
𝑖=1

   𝑂𝑖−𝑂 𝑖 
2 𝑃𝑖−𝑃 𝑖 

2𝑛
𝑖=1

                                                     (4.1) 

 

𝑅𝑀𝑆𝐸 =  
1

𝑛
  𝑂𝑖 − 𝑃𝑖 2𝑛

𝑖=1 × 100%                                   (4.2)   
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                                   𝑆𝐼 =
𝑅𝑀𝑆𝐸

𝑂 𝑖
                                                                     (4.3) 

Where, 𝑂𝑖and 𝑃𝑖  are observed and predicted damage level respectively, n is the 

number of data set used and 𝑂 𝑖  and  𝑃 𝑖  are average observed and predicted damage 

level respectively. 

 

4.2 PERFORMANCE OF ARTIFICAL NEURAL NETWORKS (ANN) 

MODEL  

Seven input parameters namely Armor Stone Weight (W50), Slope angle (cot), 

Deepwater Wave Steepness (Ho/Lo), Surf Similarity parameter (), Relative berm 

position (hB/d), Relative berm width (B/Lo) and Relative water depth (d/Lo) were 

considered for this study. Initially, training and testing were carried out using three 

updated algorithms namely SCG, GDA and LMA for same five number of hidden 

nodes and a constant 300 epochs in order to arrive at a better training algorithm.  

The results obtained during training and testing processes showing CC and mean 

square error values are tabulated in Table 4.1. The CCs between observed output and 

network predicted outputs were calculated by using Eq. 4.1. The RMSE and SI 

between the observed output and network predicted output was calculated using Eqs. 

4.2 and 4.3 respectively.  

Table 4.1 Statistical results obtained for ANN1 Model 

Network training 

function  
CC RMSE SI 

GDA 

 

Train 0.717 4.96 0.416 

Test 0.711 4.99 0.375 

SCG 

 

Train 0.933 2.57 0.215 

Test 0.834 3.94 0.296 

LMA 

 

Train 0.945 2.33 0.195 

Test 0.888 3.47 0.260 



65 
 

From Table 4.1, it can be observed that the CC obtained after GDA training for 

ANN1 model was 0.717 and for testing the model it was found that test CC was 

0.711. The RMSE value was found to be 4.96 & 4.99 for train and test data. SI was 

0.416 and 0.375 for test and train data. The same ANN1 model was trained by SCG 

which showed a correlation of 0.933 for training and for testing a correlation of 

0.834.The RMSE and SI in this case was found to be 2.57 , 3.94 0.215 & 0.296 for 

train and test data respectively. The ANN1 model again with trained by LMA was 

found was found to have a correlation of 0.945 and 0.888 for training and testing 

respectively. The RMSE and SI for the ANN1 model with LMA were found to be 

2.33 & 3.47 and 0.195 & 0.260 for train and test data respectively. It can be observed 

clearly that ANN1 model with LMA showed a better correlation compared to the 

other two algorithms and also the RMSE was found minimum. Final CC’s for training 

and testing for GDA, SCG and LMA are shown in Figs. 4.1 to 4.3. From the results 

shown in Table 4.1 it can be observed that the CC and RMSE were better for LMA 

algorithm compared to SCG and GDA. Hence, further studies were carried out using 

LMA. 
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Fig 4.1 Observed and predicted damage level for by ANN1 (GDA) model for (a) 

CCtrain and (b) CCtest 
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CCtest=0.7128
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Fig 4.2 Observed and predicted damage level for by ANN1 (SCG) model for (a) 

CCtrain and (b) CCtest 
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CCtrain=0.9326

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Observed damage level

P
r
e
d

ic
te

d
 d

a
m

a
g

e
 l

e
v

e
l

b

 

 

CCtest=0.8344
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Fig 4.3 Observed and predicted damage level for by ANN1 (LMA) model for (a) 

CCtrain and (b) CCtest 

 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Observed damage level

P
r
e
d

ic
te

d
 d

a
m

a
g

e
 l

e
v

e
l

a

 

 

CCtrain=0.9404
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CCtest=0.8896
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4.3 PRINCIPAL COMPONENT ANALYSIS 

PC analysis was carried out using statistiXL software (www.statistixl.com/downloads/ 

files). Analysis part consisted of calculation of principal components for the given set 

of data. In the present case, seven parameters were considered for analysis namely 

Armor Stone Weight (W50), Slope angle (cot), Wave Steepness (Ho/Lo), Surf 

Similarity parameters (ζ), Relative berm width by water depth (B/d), Relative berm 

width (B/ Lo) and Relative berm location (hB/Lo). The principal components were 

calculated for all these parameters. The results of the PC analysis are tabulated in 

Tables 4.2 and 4.3. 

Table 4.2 Eigen values for all PCA and percentage of variance 

Value PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 

Eigen value 2.955 1.927 1.358 0.343 0.241 0.106 0.069 

% of Var. 42.221 27.532 19.400 4.904 3.447 1.510 0.986 

Cum. % 42.221 69.753 89.153 94.057 97.504 99.014 100.000 

 

Table 4.3 Principal Component loadings 

Variable PC 1 PC 2 PC 3 

Armor Stone Weight (W50) 0.088 0.118 -0.949 

Slope (cotα) 0.464 -0.626 -0.515 

Wave  Steepness (Ho/Lo) 0.922 0.243 0.193 

Surf Similarity (ζ) -0.944 0.001 0.097 

Relative berm width by water depth (B/d) -0.400 0.757 -0.368 

Relative berm width (B/ Lo) 0.094 0.892 -0.011 

Relative berm location (hb/Lo) 0.907 0.305 0.099 

 

It can be observed in Table 4.2 that the Eigen values and the percentage of variance 

are greater than one and 10% respectively for PC1, PC2 and PC3. Hence, further PCA 

loading analysis was carried out for these three principal components. The 

components with loading greater than or equal to 75% were considered to be 

influencing the output i.e., damage level “S”. The results of the loadings calculated 
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for the three principal components are shown in Table 4.3 which clearly shows that 

the "cot" parameter has a loading less than 75% and hence the influence of that 

parameter on damage level was less. Henceforth, six input parameters was considered 

for the further analysis using various soft computing techniques. Table 4.4 shows the 

new input parameters obtained after PC analysis along with their percentage of 

influence. 

 

 

Fig. 4.4 Principal components v/s percentage of PC loadings 

 

Table 4.4 New input parameters after PC analysis 

Sl. 

No. 
Parameters Percentage of influence 

1 Armor stone weight 0.949 

2 Surf Similarity 0.944 

3 Wave Steepness 0.922 

4 Relative berm location 0.907 

5 Relative berm width 0.892 

6 Relative berm width by water depth 0.757 
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4.4 PERFORMANCE OF FEED FORWARD BACK-PROPAGATED NEURAL 

NETWORK MODEL FOR REDUCED INPUT PARAMETER  

Results of the analysis carried out with seven input parameters was explained in 

previous section 4.2 and in this section the discussion of analysis carried out with 

reduced parameters obtained after the PC analysis was explained.  

The reduced network model with six input parameters was constructed and trained by 

LMA. Table 4.5 shows the results in terms of CC, RMSE and SI values obtained 

during training and testing processes with different network combinations. A total of 

300 epochs were carried out during the analysis for each combination of network. The 

CC value was found to be same as network analysis carried out with seven input 

parameters. Hence, it can be concluded that six input parameters are sufficient for the 

present study.  

Table 4.5 Statistical measures obtained for ANN2 Model with different network 

combinations 

Network 
 

CC RMSE SI 

6-3-1 
Train 0.873 3.417 0.283 

Test 0.805 4.371 0.337 

6-4-1 
Train 0.908 2.935 0.243 

Test 0.854 3.947 0.303 

6-5-1 
Train 0.940 2.388 0.198 

Test 0.884 3.687 0.283 

6-6-1 
Train 0.935 2.486 0.206 

Test 0.865 3.757 0.288 

6-7-1 
Train 0.929 2.592 0.215 

Test 0.844 4.590 0.352 

 

Further, LMA was used for network analysis of damage level prediction with varying 

hidden nodes from 3 to 7 for 300 epochs. Here the CC’s of predicted values increase 
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with increase in number of hidden nodes. Also, with the increase in number of hidden 

nodes the error between observed output and predicted output was found to be 

decreasing. But, after certain number of increase in hidden layers, the error again 

starts increasing.  

 

Fig. 4.5 RMSE for each network for train data 

 

Fig. 4.6 RMSE for each network for test data 

Mirchandani and Cao (1989) and Huang and Huang (1991) have suggested that the 

number of hidden layers may be equal to one less than the number of input parameters 

to increase the learning efficiency. Considering these criteria and Figs. 4.5 and 4.6 in 

the present case, it was observed that 5 numbers of hidden layers gave least error with 

high CC. A CC of 0.94 for training set and 0.88 for testing set with a RMSE of 2.388 

for training and 3.687 for testing sets and a lower SI of 0.198 and 0.283 for training 

and testing sets was achieved with 5 hidden nodes and 300 epochs with the considered 
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network models. The CC graph for 6-5-1 network of training and testing was plotted 

as shown in Fig 4.7. 

 

 
Fig. 4.7 Observed and predicted damage level for by ANN2 (LM) model for (a) 

CCtrain and (b) CCtest 
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4.4.1 Estimation of Damage Level by ANN2 Model  

Once the network was trained the weight and bias values got fixed for that model. The 

ANN2 structure constructed for estimating damage level of non-reshaped berm 

breakwater was shown in Fig. 4.8. The structure consists of six input nodes, five 

hidden layer nodes, and one output node. After training the network model, weights 

and biases of the network are fixed. These fixed weight and bias values are shown in 

Fig. 4.8.  

 

Fig. 4.8 ANN2 structure with weights and biases 

Here each input value was multiplied with the weight and adds with bias value, total 

sum was then the input at each hidden layer node, which was passed through a 

hyperbolic tangent sigmoid transfer function as defined in equation 4.4. Further the 

output from hidden node get multiplied with the weight and adds with the bias value, 

and then the total sum was passed through purelin as shown in equation 4.5. The 

damage level (S) was estimated using following formulations: 
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Hyperbolic tangent sigmoid transfer function ihF  = 
  











1

2exp1

2

ihN
          (4.4) 

ihN  are values of input to hidden nodes and ihF  are the Hyperbolic tangent sigmoid 

transfer functions of hidden node ih. where ih 1 to 5,  

   

        5981.13451.22602.00742.06136.2

4383.00657.0max

00

0050501





LhLBdB

LHWWN

B
             

   

        0454.32559.52626.05942.04916.6

2297.20636.3max

00

0050502





LhLBdB

LHWWN

B  

   

        2644.18187.42509.25303.35982.2

2303.31962.3max

00

0050503





LhLBdB

LHWWN

B  

   

        9319.01353.32874.28669.18680.0

9095.19125.1max

00

0050504





LhLBdB

LHWWN

B  

   

        492.144142.27016.277653.64633.3

6878.12960.0max

00

0050505





LhLBdB

LHWWN

B
 

Above equations are transferred to hyperbolic sigmoid transfer functions (Eq. 4.4). 

   12exp12 11  NF  

   12exp12 22  NF  

   12exp12 33  NF  

   12exp12 44  NF  

   12exp12 55  NF  

1N  to 5N  and 1F  to 5F  , represents summation function and transfer function at each 

hidden node respectively.  

            9856.20627.05258.03994.01098.13026.468521.0 654321  FFFFFFNho

 

 Above equation was transferred to purelin transfer functions  

 Purelin transfer function hoG =  hoNpurelin                                                          (4.5) 
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hoN are values of hidden to output nodes and  hoG  is purelin transfer function of 

output node ho . 

Then Damage  hoGpurlinS                                                              (4.6) 

Equation 4.6 provides trained ANN2 model for estimating damage level of non-

reshaped berm breakwater. 

It is observed that the maximum R obtained during the tests was 0.884 and there are 

chances of further improving the solution. Also, with each repetition of the ANN 

model the results vary. This is because ANNs uses empirical risk minimization and 

follows a heuristic path, with applications and extensive experimentation preceding 

theory. Further, ANNs can suffer from multiple local minima which lead to over 

fitting.  

In contrast, SVMs use structural risk minimization which involves sound theory first, 

then implementation and experiments. SVMs solution is global and unique. It has a 

simple geometric interpretation and gives a sparse solution. Unlike ANNs, the 

computational complexity of SVMs does not depend on the dimensionality of the 

input space. The reason that SVMs often outperform ANNs in practice is that they 

deal with the biggest problem with ANNs, SVMs are less prone to over fitting. 

Because of all these advantages of SVM, it was decided to carry out the further tests 

using SVM.  

4.5 PERFORMANCE OF SUPPORT VECTOR MACHINE (SVM) MODEL  

The performance of SVM depends on the good setting of SVM and kernel parameters. 

In developing SVM models, initially parameters are randomly selected by coarse 

search (i.e. for C = 100,200, 300….2000;  = 0.5, 1…2; γ = 1,2,…6 and d = 1,2,...6) 

to identify the near optimal values, and then a fine search (i.e. for C=1,10,20, 

30….2000;  = 0.000001,…2; γ = 0.01,0.02,…6 and d = 1,2....6) was carried out to 

identify the final optimal values. The final optimum values of SVM and kernel 

parameters are shown in Table.4.6. 
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Table.4.6 Optimal parameters for SVM models with different kernel functions 

Kernel nsv C 𝛆 𝛄 d 

Linear 86 1260 0.00126 - - 

Polynomial 86 415 0.00035 - 3 

rbf 86 300 0.00030 1 - 

erbf 86 20 0.00002 6 - 

Spline 86 1 0.000001 - - 

Bspline 86 10 0.00001 - 1 

 

The statistical parameters computed using the predicted and observed damage level of 

training and testing data for the SVM models are shown in Table.4.7. The number of 

support vectors for all the SVM models are 100%, which indicates that there was no 

noise in the data set. The SVM model with linear kernel function results low CC 

(Training CC = 0.3590, Testing CC = 0.3583) and RMSE, SI are very high when 

compared to other kernel function in terms of statistical measures. The SVM model 

with bspline kernel function over-fit the data, as we get very high training accuracy 

and a much lower testing accuracy when compared to SVM models with kernel 

functions polynomial, rbf, erbf, spline, as shown in Table.4.7.  

 

Table.4.7 Statistical measures of SVM models 

Kernel 

functions of 

SVM Model 

Training 

CC 

Testing 

CC 

Training Data Testing Data 

RMSE SI RMSE SI 

Linear 0.3590 0.3583 6.0746 0.5360 6.3190 0.5222 

Polynomial 0.9081 0.8883 2.8811 0.2542 3.2357 0.2674 

rbf 0.8795 0.8665 3.1259 0.2758 3.4569 0.2857 

erbf 0.7824 0.7697 4.5877 0.4048 4.9127 0.4060 

Spline 0.8983 0.8609 2.9335 0.2589 3.4851 0.2880 

Bspline 0.9970 0.6845 0.5074 0.0448 5.8227 0.4812 

 

The better selection of SVM and kernel parameters decides the performance of these 

models. In case of rbf and erbf kernel, the optimal width () obtained by manual 

search are found to be 1 and 6 respectively. The optimal values of d (degree) in case 
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of polynomial and bspline kernel function obtained by manual search are 3 and 1 

respectively. The SVM model with polynomial kernel function shows better 

generalization performance with CC 0.9081 and 0.8883, RMSE 2.8811 and 3.2357, SI 

0.2542 and 0.2674 for training and testing respectively when compared to all other 

kernel functions. The CC of SVM models for the training and testing data are shown 

in Fig. 4.9 – 4.14. 
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Fig 4.9 Observed and predicted damage level for linear kernel using SVM for (a) 

CCtrain and (b)CCtest 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Observed damage level

P
r
e
d

ic
te

d
 d

a
m

a
g

e
 l

e
v

e
l

a

 

 

CCtrain=0.3590

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Observed damage level

P
r
e
d

ic
te

d
 d

a
m

a
g

e
 l

e
v

e
l

b

 

 

CCtest=0.3583
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Fig 4.10 Observed and predicted damage level for polynomial kernel using SVM 

for (a)CCtrain and (b)CCtest 
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CCtrain=0.9081
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CCtest=0.8883
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Fig 4.11 Observed and predicted damage level for rbf kernel using SVM for (a) 

CCtrain and (b)CCtest 
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CCtest=0.8665
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Fig 4.12 Observed and predicted damage level for erbf kernel using SVM for (a) 

CCtrain and (b)CCtest 
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CCtrain=0.7824
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CCtest=0.7697
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Fig 4.13 Observed and predicted damage level for spline kernel using SVM for 

(a) CCtrain and (b)CCtest 
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0 5 10 15 20 25 30
0

5

10

15

20

25

30

Observed damage level

P
re

d
ic

te
d

 d
a

m
a

g
e 

le
v

el

b

 

 

CCtest=0.8609
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Fig 4.14 Observed and predicted damage level for bspline kernel using SVM for 

(a) CCtrain and (b)CCtest 
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CCtest=0.6845
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4.6 COMPARISON OF ANN AND SVM MODELS 

Results obtained from both the models are shown in Table 4.8. Statistical measures of 

both the models gave satisfactory results. But, in comparison to ANN, SVM results 

were better and also SVM gave a unique solution with any number of trails if it was 

run where as ANN results were varying as the weights and bias changed during each 

trail run of the model.  

 

Table 4.8 Comparison of ANN and SVM statistical measures 

Model 
Training 

CC 

Testing 

CC 

Training Data Testing Data 

RMSE SI RMSE SI 

ANN 

(6-5-1) 
0.940 0.884 2.388 0.198 3.687 0.283 

SVM 

(Polynomial 

) 

0.9081 0.888 2.8811 0.2542 3.2357 0.2674 

 

By observing results as shown in Table 4.8 the CC’s obtained for both models for 

testing are 0.884 and 0.888 which was less in soft computing techniques. This can be 

further improved by hybridizing these models with other techniques (Fuzzy, PSO 

etc.,). Further, from the literature it was also observed that hybrid models were better 

than the single models (Patil et al. 2012). To improve the results, hybridizing 

technique such as ANN with Fuzzy and PSO with SVM were implemented and 

analyses were carried out. The obtained results are discussed in the next few sections. 

 

4.7 PERFORMANCE OF PARTICLE SWARM OPTIMIZATION (PSO) 

BASED SUPPORT VECTOR MACHINE (SVM) MODEL  

While using PSO-SVM model in the training stage for damage level prediction the 

kernel parameters (d, ) and SVM parameters (C, ) have to be optimized by PSO and 

the error has to be measured using Eq. 4.3. The kernel parameters with minimum 

error namely (d, ) and SVM parameters were considered for the further studies. The 

testing data sets were used to examine the accuracy of the prediction. The parameters 

of PSO were set as follows: the size of the population as 30, set learning factors C1 = 

0.2 and C2 = 2.5 and the inertia weight ‘w’ linearly increased from 0.4 to 0.9. 
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Out of six SVM models only four were considered for this hybrid model. The linear 

and bspline (Table 4.7) were ignored since it showed poor generalization 

performance. The SVM models with bspline kernel functions over-fit the data, which 

show a very high training accuracy and a much lower testing accuracy. PSO was 

applied to remaining four models. SVM and kernel parameters obtained by PSO-SVM 

are shown in Table.4.9. Statistical measures computed using the predicted and 

observed damage level of training and testing data for the four PSO-SVM models are 

shown in Table.4.10.  

 

Table 4.9 Optimal parameters for PSO-SVM models with different kernel 

functions 

Kernel nsv 
C ε γ D 

PSO-SVM PSO-SVM PSO-SVM PSO-SVM 

Polynomial 86 4.55 0.0000455 - 3.9 

rbf 86 45899 0.045899 1.1 - 

erbf 86 193860 0.19386 14 - 

Spline 86 6.612 0.0000066 - - 

 

Table 4.10 Statistical measures of PSO-SVM models 

Kernel 

functions of 

SVM Model 

Training 

CC 

Testing 

CC 

Training Data Testing Data 

RMSE SI RMSE SI 

Polynomial 0.9323 0.9207 2.3500 0.2074 2.6230 0.2168 

rbf 0.8956 0.8742 3.2994 0.2911 3.7311 0.3083 

erbf 0.8675 0.7700 3.6936 0.3259 4.6045 0.3805 

Spline 0.9555 0.8770 1.9592 0.1729 3.2640 0.2640 

 

In comparison to all PSO-SVM models, the model accompanying erbf kernel function 

shows less generalization performance (CC Train = 0.8675 and CC Test = 0.7700) in 

prediction of damage level of statically stable non-reshaped berm breakwater with 

RMSE 3.6936 and 4.6045, SI 0.3259 and 0.3805 for training and testing data 

respectively when compared to all other kernel functions. The number of support 
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vectors used in PSO-SVM models was 100% (86), which indicates that every training 

data set was utilized as support vector. This clearly proves that, there was no noise in 

the training data set, but there was non-linearity and complexity associated in 

mapping input and output parameters of non-reshaped berm breakwater. Increasing C 

will disturb the solution, In case of rbf and erbf kernel, the values of regularization 

parameter C obtained by PSO are found to be 45899 and 193860 respectively. The 

optimal values of C in case of polynomial and spline kernel function obtained by PSO 

are 4.55 and 6.612 respectively. The PSO-SVM model with polynomial kernel 

function shows better generalization performance with CC 0.9207, RMSE 2.6230, and 

SI 0.2168 for the testing data when compared to all other kernel functions. 

The performance of PSO-SVM model with spline kernel function (CC Train = 0.9555 

and CC Test = 0.8770) is better than PSO-SVM models with rbf and erbf kernel 

functions in terms of statistical measures RMSE 1.9592 and 3.2640, SI 0.1729 and 

0.2640 for training and testing data respectively.  

It was noticed that the performance of these models depends on the better selection of 

SVM and kernel parameters. The kernel and SVM parameters obtained by PSO 

(Table.4.9) is tested by using test data set, which shows better generalization 

performance with highest Training CC = 0.9207 for PSO-SVM model with 

polynomial kernel function. By interfacing PSO with SVM, generalization 

performance of the PSO-SVM models shows improvement in terms of statistical 

measures such as CC, RMSE, and SI over SVM models. This can be observed 

comparing Table.4.7 and Table.4.10. The CC of four PSO-SVM models for the 

training and testing data are shown in the Fig. 4.15 - 4.18. 
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Fig 4.15 Observed and predicted damage level for polynomial kernel using PSO-

SVM for (a) CCtrain and (b) CCtest 
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CCtrain=0.9323
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CCtest=0.9207
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Fig 4.16 Observed and predicted damage level for rbf kernel using PSO-SVM for 

(a) CCtrain and (b)CCtest 
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CCtrain=0.8956
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CCtest=0.8742
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Fig 4.17 Observed and predicted damage level for erbf kernel using PSO-SVM 

for (a) CCtrain and (b)CCtest 
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CCtrain=0.8675
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CCtest=0.7700
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Fig 4.18 Observed and predicted damage level for spline kernel using PSO-SVM 

for (a) CCtrain and (b) CCtest 
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CCtrain=0.9555
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CCtest=0.8770
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4.8 PERFORMANCE OF ADAPTIVE NEURO FUZZY INFERENCE SYSTEM 

(ANFIS) MODEL  

The ANFIS model with six input parameters and one output parameter was 

constructed with different membership functions, fuzzy rules and epoch numbers. The 

various membership functions considered were Triangular-shaped built-in 

membership function (TRIMF), Trapezoidal-shaped built-in membership function 

(TRAPMF), Generalized bell-shaped built-in membership function (GBELLMF), and 

Gaussian curve built-in membership function (GAUSSMF). An ANFIS model with 

built-in 2 membership functions for each variable, and 100 epoch numbers were 

selected and trained using the Levenberg–Marquardt algorithm with tangent sigmoid 

and linear transfer functions in the hidden and output layers, respectively. 

The results obtained during training and testing processes showing CC and RMSE 

values are tabulated in Table 4.11. The CC between desired output and network 

predicted outputs were calculated by using Eq. 4.1. The RMSE and SI between target 

output and network predicted output is calculated by using Eqs. 4.2 and 4.3 

respectively. The correlation coefficient graph for the ANFIS model considering all 

the membership functions are shown in Fig. 4.19 to 4.22.   

Table 4.11 Statistical measures for ANFIS model 

Membership Function  RMSE CC SI 

Triangular 
Train 0.143 0.997 0.0123 

Test 5.028 0.764 0.4155 

Trapezoidal 
Train 1.227 0.985 0.102 

Test 7.451 0.662 0.572 

Gbell 
Train 0.123 0.998 0.0109 

Test 3.146 0.861 0.260 

Gauss 
Train 0.147 0.997 0.013 

Test 2.145 0.938 0.177 

 

From Table 4.11 it was observed that the CC obtained after training by TRIMF for 

ANFIS model was 0.997 and for testing it was 0.764 with a RMSE of 0.143 and 5.028 
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for train and test data. Further, with TRAPMF a CC of 0.985 and 0.662 was obtained 

for training and testing with a RMSE of 1.227 & 7.451 for train and test data 

respectively. The same ANFIS model trained by GBELLMF showed a CC of 0.998 

and 0.861 for training and testing with a RMSE of 0.123 & 3.146 for train and test 

data. The ANFIS model trained with GAUSSMF showed a CC of 0.997 and 0.938 for 

training and testing data with a RMSE of 0.147 & 2.145 for train and test data 

respectively. From the tabulated results and discussion it was clear that the ANFIS 

model using GAUSSMF was better suited for the present data set with high CC values 

and low RMSE values.  
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Fig. 4.19 Observed and Predicted damage level by ANFIS (Triangular) model for 

CCtrain and CCtest data  
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CCtrain=0.9997
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CCtest=0.7641
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Fig. 4.20 Observed and Predicted damage level by ANFIS (Trapezoidal) model 

for CCtrain and CCtes data  
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CCtrain=0.9847
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CCtest=0.6629
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Fig. 4.21 Observed and Predicted damage level by ANFIS (Gbell) model for 

CCtrain and CCtest data  
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CCtrain=0.9998
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CCtest=0.8609
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Fig. 4.22 Observed and Predicted damage level by ANFIS (Gauss) model for 

CCtrain and CCtest data  

 

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Observed damage level

P
r
e
d

ic
te

d
 d

a
m

a
g

e
 l

e
v

e
l

a

 

 

CCtrain=0.9997

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Observed damage level

P
r
e
d

ic
te

d
 d

a
m

a
g

e
 l

e
v

e
l

b

 

 

CCtest=0.9380
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4.9 PERFORMANCE EVALUATION OF ANN, SVM, ANFIS AND PSO-SVM 

MODEL 

The results obtained using individual models have been discussed in previous 

sections. In this section a comparison of all the models developed has been done to 

know the best model that could predict damage level of non-reshaped berm 

breakwater precisely and accurately. From Tables 4.5, 4.7, 4.10 and 4.11 it was 

observed that the individual models with their particular kernel functions or 

algorithms showed better results. Considering the models with their best kernel 

function or algorithm the present comparison study was carried out and the results are 

tabulated in Table 4.12.  

 

Table.4.12 Comparing Statistical Measures of ANN, SVM, ANFIS and PSO-

SVM models 

Model 
Training 

CC 

Testing 

CC 

Training Data Testing Data Computing 

Time 

Secs 
RMSE SI RMSE SI 

ANN 

(LMA) 
0.940 0.884 2.388 0.198 3.687 0.283 1.56 

SVM 

(Polynomial) 
0.9081 0.888 2.8811 0.2542 3.2357 0.2674 14.67 

PSO-SVM 

(Polynomial) 
0.9323 0.921 2.3500 0.2074 2.6230 0.2168 19.45 

ANFIS 

(GaussMF) 
0.997 0.938 0.147 0.013 2.145 0.177 25.87 

  

In terms of hybrid model comparison, ANFIS model performed better than the 

individual ANN model and PSO-SVM model with polynomial kernel function 

showed better results than the SVM model with polynomial kernel function in terms 

of statistical measures. Comparing all the models it was clear from the table that the 

ANFIS model with gaussMF showed better performance than all the other models 
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considered in the study with a CC of 0.997 and 0.938 for training and testing data 

respectively. 

 

From Table 4.12, comparison of ANN, SVM, ANFIS and PSO-SVM models with 

statistical measures and computational time of each model.  All the models were run 

in DELL INSPIRON with Intel® core ™ i5 CPU @ 2.67 GHz and 4 GB RAM and 64 

bit windows 7 operating system. It was observed that the hybrid models in both cases 

showed better results compared to individual models. When the hybrid models were 

compared, ANFIS model gave higher CC and lower RMSE. But considering 

computational time ANFIS has taken more time then PSO-SVM model say around 

25% extra computational time. Hence PSO-SVM was computationally efficient as 

compared to ANFIS.  

 

4.10 SUMMARY 

Initially, PC analysis was also carried out to study the influence of individual input 

parameters on the output. The PC analysis carried out showed that six input 

parameters were more influencing the output which was considered for the next 

studies. The number of hidden layers and epochs were optimized further before using 

them in the model. In ANN it was observed that 5 hidden layers with 300 epochs were 

sufficient to get better results from the different models. Firstly, the individual models 

of ANN and SVM were tested with six input parameters and with different algorithms 

and kernel functions respectively to know the influence of each in the respective 

models. It was observed that ANN with LM algorithm and SVM with Polynomial 

kernel function performed better compared to other algorithms and kernel functions. 

 

The individual ANN with LM algorithm and SVM with Polynomial kernel function 

were compared to know their performance. SVM showed better performance 

compared to ANN but a room for improvement was available. Hence, in continuation 

hybrid models were considered for the study. The different membership functions of 

the ANFIS and also different Kernel functions of PSO-SVM were compared before 

selecting the optimum function. Guass membership function for ANFIS and 

polynomial kernel for PSO-SVM shows better results compared to other membership 
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functions and kernel. Comparing the different hybrid models, ANFIS model 

performed better than PSO-SVM hybrid model.  
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CHAPTER 5 

SUMMARY AND CONCLUSIONS  

5.1 SUMMARY 

Damage level prediction of non-reshaped berm breakwater by considering all the 

boundary conditions and extracting knowledge from large amount of experimental or 

in-situ data is extremely difficult. And also, the physical model study is too expensive 

and time consuming. Furthermore, the relevant available information is usually in the 

form of prior empirical knowledge and input-output data of physical model studies. 

Therefore, we need an approximate reasoning system capable of handling such 

imperfect information. In this context soft computing models are developed, such as, 

ANN, SVM, PSO-SVM and ANFIS. 

The data for the development of soft computing models were collected from physical 

model study on non-reshaped berm breakwater carried out in wave flume by 

Balakrishna Rao (2009). Non-dimensional input parameters that influence the damage 

level (S) of non-reshaped berm breakwater, such as, deep-water wave steepness 

(Ho/Lo), surf similarity parameter (), relative berm position (hB/d), relative armor 

stone weight (W50/Wmax50), relative berm width (B/Lo) and relative berm location 

(hB/Lo) were used as the inputs for the soft computing techniques.  

Initially ANN1 model was developed with different algorithms. PC analysis was 

carried out to study the influence of individual input parameters on the output. After 

PC analysis ANN2 model was developed with six input parameters. Here, the number 

of hidden layers was optimized to get better results. Further, SVM models with 

different kernel functions were developed. The individual ANN and SVM were 

compared to know their performance. SVM showed better performance compared to 

ANN but a room for improvement was available. Hence, in continuation hybrid 

models namely ANFIS and PSO-SVM were developed. All the models were 

compared in terms of statistical measures and computational time. Based on the 

present results conclusions were drawn and presented here. 
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5.2 CONCLUSIONS  

There is no mathematical model to determine the damage level of breakwaters.  

Therefore, it is necessary for researchers to adopt the physical model study to 

quantitatively determine the parameters that influence the phenomenon. However, 

there are some difficulties in physical modeling that makes it inconvenient to use. 

Physical modeling is a time consuming process and expensive. Therefore different 

soft computing models namely, ANN, SVM, PSO-SVM and ANFIS were developed. 

And the results are compared in terms of CC, RMSE, SI and computational time. 

Based on the results of the present investigations and discussion thereon, following 

conclusions are arrived at: 

 Based on the experimental data obtained by Balakrishna Rao( 2009), seven 

input parameter namely relative armor stone weight, slope, wave steepness, 

surf similarity parameter, relative water depth, relative berm width and relative 

berm location was used to develop ANN1 model. 

 From PCA study, it is observed that the slope is the least influencing 

parameter and after eliminating the slope, with the remaining six input 

parameters ANN2 model was developed. From the results variation of 

Correlations Coefficients (CC) between ANN1 and ANN2 is negligible. 

 Soft computing models show good results in terms of statistical measures like 

Root Mean Square Error (RMSE), Correlation Coefficient (CC) and scatter 

index for observed and predicted damage level. 

 A high CC is obtained at epoch equal to 300 with hidden nodes equal to five 

for ANN1 model whereas, ANN2 model has shown the similar trend with 

hidden nodes equal to five. In both models, non-linear transfer function tansig 

and linear transfer function purelin are used. 

 

 SVM with different kernel function were studied and among them polynomial 

kernel gives higher CC and lower RMSE compared to other kernel functions. 
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 It is observed that SVM solution is unique. If we run the same program, the 

results will be exactly same for all SVM models whereas it is not possible in 

ANN. 

 

 It is observed that hybrid models, such as PSO-SVM and ANFIS perform 

better than ANN and SVM.  

 

 The performance of PSO-SVM appears to be highly influenced by the choice 

of its kernel function, and the good setting of kernel and SVM parameters. The 

polynomial kernel function performed superior than other kernel functions. It 

is also concluded that the parameter selection in the case of PSO-SVM has a 

significant effect on the performance of the model. 

 

 The efficiency of the ANFIS models depends on the number of membership 

functions associated with each input data. Highest correlation coefficient was 

obtained using the two gauss shaped membership function. 

 

 The hybrid models in both cases (ANFIS and PSO-SVM) showed better 

results compared to individual (ANN and SVM) models. When the hybrid 

models are compared, ANFIS model gives higher CC and lower RMSE. But 

considering computational time ANFIS has taken more time than PSO-SVM 

model. Hence PSO-SVM is computationally efficient as compared to ANFIS.   

 

 An ANFIS and PSO-SVM model performs better and similar to observed 

values. Hence, ANFIS or PSO-SVM can replace the ANN, SVM for damage 

level prediction of non-reshaped berm breakwater. 

 

 ANFIS or PSO-SVM can be utilized to provide a fast and reliable solution in 

prediction of the damage level prediction of non-reshaped berm breakwater, 

thereby making ANFIS or PSO-SVM as an alternate approach to map the 

wave structure interactions of berm breakwater. 
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5.3 SUGGESTIONS FOR FUTURE WORK 

There is a scope for carrying out further research. The following suggestions may be 

considered for further study: 

 Damage level of non-reshaped berm breakwater with random waves may be 

studied. 

 Damage level of non-reshaped berm breakwater with different armors may be 

studied with random waves. 

 Soft computing techniques may also be applied to find recession on reshaped 

berm breakwater. 

 Latest soft computing techniques, such as, ant colony optimization, kernel 

principal component analysis, artificial immune system etc., may be carried 

out for predicting the damage level of non-reshaped berm breakwater.  
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APPENDIX  

APPENDIX A: PROGRAM TO DEVELOP ANN MODEL 

%Loading Input Data  

Load D:\NITK\data\ Input\p.xls 

Load D:\NITK\data\\Target\t.xls 

% Selecting Input and Output Data for Training, Validation and Testing 

[R,Q] = size (p); 

iitst = 4:4:Q; 

iival = 0:0:Q; 

iitr = [1:4:Q 2:4:Q 3:4:Q]; 

% Dividing Input and Output Data for Training 

ptr = p(:,iitr); 

ttr = t(:,iitr); 

% Dividing Input and Output Data for Validation 

validation.P = p (:,iival); 

validation.T = t (:,iival); 

% Dividing Input and Output Data for Testing 

testing.P = p (:,iitst); 

testing.T = t (:,iitst); 

% Creating a Feedforward Network 
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net = newff(ptr,ttr,[5 1],{'tansig'  'purelin'},'trainlm'); 

%Network Parameters 

net.trainParam.show=5; 

net.trainParam.epochs=300; 

net.trainParam.min_grad =1e-100; 

net.trainParam.goal=1e-5; 

%Training the Network 

[net,tr]=train (net,ptr,ttr,[],[],validation,testing); 

%Simulate the Network with Train Data. 

Outputs = sim(net,ptr); 

%Simulate the Network with Test Data. 

y= sim(net,testing.P); 

%Calculation of Training Error 

e=ttr-Outputs 

perf = mse(e,Outputs,net) 

%Calculation of Testing Error 

e1=testing.T-y 

perf = mse(e1,y,net) 

% Plot the Correlation Coefficient for Training 

plotregression(ttr,Outputs); 
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%Label X and Y axis 

xlabel('Training Observed Value'); 

ylabel(‘TrainingPredicted Value'); 

%Plot the Correlation Coefficient for Testing. 

plotregression(y,testing.T); 

%Label X and Y axis 

xlabel('Testing Observed Value'); 

ylabel(‘Testing Predicted Value'); 

%plots the training and test performances given the training record tr returned by the 

function train. 

plotperform(tr)  

% plots the training state from a training record tr returned by train.  

plottrainstate(tr)  

% To obtain weights between input and hidden layer 

net.IW{1,1} 

% To obtain weights between hidden and output layer 

net.LW{2,1} 

% To obtain bias between input and hidden layer 

net.b{1,1} 

%  To obtain bias between hidden and output layer 

Net.b{2,1} 
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APPENDIX B: PROGRAM TO DEVELOP SVM MODEL  

%Loading Input Data  

Load D:\NITK\data\ Input\p.xls 

Load D:\NITK\data\\Target\t.xls 

%Selecting Input and Output Data for Training, Validation and Testing. 

[R,Q] = size(p); 

iitst = 4:4:Q; 

iival = 0:0:Q; 

iitr = [1:4:Q 2:4:Q 3:4:Q]; 

%Dividing Input and Output Data for Training. 

ptr = p(:,iitr); 

ttr = t(:,iitr); 

%Dividing Input and Output Data for Validation. 

validation.P = p(:,iival); 

validation.T = t(:,iival); 

%Dividing Input and Output Data for Testing. 

testing.P = p(:,iitst); 

testing.T = t(:,iitst); 

% Initially assign the kernel function that is used, we have experimented with six      

% kernel functions 

ker='poly'; 
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% Here the kernel parameters are assigned 

global p1 p2; 

p1=3; 

%SVM  Support Vector Machine, here 15 is capacity factor, and 0.001 is error tube 

% Performance of SVM depends on good setting of SVM and Kernel parameters 

[nsv, beta, bias] = svr (ptr, ttr, ker, 15,'quadratic', 0.001); 

% SVM model give the predicted test output 

ptestoutput = svroutput (testing.P, testing.T, ker, beta, bias); 

% SVM model give the predicted train output 

ptrainoutput = svroutput (ptr, ptr, ker, beta,bias); 

%Plot the Correlation Coefficient for Training. 

plotregression(ttr, ptrainoutput); 

%Label X and Y axis 

xlabel('Training Observed Value'); 

ylabel(‘Training Predicted Value'); 

%Plot the Correlation Coefficient for Testing. 

plotregression (ptestoutput, testing.T); 

%Label X and Y axis. 

xlabel('Testing Observed Value'); 

ylabel(‘Testing Predicted Value'); 
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APPENDIX C: MATLAB PROGRAMME FOR PSO-SVM 

% Assign number of generation and population size 

gen_no=’no. of generation’; 

Np=’no. of population size’; 

%Initialization  

pos=rand(Np,1); 

vel=rand(Np,1)-0.5; 

% Generation loop 

for t=1:gen_no 

    init_pop=[pos,vel]; 

    pop=init_pop; 

    for i=1:Np 

        ker='poly';   global p1; 

        p1=3.9; 

        d1=pop(i,1);   e1=pop(i,2); 

%SVM Support Vector Machine 

        [nsv, beta, bias] = svr(X,Y,ker,d1,'quadratic',e1); 

        ptrainoutput = svroutput(X,X,ker,beta,bias); 

        cctrain=corrcoef(ptrainoutput,Y); 

        ptestoutput = svroutput(X,X1,ker,beta,bias); 
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        cctest=corrcoef(ptestoutput,Y1); 

        MSE_Pos(i)=mse(Y1-ptestoutput); 

    end 

    end 

    %Best solutions (pbest) 

    Pbest=(MSE_Pos)'; 

    [min_fit_Pbest Index] = min(Pbest); 

%gbest 

Gbest=Pbest(Index,:) ; 

%updating position and velocity 

    iw = 0.9 - (0.9-0.4)*t/ gen_no; 

    for j=1:Np 

        vel(j,:)=iw*vel(j,:)+0.2*rand*(Pbest(j,:)-pos(j,:))+2.5*rand*(Gbest-pos(j,:)); 

        pos(j,:)=pos(j,:)+vel(j,:); 

%Fitness Evaluation 

        if (Pbest(j)>pos(j)) 

            Pbest(j,:)=pos(j,:); 

        end 

        if (Gbest>Pbest(j)) 

            Gbest=Pbest(j,:); 

        end 

    end 

end 
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APPENDIX D: MATLAB PROGRAMME FOR ANFIS 

%Define the No of Membership Functions. 

number_mf=2; 

%Define the Type of Membership Function. 

mf_type='gaussmf'; 

%Generating the initial Fuzzy Inference System. 

initial_fis = genfis1(train_data, number_mf, mf_type) 

%Plots  of Initial Membership Functions that are equally spaced and cover the whole 

input space . 

plotmf(initial_fis, 'input', 1) 

plotmf(initial_fis, 'input', 2) 

plotmf(initial_fis, 'input', 3) 

plotmf(initial_fis, 'input', 3) 

plotmf(initial_fis, 'input', 4) 

plotmf(initial_fis, 'input', 5) 

plotmf(initial_fis, 'input', 6) 

%Define the No of Iterations. 

number_iterations=100;  

%Train the Network. 

[train_out_fis train_error step_size test_fis_out test_error] = ... 

anfis(train_data, initial_fis, number_iterations, [1,1,1,1], test_data) 

%Obtain the MinimumTraining and Minimum Testing Error Value. 
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train_error1=min(train_error) 

test_error1=min(test_error) 

%Plot the Training and Testing Error. 

plot([train_error test_error]); 

hold on; plot([train_error test_error], 'o'); hold off; 

%Label X and Y axis. 

xlabel('Epochs'); 

ylabel('RMSE (Root Mean Squared Error)'); 

%Title and Legend for the plot. 

title('Error Curves'); 

legend('ANFIS Training output','ANFIS Testing Output') 

%To evaluate the Training output of a ANFIS system for a given input. 

Output.TR=evalfis(ptr,train_out_fis); 

%Plot Correlation Coefficient for Training. 

plotregression(ttr,Output.TR); 

%Label X and Y axis. 

xlabel('Training Target') 

ylabel('ANFIS Training ouput') 

%To evaluate the Training output of a ANFIS system for a given input. 

Output.Tst=evalfis(testing.P,test_fis_out); 
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%Plot Correlation Coefficient for Testing. 

plotregression(testing.T,Output.Tst); 

%Label X and Y axis. 

xlabel('Testing Target') 

ylabel('ANFIS Testing ouput') 
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